1
|
Dam MI, Ding BJ, Svensson GP, Wang HL, Melo DJ, Lassance JM, Zarbin PH, Löfstedt C. Sex pheromone biosynthesis in the sugarcane borer Diatraea saccharalis: paving the way for biotechnological production. PEST MANAGEMENT SCIENCE 2024; 80:996-1007. [PMID: 37830147 DOI: 10.1002/ps.7830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/19/2023] [Accepted: 10/13/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND The sugarcane borer Diatraea saccharalis (Lepidoptera) is a key pest on sugarcane and other grasses in the Americas. Biological control as well as insecticide treatments are used for pest management, but economic losses are still significant. The use of female sex pheromones for mating disruption or mass trapping in pest management could be established for this species, provided that economical production of pheromone is available. RESULTS Combining in vivo labelling studies, differential expression analysis of transcriptome data and functional characterisation of insect genes in a yeast expression system, we reveal the biosynthetic pathway and identify the desaturase and reductase enzymes involved in the biosynthesis of the main pheromone component (9Z,11E)-hexadecadienal, and minor components hexadecanal, (9Z)-hexadecenal and (11Z)-hexadecenal. We next demonstrate heterologous production of the corresponding alcohols of the pheromone components, by expressing multiple steps of the biosynthetic pathway in yeast. CONCLUSION Elucidation of the genetic basis of sex pheromone biosynthesis in D. saccharalis, and heterologous expression in yeast, paves the way for biotechnological production of the pheromone compounds needed for pheromone-based pest management of this species. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Bao-Jian Ding
- Department of Biology, Lund University, Lund, Sweden
| | | | - Hong-Lei Wang
- Department of Biology, Lund University, Lund, Sweden
| | - Douglas J Melo
- Department of Biology, Lund University, Lund, Sweden
- Departamento de Química, Universidade Federal do Paraná, Curitiba, Brazil
| | - Jean-Marc Lassance
- Département de gestion vétérinaire des Ressources Animales (DRA), University of Liege, Bât. B36 GIGA-Neurosciences, Quartier Hôpital, Liège 1, Belgium
| | - Paulo Hg Zarbin
- Departamento de Química, Universidade Federal do Paraná, Curitiba, Brazil
| | | |
Collapse
|
2
|
Bouchnak I, Coulon D, Salis V, D’Andréa S, Bréhélin C. Lipid droplets are versatile organelles involved in plant development and plant response to environmental changes. FRONTIERS IN PLANT SCIENCE 2023; 14:1193905. [PMID: 37426978 PMCID: PMC10327486 DOI: 10.3389/fpls.2023.1193905] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/23/2023] [Indexed: 07/11/2023]
Abstract
Since decades plant lipid droplets (LDs) are described as storage organelles accumulated in seeds to provide energy for seedling growth after germination. Indeed, LDs are the site of accumulation for neutral lipids, predominantly triacylglycerols (TAGs), one of the most energy-dense molecules, and sterol esters. Such organelles are present in the whole plant kingdom, from microalgae to perennial trees, and can probably be found in all plant tissues. Several studies over the past decade have revealed that LDs are not merely simple energy storage compartments, but also dynamic structures involved in diverse cellular processes like membrane remodeling, regulation of energy homeostasis and stress responses. In this review, we aim to highlight the functions of LDs in plant development and response to environmental changes. In particular, we tackle the fate and roles of LDs during the plant post-stress recovery phase.
