1
|
Yuan TT, Feng YR, Cheng H, Cheng S, Lu YT. Bacteria suppress immune responses in Arabidopsis by inducing methylglyoxal accumulation and promoting H 2O 2 scavenging. Dev Cell 2025:S1534-5807(25)00208-4. [PMID: 40306285 DOI: 10.1016/j.devcel.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/29/2024] [Accepted: 04/04/2025] [Indexed: 05/02/2025]
Abstract
Various reactive small molecules, naturally produced via cellular metabolism, function in plant immunity. However, how pathogens use plant metabolites to promote their infection is poorly understood. Here, we identified that infection with a virulent bacterial strain represses glyoxalase I (GLYI) activity, leading to elevated levels of methylglyoxal (MG) in Arabidopsis. Genetic analysis of GLYIs further supports that MG promotes bacterial infection. Mechanistically, MG modifies TRIPHOSPHATE TUNNEL METALLOENZYME2 (TTM2) at Arg-351, facilitating its interaction with CATALASE2 (CAT2), resulting in higher CAT2 activity and lower hydrogen peroxide (H2O2) accumulation. Taken together, we demonstrate that the bacterial pathogen harnesses the plant metabolite MG to promote its infection by scavenging H2O2.
Collapse
Affiliation(s)
- Ting-Ting Yuan
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yu-Rui Feng
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hua Cheng
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China
| | - Shuiyuan Cheng
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China.
| | - Ying-Tang Lu
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China.
| |
Collapse
|
2
|
Wong A, Chi W, Yu J, Bi C, Tian X, Yang Y, Gehring C. Plant adenylate cyclases have come full circle. NATURE PLANTS 2023; 9:1389-1397. [PMID: 37709954 DOI: 10.1038/s41477-023-01486-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 07/07/2023] [Indexed: 09/16/2023]
Abstract
In bacteria, fungi and animals, 3'-5'-cyclic adenosine monophosphate (cAMP) and adenylate cyclases (ACs), enzymes that catalyse the formation of 3',5'-cAMP from ATP, are recognized as key signalling components. In contrast, the presence of cAMP and its biological roles in higher plants have long been a matter of controversy due to the generally lower amounts in plant tissues compared with that in animal and bacterial cells, and a lack of clarity on the molecular nature of the generating and degrading enzymes, as well as downstream effectors. While treatment with 3',5'-cAMP elicited many plant responses, ACs were, however, somewhat elusive. This changed when systematic searches with amino acid motifs deduced from the conserved catalytic centres of annotated ACs from animals and bacteria identified candidate proteins in higher plants that were subsequently shown to have AC activities in vitro and in vivo. The identification of active ACs moonlighting within complex multifunctional proteins is consistent with their roles as molecular tuners and regulators of cellular and physiological functions. Furthermore, the increasing number of ACs identified as part of proteins with different domain architectures suggests that there are many more hidden ACs in plant proteomes and they may affect a multitude of mechanisms and processes at the molecular and systems levels.
Collapse
Affiliation(s)
- Aloysius Wong
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China.
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou, Zhejiang Province, China.
- Zhejiang Bioinformatics Internatiosnal Science and Technology Cooperation Center, Wenzhou, Zhejiang Province, China.
| | - Wei Chi
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Jia Yu
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Chuyun Bi
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou, Zhejiang Province, China
- Zhejiang Bioinformatics Internatiosnal Science and Technology Cooperation Center, Wenzhou, Zhejiang Province, China
| | - Xuechen Tian
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou, Zhejiang Province, China
- Zhejiang Bioinformatics Internatiosnal Science and Technology Cooperation Center, Wenzhou, Zhejiang Province, China
| | - Yixin Yang
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou, Zhejiang Province, China
- Zhejiang Bioinformatics Internatiosnal Science and Technology Cooperation Center, Wenzhou, Zhejiang Province, China
| | - Chris Gehring
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy.
