1
|
Zheng M, Jiang Y, Ran Z, Liang S, Xiao T, Li X, Ma W. A cyanobacteria-derived intermolecular salt bridge stabilizes photosynthetic NDH-1 and prevents oxidative stress. Commun Biol 2025; 8:172. [PMID: 39905225 PMCID: PMC11794437 DOI: 10.1038/s42003-025-07556-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/15/2025] [Indexed: 02/06/2025] Open
Abstract
Throughout evolution, addition of numerous cyanobacteria-derived subunits to the photosynthetic NDH-1 complex stabilizes the complex and facilitates cyclic electron transfer around photosystem I (PSI CET), a critical antioxidant mechanism for efficient photosynthesis, but its stabilization mechanism remains elusive. Here, a cyanobacteria-derived intermolecular salt bridge is found to form between the two conserved subunits, NdhF1 and NdhD1. Its disruption destabilizes photosynthetic NDH-1 and impairs PSI CET, resulting in the production of more reactive oxygen species under high light conditions. The salt bridge and transmembrane helix 16, both situated at the C-terminus of NdhF1, collaboratively secure the linkage between NdhD1 and NdhB, akin to a cramping mechanism. The linkage is also stabilized by cyanobacteria-derived NdhP and NdhQ subunits, but their stabilization mechanisms are distinctly different. Collectively, to the best of our knowledge, this is the first study to unveil the stabilization mechanism of photosynthetic NDH-1 by incorporating photosynthetic components into its conserved subunits during evolution.
Collapse
Affiliation(s)
- Mei Zheng
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yuanyuan Jiang
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhaoxing Ran
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Shengjun Liang
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Tingting Xiao
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xiafei Li
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Weimin Ma
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
2
|
Riediger M, Spät P, Bilger R, Voigt K, Maček B, Hess WR. Analysis of a photosynthetic cyanobacterium rich in internal membrane systems via gradient profiling by sequencing (Grad-seq). THE PLANT CELL 2021; 33:248-269. [PMID: 33793824 PMCID: PMC8136920 DOI: 10.1093/plcell/koaa017] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/12/2020] [Indexed: 05/23/2023]
Abstract
Although regulatory small RNAs have been reported in photosynthetic cyanobacteria, the lack of clear RNA chaperones involved in their regulation poses a conundrum. Here, we analyzed the full complement of cellular RNAs and proteins using gradient profiling by sequencing (Grad-seq) in Synechocystis 6803. Complexes with overlapping subunits such as the CpcG1-type versus the CpcL-type phycobilisomes or the PsaK1 versus PsaK2 photosystem I pre(complexes) could be distinguished, supporting the high quality of this approach. Clustering of the in-gradient distribution profiles followed by several additional criteria yielded a short list of potential RNA chaperones that include an YlxR homolog and a cyanobacterial homolog of the KhpA/B complex. The data suggest previously undetected complexes between accessory proteins and CRISPR-Cas systems, such as a Csx1-Csm6 ribonucleolytic defense complex. Moreover, the exclusive association of either RpoZ or 6S RNA with the core RNA polymerase complex and the existence of a reservoir of inactive sigma-antisigma complexes is suggested. The Synechocystis Grad-seq resource is available online at https://sunshine.biologie.uni-freiburg.de/GradSeqExplorer/ providing a comprehensive resource for the functional assignment of RNA-protein complexes and multisubunit protein complexes in a photosynthetic organism.
Collapse
Affiliation(s)
- Matthias Riediger
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Philipp Spät
- Department of Quantitative Proteomics, Interfaculty Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Raphael Bilger
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Karsten Voigt
- IT Administration, Institute of Biology 3, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Boris Maček
- Department of Quantitative Proteomics, Interfaculty Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Wolfgang R Hess
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| |
Collapse
|
3
|
Phycobilisome breakdown effector NblD is required to maintain the cellular amino acid composition during nitrogen starvation. J Bacteriol 2021; 204:JB0015821. [PMID: 34228497 PMCID: PMC8765419 DOI: 10.1128/jb.00158-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Small proteins are critically involved in the acclimation response of photosynthetic cyanobacteria to nitrogen starvation. NblD is the 66-amino-acid effector of nitrogen-limitation-induced phycobilisome breakdown, which is believed to replenish the cellular amino acid pools. To address the physiological functions of NblD, the concentrations of amino acids, intermediates of the arginine catabolism pathway and several organic acids were measured during the response to nitrogen starvation in the cyanobacterium Synechocystis sp. PCC 6803 wild type and in an nblD deletion strain. A characteristic signature of metabolite pool composition was identified, which shows that NblD-mediated phycobilisome degradation is required to maintain the cellular amino acid and organic acid pools during nitrogen starvation. Specific deviations from the wild type suggest wider-reaching effects that also affect such processes as redox homeostasis via glutathione and tetrapyrrole biosynthesis, both of which are linked to the strongly decreased glutamate pool, and transcriptional reprogramming via an enhanced concentration of 2-oxoglutarate, the metabolite co-regulator of the NtcA transcription factor. The essential role played by NblD in metabolic homeostasis is consistent with the widespread occurrence of NblD throughout the cyanobacterial radiation and the previously observed strong positive selection for the nblD gene under fluctuating nitrogen supply. Importance Cyanobacteria play important roles in the global carbon and nitrogen cycles. In their natural environment, these organisms are exposed to fluctuating nutrient conditions. Nitrogen starvation induces a coordinated nitrogen-saving program that includes the breakdown of nitrogen-rich photosynthetic pigments, particularly phycobiliproteins. The small protein NblD was recently identified as an effector of phycobilisome breakdown in cyanobacteria. In this study, we demonstrate that the NblD-mediated degradation of phycobiliproteins is needed to sustain cellular pools of soluble amino acids and other crucial metabolites. The essential role played by NblD in metabolic homeostasis explains why genes encoding this small protein are conserved in almost all members of cyanobacterial radiation.
