1
|
Sun Y, Wang X, Chen Z, Qin L, Li B, Ouyang L, Peng X, He H. Quantitative Proteomics and Transcriptomics Reveals Differences in Proteins During Anthers Development in Oryza longistaminata. FRONTIERS IN PLANT SCIENCE 2021; 12:744792. [PMID: 34868129 PMCID: PMC8640343 DOI: 10.3389/fpls.2021.744792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/22/2021] [Indexed: 06/07/2023]
Abstract
Oryza longistaminata is an African wild rice species that possesses special traits for breeding applications. Self-incompatibility is the main cause of sterility in O. longistaminata, but here we demonstrated that its pollen vitality are normal. Lipid and carbohydrate metabolism were active throughout pollen development. In this study, we used I2-KI staining and TTC staining to investigate pollen viability. Aniline-blue-stained semithin sections were used to investigate important stages of pollen development. Tandem mass tags (TMT)-based quantitative analysis was used to investigate the profiles of proteins related to lipid and carbohydrate metabolism in 4-, 6-, and 8.5-mm O. longistaminata spikelets before flowering. Pollen was found to germinate normally in vitro and in vivo. We documented cytological changes throughout important stages of anther development, including changes in reproductive cells as they formed mature pollen grains through meiosis and mitosis. A total of 31,987 RNA transcripts and 8,753 proteins were identified, and 6,842 of the proteins could be quantified. RNA-seq and proteome association analysis indicated that fatty acids were converted to sucrose after the 6-mm spikelet stage, based on the abundance of most key enzymes of the glyoxylate cycle and gluconeogenesis. The abundance of proteins involved in pollen energy metabolism was further confirmed by combining quantitative real-time PCR with parallel reaction monitoring (PRM) analyses. In conclusion, our study provides novel insights into the pollen viability of O. longistaminata at the proteome level, which can be used to improve the efficiency of male parent pollination in hybrid rice breeding applications.
Collapse
|
2
|
Vetrici MA, Yevtushenko DP, Misra S. Overexpression of Douglas-Fir LEAFY COTYLEDON1 ( PmLEC1) in Arabidopsis Induces Embryonic Programs and Embryo-like Structures in the lec1-1 Mutant but Not in Wild Type Plants. PLANTS 2021; 10:plants10081526. [PMID: 34451571 PMCID: PMC8397997 DOI: 10.3390/plants10081526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022]
Abstract
Somatic embryogenesis (SE) is the most promising method for the quick propagation of desirable plant genotypes. However, application of SE to conifers remains challenging due to our limited knowledge about the genes involved in embryogenesis and the processes that lead to somatic embryo formation. Douglas-fir, an economically important lumber species, possesses a homolog of the angiosperm embryo-regulatory LEC1 gene. In the present study, we analyzed the potential of Douglas-fir PmLEC1 to induce embryonic programs in the vegetative cells of a heterologous host, Arabidopsis thaliana. PmLEC1 complemented the Arabidopsis lec1-1 null mutant and led to a variety of phenotypes ranging from normal morphology to developmental arrest at various stages in the T1 generation. PmLEC1 did not affect the morphology of wild type Arabidopsis T1 plants. More profound results occurred in T2 generations. PmLEC1 expression induced formation of recurrent somatic embryo-like structures in vegetative tissues of the rescued lec1-1 mutant but loss of apical dominance (bushy phenotype) in wild type plants. The activation of embryonic programs in the lec1-1PmLEC1 T2 plants was confirmed by the presence of the embryo-specific transcripts, OLEOSIN and CRUCIFERIN. In contrast, no embryo-like structures, and no OLEOSIN or CRUCIFERIN were observed in PmLEC1-expressing bushy wild type T2 plants.