Collapse
Affiliation(s)
- Imen Bouchnak
- Centre National de la Recherche Scientifique (CNRS), University of Bordeaux, Laboratoire de Biogenèse Membranaire UMR5200, Villenave d’Ornon, France
| | - Denis Coulon
- Centre National de la Recherche Scientifique (CNRS), University of Bordeaux, Laboratoire de Biogenèse Membranaire UMR5200, Villenave d’Ornon, France
| | - Vincent Salis
- Université Paris-Saclay, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Sabine D’Andréa
- Université Paris-Saclay, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Claire Bréhélin
- Centre National de la Recherche Scientifique (CNRS), University of Bordeaux, Laboratoire de Biogenèse Membranaire UMR5200, Villenave d’Ornon, France
| |
Collapse
|
3
|
Zhang Y, Qin Y, Li D, Wang W, Gao X, Hao C, Feng H, Wang Y, Li T. Fine mapping and cloning of a novel BrSCC1 gene for seed coat color in Brassica rapa L. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:11. [PMID: 36658295 DOI: 10.1007/s00122-023-04287-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
A novel BrSCC1 gene for seed coat color was fine mapped within a 41.1-kb interval on chromosome A03 in Brassica rapa and functionally validated by ectopic expression analysis. Yellow seed is a valuable breeding trait that can be potentiality applied for improving seed quality and oil productivity in oilseed Brassica crops. However, only few genes for yellow seed have been identified in B. rapa. We previously identified a minor quantitative trait locus (QTL), qSC3.1, for seed coat color on chromosome A03 in B. rapa. In order to isolate the seed coat color gene, a brown-seeded chromosome segment substitution line, CSSL-38, harboring the qSC3.1, was selected and crossed with the yellow-seeded recurrent parent, a rapid cycling inbred line of B. rapa (RcBr), to construct the secondary F2 population. Metabolite identification suggested that seed coat coloration in CSSL-38 was independent of proanthocyanidins (PAs) accumulation. Genetic analysis revealed that yellow seed was controlled by a single recessive gene, Seed Coat Color 1 (BrSCC1). Utilizing bulked segregant analysis (BSA)-seq and secondary F2 and F2:3 recombinants analysis, BrSCC1 was fine mapped within a 41.1-kb interval. By integrating gene expression profiling, genome sequence comparison, metabolite analysis, and functional validation through ectopic expression in Arabidopsis, the BraA03g040800.3C gene was confirmed to be BrSCC1, which positively correlated with the seed coat coloration. Our study provides a novel gene resource for the genetic improvement of yellow seeds in oilseed B. rapa.
Collapse
Affiliation(s)
- Yinghuan Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Yao Qin
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Dongxiao Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Wei Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Xu Gao
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Chunming Hao
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Hui Feng
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Yugang Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, People's Republic of China.
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, People's Republic of China
| |
Collapse
|
4
|
Domergue F, Miklaszewska M. The production of wax esters in transgenic plants:
towards a sustainable source of bio-lubricants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2817-2834. [PMID: 35560197 PMCID: PMC9113324 DOI: 10.1093/jxb/erac046] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/03/2022] [Indexed: 05/08/2023]
Abstract
Wax esters are high-value compounds used as feedstocks for the production of lubricants, pharmaceuticals, and cosmetics. Currently, they are produced mostly from fossil reserves using chemical synthesis, but this cannot meet increasing demand and has a negative environmental impact. Natural wax esters are also obtained from Simmondsia chinensis (jojoba) but comparably in very low amounts and expensively. Therefore, metabolic engineering of plants, especially of the seed storage lipid metabolism of oil crops, represents an attractive strategy for renewable, sustainable, and environmentally friendly production of wax esters tailored to industrial applications. Utilization of wax ester-synthesizing enzymes with defined specificities and modulation of the acyl-CoA pools by various genetic engineering approaches can lead to obtaining wax esters with desired compositions and properties. However, obtaining high amounts of wax esters is still challenging due to their negative impact on seed germination and yield. In this review, we describe recent progress in establishing non-food-plant platforms for wax ester production and discuss their advantages and limitations as well as future prospects.
Collapse
Affiliation(s)
- Frédéric Domergue
- Univ. Bordeaux, CNRS, LBM, UMR 5200, F-33140 Villenave d’Ornon, France
| | - Magdalena Miklaszewska
- Department of Functional and Evolutionary Ecology, Division of Molecular Systems Biology (MOSYS), Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
- Department of Plant Physiology and Biotechnology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| |
Collapse
|
5
|
Yang X, Cui L, Li S, Ma C, Kosma DK, Zhao H, Lü S. Fatty alcohol oxidase 3 (FAO3) and FAO4b connect the alcohol- and alkane-forming pathways in Arabidopsis stem wax biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3018-3029. [PMID: 35560209 DOI: 10.1093/jxb/erab532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/03/2021] [Indexed: 06/15/2023]
Abstract
The alcohol- and alkane-forming pathways in cuticular wax biosynthesis are well characterized in Arabidopsis. However, potential interactions between the two pathways remain unclear. Here, we reveal that mutation of CER4, the key gene in the alcohol-forming pathway, also led to a deficiency in the alkane-forming pathway in distal stems. To trace the connection between the two pathways, we characterized two homologs of fatty alcohol oxidase (FAO), FAO3 and FAO4b, which were highly expressed in distal stems and localized to the endoplasmic reticulum. The amounts of waxes from the alkane-forming pathway were significantly decreased in stems of fao4b and much lower in fao3 fao4b plants, indicative of an overlapping function for the two proteins in wax synthesis. Additionally, overexpression of FAO3 and FAO4b in Arabidopsis resulted in a dramatic reduction of primary alcohols and significant increases of aldehydes and related waxes. Moreover, expressing FAO3 or FAO4b led to significantly decreased amounts of C18-C26 alcohols in yeast co-expressing CER4 and FAR1. Collectively, these findings demonstrate that FAO3 and FAO4b are functionally redundant in suppressing accumulation of primary alcohols and contributing to aldehyde production, which provides a missing and long-sought-after link between these two pathways in wax biosynthesis.
