1
|
Paasela T, Lim KJ, Pavicic M, Harju A, Venäläinen M, Paulin L, Auvinen P, Kärkkäinen K, Teeri TH. Transcriptomic Analysis Reveals Novel Regulators of the Scots Pine Stilbene Pathway. PLANT & CELL PHYSIOLOGY 2023; 64:1204-1219. [PMID: 37674261 PMCID: PMC10579783 DOI: 10.1093/pcp/pcad089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023]
Abstract
Stilbenes accumulate in Scots pine heartwood where they have important roles in protecting wood from decaying fungi. They are also part of active defense responses, and their production is induced by different (a)biotic stressors. The specific transcriptional regulators as well as the enzyme responsible for activating the stilbene precursor cinnamate in the pathway are still unknown. UV-C radiation was the first discovered artificial stress activator of the pathway. Here, we describe a large-scale transcriptomic analysis of pine needles in response to UV-C and treatment with translational inhibitors, both activating the transcription of stilbene pathway genes. We used the data to identify putative candidates for the missing CoA ligase and for pathway regulators. We further showed that the pathway is transcriptionally activated by phosphatase inhibitor, ethylene and jasmonate treatments, as in grapevine, and that the stilbene synthase promoter retains its inducibility in some of the tested conditions in Arabidopsis, a species that normally does not synthesize stilbenes. Shared features between gymnosperm and angiosperm regulation and partially retained inducibility in Arabidopsis suggest that pathway regulation occurs not only via ancient stress-response pathway(s) but also via species-specific regulators. Understanding which genes control the biosynthesis of stilbenes in Scots pine aids breeding of more resistant trees.
Collapse
Affiliation(s)
| | - Kean-Jin Lim
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, Helsinki 00014, Finland
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Lin’an District, Hangzhou, Zhejiang 311300, China
| | - Mirko Pavicic
- Oak Ridge National Laboratory, Biosciences Division, 1 Bethel Valley Rd, Oak Ridge, TN 37830, USA
| | - Anni Harju
- Production Systems Unit, Natural Resources Institute Finland (Luke), Vipusenkuja 5, Savonlinna 57200, Finland
| | - Martti Venäläinen
- Production Systems Unit, Natural Resources Institute Finland (Luke), Vipusenkuja 5, Savonlinna 57200, Finland
| | - Lars Paulin
- Institute of Biotechnology, University of Helsinki, PO Box 56, Helsinki 00014, Finland
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, PO Box 56, Helsinki 00014, Finland
| | - Katri Kärkkäinen
- Production Systems Unit, Natural Resources Institute Finland (Luke), Paavo Havaksentie 3, Oulu 90570, Finland
| | - Teemu H Teeri
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, Helsinki 00014, Finland
| |
Collapse
|
2
|
Mu H, Li Y, Yuan L, Jiang J, Wei Y, Duan W, Fan P, Li S, Liang Z, Wang L. MYB30 and MYB14 form a repressor-activator module with WRKY8 that controls stilbene biosynthesis in grapevine. THE PLANT CELL 2023; 35:552-573. [PMID: 36255259 PMCID: PMC9806661 DOI: 10.1093/plcell/koac308] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 10/13/2022] [Indexed: 05/12/2023]
Abstract
When exposed to pathogen infection or ultraviolet (UV) radiation, grapevine (Vitis vinifera) plants rapidly accumulate the stilbenoid resveratrol (Res) with concomitant increase of stilbene synthase (STS), the key enzyme in stilbene biosynthesis. Although a few transcription factors have been shown to regulate STSs, the molecular mechanism governing the regulation of STSs is not well elucidated. Our previous work showed that a VvMYB14-VvWRKY8 regulatory loop fine-tunes stilbene biosynthesis in grapevine through protein-protein interaction; overexpression of VvWRKY8 down-regulates VvMYB14 and VvSTS15/21; and application of exogenous Res up-regulates WRKY8 expression. Here, we identified an R2R3-MYB repressor, VvMYB30, which competes with the activator VvMYB14 for binding to the common binding sites in the VvSTS15/21 promoter. Similar to VvMYB14, VvMYB30 physically interacts with VvWRKY8 through their N-termini, forming a complex that does not bind DNA. Exposure to UV-B/C stress induces VvMYB14, VvWRKY8, and VvSTS15/21, but represses VvMYB30 in grapevine leaves. In addition, MYB30 expression is up-regulated by VvWRKY8-overexpression or exogenous Res. These findings suggest that the VvMYB14-VvWRKY8-VvMYB30 regulatory circuit allows grapevine to respond to UV stress by producing Res and prevents over-accumulation of Res to balance metabolic costs. Our work highlights the stress-mediated induction and feedback inhibition of stilbene biosynthesis through a complex regulatory network involving multiple positive and negative transcriptional regulators.