| |
Collapse
|
3
|
Yuan Y, Liu Y, Chen S, Wang L, Wang L, Niu Y, Zhao X, Zhao Z, Liu Z, Liu M. A triphosphate tunnel metalloenzyme from pear (PbrTTM1) moonlights as an adenylate cyclase. FRONTIERS IN PLANT SCIENCE 2023; 14:1183931. [PMID: 37426988 PMCID: PMC10324617 DOI: 10.3389/fpls.2023.1183931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/30/2023] [Indexed: 07/11/2023]
Abstract
Adenylyl cyclase (AC) is the vital enzyme for generating 3',5'-cyclic adenosine monophosphate, an important signaling molecule with profound nutritional and medicinal values. However, merely, a dozen of AC proteins have been reported in plants so far. Here, a protein annotated as triphosphate tunnel metalloenzyme (PbrTTM1) in pear, the important worldwide fruit plant, was firstly identified to possess AC activity with both in vivo and in vitro methods. It exhibited a relatively low AC activity but was capable of complementing AC functional deficiencies in the E. coli SP850 strain. Its protein conformation and potential catalytic mechanism were analyzed by means of biocomputing. The active site of PbrTTM1 is a closed tunnel constructed by nine antiparallel β-folds surrounded with seven helices. Inside the tunnel, the charged residues were possibly involved in the catalytic process by coordinating with divalent cation and ligand. The hydrolysis activity of PbrTTM1 was tested as well. Compared to the much higher capacity of hydrolyzing, the AC activity of PbrTTM1 tends to be a moonlight function. Through a comparison of protein structures in various plant TTMs, it is reasonable to speculate that many plant TTMs might possess AC activity as a form of moonlighting enzyme function.
Collapse
Affiliation(s)
- Ye Yuan
- College of Horticulture, Hebei Agricultural University, Hebei, China
| | - Yuye Liu
- College of Horticulture, Hebei Agricultural University, Hebei, China
| | - Shuangjiang Chen
- College of Horticulture, Hebei Agricultural University, Hebei, China
| | - Lili Wang
- College of Horticulture, Hebei Agricultural University, Hebei, China
- Research Center of Chinese Jujube, Hebei Agricultural University, Hebei, China
| | - Lixin Wang
- College of Horticulture, Hebei Agricultural University, Hebei, China
- Research Center of Chinese Jujube, Hebei Agricultural University, Hebei, China
| | - Yahong Niu
- College of Horticulture, Hebei Agricultural University, Hebei, China
| | - Xin Zhao
- College of Horticulture, Hebei Agricultural University, Hebei, China
| | - Zhihui Zhao
- College of Horticulture, Hebei Agricultural University, Hebei, China
- Research Center of Chinese Jujube, Hebei Agricultural University, Hebei, China
| | - Zhiguo Liu
- College of Horticulture, Hebei Agricultural University, Hebei, China
- Research Center of Chinese Jujube, Hebei Agricultural University, Hebei, China
| | - Mengjun Liu
- College of Horticulture, Hebei Agricultural University, Hebei, China
- Research Center of Chinese Jujube, Hebei Agricultural University, Hebei, China
| |
Collapse
|
4
|
Feng YR, Li TT, Wang SJ, Lu YT, Yuan TT. Triphosphate Tunnel Metalloenzyme 2 Acts as a Downstream Factor of ABI4 in ABA-Mediated Seed Germination. Int J Mol Sci 2023; 24:ijms24108994. [PMID: 37240339 DOI: 10.3390/ijms24108994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Seed germination is a complex process that is regulated by various exogenous and endogenous factors, in which abscisic acid (ABA) plays a crucial role. The triphosphate tunnel metalloenzyme (TTM) superfamily exists in all living organisms, but research on its biological role is limited. Here, we reveal that TTM2 functions in ABA-mediated seed germination. Our study indicates that TTM2 expression is enhanced but repressed by ABA during seed germination. Promoted TTM2 expression in 35S::TTM2-FLAG rescues ABA-mediated inhibition of seed germination and early seedling development and ttm2 mutants exhibit lower seed germination rate and reduced cotyledon greening compared with the wild type, revealing that the repression of TTM2 expression is required for ABA-mediated inhibition of seed germination and early seedling development. Further, ABA inhibits TTM2 expression by ABA insensitive 4 (ABI4) binding of TTM2 promoter and the ABA-insensitive phenotype of abi4-1 with higher TTM2 expression can be rescued by mutation of TTM2 in abi4-1 ttm2-1 mutant, indicating that TTM2 acts downstream of ABI4. In addition, TTM1, a homolog of TTM2, is not involved in ABA-mediated regulation of seed germination. In summary, our findings reveal that TTM2 acts as a downstream factor of ABI4 in ABA-mediated seed germination and early seedling growth.