Collapse
Affiliation(s)
- Mariana A. Vetrici
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada;
- Centre for Forest Biology, Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada;
- Correspondence: ; Tel.: +1-403-317-2879
| | - Dmytro P. Yevtushenko
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada;
| | - Santosh Misra
- Centre for Forest Biology, Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada;
| |
Collapse
|
3
|
Dong Q, Jiang H, Xu Q, Li X, Peng X, Yu H, Xiang Y, Cheng B. Cloning and characterization of a multifunctional promoter from maize (Zea mays L.). Appl Biochem Biotechnol 2014; 175:1344-57. [PMID: 25391545 DOI: 10.1007/s12010-014-1277-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 09/23/2014] [Indexed: 10/24/2022]
Abstract
The use of tissue-specific promoters to drive the expression of target genes during certain developmental stages or in specific organs can prevent unnecessary gene expression caused by constitutive promoters. Utilizing heterologous promoters to regulate the expression of genes in transgenic receptors can help prevent gene silencing. Here, we engineered heterologous maize promoters that regulate gene-specific expression in rice plant receptors. We performed a histochemical and quantitative β-glucuronidase (GUS) analysis of the Zea mays legumin1 (ZM-LEGF) gene promoter and detailed detection of stably transformed rice expressing the GUS gene under the control of the promoter of ZM-LEGF (pZM-LEGF) and its truncated promoters throughout development. When the promoter sequence was truncated, the location and intensity of GUS expression changed. The results suggest that the sequence from -140 to +41 is a critical region that confers the expression of the entire promoter. Truncation of pZM-LEG (3'-deleted region of pZM-LEGF) markedly increased the GUS activity, with the core cis-elements located in the -273 to -140 regions, namely pZM-LEG6. Detailed analysis of pZM-LEG6::GUS T2 transformant rice seeds and plant tissues at different developmental stages indicated that this promoter is an ideal vegetative tissue-specific promoter that can serve as a valuable tool for transgenic rice breeding and genetic engineering studies.
Collapse
Affiliation(s)
- Qing Dong
- Key Lab of Biomass Improvement and Conversion, Anhui Agricultural University, Hefei, 230036, China
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Braybrook SA, Stone SL, Park S, Bui AQ, Le BH, Fischer RL, Goldberg RB, Harada JJ. Genes directly regulated by LEAFY COTYLEDON2 provide insight into the control of embryo maturation and somatic embryogenesis. Proc Natl Acad Sci U S A 2006; 103:3468-73. [PMID: 16492731 PMCID: PMC1413938 DOI: 10.1073/pnas.0511331103] [Citation(s) in RCA: 237] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The B3 domain protein LEAFY COTYLEDON2 (LEC2) is required for several aspects of embryogenesis, including the maturation phase, and is sufficient to induce somatic embryo development in vegetative cells. Here, we demonstrate that LEC2 directly controls a transcriptional program involved in the maturation phase of seed development. Induction of LEC2 activity in seedlings causes rapid accumulation of RNAs normally present primarily during the maturation phase. Several RNAs encode proteins with known roles in maturation processes, including seed-storage and lipid-body proteins. Clustering analyses identified other LEC2-induced RNAs not previously shown to be involved in the maturation phase. We show further that genes encoding these maturation RNAs all possess in their 5' flanking regions RY motifs, DNA elements bound by other closely related B3 domain transcription factors. Our finding that recombinant LEC2 specifically binds RY motifs from the 5' flanking regions of LEC2-induced genes provides strong evidence that these genes represent transcriptional targets of LEC2. Although these LEC2-induced RNAs accumulate primarily during the maturation phase, we show that a subset, including AGL15 and IAA30, accumulate in seeds containing zygotes. We discuss how identification of LEC2 target genes provides a potential link between the roles of LEC2 in the maturation phase and in the induction of somatic embryogenesis.