Collapse
Affiliation(s)
- Huayuan Mu
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese National Botany Garden, Beijing 100093, China
- LIA INNOGRAPE International Associated Laboratory, Beijing 100093, China
| | - Yang Li
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Chinese National Botany Garden, Beijing 100093, China
- LIA INNOGRAPE International Associated Laboratory, Beijing 100093, China
| | - Ling Yuan
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546, USA
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Jinzhu Jiang
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yongzan Wei
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Wei Duan
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Chinese National Botany Garden, Beijing 100093, China
- LIA INNOGRAPE International Associated Laboratory, Beijing 100093, China
| | - Peige Fan
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Chinese National Botany Garden, Beijing 100093, China
- LIA INNOGRAPE International Associated Laboratory, Beijing 100093, China
| | - Shaohua Li
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Chinese National Botany Garden, Beijing 100093, China
- LIA INNOGRAPE International Associated Laboratory, Beijing 100093, China
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Chinese National Botany Garden, Beijing 100093, China
- LIA INNOGRAPE International Associated Laboratory, Beijing 100093, China
| | - Lijun Wang
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Chinese National Botany Garden, Beijing 100093, China
- LIA INNOGRAPE International Associated Laboratory, Beijing 100093, China
| |
Collapse
|
3
|
Xiao L, Shibuya T, Watanabe T, Kato K, Kanayama Y. Effect of Light Quality on Metabolomic, Ionomic, and Transcriptomic Profiles in Tomato Fruit. Int J Mol Sci 2022; 23:13288. [PMID: 36362073 PMCID: PMC9654364 DOI: 10.3390/ijms232113288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 09/11/2024] Open
Abstract
Light quality affects plant growth and the functional component accumulation of fruits. However, there is little knowledge of the effects of light quality based on multiomics profiles. This study combined transcriptomic, ionomic, and metabolomic analyses to elucidate the effects of light quality on metabolism and gene expression in tomato fruit. Micro-Tom plants were grown under blue or red light-emitting diode light for 16 h daily after anthesis. White fluorescent light was used as a reference. The metabolite and element concentrations and the expression of genes markedly changed in response to blue and red light. Based on the metabolomic analysis, amino acid metabolism and secondary metabolite biosynthesis were active in blue light treatment. According to transcriptomic analysis, differentially expressed genes in blue and red light treatments were enriched in the pathways of secondary metabolite biosynthesis, carbon fixation, and glycine, serine, and threonine metabolism, supporting the results of the metabolomic analysis. Ionomic analysis indicated that the element levels in fruits were more susceptible to changes in light quality than in leaves. The concentration of some ions containing Fe in fruits increased under red light compared to under blue light. The altered expression level of genes encoding metal ion-binding proteins, metal tolerance proteins, and metal transporters in response to blue and red light in the transcriptomic analysis contributes to changes in the ionomic profiles of tomato fruit.
