1
|
Lin Y, Xu C, Li L, Fan L, Li R, He J, Li H, Deng W, Kang Z, Li Z, Cheng Y. A conserved fungal effector disturbs Ca 2+ sensing and ROS homeostasis to induce plant cell death. Nat Commun 2025; 16:3523. [PMID: 40229290 PMCID: PMC11997220 DOI: 10.1038/s41467-025-58833-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 03/29/2025] [Indexed: 04/16/2025] Open
Abstract
Acting as a major Ca2+ sensor, calmodulin (CaM) activates target proteins to regulate a variety of cellular processes. Here, we report that CaM-target binding is disturbed by a fungal virulence effector PdCDIE1 (Penicillium digitatum Cell Death-Inducing Effector 1), which results into reactive oxygen species (ROS)-dependent plant cell death. PdCDIE1 is an evolutionarily conserved fungal effector that exhibits plant cell death-inducing activity and contributes significantly to pathogen virulence. PdCDIE1 interacts with a plant heat shock protein Hsp70 that is antagonistic to ROS-dependent plant cell death. Hsp70 is a bona fide target of CaM and its CaM-binding domain also interacts with N-terminal PdCDIE1. The interaction between CaM and Hsp70 in citrus fruit is disturbed during pathogen infection but recovered during ΔPdCDIE1 mutant infection. Application of a CaM inhibitor and silencing of CaM genes induce plant cell death and high levels of ROS as PdCDIE1 does. These results reveal a molecular framework of effector-triggered susceptibility which integrates Ca2+ sensing and ROS homeostasis to induce plant cell death.
Collapse
Affiliation(s)
- Yunlong Lin
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, China
| | - Chan Xu
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| | - Lili Li
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, China
| | - Liqin Fan
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, China
| | - Rui Li
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| | - Jiaxin He
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| | - Hongli Li
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, China
| | - Wei Deng
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Shaanxi, Yangling, China.
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China.
| | - Yulin Cheng
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China.
| |
Collapse
|
2
|
Gaudin C, Preveaux A, Aubineau N, Le Goff D, Jacques MA, Chen NWG. A dTALE approach demonstrates that induction of common bean OVATE Family Protein 7 promotes resistance to common bacterial blight. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:607-620. [PMID: 39437252 DOI: 10.1093/jxb/erae433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
Common bacterial blight (CBB) is a devastating seed-transmitted disease of common bean (Phaseolus vulgaris L.), caused by Xanthomonas phaseoli pv. phaseoli and Xanthomonas citri pv. fuscans. The genes responsible for CBB resistance are largely unknown. Moreover, the lack of a reproducible and universal transformation protocol limits the study of genetic traits in common bean. We produced X. phaseoli pv. phaseoli strains expressing artificially designed transcription-activator like effectors (dTALEs) to target 14 candidate genes for resistance to CBB based on previous transcriptomic data. In planta assays in a susceptible common bean genotype showed that induction of PvOFP7, PvAP2-ERF71, or PvExpansinA17 expression by dTALEs resulted in CBB symptom reduction. After PvOFP7 induction, in planta bacterial growth was reduced at early colonization stages, and RNA-seq analysis revealed up-regulation of cell wall formation and primary metabolism, together with major down-regulation of heat shock proteins. Our results demonstrated that PvOFP7 contributes to CBB resistance, and underlined the usefulness of dTALEs for functional validation of genes whose induction impacts Xanthomonas-plant interactions.
Collapse
Affiliation(s)
- Charlotte Gaudin
- Université Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Anne Preveaux
- Université Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Nathan Aubineau
- Université Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Damien Le Goff
- Université Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Marie-Agnès Jacques
- Université Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Nicolas W G Chen
- Université Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| |
Collapse
|
3
|
Tian S, Song Q, Cheng Y, Zhou W, Wu K, Zhao Y, Wu Y, Zhao L. A viral p3a protein targets and inhibits TaDOF transcription factors to promote the expression of susceptibility genes and facilitate viral infection. PLoS Pathog 2024; 20:e1012680. [PMID: 39509397 PMCID: PMC11542804 DOI: 10.1371/journal.ppat.1012680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/19/2024] [Indexed: 11/15/2024] Open
Abstract
The interactions among viruses and host plants are complex and fascinating because these organisms interact with and adapt to each other continuously. Many plant transcription factors play important roles in plant growth and development and in the resistance to viral infection. To facilitate the infection of plants, some viral proteins typically target and inhibit the function of plant transcription factors. In this study, we found an interesting phenomenon wherein the p3a protein of barley yellow dwarf virus (BYDV) can interact with the zinc finger domain of the TaDOF transcription factor in wheat; the zinc finger domain of TaDOF can interact with the promoter of TaHSP70 and inhibit the transcription of the TaHSP70 gene; and p3a interacts with the TaDOF zinc finger domain through competitive binding, alleviating TaDOF zinc finger domain-mediated inhibition of the TaHSP70 promoter, thereby promoting TaHSP70 expression and promoting infection by BYDV. This study demonstrates that BYDV p3a is an immunosuppressive factor and enriches our understanding of the pathogenesis of BYDV.
Collapse
Affiliation(s)
- Shuyuan Tian
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling Shaanxi, China
| | - Qingting Song
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling Shaanxi, China
| | - Yipeng Cheng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling Shaanxi, China
| | - Wenmei Zhou
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling Shaanxi, China
| | - Kuan Wu
- Yangling Vocational & Technical College, Yangling Shaanxi, China
| | - Yu Zhao
- Yangling Vocational & Technical College, Yangling Shaanxi, China
| | - Yunfeng Wu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling Shaanxi, China
| | - Lei Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling Shaanxi, China
| |
Collapse
|
4
|
Dai Y, Fei W, Chen S, Shi J, Ma H, Li H, Li J, Wang Y, Gao Y, Zhu J, Wang B, Chen J, Ma H. Using Transcriptomics to Determine the Mechanism for the Resistance to Fusarium Head Blight of a Wheat- Th. elongatum Translocation Line. Int J Mol Sci 2024; 25:9452. [PMID: 39273397 PMCID: PMC11395471 DOI: 10.3390/ijms25179452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Fusarium head blight (FHB), caused by the Fusarium graminearum species complex, is a destructive disease in wheat worldwide. The lack of FHB-resistant germplasm is a barrier in wheat breeding for resistance to FHB. Thinopyrum elongatum is an important relative that has been successfully used for the genetic improvement of wheat. In this study, a translocation line, YNM158, with the YM158 genetic background carrying a fragment of diploid Th. elongatum 7EL chromosome created using 60Co-γ radiation, showed high resistance to FHB under both field and greenhouse conditions. Transcriptome analysis confirmed that the horizontal transfer gene, encoding glutathione S-transferase (GST), is an important contributor to FHB resistance in the pathogen infection stage, whereas the 7EL chromosome fragment carries other genes regulated by F. graminearum during the colonization stage. Introgression of the 7EL fragment affected the expression of wheat genes that were enriched in resistance pathways, including the phosphatidylinositol signaling system, protein processing in the endoplasmic reticulum, plant-pathogen interaction, and the mitogen-activated protein kinase (MAPK) signaling pathway at different stages after F. graminearium infection. This study provides a novel germplasm for wheat resistance to FHB and new insights into the molecular mechanisms of wheat resistance to FHB.
Collapse
Affiliation(s)
- Yi Dai
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Wenlin Fei
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Shiqiang Chen
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou 225009, China
| | - Juntao Shi
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Haigang Ma
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Haifeng Li
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Jinfeng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Yonggang Wang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Yujiao Gao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Jinghuan Zhu
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Bingkui Wang
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jianmin Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Hongxiang Ma
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
5
|
Zhao Y, Zhong X, Xu G, Zhu X, Shi Y, Liu M, Wang R, Kang H, You X, Ning Y, Wang G, Wang X. The F-box protein OsFBX156 positively regulates rice defence against the blast fungus Magnaporthe oryzae by mediating ubiquitination-dependent degradation of OsHSP71.1. MOLECULAR PLANT PATHOLOGY 2024; 25:e13459. [PMID: 38808386 PMCID: PMC11134189 DOI: 10.1111/mpp.13459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 05/30/2024]
Abstract
F-box protein is a subunit of the SCF (SKP1-CUL1-F-box protein) E3 ubiquitin ligase complex, which plays a critical role in regulating different pathways in plant immunity. In this study, we identified the rice (Oryza sativa) F-box protein OsFBX156, which targets the heat shock protein 70 (OsHSP71.1) to regulate resistance to the rice blast fungus Magnaporthe oryzae. Overexpression of OsFBX156 or knockout of OsHSP71.1 in rice resulted in the elevation of pathogenesis-related (PR) genes and an induction burst of reactive oxygen species (ROS) after flg22 and chitin treatments, thereby enhancing resistance to M. oryzae. Furthermore, OsFBX156 can promote the degradation of OsHSP71.1 through the 26S proteasome pathway. This study sheds lights on a novel mechanism wherein the F-box protein OsFBX156 targets OsHSP71.1 for degradation to promote ROS production and PR gene expression, thereby positively regulating rice innate immunity.
Collapse
Affiliation(s)
- Yudan Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Xionghui Zhong
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China)Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Ministry of AgricultureBeijingChina
| | - Guojuan Xu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Xiaoying Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Yanlong Shi
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Minghao Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
| | - Ruyi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Houxiang Kang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Xiaoman You
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Guo‐Liang Wang
- Department of Plant PathologyThe Ohio State UniversityColumbusOhioUSA
| | - Xuli Wang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
6
|
Zhai M, Ao Z, Qu H, Guo D. Overexpression of the potato VQ31 enhances salt tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2024; 15:1347861. [PMID: 38645398 PMCID: PMC11027747 DOI: 10.3389/fpls.2024.1347861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/18/2024] [Indexed: 04/23/2024]
Abstract
Plant-specific VQ proteins have crucial functions in the regulation of plant growth and development, as well as in plant abiotic stress responses. Their roles have been well established in the model plant Arabidopsis thaliana; however, the functions of the potato VQ proteins have not been adequately investigated. The VQ protein core region contains a short FxxhVQxhTG amino acid motif sequence. In this study, the VQ31 protein from potato was cloned and functionally characterized. The complete open reading frame (ORF) size of StVQ31 is 672 bp, encoding 223 amino acids. Subcellular localization analysis revealed that StVQ31 is located in the nucleus. Transgenic Arabidopsis plants overexpressing StVQ31 exhibited enhanced salt tolerance compared to wild-type (WT) plants, as evidenced by increased root length, germination rate, and chlorophyll content under salinity stress. The increased tolerance of transgenic plants was associated with increased osmotic potential (proline and soluble sugars), decreased MDA accumulation, decreased total protein content, and improved membrane integrity. These results implied that StVQ31 overexpression enhanced the osmotic potential of the plants to maintain normal cell growth. Compared to the WT, the transgenic plants exhibited a notable increase in antioxidant enzyme activities, reducing cell membrane damage. Furthermore, the real-time fluorescence quantitative PCR analysis demonstrated that StVQ31 regulated the expression of genes associated with the response to salt stress, including ERD, LEA4-5, At2g38905, and AtNCED3. These findings suggest that StVQ31 significantly impacts osmotic and antioxidant cellular homeostasis, thereby enhancing salt tolerance.
Collapse
Affiliation(s)
| | | | | | - Dongwei Guo
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
7
|
Pan X, Zheng Y, Lei K, Tao W, Zhou N. Systematic analysis of Heat Shock Protein 70 (HSP70) gene family in radish and potential roles in stress tolerance. BMC PLANT BIOLOGY 2024; 24:2. [PMID: 38163888 PMCID: PMC10759535 DOI: 10.1186/s12870-023-04653-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024]
Abstract
The 70 kD heat shock proteins (HSP70s) represent a class of molecular chaperones that are widely distributed in all kingdoms of life, which play important biological roles in plant growth, development, and stress resistance. However, this family has not been systematically characterized in radish (Raphanus sativus L.). In this study, we identified 34 RsHSP70 genes unevenly distributed within nine chromosomes of R. sativus. Phylogenetic and multiple sequence alignment analyses classified the RsHSP70 proteins into six distinct groups (Group A-F). The characteristics of gene structures, motif distributions, and corresponding cellular compartments were more similar in closely linked groups. Duplication analysis revealed that segmental duplication was the major driving force for the expansion of RsHSP70s in radish, particularly in Group C. Synteny analysis identified eight paralogs (Rs-Rs) in the radish genome and 19 orthologs (Rs-At) between radish and Arabidopsis, and 23 orthologs (Rs-Br) between radish and Chinese cabbage. RNA-seq analysis showed that the expression change of some RsHSP70s were related to responses to heat, drought, cadmium, chilling, and salt stresses and Plasmodiophora brassicae infection, and the expression patterns of these RsHSP70s were significantly different among 14 tissues. Furthermore, we targeted a candidate gene, RsHSP70-23, the product of which is localized in the cytoplasm and involved in the responses to certain abiotic stresses and P. brassicae infection. These findings provide a reference for further molecular studies to improve yield and stress tolerance of radish.