Collapse
Affiliation(s)
- Yu-Rui Feng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ting-Ting Li
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shi-Jia Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ying-Tang Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ting-Ting Yuan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
5
|
Yuan Y, Liu Z, Wang L, Wang L, Chen S, Niu Y, Zhao X, Liu P, Liu M. Two triphosphate tunnel metalloenzymes from apple exhibit adenylyl cyclase activity. FRONTIERS IN PLANT SCIENCE 2022; 13:992488. [PMID: 36275530 PMCID: PMC9582125 DOI: 10.3389/fpls.2022.992488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Adenylyl cyclase (AC) is the key catalytic enzyme for the synthesis of 3',5'-cyclic adenosine monophosphate. Various ACs have been identified in microorganisms and mammals, but studies on plant ACs are still limited. No AC in woody plants has been reported until now. Based on the information on HpAC1, three enzymes were screened out from the woody fruit tree apple, and two of them (MdTTM1 and MdTTM2) were verified and confirmed to display AC activity. Interestingly, in the apple genome, these two genes were annotated as triphosphate tunnel metalloenzymes (TTMs) which were widely found in three superkingdoms of life with multiple substrate specificities and enzymatic activities, especially triphosphate hydrolase. In addition, the predicted structures of these two proteins were parallel, especially of the catalytic tunnel, including conserved domains, motifs, and folded structures. Their tertiary structures exhibited classic TTM properties, like the characteristic EXEXK motif and β-stranded anti-parallel tunnel capable of coordinating divalent cations. Moreover, MdTTM2 and HpAC1 displayed powerful hydrolase activity to triphosphate and restricted AC activity. All of these findings showed that MdTTMs had hydrolysis and AC activity, which could provide new solid evidence for AC distribution in woody plants as well as insights into the relationship between ACs and TTMs.
Collapse
Affiliation(s)
- Ye Yuan
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Zhiguo Liu
- College of Horticulture, Hebei Agricultural University, Baoding, China
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| | - Lili Wang
- College of Horticulture, Hebei Agricultural University, Baoding, China
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| | - Lixin Wang
- College of Horticulture, Hebei Agricultural University, Baoding, China
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| | - Shuangjiang Chen
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Yahong Niu
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Xin Zhao
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Ping Liu
- College of Horticulture, Hebei Agricultural University, Baoding, China
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| | - Mengjun Liu
- College of Horticulture, Hebei Agricultural University, Baoding, China
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| |
Collapse
|
6
|
Wang J, Xu G, Ning Y, Wang X, Wang GL. Mitochondrial functions in plant immunity. TRENDS IN PLANT SCIENCE 2022; 27:1063-1076. [PMID: 35659746 DOI: 10.1016/j.tplants.2022.04.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/21/2022] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Mitochondria are energy factories of cells and are important for intracellular interactions with other organelles. Emerging evidence indicates that mitochondria play essential roles in the response to pathogen infection. During infection, pathogens deliver numerous enzymes and effectors into host cells, and some of these effectors target mitochondria, altering mitochondrial morphology, metabolism, and functions. To defend against pathogen attack, mitochondria are actively involved in changing intracellular metabolism, hormone-mediated signaling, and signal transduction, producing reactive oxygen species and reactive nitrogen species and triggering programmed cell death. Additionally, mitochondria coordinate with other organelles to integrate and amplify diverse immune signals. In this review, we summarize recent advances in understanding how mitochondria function in plant immunity and how pathogens target mitochondria for host defense suppression.