Collapse
Affiliation(s)
- Lingran Xiao
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai 980-8572, Japan
| | - Tomoki Shibuya
- Faulty of Agriculture, Yamagata University, Tsuruoka 997-8555, Japan
| | - Toshihiro Watanabe
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Kazuhisa Kato
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai 980-8572, Japan
| | - Yoshinori Kanayama
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai 980-8572, Japan
| |
Collapse
|
4
|
Savoi S, Santiago A, Orduña L, Matus JT. Transcriptomic and metabolomic integration as a resource in grapevine to study fruit metabolite quality traits. FRONTIERS IN PLANT SCIENCE 2022; 13:937927. [PMID: 36340350 PMCID: PMC9630917 DOI: 10.3389/fpls.2022.937927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Transcriptomics and metabolomics are methodologies being increasingly chosen to perform molecular studies in grapevine (Vitis vinifera L.), focusing either on plant and fruit development or on interaction with abiotic or biotic factors. Currently, the integration of these approaches has become of utmost relevance when studying key plant physiological and metabolic processes. The results from these analyses can undoubtedly be incorporated in breeding programs whereby genes associated with better fruit quality (e.g., those enhancing the accumulation of health-promoting compounds) or with stress resistance (e.g., those regulating beneficial responses to environmental transition) can be used as selection markers in crop improvement programs. Despite the vast amount of data being generated, integrative transcriptome/metabolome meta-analyses (i.e., the joint analysis of several studies) have not yet been fully accomplished in this species, mainly due to particular specificities of metabolomic studies, such as differences in data acquisition (i.e., different compounds being investigated), unappropriated and unstandardized metadata, or simply no deposition of data in public repositories. These meta-analyses require a high computational capacity for data mining a priori, but they also need appropriate tools to explore and visualize the integrated results. This perspective article explores the universe of omics studies conducted in V. vinifera, focusing on fruit-transcriptome and metabolome analyses as leading approaches to understand berry physiology, secondary metabolism, and quality. Moreover, we show how omics data can be integrated in a simple format and offered to the research community as a web resource, giving the chance to inspect potential gene-to-gene and gene-to-metabolite relationships that can later be tested in hypothesis-driven research. In the frame of the activities promoted by the COST Action CA17111 INTEGRAPE, we present the first grapevine transcriptomic and metabolomic integrated database (TransMetaDb) developed within the Vitis Visualization (VitViz) platform (https://tomsbiolab.com/vitviz). This tool also enables the user to conduct and explore meta-analyses utilizing different experiments, therefore hopefully motivating the community to generate Findable, Accessible, Interoperable and Reusable (F.A.I.R.) data to be included in the future.
Collapse
Affiliation(s)
- Stefania Savoi
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy
| | - Antonio Santiago
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| | - Luis Orduña
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| | - José Tomás Matus
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| |
Collapse
|
5
|
Tsurumoto T, Fujikawa Y, Onoda Y, Kamimori M, Hiramatsu K, Tanimoto H, Ohta D, Okazawa A. Effect of high-dose 290 nm UV-B on resveratrol content in grape skins. Biosci Biotechnol Biochem 2022; 86:502-508. [PMID: 35092419 DOI: 10.1093/bbb/zbac014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022]
Abstract
UV-C irradiation increases resveratrol content in grape skins, but it reaches a maximum at a certain UV-C dose. In contrast, UV-B has a weak resveratrol-enhancing effect at low doses, but it has not been investigated at high doses. In this study, we investigated the effect of high-dose UV-B on resveratrol contents in grape skins. Irradiation of Muscat Bailey A with 290 nm UV-B LED at 22 500 and 225 000 µmol m-2 increased the resveratrol contents in the grape skins by 2.1- and 9.0-fold, respectively, without significant increases in other phenolic compounds. The effect was also confirmed for 2 other cultivars: Shine Muscat and Delaware. Transcriptome analysis of the grape skins of Muscat Bailey A immediately after irradiation with UV-B at 225 000 µmol m-2 showed that genes related to biotic and abiotic stresses were upregulated. Hence, it was suggested that high-dose UV-B irradiation induces a stress response and specifically activates resveratrol biosynthesis.