Collapse
Affiliation(s)
- Xiaoxue Pan
- Biotechnology Research Institute, Chongqing Academy of Agricultural Sciences/Chongqing Key Laboratory of Adversity Agriculture, Chongqing, 401329, China
- Key Laboratory of Evaluation and Utilization for Special Crops Germplasm Resources in the Southwest Mountains, Ministry of Agriculture and Rural Affairs (Co-Construction By Ministry and Province), Chongqing, 401329, China
| | - Yang Zheng
- Vegetable and Flower Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China
- Key Laboratory of Evaluation and Utilization for Special Crops Germplasm Resources in the Southwest Mountains, Ministry of Agriculture and Rural Affairs (Co-Construction By Ministry and Province), Chongqing, 401329, China
| | - Kairong Lei
- Biotechnology Research Institute, Chongqing Academy of Agricultural Sciences/Chongqing Key Laboratory of Adversity Agriculture, Chongqing, 401329, China
- Key Laboratory of Evaluation and Utilization for Special Crops Germplasm Resources in the Southwest Mountains, Ministry of Agriculture and Rural Affairs (Co-Construction By Ministry and Province), Chongqing, 401329, China
| | - Weilin Tao
- Vegetable and Flower Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China
| | - Na Zhou
- Vegetable and Flower Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China.
- Key Laboratory of Evaluation and Utilization for Special Crops Germplasm Resources in the Southwest Mountains, Ministry of Agriculture and Rural Affairs (Co-Construction By Ministry and Province), Chongqing, 401329, China.
| |
Collapse
|
8
|
Tian C, Zhang Z, Huang Y, Xu J, Liu Z, Xiang Z, Zhao F, Xue J, Xue T, Duan Y. Functional characterization of the Pinellia ternata cytoplasmic class II small heat shock protein gene PtsHSP17.2 via promoter analysis and overexpression in tobacco. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 177:1-9. [PMID: 35219190 DOI: 10.1016/j.plaphy.2022.02.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/18/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
High temperature is one of the main abiotic factors limiting agricultural production, particularly for heat-sensitive plant species. Small heat-shock proteins contribute substantially to alleviating damage to plants caused by heat stress. In the present study, the heat shock protein gene PtsHSP17.2 from Pinellia ternata was functionally characterized through promoter analysis and its overexpression in tobacco. Respectively, relative expression using real-time RT-PCR and ex situ promoter activity assay indicated that PtsHSP17.2 is strongly inducible under heat stress, and in silico promoter analysis discovered multiple stress-related cis elements including heat shock element. When overexpressing PtsHSP17.2 in tobacco, the thermotolerance of transgenic plants was markedly enhanced. Furthermore, the transgenic tobacco plants exhibited less variation in chlorophyll content, relative electrolyte leakage, and malondialdehyde content under heat stress compared with wild-type (WT) plants. The activities of antioxidant enzymes and content of proline were significantly enhanced under heat stress in transgenic plants relative to WT plants. Transgenic plants also had enhanced water retention and increased antioxidative capacity. Further, the expression levels of genes encoding antioxidant enzymes were more highly induced by heat stress in transgenic lines than WT. These results enrich the current understanding of thermal adaptation of heat-sensitive plant species and encourage further genetic improvement.
Collapse
Affiliation(s)
- Chen Tian
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China.
| | - Zeyu Zhang
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China.
| | - Yue Huang
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China.
| | - Juanjuan Xu
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China.
| | - Zhu Liu
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China.
| | - Ziman Xiang
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China.
| | - Fenglan Zhao
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China.
| | - Jianping Xue
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China.
| | - Tao Xue
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China.
| | - Yongbo Duan
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China.
| |
Collapse
|
9
|
Berka M, Kopecká R, Berková V, Brzobohatý B, Černý M. Regulation of heat shock proteins 70 and their role in plant immunity. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1894-1909. [PMID: 35022724 PMCID: PMC8982422 DOI: 10.1093/jxb/erab549] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/10/2021] [Indexed: 05/03/2023]
Abstract
Heat shock proteins 70 (HSP70s) are steadily gaining more attention in the field of plant biotic interactions. Though their regulation and activity in plants are much less well characterized than are those of their counterparts in mammals, accumulating evidence indicates that the role of HSP70-mediated defense mechanisms in plant cells is indispensable. In this review, we summarize current knowledge of HSP70 post-translational control in plants. We comment on the phytohormonal regulation of HSP70 expression and protein abundance, and identify a prominent role for cytokinin in HSP70 control. We outline HSP70s' subcellular localizations, chaperone activity, and chaperone-mediated protein degradation. We focus on the role of HSP70s in plant pathogen-associated molecular pattern-triggered immunity and effector-triggered immunity, and discuss the contribution of different HSP70 subfamilies to plant defense against pathogens.
Collapse
Affiliation(s)
- Miroslav Berka
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, CZ-61300 Brno, Czech Republic
| | - Romana Kopecká
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, CZ-61300 Brno, Czech Republic
| | - Veronika Berková
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, CZ-61300 Brno, Czech Republic
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, CZ-61300 Brno, Czech Republic
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, CZ-61300 Brno, Czech Republic
- Correspondence:
| |
Collapse
|
10
|
Momo J, Kumar A, Islam K, Ahmad I, Rawoof A, Ramchiary N. A comprehensive update on Capsicum proteomics: Advances and future prospects. J Proteomics 2022; 261:104578. [DOI: 10.1016/j.jprot.2022.104578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 10/18/2022]
|
11
|
Nieto-Garibay A, Barraza A, Caamal-Chan G, Murillo-Amador B, Troyo-Diéguez E, Burgoa-Cruz CA, Jaramillo-Limón JN, Loera-Muro A. Habanero pepper ( Capsicum chinense) adaptation to water-deficit stress in a protected agricultural system. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:295-306. [PMID: 35130477 DOI: 10.1071/fp20394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Drought is one of the major factors limiting global crop yield. In Mexico, agriculture is expected to be severely affected by drought. The Capsicum genus has several crop species of agricultural importance. In this work, we analysed the Capsicum chinense plant physiological responses and differentially expressed genes under water stress mainly focused on the responses elicited following recovery through repetitive stress. Plants were cultivated in an experimental block. Each block consisted of plants under water deficit and a control group without deficit. Morphometric and functional parameters, and the expression of genes related to resistance to abiotic stresses were measured. Morphological differences were observed. Plants subjected to water deficit showed impaired growth. Nonetheless, in the physiological parameters, no differences were observed between treatments. We selected abiotic stress-related genes that include heat-shock proteins (HSPs), heat-shock factors (HSFs), transcription factors related to abiotic stress (MYB, ETR1 , and WRKY ), and those associated with biotic and abiotic stress responses (Jar1 and Lox2 ). HSF, HSP, MYB72, ETR1, Jar1, WRKYa , and Lox2 genes were involved in the response to water-deficit stress in C. chinense plants. In conclusion, our work may improve our understanding of the morphological, physiological, and molecular mechanisms underlying hydric stress response in C. chinense .
Collapse
Affiliation(s)
- Alejandra Nieto-Garibay
- Centro de Investigaciones Biológicas del Noroeste, SC, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, C.P. 23096, La Paz, Baja California Sur, Mexico
| | - Aarón Barraza
- CONACYT-Centro de Investigaciones Biológicas del Noroeste, SC, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, Baja California Sur, C.P. 23096, Mexico
| | - Goretty Caamal-Chan
- CONACYT-Centro de Investigaciones Biológicas del Noroeste, SC, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, Baja California Sur, C.P. 23096, Mexico
| | - Bernardo Murillo-Amador
- Centro de Investigaciones Biológicas del Noroeste, SC, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, C.P. 23096, La Paz, Baja California Sur, Mexico
| | - Enrique Troyo-Diéguez
- Centro de Investigaciones Biológicas del Noroeste, SC, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, C.P. 23096, La Paz, Baja California Sur, Mexico
| | - Carlos Alexis Burgoa-Cruz
- Instituto Tecnológico de La Paz, Boulevard Forjadores de Baja California Sur 4720, 8 de Octubre 2da Secc, La Paz, Baja California Sur, C.P. 23080, Mexico
| | - Jhesy Nury Jaramillo-Limón
- Universidad de Occidente, Unidad los Mochis Boulevard Macario Gaxiola SN Col. Las Malvinas, C.P. 81216, Los Mochis, Sinaloa, Mexico
| | - Abraham Loera-Muro
- CONACYT-Centro de Investigaciones Biológicas del Noroeste, SC, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, Baja California Sur, C.P. 23096, Mexico
| |
Collapse
|
12
|
Deshpande S, Purkar V, Mitra S. β-Cyclocitral, a Master Regulator of Multiple Stress-Responsive Genes in Solanum lycopersicum L. Plants. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112465. [PMID: 34834828 PMCID: PMC8618229 DOI: 10.3390/plants10112465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 06/06/2023]
Abstract
β-cyclocitral (βCC), a major apocarotenoid of β-carotene, enhances plants' defense against environmental stresses. However, the knowledge of βCC's involvement in the complex stress-signaling network is limited. Here we demonstrate how βCC reprograms the transcriptional responses that enable Solanum lycopersicum L. (tomato) plants to endure a plethora of environmental stresses. Comparative transcriptome analysis of control and βCC-treated tomato plants was done by generating RNA sequences in the BGISEQ-500 platform. The trimmed sequences were mapped on the tomato reference genome that identifies 211 protein-coding differentially expressed genes. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analysis and their enrichment uncovered that only upregulated genes are attributed to the stress response. Moreover, 80% of the upregulated genes are functionally related to abiotic and biotic stresses. Co-functional analysis of stress-responsive genes revealed a network of 18 genes that code for heat shock proteins, transcription factors (TFs), and calcium-binding proteins. The upregulation of jasmonic acid (JA)-dependent TFs (MYC2, MYB44, ERFs) but not the JA biosynthetic genes is surprising. However, the upregulation of DREB3, an abscisic acid (ABA)-independent TF, validates the unaltered expression of ABA biosynthetic genes. We conclude that βCC treatment upregulates multiple stress-responsive genes without eliciting JA and ABA biosynthesis.
Collapse
|
13
|
Rowarth NM, Curtis BA, Einfeldt AL, Archibald JM, Lacroix CR, Gunawardena AHLAN. RNA-Seq analysis reveals potential regulators of programmed cell death and leaf remodelling in lace plant (Aponogeton madagascariensis). BMC PLANT BIOLOGY 2021; 21:375. [PMID: 34388962 PMCID: PMC8361799 DOI: 10.1186/s12870-021-03066-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 05/25/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The lace plant (Aponogeton madagascariensis) is an aquatic monocot that develops leaves with uniquely formed perforations through the use of a developmentally regulated process called programmed cell death (PCD). The process of perforation formation in lace plant leaves is subdivided into several developmental stages: pre-perforation, window, perforation formation, perforation expansion and mature. The first three emerging "imperforate leaves" do not form perforations, while all subsequent leaves form perforations via developmentally regulated PCD. PCD is active in cells called "PCD cells" that do not retain the antioxidant anthocyanin in spaces called areoles framed by the leaf veins of window stage leaves. Cells near the veins called "NPCD cells" retain a red pigmentation from anthocyanin and do not undergo PCD. While the cellular changes that occur during PCD are well studied, the gene expression patterns underlying these changes and driving PCD during leaf morphogenesis are mostly unknown. We sought to characterize differentially expressed genes (DEGs) that mediate lace plant leaf remodelling and PCD. This was achieved performing gene expression analysis using transcriptomics and comparing DEGs among different stages of leaf development, and between NPCD and PCD cells isolated by laser capture microdissection. RESULTS Transcriptomes were sequenced from imperforate, pre-perforation, window, and mature leaf stages, as well as PCD and NPCD cells isolated from window stage leaves. Differential expression analysis of the data revealed distinct gene expression profiles: pre-perforation and window stage leaves were characterized by higher expression of genes involved in anthocyanin biosynthesis, plant proteases, expansins, and autophagy-related genes. Mature and imperforate leaves upregulated genes associated with chlorophyll development, photosynthesis, and negative regulators of PCD. PCD cells were found to have a higher expression of genes involved with ethylene biosynthesis, brassinosteroid biosynthesis, and hydrolase activity whereas NPCD cells possessed higher expression of auxin transport, auxin signalling, aspartyl proteases, cysteine protease, Bag5, and anthocyanin biosynthesis enzymes. CONCLUSIONS RNA sequencing was used to generate a de novo transcriptome for A. madagascariensis leaves and revealed numerous DEGs potentially involved in PCD and leaf remodelling. The data generated from this investigation will be useful for future experiments on lace plant leaf development and PCD in planta.