Collapse
Affiliation(s)
- Xianpeng Yang
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Lili Cui
- Institute of Environment and Ecology, Shandong Normal University, Jinan, 250014, China
| | - Shipeng Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Changle Ma
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Dylan K Kosma
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Huayan Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
6
|
Ribeaucourt D, Bissaro B, Lambert F, Lafond M, Berrin JG. Biocatalytic oxidation of fatty alcohols into aldehydes for the flavors and fragrances industry. Biotechnol Adv 2021; 56:107787. [PMID: 34147589 DOI: 10.1016/j.biotechadv.2021.107787] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 01/11/2023]
Abstract
From Egyptian mummies to the Chanel n°5 perfume, fatty aldehydes have long been used and keep impacting our senses in a wide range of foods, beverages and perfumes. Natural sources of fatty aldehydes are threatened by qualitative and quantitative variability while traditional chemical routes are insufficient to answer the society shift toward more sustainable and natural products. The production of fatty aldehydes using biotechnologies is therefore the most promising alternative for the flavors and fragrances industry. In this review, after drawing the portrait of the origin and characteristics of fragrant fatty aldehydes, we present the three main classes of enzymes that catalyze the reaction of fatty alcohols oxidation into aldehydes, namely alcohol dehydrogenases, flavin-dependent alcohol oxidases and copper radical alcohol oxidases. The constraints, challenges and opportunities to implement these oxidative enzymes in the flavors and fragrances industry are then discussed. By setting the scene on the biocatalytic production of fatty aldehydes, and providing a critical assessment of its potential, we expect this review to contribute to the development of biotechnology-based solutions in the flavors and fragrances industry.
Collapse
Affiliation(s)
- David Ribeaucourt
- INRAE, Aix Marseille Univ, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France; V. Mane Fils, 620 route de Grasse, 06620 Le Bar sur Loup, France; Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| | - Bastien Bissaro
- INRAE, Aix Marseille Univ, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France
| | - Fanny Lambert
- V. Mane Fils, 620 route de Grasse, 06620 Le Bar sur Loup, France
| | - Mickael Lafond
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Jean-Guy Berrin
- INRAE, Aix Marseille Univ, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France.
| |
Collapse
|
7
|
Kawiński A, Miklaszewska M, Stelter S, Głąb B, Banaś A. Lipases of germinating jojoba seeds efficiently hydrolyze triacylglycerols and wax esters and display wax ester-synthesizing activity. BMC PLANT BIOLOGY 2021; 21:50. [PMID: 33468064 PMCID: PMC7814598 DOI: 10.1186/s12870-020-02823-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/30/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND Simmondsia chinensis (jojoba) is the only plant known to store wax esters instead of triacylglycerols in its seeds. Wax esters are composed of very-long-chain monounsaturated fatty acids and fatty alcohols and constitute up to 60% of the jojoba seed weight. During jojoba germination, the first step of wax ester mobilization is catalyzed by lipases. To date, none of the jojoba lipase-encoding genes have been cloned and characterized. In this study, we monitored mobilization of storage reserves during germination of jojoba seeds and performed detailed characterization of the jojoba lipases using microsomal fractions isolated from germinating seeds. RESULTS During 26 days of germination, we observed a 60-70% decrease in wax ester content in the seeds, which was accompanied by the reduction of oleosin amounts and increase in glucose content. The activity of jojoba lipases in the seed microsomal fractions increased in the first 50 days of germination. The enzymes showed higher activity towards triacylglycerols than towards wax esters. The maximum lipase activity was observed at 60 °C and pH around 7 for triacylglycerols and 6.5-8 for wax esters. The enzyme efficiently hydrolyzed various wax esters containing saturated and unsaturated acyl and alcohol moieties. We also demonstrated that jojoba lipases possess wax ester-synthesizing activity when free fatty alcohols and different acyl donors, including triacylglycerols and free fatty acids, are used as substrates. For esterification reactions, the enzyme utilized both saturated and unsaturated fatty alcohols, with the preference towards long chain and very long chain compounds. CONCLUSIONS In in vitro assays, jojoba lipases catalyzed hydrolysis of triacylglycerols and different wax esters in a broad range of temperatures. In addition, the enzymes had the ability to synthesize wax esters in the backward reaction. Our data suggest that jojoba lipases may be more similar to other plant lipases than previously assumed.