Collapse
Affiliation(s)
- Tomohiro Tsurumoto
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan.,Yokohama Research Center, Nichia Corporation, Yokohama, Japan
| | - Yasuo Fujikawa
- Yokohama Research Center, Nichia Corporation, Yokohama, Japan
| | - Yushi Onoda
- Yokohama Research Center, Nichia Corporation, Yokohama, Japan
| | - Masahiro Kamimori
- Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture, Habikino, Japan
| | - Kazuya Hiramatsu
- Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture, Habikino, Japan
| | - Hideo Tanimoto
- Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture, Habikino, Japan
| | - Daisaku Ohta
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Atsushi Okazawa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| |
Collapse
|
6
|
Tıraş ZŞE, Okur HH, Günay Z, Yıldırım HK. Different approaches to enhance resveratrol content in wine. CIÊNCIA E TÉCNICA VITIVINÍCOLA 2022. [DOI: 10.1051/ctv/ctv20223701013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Resveratrol is a polyphenol with antioxidant properties and possible beneficial effects on human health. Grapes, peanuts, berries, cacao beans and red wine contain resveratrol. Resveratrol attracts attention due to its bioactive properties, however, the concentration of this compound is not high in grape and wine. Therefore, different studies have been carried out to increase resveratrol level in these products. Several factors such as the grapevine variety, the climatic conditions and the viticultural practices used to create stress on the vine affect the level of resveratrol. Winemaking technologies applied during pre-fermentation, fermentation and post–fermentation stages could also have an effect on the concentration of this stilbene. In addition, recent studies have evaluated biotechnological approaches through the use of different bacteria and yeast strains to produce wine with increased resveratrol content. In this review, the most important factors contributing to increase the resveratrol concentration in grapes and wines are examined. Besides, analytical methods to determine resveratrol content in wine are addressed.
Collapse
|
7
|
Zhong Z, Wang X, Yin X, Tian J, Komatsu S. Morphophysiological and Proteomic Responses on Plants of Irradiation with Electromagnetic Waves. Int J Mol Sci 2021; 22:12239. [PMID: 34830127 PMCID: PMC8618018 DOI: 10.3390/ijms222212239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 01/25/2023] Open
Abstract
Electromagnetic energy is the backbone of wireless communication systems, and its progressive use has resulted in impacts on a wide range of biological systems. The consequences of electromagnetic energy absorption on plants are insufficiently addressed. In the agricultural area, electromagnetic-wave irradiation has been used to develop crop varieties, manage insect pests, monitor fertilizer efficiency, and preserve agricultural produce. According to different frequencies and wavelengths, electromagnetic waves are typically divided into eight spectral bands, including audio waves, radio waves, microwaves, infrared, visible light, ultraviolet, X-rays, and gamma rays. In this review, among these electromagnetic waves, effects of millimeter waves, ultraviolet, and gamma rays on plants are outlined, and their response mechanisms in plants through proteomic approaches are summarized. Furthermore, remarkable advancements of irradiating plants with electromagnetic waves, especially ultraviolet, are addressed, which shed light on future research in the electromagnetic field.
Collapse
Affiliation(s)
- Zhuoheng Zhong
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China; (Z.Z.); (J.T.)
| | - Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China;
| | - Xiaojian Yin
- Department of Pharmacognosy, China Pharmaceutical University, Nanjing 211198, China;
| | - Jingkui Tian
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China; (Z.Z.); (J.T.)
| | - Setsuko Komatsu
- Faculty of Environmental and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| |
Collapse
|
8
|
Ranjbaran E, Gholami M, Jensen M. Changes in phenolic compounds, enzymatic and non‐enzymatic antioxidant properties in “Thompson Seedless” grape after UV‐C irradiation. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ehsan Ranjbaran
- Department of Horticultural Science Faculty of Agriculture Bu‐Ali Sina University Hamedan Iran
- Department of Food Science Aarhus University Aarhus N Denmark
| | - Mansour Gholami
- Department of Horticultural Science Faculty of Agriculture Bu‐Ali Sina University Hamedan Iran
| | - Martin Jensen
- Department of Food Science Aarhus University Aarhus N Denmark
| |
Collapse
|
9
|
Monder H, Maillard M, Chérel I, Zimmermann SD, Paris N, Cuéllar T, Gaillard I. Adjustment of K + Fluxes and Grapevine Defense in the Face of Climate Change. Int J Mol Sci 2021; 22:10398. [PMID: 34638737 PMCID: PMC8508874 DOI: 10.3390/ijms221910398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 12/18/2022] Open
Abstract
Grapevine is one of the most economically important fruit crops due to the high value of its fruit and its importance in winemaking. The current decrease in grape berry quality and production can be seen as the consequence of various abiotic constraints imposed by climate changes. Specifically, produced wines have become too sweet, with a stronger impression of alcohol and fewer aromatic qualities. Potassium is known to play a major role in grapevine growth, as well as grape composition and wine quality. Importantly, potassium ions (K+) are involved in the initiation and maintenance of the berry loading process during ripening. Moreover, K+ has also been implicated in various defense mechanisms against abiotic stress. The first part of this review discusses the main negative consequences of the current climate, how they disturb the quality of grape berries at harvest and thus ultimately compromise the potential to obtain a great wine. In the second part, the essential electrical and osmotic functions of K+, which are intimately dependent on K+ transport systems, membrane energization, and cell K+ homeostasis, are presented. This knowledge will help to select crops that are better adapted to adverse environmental conditions.