Collapse
Affiliation(s)
- Siobhan A. Braybrook
- *Section of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616
- Graduate Program in Plant Biology and
| | - Sandra L. Stone
- *Section of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616
| | - Soomin Park
- *Section of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616
| | - Anhthu Q. Bui
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90024; and
| | - Brandon H. Le
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90024; and
| | - Robert L. Fischer
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Robert B. Goldberg
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90024; and
| | - John J. Harada
- *Section of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616
- Graduate Program in Plant Biology and
| |
Collapse
|
5
|
de los Reyes BG, Myers SJ, McGrath JM. Differential induction of glyoxylate cycle enzymes by stress as a marker for seedling vigor in sugar beet (Beta vulgaris). Mol Genet Genomics 2003; 269:692-8. [PMID: 12836014 DOI: 10.1007/s00438-003-0875-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2002] [Accepted: 05/30/2003] [Indexed: 10/26/2022]
Abstract
Significant differences in seedling vigor exist among sugar beet (Beta vulgaris) hybrids; however, traditional approaches to breeding enhanced vigor have not proven effective. Seedling vigor is a complex character, but presumably includes efficient mobilization of seed storage reserves during germination and efficient seedling growth in diverse environments. The involvement of lipid metabolism during germination of sugar beet under stress conditions was suggested by the isolation at high frequency of Expressed Sequence Tags (ESTs) with similarity to isocitrate lyase (EC 4.1.3.1). High-level expression of this glyoxylate cycle enzyme during germination and seedling emergence was also suggested by nucleotide sequencing of cDNA libraries obtained from a well emerging sugar beet hybrid during germination under stress. Genes involved in carbohydrate and lipid catabolism were differentially expressed in a strongly emerging hybrid, relative to a weakly emerging hybrid, during stress germination. Stress markedly reduced the levels of alpha-amylase transcripts in the weakly emerging hybrid. In contrast, the strongly emerging hybrid exhibited only a moderate reduction in alpha-amylase transcript levels under the same conditions, and showed large increases in the expression of genes involved in lipid metabolism, suggesting compensation by lipid for carbohydrate metabolism in the better emerging hybrid. Differential activity of the glyoxylate cycle thus appears to be a physiological marker that distinguishes between high- and low-vigor sugar beet cultivars. This finding suggests, for the first time, a biochemical target for selection for enhanced germination and improved emergence in sugar beet.
Collapse
Affiliation(s)
- B G de los Reyes
- USDA-ARS, Sugar Beet and Bean Research Unit, Michigan State University, 494 Plant and Soil Sciences Building, East Lansing, MI 48824-1325, USA
| | | | | |
Collapse
|
6
|
Eastmond PJ, Hooks MA, Williams D, Lange P, Bechtold N, Sarrobert C, Nussaume L, Graham IA. Promoter trapping of a novel medium-chain acyl-CoA oxidase, which is induced transcriptionally during Arabidopsis seed germination. J Biol Chem 2000; 275:34375-81. [PMID: 10918060 DOI: 10.1074/jbc.m004945200] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The first step of peroxisomal fatty acid beta-oxidation is catalyzed by a family of acyl-CoA oxidase isozymes with distinct fatty acyl-CoA chain-length specificities. Here we identify a new acyl-CoA oxidase gene from Arabidopsis (AtACX3) following the isolation of a promoter-trapped mutant in which beta-glucuronidase expression was initially detected in the root meristem. In acx3 mutant seedlings medium-chain acyl-CoA oxidase activity was reduced by 95%, whereas long- and short-chain activities were unchanged. Despite this reduction in activity lipid catabolism and seedling development were not perturbed. AtACX3 was cloned and expressed in Escherichia coli. The recombinant enzyme displayed medium-chain acyl-CoA substrate specificity. Analysis of beta-glucuronidase activity in acx3 revealed that, in addition to constitutive expression in the root axis, AtACX3 is also up-regulated strongly in the hypocotyl and cotyledons of germinating seedlings. This suggests that beta-oxidation is regulated predominantly at the level of transcription in germinating oilseeds. After the discovery of AtACX3, the Arabidopsis acyl-CoA oxidase gene family now comprises four isozymes with substrate specificities that encompass the full range of acyl-CoA chain lengths that exist in vivo.