Collapse
|
4
|
de Alvarenga LV, Hess WR, Hagemann M. AcnSP - A Novel Small Protein Regulator of Aconitase Activity in the Cyanobacterium Synechocystis sp. PCC 6803. Front Microbiol 2020; 11:1445. [PMID: 32695088 PMCID: PMC7336809 DOI: 10.3389/fmicb.2020.01445] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/04/2020] [Indexed: 12/28/2022] Open
Abstract
Synechocystis sp. PCC 6803 is a widely used model cyanobacterium whose genome has been well annotated. However, several additional small protein coding sequences (sORFs) have been recently identified, which might play important roles, for example in the regulation of cellular metabolism. Here, we analyzed the function of a sORF encoding a 44 amino acid peptide showing high similarity to the N-terminal part of aconitase (AcnB). The expression of the gene, which probably originated from a partial gene duplication of chromosomal acnB into the plasmid pSYSA, was verified and it was designated as acnSP. The protein-coding part of acnSP was inactivated by interposon mutagenesis. The obtained mutant displayed slower growth under photoautotrophic conditions with light exceeding 100 μmol photons m–2 s–1 and showed significant changes in the metabolome compared to wild type, including alterations in many metabolites associated to the tricarboxylic acid (TCA) cycle. To analyze a possible direct impact of AcnSP on aconitase, the recombinant Synechocystis enzyme was generated and biochemically characterized. Biochemical analysis revealed that addition of equimolar amounts of AcnSP resulted in an improved substrate affinity (lower Km) and lowered Vmax of aconitase. These results imply that AcnSP can regulate aconitase activity, thereby impacting the carbon flow into the oxidative branch of the cyanobacterial TCA cycle, which is mainly responsible for the synthesis of carbon skeletons needed for ammonia assimilation.
Collapse
Affiliation(s)
- Luna V de Alvarenga
- Department of Plant Physiology, Institute of Biosciences, University of Rostock, Rostock, Germany
| | - Wolfgang R Hess
- Genetics & Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Martin Hagemann
- Department of Plant Physiology, Institute of Biosciences, University of Rostock, Rostock, Germany.,Department Life, Light and Matter, University of Rostock, Rostock, Germany
| |
Collapse
|
5
|
Burford MA, Carey CC, Hamilton DP, Huisman J, Paerl HW, Wood SA, Wulff A. Perspective: Advancing the research agenda for improving understanding of cyanobacteria in a future of global change. HARMFUL ALGAE 2020; 91:101601. [PMID: 32057347 DOI: 10.1016/j.hal.2019.04.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 05/19/2023]
Abstract
Harmful cyanobacterial blooms (=cyanoHABs) are an increasing feature of many waterbodies throughout the world. Many bloom-forming species produce toxins, making them of particular concern for drinking water supplies, recreation and fisheries in waterbodies along the freshwater to marine continuum. Global changes resulting from human impacts, such as climate change, over-enrichment and hydrological alterations of waterways, are major drivers of cyanoHAB proliferation and persistence. This review advocates that to better predict and manage cyanoHABs in a changing world, researchers need to leverage studies undertaken to date, but adopt a more complex and definitive suite of experiments, observations, and models which can effectively capture the temporal scales of processes driven by eutrophication and a changing climate. Better integration of laboratory culture and field experiments, as well as whole system and multiple-system studies are needed to improve confidence in models predicting impacts of climate change and anthropogenic over-enrichment and hydrological modifications. Recent studies examining adaptation of species and strains to long-term perturbations, e.g. temperature and carbon dioxide (CO2) levels, as well as incorporating multi-species and multi-stressor approaches emphasize the limitations of approaches focused on single stressors and individual species. There are also emerging species of concern, such as toxic benthic cyanobacteria, for which the effects of global change are less well understood, and require more detailed study. This review provides approaches and examples of studies tackling the challenging issue of understanding how global changes will affect cyanoHABs, and identifies critical information needs for effective prediction and management.
Collapse
Affiliation(s)
- M A Burford
- Australian Rivers Institute, and School of Environment and Science, Griffith University, Queensland, 4111, Australia.
| | - C C Carey
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, 24061, USA
| | - D P Hamilton
- Australian Rivers Institute, and School of Environment and Science, Griffith University, Queensland, 4111, Australia
| | - J Huisman
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - H W Paerl
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, NC, 28557, USA; College of Environment, Hohai University, Nanjing, 210098, China
| | - S A Wood
- Cawthron Institute, Nelson, 7010, New Zealand
| | - A Wulff
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 40530, Gothenburg, Sweden
| |
Collapse
|
6
|
Magnuson A. Heterocyst Thylakoid Bioenergetics. Life (Basel) 2019; 9:E13. [PMID: 30691012 PMCID: PMC6462935 DOI: 10.3390/life9010013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/07/2019] [Accepted: 01/18/2019] [Indexed: 12/12/2022] Open
Abstract
Heterocysts are specialized cells that differentiate in the filaments of heterocystous cyanobacteria. Their role is to maintain a microoxic environment for the nitrogenase enzyme during diazotrophic growth. The lack of photosynthetic water oxidation in the heterocyst puts special constraints on the energetics for nitrogen fixation, and the electron transport pathways of heterocyst thylakoids are slightly different from those in vegetative cells. During recent years, there has been a growing interest in utilizing heterocysts as cell factories for the production of fuels and other chemical commodities. Optimization of these production systems requires some consideration of the bioenergetics behind nitrogen fixation. In this overview, we emphasize the role of photosynthetic electron transport in providing ATP and reductants to the nitrogenase enzyme, and provide some examples where heterocysts have been used as production facilities.