Collapse
Affiliation(s)
- Adam Kawiński
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdańsk, Poland
| | - Magdalena Miklaszewska
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| | - Szymon Stelter
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdańsk, Poland
| | - Bartosz Głąb
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdańsk, Poland
| | - Antoni Banaś
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdańsk, Poland
| |
Collapse
|
8
|
Tola AJ, Jaballi A, Germain H, Missihoun TD. Recent Development on Plant Aldehyde Dehydrogenase Enzymes and Their Functions in Plant Development and Stress Signaling. Genes (Basel) 2020; 12:genes12010051. [PMID: 33396326 PMCID: PMC7823795 DOI: 10.3390/genes12010051] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 12/15/2022] Open
Abstract
Abiotic and biotic stresses induce the formation of reactive oxygen species (ROS), which subsequently causes the excessive accumulation of aldehydes in cells. Stress-derived aldehydes are commonly designated as reactive electrophile species (RES) as a result of the presence of an electrophilic α, β-unsaturated carbonyl group. Aldehyde dehydrogenases (ALDHs) are NAD(P)+-dependent enzymes that metabolize a wide range of endogenous and exogenous aliphatic and aromatic aldehyde molecules by oxidizing them to their corresponding carboxylic acids. The ALDH enzymes are found in nearly all organisms, and plants contain fourteen ALDH protein families. In this review, we performed a critical analysis of the research reports over the last decade on plant ALDHs. Newly discovered roles for these enzymes in metabolism, signaling and development have been highlighted and discussed. We concluded with suggestions for future investigations to exploit the potential of these enzymes in biotechnology and to improve our current knowledge about these enzymes in gene signaling and plant development.
Collapse
|
9
|
Qi W, Lu H, Zhang Y, Cheng J, Huang B, Lu X, Sheteiwy MSA, Kuang S, Shao H. Oil crop genetic modification for producing added value lipids. Crit Rev Biotechnol 2020; 40:777-786. [PMID: 32605455 DOI: 10.1080/07388551.2020.1785384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Plant lipids, mainly stored in seeds and other plant parts, are not only a crucial resource for food and fodder but are also a promising alternative to fossil oils as a chemical industry feedstock. Oil crop cultivation and processing are always important parts of agriculture worldwide. Vegetable oils containing polyunsaturated fatty acids, very long chain fatty acids, conjugated fatty acids, hydroxy fatty acids and wax esters, have outstanding nutritional, lubricating, surfactant, and artificial-fibre-synthesis properties, amongst others. Enhancing the production of such specific lipid components is of economic interest. There has been a considerable amount of information reported about plant lipid biosynthesis, including identification of the pathway map of carbon flux, key enzymes (and the coding genes), and substrate affinities. Plant lipid biosynthesis engineering to produce special oil compounds has become feasible, although until now, only limited progress has been made in the laboratory. It is relatively easy to achieve the experimental objectives, for example, accumulating novel lipid compounds in given plant tissues facilitated by genetic modification. Applying such technologies to agricultural production is difficult, and the challenge is to make engineered crops economically attractive, which is impeded by only moderate success. To achieve this goal, more complicated and systematic strategies should be developed and discussed based on the relevant results currently available.
Collapse
Affiliation(s)
- Weicong Qi
- Salt-soil Agricultural Center, Key Laboratory of Agricultural Environment in the Lower Reaches of Yangtze River Plain, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences(JAAS), Nanjing, PR China.,Key Laboratory of Oil Crops in Huanghuaihai Plain, Ministry of Agriculture, PR China,Henan Provincial Key Laboratory for Oil Crops Improvement, Zheng Zhou, PR China
| | - Haiying Lu
- Salt-soil Agricultural Center, Key Laboratory of Agricultural Environment in the Lower Reaches of Yangtze River Plain, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences(JAAS), Nanjing, PR China
| | - Yang Zhang
- Key Laboratory of Oil Crops in Huanghuaihai Plain, Ministry of Agriculture, PR China,Henan Provincial Key Laboratory for Oil Crops Improvement, Zheng Zhou, PR China
| | - Jihua Cheng
- Yuan Longping High-tech Agriculture Co., LTD, Changsha, PR China
| | - Bangquan Huang
- College of Life Sciences, Hubei University, Wuhan, PR China
| | - Xin Lu
- Salt-soil Agricultural Center, Key Laboratory of Agricultural Environment in the Lower Reaches of Yangtze River Plain, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences(JAAS), Nanjing, PR China
| | - Mohamed Salah Amr Sheteiwy