Collapse
Affiliation(s)
- P J Eastmond
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5YW, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Popova TN, Pinheiro de Carvalho MA. Citrate and isocitrate in plant metabolism. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1364:307-25. [PMID: 9630693 DOI: 10.1016/s0005-2728(98)00008-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The relevance of citrate and isocitrate metabolism in plants is discussed in connection with the different pathways for their conversions. The routes for citrate and isocitrate conversions are incorporated into the system of cross-linked metabolic processes and may provide carbon skeletons for nitrogen assimilation and reducing equivalents for biosynthetic reactions, support the functioning of the glyoxylate cycle and play an important role in the TCA and energy metabolism as a whole. The possibility of the coupling of citrate and isocitrate metabolism with various electron transport systems is discussed from the point of view of the efficiency of the balancing cellular NAD(P)H/NAD(P)+ and ATP/ADP ratios. The role of citrate and isocitrate and their derivations as potent effectors of some enzymes is considered. Special attention is paid to the enzymes associated with citrate and isocitrate metabolism and to the mechanisms which regulate their activity. The possibilities of the coordination of the main processes of energy and biosynthetic metabolism at the level of citrate and isocitrate distribution are discussed.
Collapse
Affiliation(s)
- T N Popova
- Department of Plant Physiology and Biochemistry, Voronezh State University, 394693 Voronezh, Russian Federation.
| | | |
Collapse
|
8
|
Mullen RT, Gifford DJ. Regulation of two loblolly pine (Pinus taeda L.) isocitrate lyase genes in megagametophytes of mature and stratified seeds and during postgerminative growth. PLANT MOLECULAR BIOLOGY 1997; 33:593-604. [PMID: 9132051 DOI: 10.1023/a:1005770724644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Two full-length cDNAs encoding the glyoxysomal enzyme isocitrate lyase (ICL) were isolated from a lambda ZAP cDNA library prepared from megagametophyte mRNAs extracted from seeds imbibed at 30 degrees C for 8 days. The cDNAs, designated Ptbs ICL 8 and Ptbs ICL 12, have open reading frames of 1740 and 1719 bp, with deduced amino acid sequences of 580 and 573 residues, respectively. The predicted amino acid sequences of Ptbs ICL 8 and Ptbs ICL 12 exhibit a 79% identity with each other, and have a greater than 75% identity with ICLs from various angiosperm species. The C-termini of Ptbs ICL 8 and Ptbs ICL 12 terminate with the tripeptide Ser-Arg-Met and Ala-Arg-Met, respectively, both being conserved variants of the type 1 peroxisomal targeting signal. RNA blot and slot analysis revealed that Ptbs ICL 8 and Ptbs ICL 12 mRNAs were present at low levels in the megagametophyte of the mature and stratified seeds, and that the level of both transcripts increased markedly upon seed germination. Protein blot analysis indicated that the steady-state level of ICL was low in the mature and stratified seed, then increased rapidly upon seed germination, peaking at around 8-10 days after imbibition (DAI). Changes in the level of ICL activity in cell-free extracts was similar to the steady-state protein content with the exception that ICL activity was not detected in megagametophyte extracts of mature or stratified seeds. From 10-12 DAI when the megagametophyte tissue senesced, ICL activity decreased rapidly to near undetectable levels. In contrast, steady-state levels of ICL protein and mRNA remained relatively constant during megagametophyte senescence. In vivo synthesis of ICL protein was measured to shed light on these differences. ICL immunoselected from [(35)S]-methionine labelled proteins indicated that ICL was synthesized at very low levels during megagametophyte senescence. Together, the results show that loblolly pine ICL gene expression is complex. While temporal regulation appears to be primarily transcriptional, it also involves a number of post-transcriptional processes including at least one translational and/or post-translational mechanism.
Collapse
Affiliation(s)
- R T Mullen
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
9
|
Harada JJ. Seed Maturation and Control of Germination. ADVANCES IN CELLULAR AND MOLECULAR BIOLOGY OF PLANTS 1997. [DOI: 10.1007/978-94-015-8909-3_15] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|