Collapse
Affiliation(s)
- Ann Magnuson
- Department of Chemistry ⁻Ångström, Uppsala University, Box 523, 75120 Uppsala, Sweden.
| |
Collapse
|
7
|
Aryal UK, Ding Z, Hedrick V, Sobreira TJP, Kihara D, Sherman LA. Analysis of Protein Complexes in the Unicellular Cyanobacterium Cyanothece ATCC 51142. J Proteome Res 2018; 17:3628-3643. [PMID: 30216071 DOI: 10.1021/acs.jproteome.8b00170] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The unicellular cyanobacterium Cyanothece ATCC 51142 is capable of oxygenic photosynthesis and biological N2 fixation (BNF), a process highly sensitive to oxygen. Previous work has focused on determining protein expression levels under different growth conditions. A major gap of our knowledge is an understanding on how these expressed proteins are assembled into complexes and organized into metabolic pathways, an area that has not been thoroughly investigated. Here, we combined size-exclusion chromatography (SEC) with label-free quantitative mass spectrometry (MS) and bioinformatics to characterize many protein complexes from Cyanothece 51142 cells grown under a 12 h light-dark cycle. We identified 1386 proteins in duplicate biological replicates, and 64% of those proteins were identified as putative complexes. Pairwise computational prediction of protein-protein interaction (PPI) identified 74 822 putative interactions, of which 2337 interactions were highly correlated with published protein coexpressions. Many sequential glycolytic and TCA cycle enzymes were identified as putative complexes. We also identified many membrane complexes that contain cytoplasmic domains. Subunits of NDH-1 complex eluted in a fraction with an approximate mass of ∼669 kDa, and subunits composition revealed coexistence of distinct forms of NDH-1 complex subunits responsible for respiration, electron flow, and CO2 uptake. The complex form of the phycocyanin beta subunit was nonphosphorylated, and the monomer form was phosphorylated at Ser20, suggesting phosphorylation-dependent deoligomerization of the phycocyanin beta subunit. This study provides an analytical platform for future studies to reveal how these complexes assemble and disassemble as a function of diurnal and circadian rhythms.
Collapse
|
8
|
P II-like signaling protein SbtB links cAMP sensing with cyanobacterial inorganic carbon response. Proc Natl Acad Sci U S A 2018; 115:E4861-E4869. [PMID: 29735650 DOI: 10.1073/pnas.1803790115] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cyanobacteria are phototrophic prokaryotes that evolved oxygenic photosynthesis ∼2.7 billion y ago and are presently responsible for ∼10% of total global photosynthetic production. To cope with the evolutionary pressure of dropping ambient CO2 concentrations, they evolved a CO2-concentrating mechanism (CCM) to augment intracellular inorganic carbon (Ci) levels for efficient CO2 fixation. However, how cyanobacteria sense the fluctuation in Ci is poorly understood. Here we present biochemical, structural, and physiological insights into SbtB, a unique PII-like signaling protein, which provides new insights into Ci sensing. SbtB is highly conserved in cyanobacteria and is coexpressed with CCM genes. The SbtB protein from the cyanobacterium Synechocystis sp. PCC 6803 bound a variety of adenosine nucleotides, including the second messenger cAMP. Cocrystal structures unraveled the individual binding modes of trimeric SbtB with AMP and cAMP. The nucleotide-binding pocket is located between the subunit clefts of SbtB, perfectly matching the structure of canonical PII proteins. This clearly indicates that proteins of the PII superfamily arose from a common ancestor, whose structurally conserved nucleotide-binding pocket has evolved to sense different adenyl nucleotides for various signaling functions. Moreover, we provide physiological and biochemical evidence for the involvement of SbtB in Ci acclimation. Collectively, our results suggest that SbtB acts as a Ci sensor protein via cAMP binding, highlighting an evolutionarily conserved role for cAMP in signaling the cellular carbon status.
Collapse
|
9
|
Zer H, Margulis K, Georg J, Shotland Y, Kostova G, Sultan LD, Hess WR, Keren N. Resequencing of a mutant bearing an iron starvation recovery phenotype defines Slr1658 as a new player in the regulatory network of a model cyanobacterium. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:235-245. [PMID: 29161470 DOI: 10.1111/tpj.13770] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 06/07/2023]
Abstract
Photosynthetic microorganisms encounter an erratic nutrient environment characterized by periods of iron limitation and sufficiency. Surviving in such an environment requires mechanisms for handling these transitions. Our study identified a regulatory system involved in the process of recovery from iron limitation in cyanobacteria. We set out to study the role of bacterioferritin co-migratory proteins during transitions in iron bioavailability in the cyanobacterium Synechocystis sp. PCC 6803 using knockout strains coupled with physiological and biochemical measurements. One of the mutants displayed slow recovery from iron limitation. However, we discovered that the cause of the phenotype was not the intended knockout but rather the serendipitous selection of a mutation in an unrelated locus, slr1658. Bioinformatics analysis suggested similarities to two-component systems and a possible regulatory role. Transcriptomic analysis of the recovery from iron limitation showed that the slr1658 mutation had an extensive effect on the expression of genes encoding regulatory proteins, proteins involved in the remodeling and degradation of the photosynthetic apparatus and proteins modulating electron transport. Most significantly, expression of the cyanobacterial homologue of the cyclic electron transport protein PGR5 was upregulated 1000-fold in slr1658 disruption mutants. pgr5 transcripts in the Δslr1658 mutant retained these high levels under a range of stress and recovery conditions. The results suggest that slr1658 is part of a regulatory operon that, among other aspects, affects the regulation of alternative electron flow. Disruption of its function has deleterious results under oxidative stress promoting conditions.
Collapse
Affiliation(s)
- Hagit Zer
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - Ketty Margulis
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - Jens Georg
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Schänzlestr. 1, D-79104, Freiburg, Germany
| | - Yoram Shotland
- Department of Chemical Engineering, Shamoon College of Engineering, Beer Sheva, 84100, Israel
| | - Gergana Kostova
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Schänzlestr. 1, D-79104, Freiburg, Germany
| | - Laure D Sultan
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - Wolfgang R Hess
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Schänzlestr. 1, D-79104, Freiburg, Germany
- Freiburg Institute for Advanced Studies, University of Freiburg, Albertstr. 19, D-79104, Freiburg, Germany
| | - Nir Keren
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| |
Collapse
|
10
|
Kaplan A. On the cradle of CCM research: discovery, development, and challenges ahead. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3785-3796. [PMID: 28520892 DOI: 10.1093/jxb/erx122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Herein, 40 years after its discovery, I briefly and critically survey the development of ideas that propelled research on CO2-concentrating mechanisms (CCMs; a term proposed by Dean Price) of phytoplankton, mainly focusing on cyanobacteria. This is not a comprehensive review on CCM research, but a personal view on the past developments and challenges that lie ahead.