Collapse
Affiliation(s)
- Nathan M Rowarth
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - Bruce A Curtis
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | | | - John M Archibald
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Christian R Lacroix
- Department of Biology, University of Prince Edward Island, Charlottetown, PEI, Canada
| | | |
Collapse
|
14
|
Wang J, Liang C, Yang S, Song J, Li X, Dai X, Wang F, Juntawong N, Tan F, Zhang X, Jiao C, Zou X, Chen W. iTRAQ-based quantitative proteomic analysis of heat stress-induced mechanisms in pepper seedlings. PeerJ 2021; 9:e11509. [PMID: 34141478 PMCID: PMC8180192 DOI: 10.7717/peerj.11509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/03/2021] [Indexed: 11/30/2022] Open
Abstract
Background As one of the most important vegetable crops, pepper has rich nutritional value and high economic value. Increasing heat stress due to the global warming has a negative impact on the growth and yield of pepper. Methods To understand the heat stress response mechanism of pepper, an iTRAQ-based quantitative proteomic analysis was employed to identify possible heat-responsive proteins and metabolic pathways in 17CL30 and 05S180 pepper seedlings under heat stress. Result In the present study, we investigated the changes of phenotype, physiology, and proteome in heat-tolerant (17CL30) and heat-sensitive (05S180) pepper cultivars in response to heat stress. Phenotypic and physiological changes showed that 17CL30 had a stronger ability to resist heat stress compared with 05S180. In proteomic analysis, a total of 3,874 proteins were identified, and 1,591 proteins were considered to participate in the process of heat stress response. According to bioinformatic analysis of heat-responsive proteins, the heat tolerance of 17CL30 might be related to a higher ROS scavenging, photosynthesis, signal transduction, carbohydrate metabolism, and stress defense, compared with 05S180.
Collapse
Affiliation(s)
- Jing Wang
- Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China.,Longping Branch, Graduate School of Hunan University, Changsha, China
| | - Chengliang Liang
- Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Sha Yang
- Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Jingshuang Song
- Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xuefeng Li
- Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xiongze Dai
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, China
| | - Fei Wang
- Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Niran Juntawong
- Faculty of Science, Department of Botany, Kasetsart University, Bangkok, Thailand
| | - Fangjun Tan
- Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xilu Zhang
- Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Chunhai Jiao
- Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Xuexiao Zou
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, China
| | - Wenchao Chen
- Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
15
|
Liu GT, Wang BB, Lecourieux D, Li MJ, Liu MB, Liu RQ, Shang BX, Yin X, Wang LJ, Lecourieux F, Xu Y. Proteomic analysis of early-stage incompatible and compatible interactions between grapevine and P. viticola. HORTICULTURE RESEARCH 2021; 8:100. [PMID: 33931609 PMCID: PMC8087781 DOI: 10.1038/s41438-021-00533-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/16/2021] [Accepted: 02/24/2021] [Indexed: 05/04/2023]
Abstract
Wild grapevines can show strong resistance to the downy mildew pathogen P. viticola, but the associated mechanisms are poorly described, especially at early stages of infection. Here, we performed comparative proteomic analyses of grapevine leaves from the resistant genotype V. davidii "LiuBa-8" (LB) and susceptible V. vinifera "Pinot Noir" (PN) 12 h after inoculation with P. viticola. By employing the iTRAQ technique, a total of 444 and 349 differentially expressed proteins (DEPs) were identified in LB and PN, respectively. The majority of these DEPs were related to photosynthesis, respiration, cell wall modification, protein metabolism, stress, and redox homeostasis. Compared with PN, LB showed fewer downregulated proteins associated with photosynthesis and more upregulated proteins associated with metabolism. At least a subset of PR proteins (PR10.2 and PR10.3) was upregulated upon inoculation in both genotypes, whereas HSP (HSP70.2 and HSP90.6) and cell wall-related XTH and BXL1 proteins were specifically upregulated in LB and PN, respectively. In the incompatible interaction, ROS signaling was evident by the accumulation of H2O2, and multiple APX and GST proteins were upregulated. These DEPs may play crucial roles in the grapevine response to downy mildew. Our results provide new insights into molecular events associated with downy mildew resistance in grapevine, which may be exploited to develop novel protection strategies against this disease.
Collapse
Affiliation(s)
- Guo-Tian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
- UMR1287 EGFV, CNRS, Université de Bordeaux, INRAE, Bordeaux Sciences Agro, ISVV, Villenave d'Ornon, France
| | - Bian-Bian Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - David Lecourieux
- UMR1287 EGFV, CNRS, Université de Bordeaux, INRAE, Bordeaux Sciences Agro, ISVV, Villenave d'Ornon, France
| | - Mei-Jie Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Ming-Bo Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Rui-Qi Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Bo-Xing Shang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Xiao Yin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Li-Jun Wang
- Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Fatma Lecourieux
- UMR1287 EGFV, CNRS, Université de Bordeaux, INRAE, Bordeaux Sciences Agro, ISVV, Villenave d'Ornon, France.
| | - Yan Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China.
| |
Collapse
|
16
|
Kumar R, Barua P, Chakraborty N, Nandi AK. Systemic acquired resistance specific proteome of Arabidopsis thaliana. PLANT CELL REPORTS 2020; 39:1549-1563. [PMID: 32876806 DOI: 10.1007/s00299-020-02583-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/20/2020] [Indexed: 05/20/2023]
Abstract
A comparative proteomic study between WT and SAR-compromised rsi1/fld mutant reveals a set of proteins having possible roles in the SAR development. A partly infected plant shows enhanced resistance during subsequent infection through the development of systemic acquired resistance (SAR). Mobile signals generated at the site of primary infection travel across the plant for the activation of SAR. These mobile signals are likely to cause changes in the expression of a set of proteins in the distal tissue, which contributes to the SAR development. However, SAR-specific proteome is not revealed for any plant. The reduced systemic immunity 1 (rsi1)/(allelic to flowering locus D; fld) mutant of Arabidopsis is compromised for SAR but shows normal local resistance. Here we report the SAR-specific proteome of Arabidopsis by comparing differentially abundant proteins (DAPs) between WT and fld mutant. Plants were either mock-treated or SAR-induced by primary pathogen inoculation. For proteomic analysis, samples were collected from the systemic tissues before and after the secondary inoculation. Protein identification was carried out by using two-dimensional gel electrophoresis (2-DE) followed by tandem mass spectrometry. Our work identified a total of 94 DAPs between mock and pathogen treatment in WT and fld mutant. The DAPs were categorized into different functional groups along with their subcellular localization. The majority of DAPs are involved in metabolic processes and stress response. Among the subcellular compartments, plastids contained the highest number of DAPs, suggesting the importance of plastidic proteins in SAR activation. The findings of this study would provide resources to engineer efficient SAR activation traits in Arabidopsis and other plants.
Collapse
Affiliation(s)
- Rajiv Kumar
- School of Life Sciences, Jawaharlal Nehru University, 415, New Delhi, 110067, India
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
| | - Pragya Barua
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | | | - Ashis Kumar Nandi
- School of Life Sciences, Jawaharlal Nehru University, 415, New Delhi, 110067, India.
| |
Collapse
|
17
|
Wu X, Wang J, Wu X, Hong Y, Li QQ. Heat Shock Responsive Gene Expression Modulated by mRNA Poly(A) Tail Length. FRONTIERS IN PLANT SCIENCE 2020; 11:1255. [PMID: 32922425 PMCID: PMC7456977 DOI: 10.3389/fpls.2020.01255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/30/2020] [Indexed: 05/31/2023]
Abstract
Poly(A) tail length (PAL) has been implicated in the regulation of mRNA translation activities. However, the extent of such regulation at the transcriptome level is less understood in plants. Herein, we report the development and optimization of a large-scale sequencing technique called the Assay for PAL-sequencing (APAL-seq). To explore the role of PAL on post-transcriptional modification and translation, we performed PAL profiling of Arabidopsis transcriptome in response to heat shock. Transcripts of 2,477 genes were found to have variable PAL upon heat treatments. Further study of the transcripts of 14 potential heat-responsive genes identified two distinct groups of genes. In one group, PAL was heat stress-independent, and in the other, PAL was heat stress-sensitive. Meanwhile, the protein expression of HSP70 and HSP17.6C was determined to test the impact of PAL on translational activity. In the absence of heat stress, neither gene demonstrated protein expression; however, under gradual or abrupt heat stress, both transcripts showed enhanced protein expression with elongated PAL. Interestingly, HSP17.6C protein levels were positively correlated with the severity of heat treatment and peaked when treated with abrupt heat. Our results suggest that plant genes have a high variability of PALs and that PAL contributes to swift posttranslational stress responses.
Collapse
Affiliation(s)
- Xuan Wu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, China
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Jie Wang
- Department of Biology, Miami University, Oxford, OH, United States
| | - Xiaohui Wu
- Department of Automation, Xiamen University, Xiamen, China
| | - Yiling Hong
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - Qingshun Quinn Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, China
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
- Department of Biology, Miami University, Oxford, OH, United States
| |
Collapse
|
18
|
CaCML13 Acts Positively in Pepper Immunity Against Ralstonia solanacearum Infection Forming Feedback Loop with CabZIP63. Int J Mol Sci 2020; 21:ijms21114186. [PMID: 32545368 PMCID: PMC7312559 DOI: 10.3390/ijms21114186] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 01/04/2023] Open
Abstract
Ca2+-signaling—which requires the presence of calcium sensors such as calmodulin (CaM) and calmodulin-like (CML) proteins—is crucial for the regulation of plant immunity against pathogen attack. However, the underlying mechanisms remain elusive, especially the roles of CMLs involved in plant immunity remains largely uninvestigated. In the present study, CaCML13, a calmodulin-like protein of pepper that was originally found to be upregulated by Ralstonia solanacearum inoculation (RSI) in RNA-seq, was functionally characterized in immunity against RSI. CaCML13 was found to target the whole epidermal cell including plasma membrane, cytoplasm and nucleus. We also confirmed that CaCML13 was upregulated by RSI in pepper roots by quantitative real-time PCR (qRT-PCR). The silencing of CaCML13 significantly enhanced pepper plants’ susceptibility to RSI accompanied with downregulation of immunity-related CaPR1, CaNPR1, CaDEF1 and CabZIP63. In contrast, CaCML13 transient overexpression induced clear hypersensitivity-reaction (HR)-mimicked cell death and upregulation of the tested immunity-related genes. In addition, we also revealed that the G-box-containing CaCML13 promoter was bound by CabZIP63 and CaCML13 was positively regulated by CabZIP63 at transcriptional level. Our data collectively indicate that CaCML13 act as a positive regulator in pepper immunity against RSI forming a positive feedback loop with CabZIP63.