Collapse
Affiliation(s)
- Jiyang Wang
- Department of Plant Pathology, Ohio State University, Columbus, OH 43210, USA; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guojuan Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xuli Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Guo-Liang Wang
- Department of Plant Pathology, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
7
|
Pesquera M, Martinez J, Maillot B, Wang K, Hofmann M, Raia P, Loubéry S, Steensma P, Hothorn M, Fitzpatrick TB. Structural and functional studies of Arabidopsis thaliana triphosphate tunnel metalloenzymes reveal roles for additional domains. J Biol Chem 2022; 298:102438. [PMID: 36049521 PMCID: PMC9582702 DOI: 10.1016/j.jbc.2022.102438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/04/2022] Open
Abstract
Triphosphate tunnel metalloenzymes (TTMs) are found in all biological kingdoms and have been characterized in microorganisms and animals. Members of the TTM family have divergent biological functions and act on a range of triphosphorylated substrates (RNA, thiamine triphosphate, and inorganic polyphosphate). TTMs in plants have received considerably less attention and are unique in that some homologs harbor additional domains including a P-loop kinase and transmembrane domain. Here, we report on structural and functional aspects of the multimodular TTM1 and TTM2 of Arabidopsis thaliana. Our tissue and cellular microscopy studies show that both AtTTM1 and AtTTM2 are expressed in actively dividing (meristem) tissue and are tail-anchored proteins at the outer mitochondrial membrane, mediated by the single C-terminal transmembrane domain, supporting earlier studies. In addition, we reveal from crystal structures of AtTTM1 in the presence and absence of a nonhydrolyzable ATP analog a catalytically incompetent TTM tunnel domain tightly interacting with the P-loop kinase domain that is locked in an inactive conformation. Our structural comparison indicates that a helical hairpin may facilitate movement of the TTM domain, thereby activating the kinase. Furthermore, we conducted genetic studies to show that AtTTM2 is important for the developmental transition from the vegetative to the reproductive phase in Arabidopsis, whereas its closest paralog AtTTM1 is not. We demonstrate through rational design of mutations based on the 3D structure that both the P-loop kinase and TTM tunnel modules of AtTTM2 are required for the developmental switch. Together, our results provide insight into the structure and function of plant TTM domains.
Collapse
Affiliation(s)
- Marta Pesquera
- Vitamins & Environmental Stress Responses in Plants, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Jacobo Martinez
- Structural Plant Biology, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Benoît Maillot
- Vitamins & Environmental Stress Responses in Plants, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Kai Wang
- Vitamins & Environmental Stress Responses in Plants, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Manuel Hofmann
- Vitamins & Environmental Stress Responses in Plants, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Pierre Raia
- Structural Plant Biology, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Sylvain Loubéry
- Plant Imaging Unit, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Priscille Steensma
- Vitamins & Environmental Stress Responses in Plants, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Michael Hothorn
- Structural Plant Biology, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland.
| | - Teresa B Fitzpatrick
- Vitamins & Environmental Stress Responses in Plants, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
8
|
Liu M, Wang K, Haapanen M, Ghimire RP, Kivimäenpää M, Asiegbu FO. Analysis of Transcriptome and Terpene Constituents of Scots Pine Genotypes Inherently Resistant or Susceptible to Heterobasidion annosum. FRONTIERS IN PLANT SCIENCE 2022; 13:947734. [PMID: 35909743 PMCID: PMC9326466 DOI: 10.3389/fpls.2022.947734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Root and stem rot caused by Heterobasidion annosum is a severe problem in boreal Scots pine. Dissecting the features of disease resistance is generally an essential step in resistance breeding in plants and forest trees. In this study, we explored inherent resistance factors of Scots pine against H. annosum. A total of 236 families consisting of 85 full-sib (FS), 35 half-sib population mix (HSpm), and 116 half-sib (HS) families of Scots pine seedlings were inoculated with a H. annosum isolate. We sampled needle tissues before inoculation for terpene measurements and RNA sequencing. Based on the lesion area, the extremes of 12 resistant and 12 susceptible families were selected for further analyses. Necrotic lesions resulting from fungal infection were in a weak to moderate relationship with the plant height. Monoterpenes were the principal terpene compounds observed in Scots pine seedlings. Concentrations of 3-carene were significantly higher in pine genotypes inherently resistant compared with susceptible seedlings. By contrast, susceptible genotypes had significantly higher proportions of α-pinene. Gene ontology analysis of differential expressed transcripts (DETs) revealed that response to biotic factors was enriched in resistant seedlings. Functional characterization of individual DETs revealed that higher expression of transcripts involved in response to abiotic stress was common in susceptible genotypes. This observation was supported by the annotation of hub genes in a key module that was significantly correlated with the lesion trait through weighted gene co-expression network analysis (WGCNA) of 16 HS and HSpm samples. These findings contribute to our understanding of constitutive resistance factors of Scots pine against Heterobasidion root and stem rot diseases.