Collapse
Affiliation(s)
- Aaron Kaplan
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Israel
| |
Collapse
|
11
|
NdhV subunit regulates the activity of type-1 NAD(P)H dehydrogenase under high light conditions in cyanobacterium Synechocystis sp. PCC 6803. Sci Rep 2016; 6:28361. [PMID: 27329499 PMCID: PMC4916593 DOI: 10.1038/srep28361] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/01/2016] [Indexed: 12/25/2022] Open
Abstract
The cyanobacterial NAD(P)H dehydrogenase (NDH-1) complexes play crucial roles in variety of bioenergetic reactions. However, the regulative mechanism of NDH-1 under stressed conditions is still unclear. In this study, we detected that the NDH-1 activity is partially impaired, but the accumulation of NDH-1 complexes was little affected in the NdhV deleted mutant (ΔndhV) at low light in cyanobacterium Synechocystis sp. PCC 6803. ΔndhV grew normally at low light but slowly at high light under inorganic carbon limitation conditions (low pH or low CO2), meanwhile the activity of CO2 uptake was evidently lowered than wild type even at pH 8.0. The accumulation of NdhV in thylakoids strictly relies on the presence of the hydrophilic subcomplex of NDH-1. Furthermore, NdhV was co-located with hydrophilic subunits of NDH-1 loosely associated with the NDH-1L, NDH-1MS' and NDH-1M complexes. The level of the NdhV was significantly increased at high light and deletion of NdhV suppressed the up-regulation of NDH-1 activity, causing the lowered the photosynthetic oxygen evolution at pH 6.5 and high light. These data indicate that NdhV is an intrinsic subunit of hydrophilic subcomplex of NDH-1, required for efficient operation of cyclic electron transport around photosystem I and CO2 uptake at high lights.
Collapse
|
12
|
He Z, Mi H. Functional Characterization of the Subunits N, H, J, and O of the NAD(P)H Dehydrogenase Complexes in Synechocystis sp. Strain PCC 6803. PLANT PHYSIOLOGY 2016; 171:1320-32. [PMID: 27208236 PMCID: PMC4902626 DOI: 10.1104/pp.16.00458] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 04/15/2016] [Indexed: 05/25/2023]
Abstract
The cyanobacterial NAD(P)H dehydrogenase (NDH-1) complexes play crucial roles in variety of bioenergetic reactions such as respiration, CO2 uptake, and cyclic electron transport around PSI. Recently, substantial progress has been made in identifying the composition of subunits of NDH-1 complexes. However, the localization and the physiological roles of several subunits in cyanobacteria are not fully understood. Here, by constructing fully segregated ndhN, ndhO, ndhH, and ndhJ null mutants in Synechocystis sp. strain PCC 6803, we found that deletion of ndhN, ndhH, or ndhJ but not ndhO severely impaired the accumulation of the hydrophilic subunits of the NDH-1 in the thylakoid membrane, resulting in disassembly of NDH-1MS, NDH-1MS', as well as NDH-1L, finally causing the severe growth suppression phenotype. In contrast, deletion of NdhO affected the growth at pH 6.5 in air. In the cytoplasm, either NdhH or NdhJ deleted mutant, but neither NdhN nor NdhO deleted mutant, failed to accumulate the NDH-1 assembly intermediate consisting of NdhH, NdhJ, NdhK, and NdhM. Based on these results, we suggest that NdhN, NdhH, and NdhJ are essential for the stability and the activities of NDH-1 complexes, while NdhO for NDH-1 functions under the condition of inorganic carbon limitation in Synechocystis sp. strain PCC 6803. We discuss the roles of these subunits and propose a new NDH-1 model.
Collapse
Affiliation(s)
- Zhihui He
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200032, China
| | - Hualing Mi
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200032, China
| |
Collapse
|
13
|
Peltier G, Aro EM, Shikanai T. NDH-1 and NDH-2 Plastoquinone Reductases in Oxygenic Photosynthesis. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:55-80. [PMID: 26735062 DOI: 10.1146/annurev-arplant-043014-114752] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Oxygenic photosynthesis converts solar energy into chemical energy in the chloroplasts of plants and microalgae as well as in prokaryotic cyanobacteria using a complex machinery composed of two photosystems and both membrane-bound and soluble electron carriers. In addition to the major photosynthetic complexes photosystem II (PSII), cytochrome b6f, and photosystem I (PSI), chloroplasts also contain minor components, including a well-conserved type I NADH dehydrogenase (NDH-1) complex that functions in close relationship with photosynthesis and likewise originated from the endosymbiotic cyanobacterial ancestor. Some plants and many microalgal species have lost plastidial ndh genes and a functional NDH-1 complex during evolution, and studies have suggested that a plastidial type II NADH dehydrogenase (NDH-2) complex substitutes for the electron transport activity of NDH-1. However, although NDH-1 was initially thought to use NAD(P)H as an electron donor, recent research has demonstrated that both chloroplast and cyanobacterial NDH-1s oxidize reduced ferredoxin. We discuss more recent findings related to the biochemical composition and activity of NDH-1 and NDH-2 in relation to the physiology and regulation of photosynthesis, particularly focusing on their roles in cyclic electron flow around PSI, chlororespiration, and acclimation to changing environments.
Collapse
Affiliation(s)
- Gilles Peltier
- Institute of Environmental Biology and Biotechnology, CEA, CNRS, Aix-Marseille University, CEA Cadarache, 13018 Saint-Paul-lès-Durance, France;
| | - Eva-Mari Aro
- Department of Biochemistry, University of Turku, 20014 Turku, Finland;
| | | |
Collapse
|
14
|
Xu M, Lv J, Fu P, Mi H. Oscillation Kinetics of Post-illumination Increase in Chl Fluorescence in Cyanobacterium Synechocystis PCC 6803. FRONTIERS IN PLANT SCIENCE 2016; 7:108. [PMID: 26913039 PMCID: PMC4753382 DOI: 10.3389/fpls.2016.00108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 01/20/2016] [Indexed: 05/21/2023]
Abstract
After termination of longer-illumination (more than 30 s), the wild type of Synechocystis PCC 6803 showed the oscillation kinetics of post-illumination increase in Chl fluorescence: a fast phase followed by one or two slow phases. Unlike the wild type, ndh-B defective mutant M55 did not show any post-illumination increase under the same conditions, indicating that not only the fast phase, but also the slow phases were related to the NDH-mediated cyclic electron flow around photosystem I (PS I) to plastoquinone (PQ). The fast phase was stimulated by dark incubation or in the presence of Calvin cycle inhibitor, iodoacetamide (IA) or cyclic photophosphorylation cofactor, phenazine methosulphate (PMS), implying the redox changes of PQ by electrons generated at PS I reduced side, probably NAD(P)H or ferredoxin (Fd). In contrast, the slow phases disappeared after dark starvation or in the presence of IA or PMS, and reappeared by longer re-illumination, suggesting that they are related to the redox changes of PQ by the electrons from the photoreductants produced in carbon assimilation process. Both the fast phase and slow phases were stimulated at high temperature and the slow phase was promoted by response to high concentration of NaCl. The mutant M55 without both phases could not survive under the stressed conditions.