Collapse
|
19
|
Papavasileiou A, Tanou G, Samaras A, Samiotaki M, Molassiotis A, Karaoglanidis G. Proteomic analysis upon peach fruit infection with Monilinia fructicola and M. laxa identify responses contributing to brown rot resistance. Sci Rep 2020; 10:7807. [PMID: 32385387 PMCID: PMC7210933 DOI: 10.1038/s41598-020-64864-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/17/2020] [Indexed: 12/28/2022] Open
Abstract
Brown rot, caused by Monilinia spp., is a major peach disease worldwide. In this study, the response of peach cultivars Royal Glory (RG) and Rich Lady (RL) to infection by Monilinia fructicola or Monilinia laxa, was characterized. Phenotypic data, after artificial inoculations, revealed that ‘RL’ was relatively susceptible whereas ‘RG’ was moderately resistant to Monilinia spp. Comparative proteomic analysis identified mesocarp proteins of the 2 cultivars whose accumulation were altered by the 2 Monilinia species. Functional analysis indicated that pathogen-affected proteins in ‘RG’ were mainly involved in energy and metabolism, while, differentially accumulated proteins by the pathogen presence in ‘RL’ were involved in disease/defense and metabolism. A higher number of proteins was differentiated in ‘RG’ fruit compared to ‘RL’. Upon Monilinia spp. infection, various proteins were-down accumulated in ‘RL’ fruit. Protein identification by mass spectrometric analysis revealed that several defense-related proteins including thaumatin, formate dehydrogenase, S-formylglutathione hydrolase, CBS domain-containing protein, HSP70, and glutathione S-transferase were up-accumulated in ‘RG’ fruit following inoculation. The expression profile of selected defense-related genes, such as major latex allergen, 1-aminocyclopropane-1-carboxylate deaminase and UDP-glycoltransferase was assessed by RT-PCR. This is the first study deciphering differential regulations of peach fruit proteome upon Monilinia infection elucidating resistance responses.
Collapse
Affiliation(s)
- Antonios Papavasileiou
- Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University, POB 269, 54124, Thessaloniki, Greece
| | - Georgia Tanou
- Institute of Soil and Water Resources, ELGO-Demeter Thermi, Thessaloniki, Greece
| | - Anastasios Samaras
- Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University, POB 269, 54124, Thessaloniki, Greece
| | - Martina Samiotaki
- Biomedical Sciences Research Center "Alexander Fleming", Vari, 16672, Greece
| | - Athanassios Molassiotis
- Laboratory of Pomology, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University, 570 01, Thessaloniki-Thermi, Greece.
| | - George Karaoglanidis
- Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University, POB 269, 54124, Thessaloniki, Greece.
| |
Collapse
|
20
|
iTRAQ-Based Proteomic Analysis of Watermelon Fruits in Response to Cucumber green mottle mosaic virus Infection. Int J Mol Sci 2020; 21:ijms21072541. [PMID: 32268502 PMCID: PMC7178218 DOI: 10.3390/ijms21072541] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 01/07/2023] Open
Abstract
Cucumber green mottle mosaic virus (CGMMV) is an important viral pathogen on cucurbit plants worldwide, which can cause severe fruit decay symptoms on infected watermelon (usually called “watermelon blood flesh”). However, the molecular mechanism of this disease has not been well understood. In this study, we employed the isobaric tags for relative and absolute quantitation (iTRAQ) technique to analyze the proteomic profiles of watermelon fruits in response to CGMMV infection. A total of 595 differentially accumulated proteins (DAPs) were identified, of which 404 were upregulated and 191 were downregulated. Functional annotation analysis showed that these DAPs were mainly involved in photosynthesis, carbohydrate metabolism, secondary metabolite biosynthesis, plant–pathogen interaction, and protein synthesis and turnover. The accumulation levels of several proteins related to chlorophyll metabolism, pyruvate metabolism, TCA cycle, heat shock proteins, thioredoxins, ribosomal proteins, translation initiation factors, and elongation factors were strongly affected by CGMMV infection. Furthermore, a correlation analysis was performed between CGMMV-responsive proteome and transcriptome data of watermelon fruits obtained in our previous study, which could contribute to comprehensively elucidating the molecular mechanism of “watermelon blood flesh”. To confirm the iTRAQ-based proteome data, the corresponding transcripts of ten DAPs were validated by determining their abundance via quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). These results could provide a scientific basis for in-depth understanding of the pathogenic mechanisms underlying CGMMV-induced “watermelon blood flesh”, and lay the foundation for further functional exploration and verification of related genes and proteins.
Collapse
|
21
|
Rowarth NM, Dauphinee AN, Denbigh GL, Gunawardena AH. Hsp70 plays a role in programmed cell death during the remodelling of leaves of the lace plant (Aponogeton madagascariensis). JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:907-918. [PMID: 31691798 DOI: 10.1093/jxb/erz447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/23/2019] [Indexed: 05/07/2023]
Abstract
Lace plant leaves utilize programmed cell death (PCD) to form perforations during development. The role of heat shock proteins (Hsps) in PCD during lace plant leaf development is currently unknown. Hsp70 amounts were measured throughout lace plant leaf development, and the results indicate that it is highest before and during PCD. Increased Hsp70 amounts correlate with raised anthocyanin content and caspase-like protease (CLP) activity. To investigate the effects of Hsp70 on leaf development, whole plants were treated with either of the known regulators of PCD [reactive oxygen species (ROS) or antioxidants] or an Hsp70 inhibitor, chlorophenylethynylsulfonamide (PES-Cl). ROS treatment significantly increased Hsp70 2-fold and CLP activity in early developing leaves, but no change in anthocyanin and the number of perforations formed was observed. Antioxidant treatment significantly decreased Hsp70, anthocyanin, and CLP activity in early leaves, resulting in the fewest perforations. PES-Cl (25 μM) treatment significantly increased Hsp70 4-fold in early leaves, while anthocyanin, superoxide, and CLP activity significantly declined, leading to fewer perforations. Results show that significantly increased (4-fold) or decreased Hsp70 amounts lead to lower anthocyanin and CLP activity, inhibiting PCD induction. Our data support the hypothesis that Hsp70 plays a role in regulating PCD at a threshold in lace plant leaf development. Hsp70 affects anthocyanin content and caspase-like protease activity, and helps regulate PCD during the remodelling of leaves of lace plant, Aponogeton madagascariensis.
Collapse
Affiliation(s)
- Nathan M Rowarth
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - Adrian N Dauphinee
- Department of Molecular Sciences, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, SE, Sweden
| | | | | |
Collapse
|
22
|
Zhang HX, Zhu WC, Feng XH, Jin JH, Wei AM, Gong ZH. Transcription Factor CaSBP12 Negatively Regulates Salt Stress Tolerance in Pepper ( Capsicum annuum L.). Int J Mol Sci 2020; 21:E444. [PMID: 31936712 PMCID: PMC7013666 DOI: 10.3390/ijms21020444] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 01/14/2023] Open
Abstract
SBP-box (Squamosa-promoter binding protein) genes are a type of plant-specific transcription factor and play important roles in plant growth, signal transduction, and stress response. However, little is known about the role of pepper SBP-box transcription factor genes in response to abiotic stress. Here, one of the pepper SBP-box gene, CaSBP12, was selected and isolated from pepper genome database in our previous study. The CaSBP12 gene was induced under salt stress. Silencing the CaSBP12 gene enhanced pepper plant tolerance to salt stress. The accumulation of reactive oxygen species (ROS) of the detached leaves of CaSBP12-silenced plants was significantly lower than that of control plants. Besides, the Na+, malondialdehyde content, and conductivity were significantly increased in control plants than that in the CaSBP12-silenced plants. In addition, the CaSBP12 over-expressed Nicotiana benthamiana plants were more susceptible to salt stress with higher damage severity index percentage and accumulation of ROS as compared to the wild-type. These results indicated that CaSBP12 negatively regulates salt stress tolerance in pepper may relate to ROS signaling cascades.
Collapse
Affiliation(s)
- Huai-Xia Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (H.-X.Z.); (X.-H.F.); (J.-H.J.)
| | - Wen-Chao Zhu
- Guizhou Institute of Pepper, Guizhou Academy of Agricultural Sciences, Guiyang 550009, China;
| | - Xiao-Hui Feng
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (H.-X.Z.); (X.-H.F.); (J.-H.J.)
| | - Jing-Hao Jin
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (H.-X.Z.); (X.-H.F.); (J.-H.J.)
| | - Ai-Min Wei
- Tianjin Vegetable Research Center, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China;
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (H.-X.Z.); (X.-H.F.); (J.-H.J.)
| |
Collapse
|
23
|
Jasrotia RS, Jaiswal S, Yadav PK, Raza M, Iquebal MA, Rai A, Kumar D. Genome-Wide Analysis of HSP70 Family Protein in Vigna radiata and Coexpression Analysis Under Abiotic and Biotic Stress. J Comput Biol 2019; 27:738-754. [PMID: 31464514 DOI: 10.1089/cmb.2019.0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Heat shock protein 70 (Hsp70), a 70-kDa protein, also known as a molecular chaperone, is highly conserved. It plays a major role in cellular functions such as protein folding, regulation of protein degradation, translocation of proteins across membranes, receptor signaling, and protein assembly or disassembly. Vigna radiata is an important legume crop with available whole-genome sequence, but no such study on the HSP70 family is reported. A total of 32 V. radiate HSP70s (Vr-HSP70s) were identified and described. They are phylogenetically clustered into four subgroups. Vr-HSP70s show variations in intron/exon organization. This indicates that introns may play an essential role in gene regulating. The coexpression analysis of Vr-HSP70s revealed that these genes were involved in both abiotic and biotic stresses. Three cytoplasmic hub genes namely Vr-HSP70-C-14, Vr-HSP70-C-29, and Vr-HSP70-C-30 were found common in both stresses. Our findings provide directions for future studies to dissect functional analysis of Vr-HSP70s in response to abiotic and biotic stresses.
Collapse
Affiliation(s)
- Rahul Singh Jasrotia
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India.,Department of Computational Biology & Bioinformatics, Sam Higginbottom University of Agriculture, Technology & Sciences (SHUATS), Allahabad, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Pramod Kumar Yadav
- Department of Computational Biology & Bioinformatics, Sam Higginbottom University of Agriculture, Technology & Sciences (SHUATS), Allahabad, India
| | - Mustafa Raza
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Mir Asif Iquebal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| |
Collapse
|
24
|
Lyu L, Bi Y, Li S, Xue H, Zhang Z, Prusky DB. Early Defense Responses Involved in Mitochondrial Energy Metabolism and Reactive Oxygen Species Accumulation in Harvested Muskmelons Infected by Trichothecium roseum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4337-4345. [PMID: 30865450 DOI: 10.1021/acs.jafc.8b06333] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Mitochondria play an essential part in fighting against pathogen infection in the defense responses of fruits. In this study, we investigated the reactive oxygen species (ROS) production, energy metabolism, and changes of mitochondrial proteins in harvested muskmelon fruits ( Cucumis melo cv. Yujinxiang) inoculated with Trichothecium roseum. The results indicated that the fungal infection obviously induced the H2O2 accumulation in mitochondria. Enzyme activities were inhibited in the first 6 h postinoculation (hpi), including succinic dehydrogenase, cytochrome c oxidase, H+-ATPase, and Ca2+-ATPase. However, the activities of Ca2+-ATPase and H+-ATPase and the contents of intracellular adenosine triphosphate (ATP) were improved to a higher level at 12 hpi. A total of 42 differentially expressed proteins were identified through tandem mass tags-based proteomic analyses, which are mainly involved in energy metabolism, stress responses and redox homeostasis, glycolysis and tricarboxylic acid cycle, and transporter and mitochondria dysfunction. Taken together, our results suggest that mitochondria play crucial roles in the early defense responses of muskmelons against T. roseum infection through regulation of ROS production and energy metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | - Dov B Prusky
- Department of Postharvest Science of Fresh Produce , Agricultural Research Organization, The Volcani Center , Beit Dagan 50250 , Israel
| |
Collapse
|
25
|
Chen X, Shi L, Chen Y, Zhu L, Zhang D, Xiao S, Aharoni A, Shi J, Xu J. Arabidopsis HSP70-16 is required for flower opening under normal or mild heat stress temperatures. PLANT, CELL & ENVIRONMENT 2019; 42:1190-1204. [PMID: 30426513 DOI: 10.1111/pce.13480] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/03/2018] [Accepted: 11/05/2018] [Indexed: 05/08/2023]
Abstract
Sepals play important roles in protecting inner floral organs from various stresses and in guaranteeing timely flower opening. However, the exact role of sepals in coordinating interior and exterior signals remains elusive. In this study, we functionally characterized a heat shock protein gene, Arabidopsis HSP70-16, in flower opening and mild heat stress response, using combined genetics with anatomic, physiological, chemical, and molecular analyses. We showed that HSP70-16 is required for flower opening and mild heat response. Mutation of HSP70-16 led to a significant reduction in seed setting rate under 22°C, which was more severe at 27°C. Mutation of HSP70-16 also caused postgenital fusion at overlapping tips of two lateral sepals, leading to failed flower opening, abnormal floral organ formation, and impaired fertilization and seed setting. Chemical and anatomic analyses confirmed specific chemical and morphological changes of cuticle property in mutant lateral sepals, and qRT-PCR data indicated that expression levels of different sets of cuticle regulatory and biosynthetic genes were altered in mutants grown at both 22°C and 27°C temperatures. This study provides a link between thermal and developmental perception signals and expands the understanding of the roles of sepal in plant development and heat response.