Collapse
Affiliation(s)
- Mengxia Liu
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kai Wang
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Matti Haapanen
- Natural Resources Institute Finland (LUKE), Helsinki, Finland
| | - Rajendra P. Ghimire
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Minna Kivimäenpää
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
- Natural Resources Institute Finland (LUKE), Suonenjoki, Finland
| | - Fred O. Asiegbu
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
9
|
Bettendorff L. Update on Thiamine Triphosphorylated Derivatives and Metabolizing Enzymatic Complexes. Biomolecules 2021; 11:1645. [PMID: 34827643 PMCID: PMC8615392 DOI: 10.3390/biom11111645] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/12/2022] Open
Abstract
While the cellular functions of the coenzyme thiamine (vitamin B1) diphosphate (ThDP) are well characterized, the triphosphorylated thiamine derivatives, thiamine triphosphate (ThTP) and adenosine thiamine triphosphate (AThTP), still represent an intriguing mystery. They are present, generally in small amounts, in nearly all organisms, bacteria, fungi, plants, and animals. The synthesis of ThTP seems to require ATP synthase by a mechanism similar to ATP synthesis. In E. coli, ThTP is synthesized during amino acid starvation, while in plants, its synthesis is dependent on photosynthetic processes. In E. coli, ThTP synthesis probably requires oxidation of pyruvate and may play a role at the interface between energy and amino acid metabolism. In animal cells, no mechanism of regulation is known. Cytosolic ThTP levels are controlled by a highly specific cytosolic thiamine triphosphatase (ThTPase), coded by thtpa, and belonging to the ubiquitous family of the triphosphate tunnel metalloenzymes (TTMs). While members of this protein family are found in nearly all living organisms, where they bind organic and inorganic triphosphates, ThTPase activity seems to be restricted to animals. In mammals, THTPA is ubiquitously expressed with probable post-transcriptional regulation. Much less is known about the recently discovered AThTP. In E. coli, AThTP is synthesized by a high molecular weight protein complex from ThDP and ATP or ADP in response to energy stress. A better understanding of these two thiamine derivatives will require the use of transgenic models.
Collapse
Affiliation(s)
- Lucien Bettendorff
- Laboratory of Neurophysiology, GIGA Neurosciences, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
10
|
Karia P, Yoshioka K, Moeder W. Multiple phosphorylation events of the mitochondrial membrane protein TTM1 regulate cell death during senescence. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:766-780. [PMID: 34409658 DOI: 10.1111/tpj.15470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
The role of mitochondria in programmed cell death (PCD) during animal growth and development is well documented, but much less is known for plants. We previously showed that the Arabidopsis thaliana triphosphate tunnel metalloenzyme (TTM) proteins TTM1 and TTM2 are tail-anchored proteins that localize in the mitochondrial outer membrane and participate in PCD during senescence and immunity, respectively. Here, we show that TTM1 is specifically involved in senescence induced by abscisic acid (ABA). Moreover, phosphorylation of TTM1 by multiple mitogen-activated protein (MAP) kinases regulates its function and turnover. A combination of proteomics and in vitro kinase assays revealed three major phosphorylation sites of TTM1 (Ser10, Ser437, and Ser490). Ser437, which is phosphorylated upon perception of senescence cues such as ABA and prolonged darkness, is phosphorylated by the MAP kinases MPK3 and MPK4, and Ser437 phosphorylation is essential for TTM1 function in senescence. These MPKs, together with three additional MAP kinases (MPK1, MPK7, and MPK6), also phosphorylate Ser10 and Ser490, marking TTM1 for protein turnover, which likely prevents uncontrolled cell death. Taken together, our results show that multiple MPKs regulate the function and turnover of the mitochondrial protein TTM1 during senescence-associated cell death, revealing a novel link between mitochondria and PCD.