Collapse
Affiliation(s)
- Min Xu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chines Academy of SciencesShanghai, China
| | - Jing Lv
- Renewable Energy Research Center, China University of PetroleumBeijing, China
| | - Pengcheng Fu
- Renewable Energy Research Center, China University of PetroleumBeijing, China
| | - Hualing Mi
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chines Academy of SciencesShanghai, China
| |
Collapse
|
15
|
He Z, Xu M, Wu Y, Lv J, Fu P, Mi H. NdhM Subunit Is Required for the Stability and the Function of NAD(P)H Dehydrogenase Complexes Involved in CO2 Uptake in Synechocystis sp. Strain PCC 6803. J Biol Chem 2015; 291:5902-5912. [PMID: 26703473 PMCID: PMC4786724 DOI: 10.1074/jbc.m115.698084] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Indexed: 12/29/2022] Open
Abstract
The cyanobacterial type I NAD(P)H dehydrogenase (NDH-1) complexes play a crucial role in a variety of bioenergetic reactions such as respiration, CO2 uptake, and cyclic electron transport around photosystem I. Two types of NDH-1 complexes, NDH-1MS and NDH-1MS', are involved in the CO2 uptake system. However, the composition and function of the complexes still remain largely unknown. Here, we found that deletion of ndhM caused inactivation of NDH-1-dependent cyclic electron transport around photosystem I and abolishment of CO2 uptake, resulting in a lethal phenotype under air CO2 condition. The mutation of NdhM abolished the accumulation of the hydrophilic subunits of the NDH-1, such as NdhH, NdhI, NdhJ, and NdhK, in the thylakoid membrane, resulting in disassembly of NDH-1MS and NDH-1MS' as well as NDH-1L. In contrast, the accumulation of the hydrophobic subunits was not affected in the absence of NdhM. In the cytoplasm, the NDH-1 subcomplex assembly intermediates including NdhH and NdhK were seriously affected in the ΔndhM mutant but not in the NdhI-deleted mutant ΔndhI. In vitro protein interaction analysis demonstrated that NdhM interacts with NdhK, NdhH, NdhI, and NdhJ but not with other hydrophilic subunits of the NDH-1 complex. These results suggest that NdhM localizes in the hydrophilic subcomplex of NDH-1 complexes as a core subunit and is essential for the function of NDH-1MS and NDH-1MS' involved in CO2 uptake in Synechocystis sp. strain PCC 6803.
Collapse
Affiliation(s)
- Zhihui He
- From the National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, 300 Fenglin Road, Shanghai 200032, China and
| | - Min Xu
- From the National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, 300 Fenglin Road, Shanghai 200032, China and
| | - Yaozong Wu
- From the National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, 300 Fenglin Road, Shanghai 200032, China and
| | - Jing Lv
- Renewable Energy Research Center, China University of Petroleum Beijing, 18 Fuxue Road, Changping, Beijing 102249, China
| | - Pengcheng Fu
- Renewable Energy Research Center, China University of Petroleum Beijing, 18 Fuxue Road, Changping, Beijing 102249, China
| | - Hualing Mi
- From the National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, 300 Fenglin Road, Shanghai 200032, China and.
| |
Collapse
|
16
|
He Z, Zheng F, Wu Y, Li Q, Lv J, Fu P, Mi H. NDH-1L interacts with ferredoxin via the subunit NdhS in Thermosynechococcus elongatus. PHOTOSYNTHESIS RESEARCH 2015; 126:341-349. [PMID: 25630976 DOI: 10.1007/s11120-015-0090-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/16/2015] [Indexed: 06/04/2023]
Abstract
The large size complex of cyanobacterial NAD(P)H dehydrogenase (NDH-1) complex (NDH-1L) plays crucial role in a variety of bioenergetic reactions such as respiration and cyclic electron flow around photosystem I. Although the complex has been isolated and identified, its biochemical function still remains to be clarified. Here, we highly purified the NDH-1L complex from the cells of Thermosynechococcus elongatus by Ni(2+) affinity chromatography and size-exclusion chromatography. The purified NDH-1L complex has an apparent total molecular mass of approximately 500 kDa. 14 known subunits were identified by mass spectrometry and immunoblotting, including the NdhS subunit containing ferredoxin (Fd)-docking site domain. Surface plasmon resonance measurement demonstrates that the NDH-1L complex could bind to Fd with the binding constant (K D) of 59 µM. Yeast two-hybrid system assay further confirmed the interaction of Fd with NdhS and indicated that NdhH is involved in the interaction. Our results provide direct biochemical evidence that the cyanobacterial NDH-1 complex catalyzes the electron transport from reduced Fd to plastoquinone via NdhS and NdhH.