Collapse
Affiliation(s)
- Xu Chen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqin Chen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Lu Zhu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Dasheng Zhang
- Shanghai Chenshan Plant Science Research Center of Chinese Academy of Sciences, Shanghai Key Laboratory of Plant Functional Genomics and Resources (Shanghai Chenshan Botanical Garden), Shanghai, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Xu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
26
|
Bègue H, Mounier A, Rosnoblet C, Wendehenne D. Toward the understanding of the role of CDC48, a major component of the protein quality control, in plant immunity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 279:34-44. [PMID: 30709491 DOI: 10.1016/j.plantsci.2018.10.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 06/09/2023]
Abstract
The evolutionally conserved chaperone-like protein CDC48 (cell division cycle 48) is a major component of ubiquitin-dependent protein degradation pathways in animal and yeast and, more generally, of the protein quality control machinery. In plants, CDC48 plays essential regulatory functions in development and the possibly that it contributes to protein degradation through the ubiquitin-proteasome system (UPS) and the endoplasmic reticulum-associated protein degradation (ERAD) system has been reported. In this review we described recent findings highlighting a role for CDC48 in plant immunity. First data indicated that CDC48 is S-nitrosylated in plant cells undergoing an immune response, regulates the turnover of immune receptors and mediates the degradation of viral proteins. Furthermore its overexpression was associated to an exacerbated hypersensitive-like cell death. We also designed and reported here the first CDC48 interactome. The corresponding data confirm the closed interaction of CDC48 with components of the UPS and shed light on its putative regulatory function of S-adenosyl-methionine synthesis and metabolism. More generally, these investigations further support the concept that plant cells facing pathogen attack finely regulate the protein quality control machinery.
Collapse
Affiliation(s)
- Hervé Bègue
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France.
| | - Arnaud Mounier
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Claire Rosnoblet
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - David Wendehenne
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France.
| |
Collapse
|
27
|
Zhang HX, Ali M, Feng XH, Jin JH, Huang LJ, Khan A, Lv JG, Gao SY, Luo DX, Gong ZH. A Novel Transcription Factor CaSBP12 Gene Negatively Regulates the Defense Response against Phytophthora capsici in Pepper ( Capsicum annuum L.). Int J Mol Sci 2018; 20:E48. [PMID: 30583543 PMCID: PMC6337521 DOI: 10.3390/ijms20010048] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 12/16/2018] [Accepted: 12/20/2018] [Indexed: 01/24/2023] Open
Abstract
SBP-box (Squamosa-promoter binding protein) genes are a type of plant-specific transcription factor and play important roles in plant growth, signal transduction and stress response. However, little is known about the SBP-box genes in pepper (CaSBP), especially in the process of Phytophthora capsici infection. In this study, a novel gene (CaSBP12) was selected from the CaSBP gene family, which was isolated from the pepper genome database in our previous study. The CaSBP12 gene was located in the nucleus of the cell and its silencing in the pepper plant enhanced the defense response against Phytophthora capsici infection. After inoculation with Phytophthora capsici, the root activity of the CaSBP12-silenced plants is compared to control plants, while malondialdehyde (MDA) content is compared viceversa. Additionally, the expression of defense related genes (CaPO1, CaSAR8.2, CaBPR1, and CaDEF1) in the silenced plants were induced to different degrees and the peak of CaSAR8.2 and CaBPR1 were higher than that of CaDEF1. The CaSBP12 over-expressed Nicotiana benthamiana plants were more susceptible to Phytophthora capsici infection with higher EC (electrical conductivity) and MDA contents as compared to the wild-type. The relative expression of defense related genes (NbDEF, NbNPR1, NbPR1a, and NbPR1b) in transgenic and wild-type Nicotiana benthamiana plants were induced, especially the NbPR1a and NbPR1b. In conclusion, these results indicate that CaSBP12 gene negative regulates the defense response against Phytophthora capsici infection which suggests their potentially significant role in plant defense. To our knowledge, this is the first report on CaSBP gene which negative regulate defense response.
Collapse
Affiliation(s)
- Huai-Xia Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Muhammad Ali
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Xiao-Hui Feng
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Jing-Hao Jin
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Liu-Jun Huang
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Abid Khan
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Jing-Gang Lv
- Tianjin Vegetable Research Center, Tianjin 300192, China.
| | - Su-Yan Gao
- Tianjin Vegetable Research Center, Tianjin 300192, China.
| | - De-Xu Luo
- Xuhuai Region Huaiyin Institute of Agricultural Sciences, Jiangsu 223001, China.
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
28
|
Unraveling Field Crops Sensitivity to Heat Stress:Mechanisms, Approaches, and Future Prospects. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8070128] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The astonishing increase in temperature presents an alarming threat to crop production worldwide. As evident by huge yield decline in various crops, the escalating drastic impacts of heat stress (HS) are putting global food production as well as nutritional security at high risk. HS is a major abiotic stress that influences plant morphology, physiology, reproduction, and productivity worldwide. The physiological and molecular responses to HS are dynamic research areas, and molecular techniques are being adopted for producing heat tolerant crop plants. In this article, we reviewed recent findings, impacts, adoption, and tolerance at the cellular, organellar, and whole plant level and reported several approaches that are used to improve HS tolerance in crop plants. Omics approaches unravel various mechanisms underlying thermotolerance, which is imperative to understand the processes of molecular responses toward HS. Our review about physiological and molecular mechanisms may enlighten ways to develop thermo-tolerant cultivars and to produce crop plants that are agriculturally important in adverse climatic conditions.
Collapse
|
29
|
Quantitative Proteomic Analysis Provides Insights into Rice Defense Mechanisms against Magnaporthe oryzae. Int J Mol Sci 2018; 19:ijms19071950. [PMID: 29970857 PMCID: PMC6073306 DOI: 10.3390/ijms19071950] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/21/2018] [Accepted: 06/28/2018] [Indexed: 11/30/2022] Open
Abstract
Blast disease is one of the major rice diseases, and causes nearly 30% annual yield loss worldwide. Resistance genes that have been cloned, however, are effective only against specific strains. In cultivation practice, broad-spectrum resistance to various strains is highly valuable, and requires researchers to investigate the basal defense responses that are effective for diverse types of pathogens. In this study, we took a quantitative proteomic approach and identified 634 rice proteins responsive to infections by both Magnaporthe oryzae strains Guy11 and JS153. These two strains have distinct pathogenesis mechanisms. Therefore, the common responding proteins represent conserved basal defense to a broad spectrum of blast pathogens. Gene ontology analysis indicates that the “responding to stimulus” biological process is explicitly enriched, among which the proteins responding to oxidative stress and biotic stress are the most prominent. These analyses led to the discoveries of OsPRX59 and OsPRX62 that are robust callose inducers, and OsHSP81 that is capable of inducing both ROS production and callose deposition. The identified rice proteins and biological processes may represent a conserved rice innate immune machinery that is of great value for breeding broad-spectrum resistant rice in the future.
Collapse
|
30
|
Choi S, Jayaraman J, Sohn KH. Arabidopsis thaliana SOBER1 (SUPPRESSOR OF AVRBST-ELICITED RESISTANCE 1) suppresses plant immunity triggered by multiple bacterial acetyltransferase effectors. THE NEW PHYTOLOGIST 2018; 219:324-335. [PMID: 29577317 DOI: 10.1111/nph.15125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 02/19/2018] [Indexed: 05/21/2023]
Abstract
Plants evolved disease resistance (R) proteins that recognize corresponding pathogen effectors and activate effector-triggered immunity (ETI). However, it is largely unknown why, in some cases, a suppressor of ETI exists in plants. Arabidopsis SOBER1 (Suppressor of AvrBsT-elicited Resistance 1) was identified previously as a suppressor of Xanthomonas acetyltransferase effector AvrBsT-triggered immunity. Nevertheless, the extent to which SOBER1 suppresses ETI is unclear. Here, we identified SOBER1 as a suppressor of Pseudomonas acetyltransferase effector HopZ5-triggered immunity in Arabidopsis using recombinant inbred lines. Further analysis showed that SOBER1 suppresses immunity triggered by multiple bacterial acetyltransferases. Interestingly, SOBER1 interferes with the immunity signalling activated by some but not all tested acetyltransferase effectors, indicating that SOBER1 might target components that are shared between several ETI pathways.
Collapse
Affiliation(s)
- Sera Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
- Bioprotection Research Centre, Institute of Agriculture and Environment, Massey University, Palmerston North, 4474, New Zealand
| | - Jay Jayaraman
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
- Bioprotection Research Centre, Institute of Agriculture and Environment, Massey University, Palmerston North, 4474, New Zealand
- New Zealand Institute for Plant & Food Research Limited (PFR), Mt Albert, Auckland, 1025, New Zealand
| | - Kee Hoon Sohn
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
- Bioprotection Research Centre, Institute of Agriculture and Environment, Massey University, Palmerston North, 4474, New Zealand
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 37673, Korea
| |
Collapse
|
31
|
Borrelli GM, Mazzucotelli E, Marone D, Crosatti C, Michelotti V, Valè G, Mastrangelo AM. Regulation and Evolution of NLR Genes: A Close Interconnection for Plant Immunity. Int J Mol Sci 2018; 19:E1662. [PMID: 29867062 PMCID: PMC6032283 DOI: 10.3390/ijms19061662] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/01/2018] [Accepted: 06/02/2018] [Indexed: 12/12/2022] Open
Abstract
NLR (NOD-like receptor) genes belong to one of the largest gene families in plants. Their role in plants' resistance to pathogens has been clearly described for many members of this gene family, and dysregulation or overexpression of some of these genes has been shown to induce an autoimmunity state that strongly affects plant growth and yield. For this reason, these genes have to be tightly regulated in their expression and activity, and several regulatory mechanisms are described here that tune their gene expression and protein levels. This gene family is subjected to rapid evolution, and to maintain diversity at NLRs, a plethora of genetic mechanisms have been identified as sources of variation. Interestingly, regulation of gene expression and evolution of this gene family are two strictly interconnected aspects. Indeed, some examples have been reported in which mechanisms of gene expression regulation have roles in promotion of the evolution of this gene family. Moreover, co-evolution of the NLR gene family and other gene families devoted to their control has been recently demonstrated, as in the case of miRNAs.
Collapse
Affiliation(s)
- Grazia M Borrelli
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, s.s. 673, km 25.2, 71122 Foggia, Italy.
| | - Elisabetta Mazzucotelli
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via San Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Daniela Marone
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, s.s. 673, km 25.2, 71122 Foggia, Italy.
| | - Cristina Crosatti
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via San Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Vania Michelotti
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via San Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Giampiero Valè
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, s.s. 11 to Torino, km 2.5, 13100 Vercelli, Italy.
| | - Anna M Mastrangelo
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, via Stezzano 24, 24126 Bergamo, Italy.
| |
Collapse
|
32
|
Lee JH, Lee SE, Oh S, Seo E, Choi D. HSP70s Enhance a Phytophthora infestans Effector-Induced Cell Death via an MAPK Cascade in Nicotiana benthamiana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:356-362. [PMID: 29140163 DOI: 10.1094/mpmi-07-17-0156-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A destructive pathogen, Phytophthora infestans, secretes hundreds of effectors for successful survival in its host plants. The effectors modulate the plant defense system at diverse cellular compartments to take an advantage of pathogen survivals. A few research studies have shown the mode of action of each effector and their interacting proteins in plant cells. Here, we investigated the mode of action of a P. infestans effector, Pi23226, which induces cell death in Nicotiana benthamiana. To identify its host factors, we performed coimmunoprecipitation and liquid chromatography-mass spectrometry, and selected members of heat shock protein 70 (HSP70s) as candidates. These HSP70s, known to function as chaperones, were associated with Pi23226 in planta and accelerated Pi23226-induced cell death. Additionally, they were found to be involved in plant basal defense by suppressing the growth of P. infestans. We also found that specific components of a mitogen-activated protein kinase cascade were involved in Pi23226-induced cell death. Our findings show that HSP70s functions in defense systems by regulating effector-triggered cell death and by suppressing the growth of the pathogen. This suggests that host plants manipulate the ubiquitous proteins to detect pathogen effectors for functioning in the defense system.