- Salt-soil Agricultural Center, Key Laboratory of Agricultural Environment in the Lower Reaches of Yangtze River Plain, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences(JAAS), Nanjing, PR China.,Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Shaoping Kuang
- College of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao, PR China
| | - Hongbo Shao
- Salt-soil Agricultural Center, Key Laboratory of Agricultural Environment in the Lower Reaches of Yangtze River Plain, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences(JAAS), Nanjing, PR China.,College of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao, PR China.,Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng, PR China
| |
Collapse
|
10
|
Wang Y, Sun Y, You Q, Luo W, Wang C, Zhao S, Chai G, Li T, Shi X, Li C, Jetter R, Wang Z. Three Fatty Acyl-Coenzyme A Reductases, BdFAR1, BdFAR2 and BdFAR3, are Involved in Cuticular Wax Primary Alcohol Biosynthesis in Brachypodium distachyon. PLANT & CELL PHYSIOLOGY 2018; 59:527-543. [PMID: 29329458 DOI: 10.1093/pcp/pcx211] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 12/27/2017] [Indexed: 05/20/2023]
Abstract
Plant cuticular wax is a heterogeneous mixture of very long chain fatty acids (VLCFAs) and their derivatives. Primary alcohols are the dominant wax components throughout leaf development of Brachypodium distachyon (Brachypodium). However, the genes involved in primary alcohol biosynthesis have not been investigated and their exact biological function remains unclear in Brachypodium to date. Here, we monitored the leaf wax profile and crystal morphology during Brachypodium leaf morphogenesis, and isolated three Brachypodium fatty acyl-CoA reductase (FAR) genes, named BdFAR1, BdFAR2 and BdFAR3, then analyzed their biochemical activities, substrate specificities, expression patterns, subcellular localization and stress induction. Transgenic expression of BdFAR genes in yeast (Saccharomyces cerevisiae), tomato (Solanum lycopersicum), Arabidopsis (Arabidopsis thaliana) and Brachypodium increased the production of primary alcohols. The three BdFAR genes were preferentially expressed in Brachypodium aerial tissues, consistent with known sites of wax primary alcohol deposition, and localized in the endoplasmic reticulum (ER) in Arabidopsis protoplasts. Finally, expression of the BdFAR genes was induced by drought, cold and ABA treatments, and drought stress significantly increased cuticular wax accumulation in Brachypodium. Taken together, these results indicate that the three BdFAR genes encode active FARs involved in the biosynthesis of Brachypodium wax primary alcohols and respond to abiotic stresses.
Collapse
Affiliation(s)
- Yong Wang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yulin Sun
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
| | - Qiuye You
- Shanghai Center for Plant Stress Biology, University of Chinese Academy of Sciences, Shanghai 201602, China
| | - Wenqiao Luo
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Cong Wang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shuai Zhao
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Guaiqiang Chai
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tingting Li
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xue Shi
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chunlian Li
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Reinhard Jetter
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
| | - Zhonghua Wang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
11
|
Craddock CP, Adams N, Kroon JT, Bryant FM, Hussey PJ, Kurup S, Eastmond PJ. Cyclin-dependent kinase activity enhances phosphatidylcholine biosynthesis in Arabidopsis by repressing phosphatidic acid phosphohydrolase activity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:3-14. [PMID: 27595588 PMCID: PMC5299491 DOI: 10.1111/tpj.13321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/22/2016] [Accepted: 08/24/2016] [Indexed: 05/21/2023]
Abstract
Coordination of endomembrane biogenesis with cell cycle progression is considered to be important in maintaining cell function during growth and development. We previously showed that the disruption of PHOSPHATIDIC ACID PHOSPHOHYDROLASE (PAH) activity in Arabidopsis thaliana stimulates biosynthesis of the major phospholipid phosphatidylcholine (PC) and causes expansion of the endoplasmic reticulum. Here we show that PC biosynthesis is repressed by disruption of the core cell cycle regulator CYCLIN-DEPENDENT KINASE A;1 (CDKA;1) and that this repression is reliant on PAH. Furthermore, we show that cyclin-dependent kinases (CDKs) phosphorylate PAH1 at serine 162, which reduces both its activity and membrane association. Expression of a CDK-insensitive version of PAH1 with a serine 162 to alanine substitution represses PC biosynthesis and also reduces the rate of cell division in early leaf development. Together our findings reveal a physiologically important mechanism that couples the rate of phospholipid biosynthesis and endomembrane biogenesis to cell cycle progression in Arabidopsis.