Collapse
Affiliation(s)
- Houssein Monder
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, F-34060 Montpellier, France; (H.M.); (M.M.); (I.C.); (S.D.Z.); (N.P.)
| | - Morgan Maillard
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, F-34060 Montpellier, France; (H.M.); (M.M.); (I.C.); (S.D.Z.); (N.P.)
| | - Isabelle Chérel
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, F-34060 Montpellier, France; (H.M.); (M.M.); (I.C.); (S.D.Z.); (N.P.)
| | - Sabine Dagmar Zimmermann
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, F-34060 Montpellier, France; (H.M.); (M.M.); (I.C.); (S.D.Z.); (N.P.)
| | - Nadine Paris
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, F-34060 Montpellier, France; (H.M.); (M.M.); (I.C.); (S.D.Z.); (N.P.)
| | - Teresa Cuéllar
- CIRAD, UMR AGAP, Univ Montpellier, INRAE, Institut Agro, F-34398 Montpellier, France;
| | - Isabelle Gaillard
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, F-34060 Montpellier, France; (H.M.); (M.M.); (I.C.); (S.D.Z.); (N.P.)
| |
Collapse
|
10
|
Leng F, Ye Y, Zhou J, Jia H, Zhu X, Shi J, Zhang Z, Shen N, Wang L. Transcriptomic and Weighted Gene Co-expression Correlation Network Analysis Reveal Resveratrol Biosynthesis Mechanisms Caused by Bud Sport in Grape Berry. FRONTIERS IN PLANT SCIENCE 2021; 12:690095. [PMID: 34220913 PMCID: PMC8253253 DOI: 10.3389/fpls.2021.690095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
Resveratrol is a natural polyphenol compound produced in response to biotic and abiotic stresses in grape berries. However, changes in resveratrol caused by bud sport in grapes are scarcely reported. In this study, trans-resveratrol and cis-resveratrol were identified and quantified in the grape berries of 'Summer Black' and its bud sport 'Nantaihutezao' from the veraison to ripening stages using ultra performance liquid chromatography-high resolution tandem mass spectrometry (UPLC-HRMS). We found that bud sport accumulates the trans-resveratrol earlier and increases the contents of cis-resveratrol in the earlier stages but decreases its contents in the later stages. Simultaneously, we used RNA-Seq to identify 51 transcripts involved in the stilbene pathways. In particular, we further identified 124 and 19 transcripts that negatively correlated with the contents of trans-resveratrol and cis-resveratrol, respectively, and four transcripts encoding F3'5'H that positively correlated with the contents of trans-resveratrol by weighted gene co-expression network analysis (WGCNA). These transcripts may play important roles in relation to the synergistic regulation of metabolisms of resveratrol. The results of this study can provide a theoretical basis for the genetic improvement of grapes.