Collapse
Affiliation(s)
- Joo Hyun Lee
- 1 Department of Plant Science and Plant Genomics and Breeding Institute, Institute of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea; and
| | - So Eui Lee
- 1 Department of Plant Science and Plant Genomics and Breeding Institute, Institute of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea; and
| | - Soohyun Oh
- 1 Department of Plant Science and Plant Genomics and Breeding Institute, Institute of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea; and
| | - Eunyoung Seo
- 1 Department of Plant Science and Plant Genomics and Breeding Institute, Institute of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea; and
| | - Doil Choi
- 1 Department of Plant Science and Plant Genomics and Breeding Institute, Institute of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea; and
- 2 Institute of Seed Biotechnology, Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea
| |
Collapse
|
33
|
Büttner D. Behind the lines-actions of bacterial type III effector proteins in plant cells. FEMS Microbiol Rev 2018; 40:894-937. [PMID: 28201715 PMCID: PMC5091034 DOI: 10.1093/femsre/fuw026] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/31/2016] [Accepted: 07/03/2016] [Indexed: 01/30/2023] Open
Abstract
Pathogenicity of most Gram-negative plant-pathogenic bacteria depends on the type III secretion (T3S) system, which translocates bacterial effector proteins into plant cells. Type III effectors modulate plant cellular pathways to the benefit of the pathogen and promote bacterial multiplication. One major virulence function of type III effectors is the suppression of plant innate immunity, which is triggered upon recognition of pathogen-derived molecular patterns by plant receptor proteins. Type III effectors also interfere with additional plant cellular processes including proteasome-dependent protein degradation, phytohormone signaling, the formation of the cytoskeleton, vesicle transport and gene expression. This review summarizes our current knowledge on the molecular functions of type III effector proteins with known plant target molecules. Furthermore, plant defense strategies for the detection of effector protein activities or effector-triggered alterations in plant targets are discussed.
Collapse
Affiliation(s)
- Daniela Büttner
- Genetics Department, Institute of Biology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
34
|
Ding XS, Mannas SW, Bishop BA, Rao X, Lecoultre M, Kwon S, Nelson RS. An Improved Brome mosaic virus Silencing Vector: Greater Insert Stability and More Extensive VIGS. PLANT PHYSIOLOGY 2018; 176:496-510. [PMID: 29127260 PMCID: PMC5761774 DOI: 10.1104/pp.17.00905] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/09/2017] [Indexed: 05/07/2023]
Abstract
Virus-induced gene silencing (VIGS) is used extensively for gene function studies in plants. VIGS is inexpensive and rapid compared with silencing conducted through stable transformation, but many virus-silencing vectors, especially in grasses, induce only transient silencing phenotypes. A major reason for transient phenotypes is the instability of the foreign gene fragment (insert) in the vector during VIGS. Here, we report the development of a Brome mosaic virus (BMV)-based vector that better maintains inserts through modification of the original BMV vector RNA sequence. Modification of the BMV RNA3 sequence yielded a vector, BMVCP5, that better maintained phytoene desaturase and heat shock protein70-1 (HSP70-1) inserts in Nicotiana benthamiana and maize (Zea mays). Longer maintenance of inserts was correlated with greater target gene silencing and more extensive visible silencing phenotypes displaying greater tissue penetration and involving more leaves. The modified vector accumulated similarly to the original vector in N. benthamiana after agroinfiltration, thus maintaining a high titer of virus in this intermediate host used to produce virus inoculum for grass hosts. For HSP70, silencing one family member led to a large increase in the expression of another family member, an increase likely related to the target gene knockdown and not a general effect of virus infection. The cause of the increased insert stability in the modified vector is discussed in relationship to its recombination and accumulation potential. The modified vector will improve functional genomic studies in grasses, and the conceptual methods used to improve the vector may be applied to other VIGS vectors.
Collapse
Affiliation(s)
- Xin Shun Ding
- Noble Research Institute, LLC, Ardmore, Oklahoma 73401
| | | | | | - Xiaolan Rao
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203
| | | | - Soonil Kwon
- Noble Research Institute, LLC, Ardmore, Oklahoma 73401
| | | |
Collapse
|
35
|
Tamošiūnė I, Stanienė G, Haimi P, Stanys V, Rugienius R, Baniulis D. Endophytic Bacillus and Pseudomonas spp. Modulate Apple Shoot Growth, Cellular Redox Balance, and Protein Expression Under in Vitro Conditions. FRONTIERS IN PLANT SCIENCE 2018; 9:889. [PMID: 30002666 PMCID: PMC6032008 DOI: 10.3389/fpls.2018.00889] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 06/07/2018] [Indexed: 05/05/2023]
Abstract
Interactions between host plants and endophytic microorganisms play an important role in plant responses to pathogens and environmental stresses and have potential applications for plant stress management under in vitro conditions. We assessed the effect of endophytic bacteria on the growth and proliferation of domestic apple cv. Gala shoots in vitro. Further, a model apple cell suspension system was used to examine molecular events and protein expression patterns at an early stage of plant-endophyte interaction. Among the seven strains used in the study, Bacillus spp. strains Da_1, Da_4, and Da_5 and the Pseudomonas fluorescens strain Ga_1 promoted shoot growth and auxiliary shoot proliferation. In contrast, Bacillus sp. strain Oa_4, P. fluorescens strain Ga_3 and P. orientalis strain G_12 inhibited shoot development. In the cell suspension, the effects of the association between endophytic bacteria and plant cells were specific to each strain. Modulation of the cellular redox balance was monitored in the apple cells using a 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) probe, and strain-specific effects were observed that correlated with the in vitro shoot development results. Proteomic analysis revealed differences in protein expressions in apple cells co-cultivated with different Bacillus spp. strains that had contrasting effects on cellular redox balance and shoot development. The Bacillus sp. strain Da_4, which enhanced shoot development and oxidation of H2DCFDA, induced differential expression of proteins that are mainly involved in the defense response and regulation of oxidative stress. Meanwhile, treatment with Bacillus sp. strain Oa_4 led to strong upregulation of PLAT1, HSC70-1 and several other proteins involved in protein metabolism and cell development. Taken together, the results suggest that different cell signaling and response events at the early stage of the plant-endophyte interaction may be important for strain-dependent regulation of cellular redox balance and development of shoot phenotype.
Collapse
|
36
|
Hong JK, Hwang IS, Hwang BK. Functional roles of the pepper leucine-rich repeat protein and its interactions with pathogenesis-related and hypersensitive-induced proteins in plant cell death and immunity. PLANTA 2017; 246:351-364. [PMID: 28508261 DOI: 10.1007/s00425-017-2709-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/06/2017] [Indexed: 05/25/2023]
Abstract
Pepper leucine-rich repeat protein (CaLRR1) interacts with defense response proteins to regulate plant cell death and immunity. This review highlights the current understanding of the molecular functions of CaLRR1 and its interactor proteins. Plant cell death and immune responses to microbial pathogens are controlled by complex and tightly regulated molecular signaling networks. Xanthomonas campestris pv. vesicatoria (Xcv)-inducible pepper (Capsicum annuum) leucine-rich repeat protein 1 (CaLRR1) serves as a molecular marker for plant cell death and immunity signaling. In this review, we discuss recent advances in elucidating the functional roles of CaLRR1 and its interacting plant proteins, and understanding how they are involved in the cell death and defense responses. CaLRR1 physically interacts with pepper pathogenesis-related proteins (CaPR10 and CaPR4b) and hypersensitive-induced reaction protein (CaHIR1) to regulate plant cell death and defense responses. CaLRR1 is produced in the cytoplasm and trafficked to the extracellular matrix. CaLRR1 binds to CaPR10 in the cytoplasm and CaPR4b and CaHIR1 at the plasma membrane. CaLRR1 synergistically accelerates CaPR10-triggered hypersensitive cell death, but negatively regulates CaPR4b- and CaHIR1-triggered cell death. CaHIR1 interacts with Xcv filamentous hemagglutinin (Fha1) to trigger disease-associated cell death. The subcellular localization and cellular function of these CaLRR1 interactors during plant cell death and defense responses were elucidated by Agrobacterium-mediated transient expression, virus-induced gene silencing, and transgenic overexpression studies. CaPR10, CaPR4b, and CaHIR1 positively regulate defense signaling mediated by salicylic acid and reactive oxygen species, thereby activating hypersensitive cell death and disease resistance. A comprehensive understanding of the molecular functions of CaLRR1 and its interacting protein partners in cell death and defense responses will provide valuable information for the molecular genetics of plant disease resistance, which could be exploited as a sustainable disease management strategy.
Collapse
Affiliation(s)
- Jeum Kyu Hong
- Laboratory of Plant Pathology and Protection, Department of Horticultural Science, College of Biosciences, Gyeongnam National University of Science and Technology, Jinju, 52725, Republic of Korea
| | - In Sun Hwang
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Byung Kook Hwang
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
37
|
Wen F, Wu X, Li T, Jia M, Liu X, Li P, Zhou X, Ji X, Yue X. Genome-wide survey of heat shock factors and heat shock protein 70s and their regulatory network under abiotic stresses in Brachypodium distachyon. PLoS One 2017; 12:e0180352. [PMID: 28683139 PMCID: PMC5500289 DOI: 10.1371/journal.pone.0180352] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/14/2017] [Indexed: 11/18/2022] Open
Abstract
The heat shock protein 70s (Hsp70s) and heat shock factors (Hsfs) play key roles in protecting plant cells or tissues from various abiotic stresses. Brachypodium distachyon, recently developed an excellent model organism for functional genomics research, is related to the major cereal grain species. Although B. distachyon genome has been fully sequenced, the information of Hsf and Hsp70 genes and especially the regulatory network between Hsfs and Hsp70s remains incomplete. Here, a total of 24 BdHsfs and 29 BdHsp70s were identified in the genome by bioinformatics analysis and the regulatory network between Hsfs and Hsp70s were performed in this study. Based on highly conserved domain and motif analysis, BdHsfs were grouped into three classes, and BdHsp70s divided into six groups, respectively. Most of Hsf proteins contain five conserved domains: DBD, HR-A/B region, NLS and NES motifs and AHA domain, while Hsp70 proteins have three conserved domains: N-terminal nucleotide binding domain, peptide binding domain and a variable C-terminal lid region. Expression data revealed a large number of BdHsfs and BdHsp70s were induced by HS challenge, and a previous heat acclimation could induce the acquired thermotolerance to help seedling suffer the severe HS challenge, suggesting that the BdHsfs and BdHsp70s played a role in alleviating the damage by HS. The comparison revealed that, most BdHsfs and BdHsp70s genes responded to multiple abiotic stresses in an overlapping relationship, while some of them were stress specific response genes. Moreover, co-expression relationships and predicted protein-protein interaction network implied that class A and B Hsfs played as activator and repressors, respectively, suggesting that BdHsp70s might be regulated by both the activation and the repression mechanisms under stress condition. Our genomics analysis of BdHsfs and BdHsp70s provides important evolutionary and functional characterization for further investigation of the accurate regulatory mechanisms among Hsfs and Hsp70s in herbaceous plants.
Collapse
Affiliation(s)
- Feng Wen
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
- * E-mail:
| | - Xiaozhu Wu
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Tongjian Li
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Mingliang Jia
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Xinshen Liu
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Peng Li
- Shanghai Chenshan Plant Science Research Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS). Shanghai Chenshan Botanic Garden, Songjiang, Shanghai, China
| | - Xiaojian Zhou
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Xinxin Ji
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Xiaomin Yue
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| |
Collapse
|
38
|
A bacterial acetyltransferase triggers immunity in Arabidopsis thaliana independent of hypersensitive response. Sci Rep 2017; 7:3557. [PMID: 28620210 PMCID: PMC5472582 DOI: 10.1038/s41598-017-03704-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 05/08/2017] [Indexed: 12/14/2022] Open
Abstract
Type-III secreted effectors (T3Es) play critical roles during bacterial pathogenesis in plants. Plant recognition of certain T3Es can trigger defence, often accompanied by macroscopic cell death, termed the hypersensitive response (HR). Economically important species of kiwifruit are susceptible to Pseudomonas syringae pv. actinidiae (Psa), the causal agent of kiwifruit bacterial canker. Although Psa is non-pathogenic in Arabidopsis thaliana, we observed that a T3E, HopZ5 that is unique to a global outbreak clade of Psa, triggers HR and defence in Arabidopsis accession Ct-1. Ws-2 and Col-0 accessions are unable to produce an HR in response to Pseudomonas-delivered HopZ5. While Ws-2 is susceptible to virulent bacterial strain Pseudomonas syringae pv. tomato DC3000 carrying HopZ5, Col-0 is resistant despite the lack of an HR. We show that HopZ5, like other members of the YopJ superfamily of acetyltransferases that it belongs to, autoacetylates lysine residues. Through comparisons to other family members, we identified an acetyltransferase catalytic activity and demonstrate its requirement for triggering defence in Arabidopsis and Nicotiana species. Collectively, data herein indicate that HopZ5 is a plasma membrane-localized acetyltransferase with autoacetylation activity required for avirulence.