Collapse
Affiliation(s)
- Christian P. Craddock
- School of Life SciencesUniversity of WarwickCoventryCV4 7ALUK
- Present address: Center for Plant Cell BiologyDepartment of Botany and Plant SciencesUniversity of CaliforniaRiverside92521USA
| | - Nicolette Adams
- School of Life SciencesUniversity of WarwickCoventryCV4 7ALUK
- Present address: Centre for Proteomic and Genomic ResearchUpper LevelSt Peter's MallCorner Anzio and Main Road ObservatoryCape Town7925South Africa
| | - Johan T.M. Kroon
- School of Biological and Biomedical SciencesDurham UniversityDurhamDH1 3LEUK
| | - Fiona M. Bryant
- Department of Plant Biology and Crop ScienceRothamsted ResearchHarpendenHertfordshireAL5 2JQUK
- Present address: School of Biological and Biomedical SciencesDurham UniversityDurhamDH1 3LEUK
| | - Patrick J. Hussey
- School of Biological and Biomedical SciencesDurham UniversityDurhamDH1 3LEUK
| | - Smita Kurup
- Department of Plant Biology and Crop ScienceRothamsted ResearchHarpendenHertfordshireAL5 2JQUK
| | - Peter J. Eastmond
- Department of Plant Biology and Crop ScienceRothamsted ResearchHarpendenHertfordshireAL5 2JQUK
| |
Collapse
|
12
|
Bryant FM, Munoz-Azcarate O, Kelly AA, Beaudoin F, Kurup S, Eastmond PJ. ACYL-ACYL CARRIER PROTEIN DESATURASE2 and 3 Are Responsible for Making Omega-7 Fatty Acids in the Arabidopsis Aleurone. PLANT PHYSIOLOGY 2016; 172:154-62. [PMID: 27462083 PMCID: PMC5074617 DOI: 10.1104/pp.16.00836] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/22/2016] [Indexed: 05/04/2023]
Abstract
Omega-7 monounsaturated fatty acids (ω-7s) are specifically enriched in the aleurone of Arabidopsis (Arabidopsis thaliana) seeds. We found significant natural variation in seed ω-7 content and used a Multiparent Advanced Generation Inter-Cross population to fine-map a major quantitative trait loci to a region containing ACYL-ACYL CARRIER PROTEIN DESATURASE1 (AAD1) and AAD3 We found that AAD3 expression is localized to the aleurone where mutants show an approximately 50% reduction in ω-7 content. By contrast, AAD1 is localized to the embryo where mutants show a small reduction in ω-9 content. Enzymatic analysis has previously shown that AAD family members possess both stearoyl- and palmitoyl-ACP Δ(9) desaturase activity, including the predominant isoform SUPPRESSOR OF SALICYLIC ACID INSENSITIVE2. However, aad3 ssi2 aleurone contained the same amount of ω-7s as aad3 Within the AAD family, AAD3 shares the highest degree of sequence similarity with AAD2 and AAD4. Mutant analysis showed that AAD2 also contributes to ω-7 production in the aleurone, and aad3 aad2 exhibits an approximately 85% reduction in ω-7s Mutant analysis also showed that FATTY ACID ELONGASE1 is required for the production of very long chain ω-7s in the aleurone. Together, these data provide genetic evidence that the ω-7 pathway proceeds via Δ(9) desaturation of palmitoyl-ACP followed by elongation of the product. Interestingly, significant variation was also identified in the ω-7 content of Brassica napus aleurone, with the highest level detected being approximately 47% of total fatty acids.
Collapse
Affiliation(s)
- Fiona M Bryant
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom (F.M.B., O.M.-A., F.B., S.K., P.J.E.); andSchool of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom (A.A.K.)
| | - Olaya Munoz-Azcarate
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom (F.M.B., O.M.-A., F.B., S.K., P.J.E.); andSchool of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom (A.A.K.)
| | - Amélie A Kelly
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom (F.M.B., O.M.-A., F.B., S.K., P.J.E.); andSchool of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom (A.A.K.)
| | - Frédéric Beaudoin
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom (F.M.B., O.M.-A., F.B., S.K., P.J.E.); andSchool of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom (A.A.K.)
| | - Smita Kurup
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom (F.M.B., O.M.-A., F.B., S.K., P.J.E.); andSchool of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom (A.A.K.)
| | - Peter J Eastmond
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom (F.M.B., O.M.-A., F.B., S.K., P.J.E.); andSchool of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom (A.A.K.)
| |
Collapse
|
13
|
Kelly AA, Feussner I. Oil is on the agenda: Lipid turnover in higher plants. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1253-1268. [PMID: 27155216 DOI: 10.1016/j.bbalip.2016.04.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/23/2016] [Accepted: 04/25/2016] [Indexed: 12/13/2022]
Abstract
Lipases hydrolyze ester bonds within lipids. This process is called lipolysis. They are key players in lipid turnover and involved in numerous metabolic pathways, many of which are shared between organisms like the mobilization of neutral or storage lipids or lipase-mediated membrane lipid homeostasis. Some reactions though are predominantly present in certain organisms, such as the production of signaling molecules (endocannabinoids) by diacylglycerol (DAG) and monoacylglycerol (MAG) lipases in mammals and plants or the jasmonate production in flowering plants. This review aims at giving an overview of the different functional classes of lipases and respective well-known activities, with a focus on the most recent findings in plant biology for selected classes. Here we will put an emphasis on the physiological role and contribution of lipases to the turnover of neutral lipids found in seed oil and other vegetative tissue as candidates for increasing the economical values of crop plants. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.