Collapse
Affiliation(s)
- Feng Leng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Yunling Ye
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Jialing Zhou
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Huijuan Jia
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement of the Ministry of Agriculture/Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Xiaoheng Zhu
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement of the Ministry of Agriculture/Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Jiayu Shi
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Ziyue Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Nan Shen
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Li Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
11
|
Crosstalk of Multi-Omics Platforms with Plants of Therapeutic Importance. Cells 2021; 10:cells10061296. [PMID: 34071113 PMCID: PMC8224614 DOI: 10.3390/cells10061296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/25/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
From time immemorial, humans have exploited plants as a source of food and medicines. The World Health Organization (WHO) has recorded 21,000 plants with medicinal value out of 300,000 species available worldwide. The promising modern "multi-omics" platforms and tools have been proven as functional platforms able to endow us with comprehensive knowledge of the proteome, genome, transcriptome, and metabolome of medicinal plant systems so as to reveal the novel connected genetic (gene) pathways, proteins, regulator sequences and secondary metabolite (molecule) biosynthetic pathways of various drug and protein molecules from a variety of plants with therapeutic significance. This review paper endeavors to abridge the contemporary advancements in research areas of multi-omics and the information involved in decoding its prospective relevance to the utilization of plants with medicinal value in the present global scenario. The crosstalk of medicinal plants with genomics, transcriptomics, proteomics, and metabolomics approaches will be discussed.
Collapse
|
12
|
Valletta A, Iozia LM, Leonelli F. Impact of Environmental Factors on Stilbene Biosynthesis. PLANTS (BASEL, SWITZERLAND) 2021; 10:E90. [PMID: 33406721 PMCID: PMC7823792 DOI: 10.3390/plants10010090] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 01/01/2023]
Abstract
Stilbenes are a small family of polyphenolic secondary metabolites that can be found in several distantly related plant species. These compounds act as phytoalexins, playing a crucial role in plant defense against phytopathogens, as well as being involved in the adaptation of plants to abiotic environmental factors. Among stilbenes, trans-resveratrol is certainly the most popular and extensively studied for its health properties. In recent years, an increasing number of stilbene compounds were subjected to investigations concerning their bioactivity. This review presents the most updated knowledge of the stilbene biosynthetic pathway, also focusing on the role of several environmental factors in eliciting stilbenes biosynthesis. The effects of ultraviolet radiation, visible light, ultrasonication, mechanical stress, salt stress, drought, temperature, ozone, and biotic stress are reviewed in the context of enhancing stilbene biosynthesis, both in planta and in plant cell and organ cultures. This knowledge may shed some light on stilbene biological roles and represents a useful tool to increase the accumulation of these valuable compounds.
Collapse
Affiliation(s)
- Alessio Valletta
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Lorenzo Maria Iozia
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Francesca Leonelli
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| |
Collapse
|
13
|
Jeandet P, Vannozzi A, Sobarzo-Sánchez E, Uddin MS, Bru R, Martínez-Márquez A, Clément C, Cordelier S, Manayi A, Nabavi SF, Rasekhian M, El-Saber Batiha G, Khan H, Morkunas I, Belwal T, Jiang J, Koffas M, Nabavi SM. Phytostilbenes as agrochemicals: biosynthesis, bioactivity, metabolic engineering and biotechnology. Nat Prod Rep 2021; 38:1282-1329. [PMID: 33351014 DOI: 10.1039/d0np00030b] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 1976 to 2020. Although constituting a limited chemical family, phytostilbenes represent an emblematic group of molecules among natural compounds. Ever since their discovery as antifungal compounds in plants and their ascribed role in human health and disease, phytostilbenes have never ceased to arouse interest for researchers, leading to a huge development of the literature in this field. Owing to this, the number of references to this class of compounds has reached the tens of thousands. The objective of this article is thus to offer an overview of the different aspects of these compounds through a large bibliography analysis of more than 500 articles. All the aspects regarding phytostilbenes will be covered including their chemistry and biochemistry, regulation of their biosynthesis, biological activities in plants, molecular engineering of stilbene pathways in plants and microbes as well as their biotechnological production by plant cell systems.
Collapse
Affiliation(s)
- Philippe Jeandet
- Research Unit "Induced Resistance and Plant Bioprotection", EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims Cedex 2, France.
| | - Alessandro Vannozzi
- Department of Agronomy, Food, Natural Resources, Animals, and Environment (DAFNAE), University of Padova, 35020 Legnaro, PD, Italy
| | - Eduardo Sobarzo-Sánchez
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain and Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Chile
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh and Neuroscience Research Network, Dhaka, Bangladesh
| | - Roque Bru
- Plant Proteomics and Functional Genomics Group, Department of Agrochemistry and Biochemistry, Faculty of Science, University of Alicante, Alicante, Spain
| | - Ascension Martínez-Márquez
- Plant Proteomics and Functional Genomics Group, Department of Agrochemistry and Biochemistry, Faculty of Science, University of Alicante, Alicante, Spain
| | - Christophe Clément
- Research Unit "Induced Resistance and Plant Bioprotection", EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims Cedex 2, France.