Collapse
Affiliation(s)
- Purva Karia
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Keiko Yoshioka
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
- Center for the Analysis of Genome Evolution and Function (CAGEF), University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Wolfgang Moeder
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
11
|
Vogt MS, Ngouoko Nguepbeu RR, Mohr MKF, Albers SV, Essen LO, Banerjee A. The archaeal triphosphate tunnel metalloenzyme SaTTM defines structural determinants for the diverse activities in the CYTH protein family. J Biol Chem 2021; 297:100820. [PMID: 34029589 PMCID: PMC8233210 DOI: 10.1016/j.jbc.2021.100820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 11/27/2022] Open
Abstract
CYTH proteins make up a large superfamily that is conserved in all three domains of life. These enzymes have a triphosphate tunnel metalloenzyme (TTM) fold, which typically results in phosphatase functions, e.g., RNA triphosphatase, inorganic polyphosphatase, or thiamine triphosphatase. Some CYTH orthologs cyclize nucleotide triphosphates to 3′,5′-cyclic nucleotides. So far, archaeal CYTH proteins have been annotated as adenylyl cyclases, although experimental evidence to support these annotations is lacking. To address this gap, we characterized a CYTH ortholog, SaTTM, from the crenarchaeote Sulfolobus acidocaldarius. Our in silico studies derived ten major subclasses within the CYTH family implying a close relationship between these archaeal CYTH enzymes and class IV adenylyl cyclases. However, initial biochemical characterization reveals inability of SaTTM to produce any cyclic nucleotides. Instead, our structural and functional analyses show a classical TTM behavior, i.e., triphosphatase activity, where pyrophosphate causes product inhibition. The Ca2+-inhibited Michaelis complex indicates a two-metal-ion reaction mechanism analogous to other TTMs. Cocrystal structures of SaTTM further reveal conformational dynamics in SaTTM that suggest feedback inhibition in TTMs due to tunnel closure in the product state. These structural insights combined with further sequence similarity network–based in silico analyses provide a firm molecular basis for distinguishing CYTH orthologs with phosphatase activities from class IV adenylyl cyclases.
Collapse
Affiliation(s)
- Marian S Vogt
- Department of Chemistry, Philipps-Universität Marburg, Marburg, Germany
| | | | - Michael K F Mohr
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Sonja-Verena Albers
- Institute of Biology II, Molecular Biology of Archaea, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Lars-Oliver Essen
- Department of Chemistry, Philipps-Universität Marburg, Marburg, Germany; Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany.
| | - Ankan Banerjee
- Department of Chemistry, Philipps-Universität Marburg, Marburg, Germany; Department of Genetics, Philipps-Universität Marburg, Marburg, Germany.
| |
Collapse
|
12
|
Kieu NP, Lenman M, Wang ES, Petersen BL, Andreasson E. Mutations introduced in susceptibility genes through CRISPR/Cas9 genome editing confer increased late blight resistance in potatoes. Sci Rep 2021; 11:4487. [PMID: 33627728 PMCID: PMC7904907 DOI: 10.1038/s41598-021-83972-w] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/10/2021] [Indexed: 01/31/2023] Open
Abstract
The use of pathogen-resistant cultivars is expected to increase yield and decrease fungicide use in agriculture. However, in potato breeding, increased resistance obtained via resistance genes (R-genes) is hampered because R-gene(s) are often specific for a pathogen race and can be quickly overcome by the evolution of the pathogen. In parallel, susceptibility genes (S-genes) are important for pathogenesis, and loss of S-gene function confers increased resistance in several plants, such as rice, wheat, citrus and tomatoes. In this article, we present the mutation and screening of seven putative S-genes in potatoes, including two DMR6 potato homologues. Using a CRISPR/Cas9 system, which conferred co-expression of two guide RNAs, tetra-allelic deletion mutants were generated and resistance against late blight was assayed in the plants. Functional knockouts of StDND1, StCHL1, and DMG400000582 (StDMR6-1) generated potatoes with increased resistance against late blight. Plants mutated in StDND1 showed pleiotropic effects, whereas StDMR6-1 and StCHL1 mutated plants did not exhibit any growth phenotype, making them good candidates for further agricultural studies. Additionally, we showed that DMG401026923 (here denoted StDMR6-2) knockout mutants did not demonstrate any increased late blight resistance, but exhibited a growth phenotype, indicating that StDMR6-1 and StDMR6-2 have different functions. To the best of our knowledge, this is the first report on the mutation and screening of putative S-genes in potatoes, including two DMR6 potato homologues.