Collapse
Affiliation(s)
- Amélie A Kelly
- Georg-August-University, Albrecht-von-Haller-Institute for Plant Sciences, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
| | - Ivo Feussner
- Georg-August-University, Albrecht-von-Haller-Institute for Plant Sciences, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany; Georg-August-University, Göttingen Center for Molecular Biosciences (GZMB), Justus-von-Liebig Weg 11, 37077 Göttingen, Germany; Georg-August-University, International Center for Advanced Studies of Energy Conversion (ICASEC), Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
| |
Collapse
|
14
|
Iwama R, Kobayashi S, Ohta A, Horiuchi H, Fukuda R. Alcohol dehydrogenases and an alcohol oxidase involved in the assimilation of exogenous fatty alcohols in Yarrowia lipolytica. FEMS Yeast Res 2015; 15:fov014. [DOI: 10.1093/femsyr/fov014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2015] [Indexed: 01/21/2023] Open
|
15
|
Wang Y, Wang M, Sun Y, Wang Y, Li T, Chai G, Jiang W, Shan L, Li C, Xiao E, Wang Z. FAR5, a fatty acyl-coenzyme A reductase, is involved in primary alcohol biosynthesis of the leaf blade cuticular wax in wheat (Triticum aestivum L.). JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1165-78. [PMID: 25468933 PMCID: PMC4438443 DOI: 10.1093/jxb/eru457] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A waxy cuticle that serves as a protective barrier against non-stomatal water loss and environmental damage coats the aerial surfaces of land plants. It comprises a cutin polymer matrix and waxes. Cuticular waxes are complex mixtures of very long chain fatty acids (VLCFAs) and their derivatives. Results show that primary alcohols are the major components of bread wheat (Triticum aestivum L.) leaf blade cuticular waxes. Here, the characterization of TaFAR5 from wheat cv Xinong 2718, which is allelic to TAA1b, an anther-specific gene, is reported. Evidence is presented for a new function for TaFAR5 in the biosynthesis of primary alcohols of leaf blade cuticular wax in wheat. Expression of TaFAR5 cDNA in yeast (Saccharomyces cerevisiae) led to production of C22:0 primary alcohol. The transgenic expression of TaFAR5 in tomato (Solanum lycopersicum) cv MicroTom leaves resulted in the accumulation of C26:0, C28:0, and C30:0 primary alcohols. TaFAR5 encodes an alcohol-forming fatty acyl-coenzyme A reductase (FAR). Expression analysis revealed that TaFAR5 was expressed at high levels in the leaf blades, anthers, pistils, and seeds. Fully functional green fluorescent protein-tagged TaFAR5 protein was localized to the endoplasmic reticulum (ER), the site of primary alcohol biosynthesis. SDS-PAGE analysis indicated that the TaFAR5 protein possessed a molecular mass of 58.4kDa, and it was also shown that TaFAR5 transcript levels were regulated in response to drought, cold, and abscisic acid (ABA). Overall, these data suggest that TaFAR5 plays an important role in the synthesis of primary alcohols in wheat leaf blade.