Collapse
|
39
|
Han SW, Hwang BK. Molecular functions of Xanthomonas type III effector AvrBsT and its plant interactors in cell death and defense signaling. PLANTA 2017; 245:237-253. [PMID: 27928637 DOI: 10.1007/s00425-016-2628-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 11/30/2016] [Indexed: 05/20/2023]
Abstract
Xanthomonas effector AvrBsT interacts with plant defense proteins and triggers cell death and defense response. This review highlights our current understanding of the molecular functions of AvrBsT and its host interactor proteins. The AvrBsT protein is a member of a growing family of effector proteins in both plant and animal pathogens. Xanthomonas type III effector AvrBsT, a member of the YopJ/AvrRxv family, suppresses plant defense responses in susceptible hosts, but triggers cell death signaling leading to hypersensitive response (HR) and defense responses in resistant plants. AvrBsT interacts with host defense-related proteins to trigger the HR cell death and defense responses in plants. Here, we review and discuss recent progress in understanding the molecular functions of AvrBsT and its host interactor proteins in pepper (Capsicum annuum). Pepper arginine decarboxylase1 (CaADC1), pepper aldehyde dehydrogenase1 (CaALDH1), pepper heat shock protein 70a (CaHSP70a), pepper suppressor of the G2 allele of skp1 (CaSGT1), pepper SNF1-related kinase1 (SnRK1), and Arabidopsis acetylated interacting protein1 (ACIP1) have been identified as AvrBsT interactors in pepper and Arabidopsis. Gene expression profiling, virus-induced gene silencing, and transient transgenic overexpression approaches have advanced the functional characterization of AvrBsT-interacting proteins in plants. AvrBsT is localized in the cytoplasm and forms protein-protein complexes with host interactors. All identified AvrBsT interactors regulate HR cell death and defense responses in plants. Notably, CaSGT1 physically binds to both AvrBsT and pepper receptor-like cytoplasmic kinase1 (CaPIK1) in the cytoplasm. During infection with Xanthomonas campestris pv. vesicatoria strain Ds1 (avrBsT), AvrBsT is phosphorylated by CaPIK1 and forms the active AvrBsT-CaSGT1-CaPIK1 complex, which ultimately triggers HR cell death and defense responses. Collectively, the AvrBsT interactor proteins are involved in plant cell death and immunity signaling.
Collapse
Affiliation(s)
- Sang Wook Han
- Department of Integrative Plant Science, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Byung Kook Hwang
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul, 02841, Republic of Korea.
| |
Collapse
|
40
|
Jwa NS, Hwang BK. Convergent Evolution of Pathogen Effectors toward Reactive Oxygen Species Signaling Networks in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1687. [PMID: 29033963 PMCID: PMC5627460 DOI: 10.3389/fpls.2017.01687] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/13/2017] [Indexed: 05/03/2023]
Abstract
Microbial pathogens have evolved protein effectors to promote virulence and cause disease in host plants. Pathogen effectors delivered into plant cells suppress plant immune responses and modulate host metabolism to support the infection processes of pathogens. Reactive oxygen species (ROS) act as cellular signaling molecules to trigger plant immune responses, such as pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity. In this review, we discuss recent insights into the molecular functions of pathogen effectors that target multiple steps in the ROS signaling pathway in plants. The perception of PAMPs by pattern recognition receptors leads to the rapid and strong production of ROS through activation of NADPH oxidase Respiratory Burst Oxidase Homologs (RBOHs) as well as peroxidases. Specific pathogen effectors directly or indirectly interact with plant nucleotide-binding leucine-rich repeat receptors to induce ROS production and the hypersensitive response in plant cells. By contrast, virulent pathogens possess effectors capable of suppressing plant ROS bursts in different ways during infection. PAMP-triggered ROS bursts are suppressed by pathogen effectors that target mitogen-activated protein kinase cascades. Moreover, pathogen effectors target vesicle trafficking or metabolic priming, leading to the suppression of ROS production. Secreted pathogen effectors block the metabolic coenzyme NADP-malic enzyme, inhibiting the transfer of electrons to the NADPH oxidases (RBOHs) responsible for ROS generation. Collectively, pathogen effectors may have evolved to converge on a common host protein network to suppress the common plant immune system, including the ROS burst and cell death response in plants.
Collapse
Affiliation(s)
- Nam-Soo Jwa
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul, South Korea
- *Correspondence: Nam-Soo Jwa,
| | - Byung Kook Hwang
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| |
Collapse
|
41
|
Vargas-Hernandez M, Macias-Bobadilla I, Guevara-Gonzalez RG, Romero-Gomez SDJ, Rico-Garcia E, Ocampo-Velazquez RV, Alvarez-Arquieta LDL, Torres-Pacheco I. Plant Hormesis Management with Biostimulants of Biotic Origin in Agriculture. FRONTIERS IN PLANT SCIENCE 2017; 8:1762. [PMID: 29081787 PMCID: PMC5645530 DOI: 10.3389/fpls.2017.01762] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/26/2017] [Indexed: 05/19/2023]
Abstract
Over time plants developed complex mechanisms in order to adapt themselves to the environment. Plant innate immunity is one of the most important mechanisms for the environmental adaptation. A myriad of secondary metabolites with nutraceutical features are produced by the plant immune system in order to get adaptation to new environments that provoke stress (stressors). Hormesis is a phenomenon by which a stressor (i.e., toxins, herbicides, etc.) stimulates the cellular stress response, including secondary metabolites production, in order to help organisms to establish adaptive responses. Hormetins of biotic origin (i.e., biostimulants or biological control compounds), in certain doses might enhance plant performance, however, in excessive doses they are commonly deleterious. Biostimulants or biological control compounds of biotic origin are called "elicitors" that have widely been studied as inducers of plant tolerance to biotic and abiotic stresses. The plant response toward elicitors is reminiscent of hormetic responses toward toxins in several organisms. Thus, controlled management of hormetic responses in plants using these types of compounds is expected to be an important tool to increase nutraceutical quality of plant food and trying to minimize negative effects on yields. The aim of this review is to analyze the potential for agriculture that the use of biostimulants and biological control compounds of biotic origin could have in the management of the plant hormesis. The use of homolog DNA as biostimulant or biological control compound in crop production is also discussed.
Collapse
Affiliation(s)
- Marcela Vargas-Hernandez
- Laboratory of Biosystems Engineering, Autonomous University of Queretaro, Faculty of Engineering, Campus Amazcala, Queretaro, Mexico
| | - Israel Macias-Bobadilla
- Laboratory of Biosystems Engineering, Autonomous University of Queretaro, Faculty of Engineering, Campus Amazcala, Queretaro, Mexico
| | - Ramon G. Guevara-Gonzalez
- Laboratory of Biosystems Engineering, Autonomous University of Queretaro, Faculty of Engineering, Campus Amazcala, Queretaro, Mexico
| | - Sergio de J. Romero-Gomez
- Laboratory of Microbiology, Autonomous University of Queretaro, Faculty of Chemistry, C.U. Cerro de las Campanas, Queretaro, Mexico
| | - Enrique Rico-Garcia
- Laboratory of Biosystems Engineering, Autonomous University of Queretaro, Faculty of Engineering, Campus Amazcala, Queretaro, Mexico
| | - Rosalia V. Ocampo-Velazquez
- Laboratory of Biosystems Engineering, Autonomous University of Queretaro, Faculty of Engineering, Campus Amazcala, Queretaro, Mexico
| | - Luz de L. Alvarez-Arquieta
- Laboratory of Biosystems Engineering, Autonomous University of Queretaro, Faculty of Engineering, Campus Amazcala, Queretaro, Mexico
| | - Irineo Torres-Pacheco
- Laboratory of Biosystems Engineering, Autonomous University of Queretaro, Faculty of Engineering, Campus Amazcala, Queretaro, Mexico
- *Correspondence: Irineo Torres-Pacheco,
| |
Collapse
|
42
|
Guo M, Liu JH, Ma X, Zhai YF, Gong ZH, Lu MH. Genome-wide analysis of the Hsp70 family genes in pepper (Capsicum annuum L.) and functional identification of CaHsp70-2 involvement in heat stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 252:246-256. [PMID: 27717461 DOI: 10.1016/j.plantsci.2016.07.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/01/2016] [Accepted: 07/04/2016] [Indexed: 05/24/2023]
Abstract
Hsp70s function as molecular chaperones and are encoded by a multi-gene family whose members play a crucial role in plant response to stress conditions, and in plant growth and development. Pepper (Capsicum annuum L.) is an important vegetable crop whose genome has been sequenced. Nonetheless, no overall analysis of the Hsp70 gene family is reported in this crop plant to date. To assess the functionality of Capsicum annuum Hsp70 (CaHsp70) genes, pepper genome database was analyzed in this research. A total of 21 CaHsp70 genes were identified and their characteristics were also described. The promoter and transcript expression analysis revealed that CaHsp70s were involved in pepper growth and development, and heat stress response. Ectopic expression of a cytosolic gene, CaHsp70-2, regulated expression of stress-related genes and conferred increased thermotolerance in transgenic Arabidopsis. Taken together, our results provide the basis for further studied to dissect CaHsp70s' function in response to heat stress as well as other environmental stresses.
Collapse
Affiliation(s)
- Meng Guo
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jin-Hong Liu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiao Ma
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yu-Fei Zhai
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Ming-Hui Lu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
43
|
Figueiredo A, Martins J, Sebastiana M, Guerreiro A, Silva A, Matos AR, Monteiro F, Pais MS, Roepstorff P, Coelho AV. Specific adjustments in grapevine leaf proteome discriminating resistant and susceptible grapevine genotypes to Plasmopara viticola. J Proteomics 2016; 152:48-57. [PMID: 27989945 DOI: 10.1016/j.jprot.2016.10.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/22/2016] [Accepted: 10/24/2016] [Indexed: 10/20/2022]
Abstract
Grapevine downy mildew is an important disease affecting crop production leading to severe yield losses. This study aims to identify the grapevine cultivar-specific adjustments of leaf proteome that allow the discrimination between resistance and susceptibility towards P. viticola (constitutive (0h) and in after inoculation (6, 12 and 24h). Leaf proteome analysis was performed using 2D difference gel electrophoresis followed by protein identification via mass spectrometry. In addition, we analysed ROS production, antioxidant capacity, lipid peroxidation and gene expression. Proteins related to photosynthesis and metabolism allowed the discrimination of resistant and susceptible grapevine cultivars prior to P. viticola inoculation. Following inoculation increase of hydrogen peroxide levels, cellular redox regulation, establishment of ROS signalling and plant cell death seem to be key points differentiating the resistant genotype. Lipid associated signalling events, particularly related to jasmonates appear also to play a major role in the establishment of resistance. The findings from this study contribute to a better understanding of genotype-specific differences that account for a successful establishment of a defence response to the downy mildew pathogen. BIOLOGICAL SIGNIFICANCE Here, we present for the first time grapevine cultivar-specific adjustments of leaf proteome that allow the discrimination between resistance and susceptibility towards P. viticola (constitutive (0h) and in after inoculation (6, 12 and 24h). We have highlighted that, following inoculation, the major factors differentiating the resistant from the susceptible grapevine cultivars are the establishment of effective ROS signalling together with lipid-associated signalling events, particularly related to jasmonates. It is believed that plants infected with biotrophic pathogens suppress JA-mediated responses, however recent evidences shown that jasmonic acid signalling pathway in grapevine resistance against Plasmopara viticola. Our results corroborate those evidences and highlight the importance of lipid- signalling for an effective resistance response against the downy mildew pathogen.