Collapse
Affiliation(s)
- Zhihui He
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, 300 Fenglin Road, Shanghai, 200032, China
| | - Fangfang Zheng
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, 300 Fenglin Road, Shanghai, 200032, China
| | - Yaozong Wu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, 300 Fenglin Road, Shanghai, 200032, China
| | - Qinghua Li
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, 300 Fenglin Road, Shanghai, 200032, China
| | - Jing Lv
- Renewable Energy Research Center, China University of Petroleum Beijing, 18 Fuxue Road, Changping, Beijing, 102249, China
| | - Pengcheng Fu
- Renewable Energy Research Center, China University of Petroleum Beijing, 18 Fuxue Road, Changping, Beijing, 102249, China
| | - Hualing Mi
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, 300 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
17
|
Kopf M, Hess WR. Regulatory RNAs in photosynthetic cyanobacteria. FEMS Microbiol Rev 2015; 39:301-15. [PMID: 25934122 PMCID: PMC6596454 DOI: 10.1093/femsre/fuv017] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/06/2015] [Accepted: 03/10/2015] [Indexed: 12/02/2022] Open
Abstract
Regulatory RNAs play versatile roles in bacteria in the coordination of gene expression during various physiological processes, especially during stress adaptation. Photosynthetic bacteria use sunlight as their major energy source. Therefore, they are particularly vulnerable to the damaging effects of excess light or UV irradiation. In addition, like all bacteria, photosynthetic bacteria must adapt to limiting nutrient concentrations and abiotic and biotic stress factors. Transcriptome analyses have identified hundreds of potential regulatory small RNAs (sRNAs) in model cyanobacteria such as Synechocystis sp. PCC 6803 or Anabaena sp. PCC 7120, and in environmentally relevant genera such as Trichodesmium, Synechococcus and Prochlorococcus. Some sRNAs have been shown to actually contain μORFs and encode short proteins. Examples include the 40-amino-acid product of the sml0013 gene, which encodes the NdhP subunit of the NDH1 complex. In contrast, the functional characterization of the non-coding sRNA PsrR1 revealed that the 131 nt long sRNA controls photosynthetic functions by targeting multiple mRNAs, providing a paradigm for sRNA functions in photosynthetic bacteria. We suggest that actuatons comprise a new class of genetic elements in which an sRNA gene is inserted upstream of a coding region to modify or enable transcription of that region.
Collapse
Affiliation(s)
- Matthias Kopf
- Faculty of Biology, Institute of Biology III, University of Freiburg, D-79104 Freiburg, Germany
| | - Wolfgang R Hess
- Faculty of Biology, Institute of Biology III, University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
18
|
Fan X, Zhang J, Li W, Peng L. The NdhV subunit is required to stabilize the chloroplast NADH dehydrogenase-like complex in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:221-31. [PMID: 25728844 DOI: 10.1111/tpj.12807] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 02/11/2015] [Accepted: 02/16/2015] [Indexed: 05/06/2023]
Abstract
The chloroplast NADH dehydrogenase-like (NDH) complex is involved in cyclic electron transport around photosystem I (PSI) and chlororespiration. Although the NDH complex was discovered more than 20 years ago, its low abundance and fragile nature render it recalcitrant to analysis, and it is thought that some of its subunits remain to be identified. Here, we identified the NDH subunit NdhV that readily disassociates from the NDH complex in the presence of detergent, salt and alkaline solutions. The Arabidopsis ndhv mutant is partially defective in the accumulation of NDH subcomplex A (SubA) and SubE, resulting in impaired NDH activity. NdhV was mainly detected in the wild-type thylakoid membrane, and its accumulation in thylakoids strictly depended on the presence of the NDH complex. Quantitative immunoblot analysis revealed that NdhV and NdhN occur at close to equimolar concentrations. Furthermore, several NDH subunits were co-immunopurified with NdhV using a combination of chemical crosslinking and an affinity chromatography assay. These data indicate that NdhV is an intrinsic subunit of NDH. We found that NdhV did not directly affect NDH activity, but that NDH SubA and SubE were more rapidly degraded in ndhv than in the wild type under high-light treatment. We propose that NdhV is an NDH subunit that stabilizes this complex, especially under high-light conditions.
Collapse
Affiliation(s)
- Xiangyuan Fan
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | | | | |
Collapse
|
19
|
Burnap RL, Hagemann M, Kaplan A. Regulation of CO2 Concentrating Mechanism in Cyanobacteria. Life (Basel) 2015; 5:348-71. [PMID: 25636131 PMCID: PMC4390856 DOI: 10.3390/life5010348] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/15/2015] [Accepted: 01/21/2015] [Indexed: 12/31/2022] Open
Abstract
In this chapter, we mainly focus on the acclimation of cyanobacteria to the changing ambient CO2 and discuss mechanisms of inorganic carbon (Ci) uptake, photorespiration, and the regulation among the metabolic fluxes involved in photoautotrophic, photomixotrophic and heterotrophic growth. The structural components for several of the transport and uptake mechanisms are described and the progress towards elucidating their regulation is discussed in the context of studies, which have documented metabolomic changes in response to changes in Ci availability. Genes for several of the transport and uptake mechanisms are regulated by transcriptional regulators that are in the LysR-transcriptional regulator family and are known to act in concert with small molecule effectors, which appear to be well-known metabolites. Signals that trigger changes in gene expression and enzyme activity correspond to specific "regulatory metabolites" whose concentrations depend on the ambient Ci availability. Finally, emerging evidence for an additional layer of regulatory complexity involving small non-coding RNAs is discussed.
Collapse
Affiliation(s)
- Robert L Burnap
- Department of Microbiology and Molecular Genetics, Henry Bellmon Research Center, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Martin Hagemann
- Institute Biosciences, Department Plant Physiology, University of Rostock, Albert-Einstein-Straße 3, Rostock D-18059, Germany.