Collapse
Affiliation(s)
- Nam Phuong Kieu
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Marit Lenman
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Eu Sheng Wang
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Bent Larsen Petersen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsen's vej 40, 1871, Frederiksberg C, Denmark
| | - Erik Andreasson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| |
Collapse
|
13
|
Świeżawska B, Duszyn M, Kwiatkowski M, Jaworski K, Pawełek A, Szmidt‐Jaworska A. Brachypodium distachyon
triphosphate tunnel metalloenzyme 3 is both a triphosphatase and an adenylyl cyclase upregulated by mechanical wounding. FEBS Lett 2020; 594:1101-1111. [DOI: 10.1002/1873-3468.13701] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Brygida Świeżawska
- Chair of Plant Physiology and Biotechnology Nicolaus Copernicus University Torun Poland
| | - Maria Duszyn
- Chair of Plant Physiology and Biotechnology Nicolaus Copernicus University Torun Poland
| | - Mateusz Kwiatkowski
- Chair of Plant Physiology and Biotechnology Nicolaus Copernicus University Torun Poland
| | - Krzysztof Jaworski
- Chair of Plant Physiology and Biotechnology Nicolaus Copernicus University Torun Poland
| | - Agnieszka Pawełek
- Chair of Plant Physiology and Biotechnology Nicolaus Copernicus University Torun Poland
| | | |
Collapse
|
14
|
Lorenzo‐Orts L, Couto D, Hothorn M. Identity and functions of inorganic and inositol polyphosphates in plants. THE NEW PHYTOLOGIST 2020; 225:637-652. [PMID: 31423587 PMCID: PMC6973038 DOI: 10.1111/nph.16129] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/22/2019] [Indexed: 05/08/2023]
Abstract
Inorganic polyphosphates (polyPs) and inositol pyrophosphates (PP-InsPs) form important stores of inorganic phosphate and can act as energy metabolites and signaling molecules. Here we review our current understanding of polyP and inositol phosphate (InsP) metabolism and physiology in plants. We outline methods for polyP and InsP detection, discuss the known plant enzymes involved in their synthesis and breakdown, and summarize the potential physiological and signaling functions for these enigmatic molecules in plants.
Collapse
Affiliation(s)
- Laura Lorenzo‐Orts
- Structural Plant Biology LaboratoryDepartment of Botany and Plant BiologyUniversity of Geneva30 Quai E. AnsermetGeneva1211Switzerland
| | - Daniel Couto
- Structural Plant Biology LaboratoryDepartment of Botany and Plant BiologyUniversity of Geneva30 Quai E. AnsermetGeneva1211Switzerland
| | - Michael Hothorn
- Structural Plant Biology LaboratoryDepartment of Botany and Plant BiologyUniversity of Geneva30 Quai E. AnsermetGeneva1211Switzerland
| |
Collapse
|
15
|
Ramstein GP, Evans J, Nandety A, Saha MC, Brummer EC, Kaeppler SM, Buell CR, Casler MD. Candidate Variants for Additive and Interactive Effects on Bioenergy Traits in Switchgrass ( Panicum virgatum L.) Identified by Genome-Wide Association Analyses. THE PLANT GENOME 2018; 11:180002. [PMID: 30512032 DOI: 10.3835/plantgenome2018.01.0002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Switchgrass ( L.) is a promising herbaceous energy crop, but further gains in biomass yield and quality must be achieved to enable a viable bioenergy industry. Developing DNA markers can contribute to such progress, but depiction of genetic bases should be reliable, involving simple additive marker effects and also interactions with genetic backgrounds (e.g., ecotypes) or synergies with other markers. We analyzed plant height, C content, N content, and mineral concentration in a diverse panel consisting of 512 genotypes of upland and lowland ecotypes. We performed association analyses based on exome capture sequencing and tested 439,170 markers for marginal effects, 83,290 markers for marker × ecotype interactions, and up to 311,445 marker pairs for pairwise interactions. Analyses of pairwise interactions focused on subsets of marker pairs preselected on the basis of marginal marker effects, gene ontology annotation, and pairwise marker associations. Our tests identified 12 significant effects. Homology and gene expression information corroborated seven effects and indicated plausible causal pathways: flowering time and lignin synthesis for plant height; plant growth and senescence for C content and mineral concentration. Four pairwise interactions were detected, including three interactions preselected on the basis of pairwise marker correlations. Furthermore, a marker × ecotype interaction and a pairwise interaction were confirmed in an independent switchgrass panel. Our analyses identified reliable candidate variants for important bioenergy traits. Moreover, they exemplified the importance of interactive effects for depicting genetic bases and illustrated the usefulness of preselecting marker pairs for identifying pairwise marker interactions in association studies.