Collapse
Affiliation(s)
- Yong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Meiling Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yulin Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanting Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tingting Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guaiqiang Chai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenhui Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liwei Shan
- College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunlian Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Enshi Xiao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhonghua Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
16
|
Marchive C, Nikovics K, To A, Lepiniec L, Baud S. Transcriptional regulation of fatty acid production in higher plants: Molecular bases and biotechnological outcomes. EUR J LIPID SCI TECH 2014. [DOI: 10.1002/ejlt.201400027] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Chloé Marchive
- INRA, UMR1318; Institut Jean-Pierre Bourgin; Saclay Plant Sciences F-78000 Versailles France
- AgroParisTech, UMR1318; Institut Jean-Pierre Bourgin; Saclay Plant Sciences F-78000 Versailles France
| | - Krisztina Nikovics
- INRA, UMR1318; Institut Jean-Pierre Bourgin; Saclay Plant Sciences F-78000 Versailles France
- AgroParisTech, UMR1318; Institut Jean-Pierre Bourgin; Saclay Plant Sciences F-78000 Versailles France
| | - Alexandra To
- INRA, UMR1318; Institut Jean-Pierre Bourgin; Saclay Plant Sciences F-78000 Versailles France
- AgroParisTech, UMR1318; Institut Jean-Pierre Bourgin; Saclay Plant Sciences F-78000 Versailles France
| | - Loïc Lepiniec
- INRA, UMR1318; Institut Jean-Pierre Bourgin; Saclay Plant Sciences F-78000 Versailles France
- AgroParisTech, UMR1318; Institut Jean-Pierre Bourgin; Saclay Plant Sciences F-78000 Versailles France
| | - Sébastien Baud
- INRA, UMR1318; Institut Jean-Pierre Bourgin; Saclay Plant Sciences F-78000 Versailles France
- AgroParisTech, UMR1318; Institut Jean-Pierre Bourgin; Saclay Plant Sciences F-78000 Versailles France
| |
Collapse
|
17
|
van Erp H, Kelly AA, Menard G, Eastmond PJ. Multigene Engineering of Triacylglycerol Metabolism Boosts Seed Oil Content in Arabidopsis. PLANT PHYSIOLOGY 2014; 165:30-6. [PMID: 24696520 PMCID: PMC4012589 DOI: 10.1104/pp.114.236430] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Abstract
Increasing the yield of oilseed crops is an important objective for biotechnologists. A number of individual genes involved in triacylglycerol metabolism have previously been reported to enhance the oil content of seeds when their expression is altered. However, it has yet to be established whether specific combinations of these genes can be used to achieve an additive effect and whether this leads to enhanced yield. Using Arabidopsis (Arabidopsis thaliana) as an experimental system, we show that seed-specific overexpression of WRINKLED1 (a transcriptional regulator of glycolysis and fatty acid synthesis) and DIACYLGLYCEROL ACYLTRANSFERASE1 (a triacylglycerol biosynthetic enzyme) combined with suppression of the triacylglycerol lipase SUGAR-DEPENDENT1 results in a higher percentage seed oil content and greater seed mass than manipulation of each gene individually. Analysis of total seed yield per plant suggests that, despite a reduction in seed number, the total yield of oil is also increased.
Collapse
Affiliation(s)
- Harrie van Erp
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom (H.v.E., G.M., P.J.E.); and
| | - Amélie A. Kelly
- Life Sciences Institute, National University of Singapore, Singapore 117456 (A.A.K.)
| | - Guillaume Menard
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom (H.v.E., G.M., P.J.E.); and
| | - Peter J. Eastmond
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom (H.v.E., G.M., P.J.E.); and
| |
Collapse
|
18
|
Kelly AA, van Erp H, Quettier AL, Shaw E, Menard G, Kurup S, Eastmond PJ. The sugar-dependent1 lipase limits triacylglycerol accumulation in vegetative tissues of Arabidopsis. PLANT PHYSIOLOGY 2013; 162:1282-9. [PMID: 23686420 PMCID: PMC3707558 DOI: 10.1104/pp.113.219840] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 05/16/2013] [Indexed: 05/20/2023]
Abstract
There has been considerable interest recently in the prospect of engineering crops to produce triacylglycerol (TAG) in their vegetative tissues as a means to achieve a step change in oil yield. Here, we show that disruption of TAG hydrolysis in the Arabidopsis (Arabidopsis thaliana) lipase mutant sugar-dependent1 (sdp1) leads to a substantial accumulation of TAG in roots and stems but comparatively much lower TAG accumulation in leaves. TAG content in sdp1 roots increases with the age of the plant and can reach more than 1% of dry weight at maturity, a 50-fold increase over the wild type. TAG accumulation in sdp1 roots requires both ACYL-COENZYME A:DIACYLGLYCEROL ACYLTRANSFERASE1 (DGAT1) and PHOSPHATIDYLCHOLINE:DIACYLGLYCEROL ACYLTRANSFERASE1 and can also be strongly stimulated by the provision of exogenous sugar. In transgenic plants constitutively coexpressing WRINKLED1 and DGAT1, sdp1 also doubles the accumulation of TAG in roots, stems, and leaves, with levels ranging from 5% to 8% of dry weight. Finally, provision of 3% (w/v) exogenous Suc can further boost root TAG content in these transgenic plants to 17% of dry weight. This level of TAG is similar to seed tissues in many plant species and establishes the efficacy of an engineering strategy to produce oil in vegetative tissues that involves simultaneous manipulation of carbohydrate supply, fatty acid synthesis, TAG synthesis, and also TAG breakdown.
Collapse
|