| | - Aaron Kaplan
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, Edmond J. Safra Campus, Givat Ram, Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
20
|
Ma W, Ogawa T. Oxygenic photosynthesis-specific subunits of cyanobacterial NADPH dehydrogenases. IUBMB Life 2015; 67:3-8. [DOI: 10.1002/iub.1341] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/09/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Weimin Ma
- Department of Biology; College of Life and Environment Sciences; Shanghai Normal University; Shanghai China
| | - Teruo Ogawa
- Bioscience Center; Nagoya University; Chikusa Nagoya Japan
| |
Collapse
|
21
|
Holland SC, Kappell AD, Burnap RL. Redox changes accompanying inorganic carbon limitation in Synechocystis sp. PCC 6803. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:355-363. [PMID: 25490207 DOI: 10.1016/j.bbabio.2014.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 11/26/2014] [Accepted: 12/02/2014] [Indexed: 12/27/2022]
Abstract
Inorganic carbon (Ci) is the major sink for photosynthetic reductant in organisms capable of oxygenic photosynthesis. In the absence of abundant Ci, the cyanobacterium Synechocystis sp. strain PCC6803 expresses a high affinity Ci acquisition system, the CO2-concentrating mechanisms (CCM), controlled by the transcriptional regulator CcmR and the metabolites NADP+ and α-ketoglutarate, which act as co-repressors of CcmR by modulating its DNA binding. The CCM thus responds to internal cellular redox changes during the transition from Ci-replete to Ci-limited conditions. However, the actual changes in the metabolic state of the NADPH/NADP+ system that occur during the transition to Ci-limited conditions remain ill-defined. Analysis of changes in the redox state of cells experiencing Ci limitation reveals systematic changes associated with physiological adjustments and a trend towards the quinone and NADP pools becoming highly reduced. A rapid and persistent increase in F0 was observed in cells reaching the Ci-limited state, as was the induction of photoprotective fluorescence quenching. Systematic changes in the fluorescence induction transients were also observed. As with Chl fluorescence, a transient reduction of the NADPH pool ('M' peak), is assigned to State 2→State 1 transition associated with increased electron flow to NADP+. This was followed by a characteristic decline, which was abolished by Ci limitation or inhibition of the Calvin-Benson-Bassham (CBB) cycle and is thus assigned to the activation of the CBB cycle. The results are consistent with the proposed regulation of the CCM and provide new information on the nature of the Chl and NADPH fluorescence induction curves.
Collapse
Affiliation(s)
- Steven C Holland
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Anthony D Kappell
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Robert L Burnap
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
22
|
Dörrich AK, Mitschke J, Siadat O, Wilde A. Deletion of the Synechocystis sp. PCC 6803 kaiAB1C1 gene cluster causes impaired cell growth under light-dark conditions. MICROBIOLOGY-SGM 2014; 160:2538-2550. [PMID: 25139948 DOI: 10.1099/mic.0.081695-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In contrast to Synechococcus elongatus PCC 7942, few data exist on the timing mechanism of the widely used cyanobacterium Synechocystis sp. PCC 6803. The standard kaiAB1C1 operon present in this organism was shown to encode a functional KaiC protein that interacted with KaiA, similar to the S. elongatus PCC 7942 clock. Inactivation of this operon in Synechocystis sp. PCC 6803 resulted in a mutant with a strong growth defect when grown under light-dark cycles, which was even more pronounced when glucose was added to the growth medium. In addition, mutants showed a bleaching phenotype. No effects were detected in mutant cells grown under constant light. Microarray experiments performed with cells grown for 1 day under a light-dark cycle revealed many differentially regulated genes with known functions in the ΔkaiABC mutant in comparison with the WT. We identified the genes encoding the cyanobacterial phytochrome Cph1 and the light-repressed protein LrtA as well as several hypothetical ORFs with a complete inverse behaviour in the light cycle. These transcripts showed a stronger accumulation in the light but a weaker accumulation in the dark in ΔkaiABC cells in comparison with the WT. In general, we found a considerable overlap with microarray data obtained for hik31 and sigE mutants. These genes are known to be important regulators of cell metabolism in the dark. Strikingly, deletion of the ΔkaiABC operon led to a much stronger phenotype under light-dark cycles in Synechocystis sp. PCC 6803 than in Synechococcus sp. PCC 7942.
Collapse
Affiliation(s)
- Anja K Dörrich
- Institute for Microbiology and Molecular Biology, Justus-Liebig-University, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
| | - Jan Mitschke
- Institute of Biology III, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Olga Siadat
- Institute of Biology III, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Annegret Wilde
- Institute of Biology III, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| |
Collapse
|
23
|
Wulfhorst H, Franken LE, Wessinghage T, Boekema EJ, Nowaczyk MM. The 5 kDa protein NdhP is essential for stable NDH-1L assembly in Thermosynechococcus elongatus. PLoS One 2014; 9:e103584. [PMID: 25119998 PMCID: PMC4131877 DOI: 10.1371/journal.pone.0103584] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/02/2014] [Indexed: 12/24/2022] Open
Abstract
The cyanobacterial NADPH:plastoquinone oxidoreductase complex (NDH-1), that is related to Complex I of eubacteria and mitochondria, plays a pivotal role in respiration as well as in cyclic electron transfer (CET) around PSI and is involved in a unique carbon concentration mechanism (CCM). Despite many achievements in the past, the complex protein composition and the specific function of many subunits of the different NDH-1 species remain elusive. We have recently discovered in a NDH-1 preparation from Thermosynechococcus elongatus two novel single transmembrane peptides (NdhP, NdhQ) with molecular weights below 5 kDa. Here we show that NdhP is a unique component of the ∼450 kDa NDH-1L complex, that is involved in respiration and CET at high CO2 concentration, and not detectable in the NDH-1MS and NDH-1MS' complexes that play a role in carbon concentration. C-terminal fusion of NdhP with his-tagged superfolder GFP and the subsequent analysis of the purified complex by electron microscopy and single particle averaging revealed its localization in the NDH-1L specific distal unit of the NDH-1 complex, that is formed by the subunits NdhD1 and NdhF1. Moreover, NdhP is essential for NDH-1L formation, as this type of NDH-1 was not detectable in a ΔndhP::Km mutant.
Collapse
Affiliation(s)
- Hannes Wulfhorst
- Department of Plant Biochemistry, Ruhr-University Bochum, Bochum, Germany
| | - Linda E. Franken
- Electron Microscopy Department, University of Groningen, Groningen, The Netherlands
| | - Thomas Wessinghage
- Department of Plant Biochemistry, Ruhr-University Bochum, Bochum, Germany
| | - Egbert J. Boekema
- Electron Microscopy Department, University of Groningen, Groningen, The Netherlands
| | - Marc M. Nowaczyk
- Department of Plant Biochemistry, Ruhr-University Bochum, Bochum, Germany
- * E-mail:
| |
Collapse
|
24
|
Zhao J, Gao F, Zhang J, Ogawa T, Ma W. NdhO, a subunit of NADPH dehydrogenase, destabilizes medium size complex of the enzyme in Synechocystis sp. strain PCC 6803. J Biol Chem 2014; 289:26669-26676. [PMID: 25107904 DOI: 10.1074/jbc.m114.553925] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Two mutants that grew faster than the wild-type (WT) strain under high light conditions were isolated from Synechocystis sp. strain PCC 6803 transformed with a transposon-bearing library. Both mutants had a tag in ssl1690 encoding NdhO. Deletion of ndhO increased the activity of NADPH dehydrogenase (NDH-1)-dependent cyclic electron transport around photosystem I (NDH-CET), while overexpression decreased the activity. Although deletion and overexpression of ndhO did not have significant effects on the amount of other subunits such as NdhH, NdhI, NdhK, and NdhM in the cells, the amount of these subunits in the medium size NDH-1 (NDH-1M) complex was higher in the ndhO-deletion mutant and much lower in the overexpression strain than in the WT. NdhO strongly interacts with NdhI and NdhK but not with other subunits. NdhI interacts with NdhK and the interaction was blocked by NdhO. The blocking may destabilize the NDH-1M complex and repress the NDH-CET activity. When cells were transferred from growth light to high light, the amounts of NdhI and NdhK increased without significant change in the amount of NdhO, thus decreasing the relative amount of NdhO. This might have decreased the blocking, thereby stabilizing the NDH-1M complex and increasing the NDH-CET activity under high light conditions.