Collapse
|
16
|
Ung H, Karia P, Ebine K, Ueda T, Yoshioka K, Moeder W. Triphosphate Tunnel Metalloenzyme Function in Senescence Highlights a Biological Diversification of This Protein Superfamily. PLANT PHYSIOLOGY 2017; 175:473-485. [PMID: 28733390 PMCID: PMC5580764 DOI: 10.1104/pp.17.00700] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/15/2017] [Indexed: 05/06/2023]
Abstract
The triphosphate tunnel metalloenzyme (TTM) superfamily comprises a group of enzymes that hydrolyze organophosphate substrates. They exist in all domains of life, yet the biological role of most family members is unclear. Arabidopsis (Arabidopsis thaliana) encodes three TTM genes. We have previously reported that AtTTM2 displays pyrophosphatase activity and is involved in pathogen resistance. Here, we report the biochemical activity and biological function of AtTTM1 and diversification of the biological roles between AtTTM1 and 2 Biochemical analyses revealed that AtTTM1 displays pyrophosphatase activity similar to AtTTM2, making them the only TTMs characterized so far to act on a diphosphate substrate. However, knockout mutant analysis showed that AtTTM1 is not involved in pathogen resistance but rather in leaf senescence. AtTTM1 is transcriptionally up-regulated during leaf senescence, and knockout mutants of AtTTM1 exhibit delayed dark-induced and natural senescence. The double mutant of AtTTM1 and AtTTM2 did not show synergistic effects, further indicating the diversification of their biological function. However, promoter swap analyses revealed that they functionally can complement each other, and confocal microscopy revealed that both proteins are tail-anchored proteins that localize to the mitochondrial outer membrane. Additionally, transient overexpression of either gene in Nicotiana benthamiana induced senescence-like cell death upon dark treatment. Taken together, we show that two TTMs display the same biochemical properties but distinct biological functions that are governed by their transcriptional regulation. Moreover, this work reveals a possible connection of immunity-related programmed cell death and senescence through novel mitochondrial tail-anchored proteins.
Collapse
Affiliation(s)
- Huoi Ung
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Purva Karia
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Kazuo Ebine
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, Graduate University for Advanced Studies, Okazaki, Aichi 444-8585, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, Graduate University for Advanced Studies, Okazaki, Aichi 444-8585, Japan
| | - Keiko Yoshioka
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
- Center for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Wolfgang Moeder
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| |
Collapse
|
17
|
Gao QM, Zhu S, Kachroo P, Kachroo A. Signal regulators of systemic acquired resistance. FRONTIERS IN PLANT SCIENCE 2015; 6:228. [PMID: 25918514 PMCID: PMC4394658 DOI: 10.3389/fpls.2015.00228] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/23/2015] [Indexed: 05/19/2023]
Abstract
Salicylic acid (SA) is an important phytohormone that plays a vital role in a number of physiological responses, including plant defense. The last two decades have witnessed a number of breakthroughs related to biosynthesis, transport, perception and signaling mediated by SA. These findings demonstrate that SA plays a crictical role in both local and systemic defense responses. Systemic acquired resistance (SAR) is one such SA-dependent response. SAR is a long distance signaling mechanism that provides broad spectrum and long-lasting resistance to secondary infections throughout the plant. This unique feature makes SAR a highly desirable trait in crop production. This review summarizes the recent advances in the role of SA in SAR and discusses its relationship to other SAR inducers.
Collapse
Affiliation(s)
- Qing-Ming Gao
- Department of Plant Pathology, University of KentuckyLexington, KY, USA
| | - Shifeng Zhu
- Department of Plant Pathology, University of KentuckyLexington, KY, USA
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai UniversityTianjin, China
| | - Pradeep Kachroo
- Department of Plant Pathology, University of KentuckyLexington, KY, USA
| | - Aardra Kachroo
- Department of Plant Pathology, University of KentuckyLexington, KY, USA
- *Correspondence: Aardra Kachroo, Department of Plant Pathology, University of Kentucky, 201F Plant Science Building, 1405 Veterans drive, Lexington, KY 40546, USA
| |
Collapse
|