Collapse
Affiliation(s)
- Andreia Figueiredo
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | - Joana Martins
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da Republica, Oeiras 2780-157, Portugal
| | - Mónica Sebastiana
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Ana Guerreiro
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Anabela Silva
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Ana Rita Matos
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Filipa Monteiro
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Maria Salomé Pais
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Peter Roepstorff
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Ana Varela Coelho
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da Republica, Oeiras 2780-157, Portugal
| |
Collapse
|
44
|
Woo JY, Jeong KJ, Kim YJ, Paek KH. CaLecRK-S.5, a pepper L-type lectin receptor kinase gene, confers broad-spectrum resistance by activating priming. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5725-5741. [PMID: 27647723 PMCID: PMC5066492 DOI: 10.1093/jxb/erw336] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In Arabidopsis, several L-type lectin receptor kinases (LecRKs) have been identified as putative immune receptors. However, to date, there have been few analyses of LecRKs in crop plants. Virus-induced gene silencing of CaLecRK-S.5 verified the role of CaLecRK-S.5 in broad-spectrum resistance. Compared with control plants, CaLecRK-S.5-silenced plants showed reduced hypersensitive response, reactive oxygen species burst, secondary metabolite production, mitogen-activated protein kinase activation, and defense-related gene expression in response to Tobacco mosaic virus pathotype P0 (TMV-P0) infection. Suppression of CaLecRK-S.5 expression significantly enhanced the susceptibility to Pepper mild mottle virus pathotype P1,2,3, Xanthomonas campestris pv. vesicatoria, Phytophthora capsici, as well as TMV-P0 Additionally, β-aminobutyric acid treatment and a systemic acquired resistance assay revealed that CaLecRK-S.5 is involved in priming of plant immunity. Pre-treatment with β-aminobutyric acid before viral infection restored the reduced disease resistance phenotypes shown in CaLecRK-S.5-silenced plants. Systemic acquired resistance was also abolished in CaLecRK-S.5-silenced plants. Finally, RNA sequencing analysis indicated that CaLecRK-S.5 positively regulates plant immunity at the transcriptional level. Altogether, these results suggest that CaLecRK-S.5-mediated broad-spectrum resistance is associated with the regulation of priming.
Collapse
Affiliation(s)
- Joo Yong Woo
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Kwang Ju Jeong
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Young Jin Kim
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Kyung-Hee Paek
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
45
|
Timilsina S, Abrahamian P, Potnis N, Minsavage GV, White FF, Staskawicz BJ, Jones JB, Vallad GE, Goss EM. Analysis of Sequenced Genomes of Xanthomonas perforans Identifies Candidate Targets for Resistance Breeding in Tomato. PHYTOPATHOLOGY 2016; 106:1097-1104. [PMID: 27392180 DOI: 10.1094/phyto-03-16-0119-fi] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Bacterial disease management is a challenge for modern agriculture due to rapid changes in pathogen populations. Genome sequences for hosts and pathogens provide detailed information that facilitates effector-based breeding strategies. Tomato genotypes have gene-for-gene resistance to the bacterial spot pathogen Xanthomonas perforans. The bacterial spot populations in Florida shifted from tomato race 3 to 4, such that the corresponding tomato resistance gene no longer recognizes the effector protein AvrXv3. Genome sequencing showed variation in effector profiles among race 4 strains collected in 2006 and 2012 and compared with a race 3 strain collected in 1991. We examined variation in putative targets of resistance among Florida strains of X. perforans collected from 1991 to 2006. Consistent with race change, avrXv3 was present in race 3 strains but nonfunctional in race 4 strains due to multiple independent mutations. Effectors xopJ4 and avrBs2 were unchanged in all strains. The effector avrBsT was absent in race 3 strains collected in the 1990s but present in race 3 strains collected in 2006 and nearly all race 4 strains. These changes in effector profiles suggest that xopJ4 and avrBsT are currently the best targets for resistance breeding against bacterial spot in tomato.
Collapse
Affiliation(s)
- Sujan Timilsina
- First, fourth, fifth, seventh, and ninth authors: Department of Plant Pathology, University of Florida, Gainesville; first, second and eighth authors: Gulf Coast Research and Education Center, University of Florida, Wimauma; third author: U.S. Vegetable Laboratory, 2700 Savannah Highway, USDA, Charleston, SC; sixth author: Department of Plant and Microbial Biology, University of California, Berkeley; and ninth author: Emerging Pathogens Institute, University of Florida, Gainesville
| | - Peter Abrahamian
- First, fourth, fifth, seventh, and ninth authors: Department of Plant Pathology, University of Florida, Gainesville; first, second and eighth authors: Gulf Coast Research and Education Center, University of Florida, Wimauma; third author: U.S. Vegetable Laboratory, 2700 Savannah Highway, USDA, Charleston, SC; sixth author: Department of Plant and Microbial Biology, University of California, Berkeley; and ninth author: Emerging Pathogens Institute, University of Florida, Gainesville
| | - Neha Potnis
- First, fourth, fifth, seventh, and ninth authors: Department of Plant Pathology, University of Florida, Gainesville; first, second and eighth authors: Gulf Coast Research and Education Center, University of Florida, Wimauma; third author: U.S. Vegetable Laboratory, 2700 Savannah Highway, USDA, Charleston, SC; sixth author: Department of Plant and Microbial Biology, University of California, Berkeley; and ninth author: Emerging Pathogens Institute, University of Florida, Gainesville
| | - Gerald V Minsavage
- First, fourth, fifth, seventh, and ninth authors: Department of Plant Pathology, University of Florida, Gainesville; first, second and eighth authors: Gulf Coast Research and Education Center, University of Florida, Wimauma; third author: U.S. Vegetable Laboratory, 2700 Savannah Highway, USDA, Charleston, SC; sixth author: Department of Plant and Microbial Biology, University of California, Berkeley; and ninth author: Emerging Pathogens Institute, University of Florida, Gainesville
| | - Frank F White
- First, fourth, fifth, seventh, and ninth authors: Department of Plant Pathology, University of Florida, Gainesville; first, second and eighth authors: Gulf Coast Research and Education Center, University of Florida, Wimauma; third author: U.S. Vegetable Laboratory, 2700 Savannah Highway, USDA, Charleston, SC; sixth author: Department of Plant and Microbial Biology, University of California, Berkeley; and ninth author: Emerging Pathogens Institute, University of Florida, Gainesville
| | - Brian J Staskawicz
- First, fourth, fifth, seventh, and ninth authors: Department of Plant Pathology, University of Florida, Gainesville; first, second and eighth authors: Gulf Coast Research and Education Center, University of Florida, Wimauma; third author: U.S. Vegetable Laboratory, 2700 Savannah Highway, USDA, Charleston, SC; sixth author: Department of Plant and Microbial Biology, University of California, Berkeley; and ninth author: Emerging Pathogens Institute, University of Florida, Gainesville
| | - Jeffrey B Jones
- First, fourth, fifth, seventh, and ninth authors: Department of Plant Pathology, University of Florida, Gainesville; first, second and eighth authors: Gulf Coast Research and Education Center, University of Florida, Wimauma; third author: U.S. Vegetable Laboratory, 2700 Savannah Highway, USDA, Charleston, SC; sixth author: Department of Plant and Microbial Biology, University of California, Berkeley; and ninth author: Emerging Pathogens Institute, University of Florida, Gainesville
| | - Gary E Vallad
- First, fourth, fifth, seventh, and ninth authors: Department of Plant Pathology, University of Florida, Gainesville; first, second and eighth authors: Gulf Coast Research and Education Center, University of Florida, Wimauma; third author: U.S. Vegetable Laboratory, 2700 Savannah Highway, USDA, Charleston, SC; sixth author: Department of Plant and Microbial Biology, University of California, Berkeley; and ninth author: Emerging Pathogens Institute, University of Florida, Gainesville
| | - Erica M Goss
- First, fourth, fifth, seventh, and ninth authors: Department of Plant Pathology, University of Florida, Gainesville; first, second and eighth authors: Gulf Coast Research and Education Center, University of Florida, Wimauma; third author: U.S. Vegetable Laboratory, 2700 Savannah Highway, USDA, Charleston, SC; sixth author: Department of Plant and Microbial Biology, University of California, Berkeley; and ninth author: Emerging Pathogens Institute, University of Florida, Gainesville
| |
Collapse
|
46
|
Park CJ, Seo YS. Heat Shock Proteins: A Review of the Molecular Chaperones for Plant Immunity. THE PLANT PATHOLOGY JOURNAL 2015; 31:323-33. [PMID: 26676169 PMCID: PMC4677741 DOI: 10.5423/ppj.rw.08.2015.0150] [Citation(s) in RCA: 314] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/14/2015] [Accepted: 09/14/2015] [Indexed: 05/19/2023]
Abstract
As sessile organisms, plants are exposed to persistently changing stresses and have to be able to interpret and respond to them. The stresses, drought, salinity, chemicals, cold and hot temperatures, and various pathogen attacks have interconnected effects on plants, resulting in the disruption of protein homeostasis. Maintenance of proteins in their functional native conformations and preventing aggregation of non-native proteins are important for cell survival under stress. Heat shock proteins (HSPs) functioning as molecular chaperones are the key components responsible for protein folding, assembly, translocation, and degradation under stress conditions and in many normal cellular processes. Plants respond to pathogen invasion using two different innate immune responses mediated by pattern recognition receptors (PRRs) or resistance (R) proteins. HSPs play an indispensable role as molecular chaperones in the quality control of plasma membrane-resident PRRs and intracellular R proteins against potential invaders. Here, we specifically discuss the functional involvement of cytosolic and endoplasmic reticulum (ER) HSPs/chaperones in plant immunity to obtain an integrated understanding of the immune responses in plant cells.
Collapse
Affiliation(s)
- Chang-Jin Park
- Department of Plant Biotechnology and PERI, Sejong University, Seoul 143-747,
Korea
- Corresponding author. C.-J. Park, Phone) +82-2-3408-4378, FAX) +82-2-3408-4318, E-mail) . Y.-S. Seo, Phone) +82-51-510-2267, FAX) +82-51-514-1778, E-mail:) , ORCID, Young-Su Seo, http://orcid.org/0000-0001-9191-1405, Chang-Jin Park, http://orcid.org/0000-0002-2586-8856
| | - Young-Su Seo
- Department of Microbiology, Pusan National University, Busan 609-735,
Korea
- Corresponding author. C.-J. Park, Phone) +82-2-3408-4378, FAX) +82-2-3408-4318, E-mail) . Y.-S. Seo, Phone) +82-51-510-2267, FAX) +82-51-514-1778, E-mail:) , ORCID, Young-Su Seo, http://orcid.org/0000-0001-9191-1405, Chang-Jin Park, http://orcid.org/0000-0002-2586-8856
| |
Collapse
|
47
|
Kim NH, Hwang BK. Pepper aldehyde dehydrogenase CaALDH1 interacts with Xanthomonas effector AvrBsT and promotes effector-triggered cell death and defence responses. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3367-80. [PMID: 25873668 PMCID: PMC4449550 DOI: 10.1093/jxb/erv147] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Xanthomonas type III effector AvrBsT induces hypersensitive cell death and defence responses in pepper (Capsicum annuum) and Nicotiana benthamiana. Little is known about the host factors that interact with AvrBsT. Here, we identified pepper aldehyde dehydrogenase 1 (CaALDH1) as an AvrBsT-interacting protein. Bimolecular fluorescence complementation and co-immunoprecipitation assays confirmed the interaction between CaALDH1 and AvrBsT in planta. CaALDH1:smGFP fluorescence was detected in the cytoplasm. CaALDH1 expression in pepper was rapidly and strongly induced by avirulent Xanthomonas campestris pv. vesicatoria (Xcv) Ds1 (avrBsT) infection. Transient co-expression of CaALDH1 with avrBsT significantly enhanced avrBsT-triggered cell death in N. benthamiana leaves. Aldehyde dehydrogenase activity was higher in leaves transiently expressing CaALDH1, suggesting that CaALDH1 acts as a cell death enhancer, independently of AvrBsT. CaALDH1 silencing disrupted phenolic compound accumulation, H2O2 production, defence response gene expression, and cell death during avirulent Xcv Ds1 (avrBsT) infection. Transgenic Arabidopsis thaliana overexpressing CaALDH1 exhibited enhanced defence response to Pseudomonas syringae pv. tomato and Hyaloperonospora arabidopsidis infection. These results indicate that cytoplasmic CaALDH1 interacts with AvrBsT and promotes plant cell death and defence responses.
Collapse
Affiliation(s)
- Nak Hyun Kim
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| | - Byung Kook Hwang
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| |
Collapse
|