Collapse
Affiliation(s)
- Jiaohong Zhao
- College of Life and Environment Sciences, Shanghai Normal University, Guilin Road 100, Shanghai 200234, China and
| | - Fudan Gao
- College of Life and Environment Sciences, Shanghai Normal University, Guilin Road 100, Shanghai 200234, China and
| | - Jingsong Zhang
- College of Life and Environment Sciences, Shanghai Normal University, Guilin Road 100, Shanghai 200234, China and
| | - Teruo Ogawa
- Bioscience Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Weimin Ma
- College of Life and Environment Sciences, Shanghai Normal University, Guilin Road 100, Shanghai 200234, China and.
| |
Collapse
|
25
|
Zhang J, Gao F, Zhao J, Ogawa T, Wang Q, Ma W. NdhP is an exclusive subunit of large complex of NADPH dehydrogenase essential to stabilize the complex in Synechocystis sp. strain PCC 6803. J Biol Chem 2014; 289:18770-81. [PMID: 24847053 PMCID: PMC4081920 DOI: 10.1074/jbc.m114.553404] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/05/2014] [Indexed: 12/22/2022] Open
Abstract
Two major complexes of NADPH dehydrogenase (NDH-1) have been identified in cyanobacteria. A large complex (NDH-1L) contains NdhD1 and NdhF1, which are absent in a medium size complex (NDH-1M). They play important roles in respiration, cyclic electron transport around photosystem I, and CO2 acquisition. Two mutants sensitive to high light for growth and impaired in NDH-1-mediated cyclic electron transfer were isolated from Synechocystis sp. strain PCC 6803 transformed with a transposon-bearing library. Both mutants had a tag in sml0013 encoding NdhP, a single transmembrane small subunit of the NDH-1 complex. During prolonged incubation of the wild type thylakoid membrane with n-dodecyl β-d-maltoside (DM), about half of the NDH-1L was disassembled to NDH-1M and the rest decomposed completely without forming NDH-1M. In the ndhP deletion mutant (ΔndhP), disassembling of NDH-1L to NDH-1M occurred even on ice, and decomposition to a small piece occurred at room temperature much faster than in the wild type. Deletion of the C-terminal tail of NdhP gave the same result. The C terminus of NdhP was tagged by YFP-His6. Blue native gel electrophoresis of the DM-treated thylakoid membrane of this strain and Western analysis using the antibody against GFP revealed that NdhP-YFP-His6 was exclusively confined to NDH-1L. During prolonged incubation of the thylakoid membrane of the tagged strain with DM at room temperature, NDH-1L was partially disassembled to NDH-1M and the 160-kDa band containing NdhP-YFP-His6 and possibly NdhD1 and NdhF1. We therefore conclude that NdhP, especially its C-terminal tail, is essential to assemble NdhD1 and NdhF1 and stabilize the NDH-1L complex.
Collapse
Affiliation(s)
- Jingsong Zhang
- From the College of Life and Environment Sciences, Shanghai Normal University, Guilin Road 100, Shanghai 200234, China and
| | - Fudan Gao
- From the College of Life and Environment Sciences, Shanghai Normal University, Guilin Road 100, Shanghai 200234, China and
| | - Jiaohong Zhao
- From the College of Life and Environment Sciences, Shanghai Normal University, Guilin Road 100, Shanghai 200234, China and
| | - Teruo Ogawa
- the Bioscience Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Quanxi Wang
- From the College of Life and Environment Sciences, Shanghai Normal University, Guilin Road 100, Shanghai 200234, China and
| | - Weimin Ma
- From the College of Life and Environment Sciences, Shanghai Normal University, Guilin Road 100, Shanghai 200234, China and
| |
Collapse
|
26
|
Mullineaux CW. Electron transport and light-harvesting switches in cyanobacteria. FRONTIERS IN PLANT SCIENCE 2014; 5:7. [PMID: 24478787 PMCID: PMC3896814 DOI: 10.3389/fpls.2014.00007] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 01/06/2014] [Indexed: 05/19/2023]
Abstract
Cyanobacteria possess multiple mechanisms for regulating the pathways of photosynthetic and respiratory electron transport. Electron transport may be regulated indirectly by controlling the transfer of excitation energy from the light-harvesting complexes, or it may be more directly regulated by controlling the stoichiometry, localization, and interactions of photosynthetic and respiratory electron transport complexes. Regulation of the extent of linear vs. cyclic electron transport is particularly important for controlling the redox balance of the cell. This review discusses what is known of the regulatory mechanisms and the timescales on which they occur, with particular regard to the structural reorganization needed and the constraints imposed by the limited mobility of membrane-integral proteins in the crowded thylakoid membrane. Switching mechanisms requiring substantial movement of integral thylakoid membrane proteins occur on slower timescales than those that require the movement only of cytoplasmic or extrinsic membrane proteins. This difference is probably due to the restricted diffusion of membrane-integral proteins. Multiple switching mechanisms may be needed to regulate electron transport on different timescales.
Collapse
Affiliation(s)
- Conrad W. Mullineaux
- *Correspondence: ConradW. Mullineaux, School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK e-mail:
| |
Collapse
|