| | - Sylvain Cordelier
- Research Unit "Induced Resistance and Plant Bioprotection", EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims Cedex 2, France.
| | - Azadeh Manayi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, 1417614411 Tehran, Iran
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 14359-16471, Iran
| | - Mahsa Rasekhian
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Iwona Morkunas
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland
| | - Tarun Belwal
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou 310058, The People's Republic of China
| | - Jingjie Jiang
- Dorothy and Fred Chau '71 Constellation Professor, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Room 4005D, 110 8th Street, Troy, NY 12180, USA
| | - Mattheos Koffas
- Dorothy and Fred Chau '71 Constellation Professor, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Room 4005D, 110 8th Street, Troy, NY 12180, USA
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 14359-16471, Iran
| |
Collapse
|
14
|
Leng F, Cao J, Ge Z, Wang Y, Zhao C, Wang S, Li X, Zhang Y, Sun C. Transcriptomic Analysis of Root Restriction Effects on Phenolic Metabolites during Grape Berry Development and Ripening. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9090-9099. [PMID: 32806110 DOI: 10.1021/acs.jafc.0c02488] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the present study, the effects of root restriction (RR) on the main phenolic metabolites and the related gene expression at different developmental stages were studied at the transcriptomic and metabolomic levels in "Summer Black" grape berries (Vitis vinifera × Vitis labrusca). The results were as follows: seven phenolic acid compounds, three stilbene compounds, nine flavonol compounds, 10 anthocyanin compounds, and 24 proanthocyanidin compounds were identified by ultra-performance liquid chromatography-high-resolution mass spectrometry. RR treatment significantly promoted the biosynthesis of phenolic acid, trans-resveratrol, flavonol, and anthocyanin and also affected the proanthocyanidin content, which was elevated in the early developmental stages and then reduced in the late developmental stages. The functional genes for phenylalanine ammonia-lyase, trans-cinnamate 4-monooxygenase, 4-coumarate-CoA ligase, shikimate O-hydroxycinnamoyl transferase, chalcone synthase, chalcone isomerase, stilbene synthase, flavonoid 3',5'-hydroxylase, anthocyanidin 3-O-glucosyltransferase, and the transcription factors MYBA1, MYBA2, MYBA3, and MYBA22 were inferred to play critical roles in the changes regulated by RR treatment.
Collapse
Affiliation(s)
- Feng Leng
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, P. R. China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Jinping Cao
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, P. R. China
| | - Zhiwei Ge
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yue Wang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, P. R. China
| | - Chenning Zhao
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, P. R. China
| | - Shiping Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xian Li
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, P. R. China
| | - Yanli Zhang
- Yangzhou Ruiyang Ecological Horticulture Co., Ltd, Yangzhou 225009, P. R. China
| | - Chongde Sun
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, P. R. China
| |
Collapse
|
15
|
Zombardo A, Crosatti C, Bagnaresi P, Bassolino L, Reshef N, Puccioni S, Faccioli P, Tafuri A, Delledonne M, Fait A, Storchi P, Cattivelli L, Mica E. Transcriptomic and biochemical investigations support the role of rootstock-scion interaction in grapevine berry quality. BMC Genomics 2020; 21:468. [PMID: 32641089 PMCID: PMC7341580 DOI: 10.1186/s12864-020-06795-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 05/25/2020] [Indexed: 12/19/2022] Open
Abstract
Background In viticulture, rootstock genotype plays a critical role to improve scion physiology, berry quality and to adapt grapevine (Vitis vinifera L.) to different environmental conditions. This study aimed at investigating the effect of two different rootstocks (1103 Paulsen - P - and Mgt 101–14 - M) in comparison with not grafted plants - NGC - on transcriptome (RNA-seq and small RNA-seq) and chemical composition of berry skin in Pinot noir, and exploring the influence of rootstock-scion interaction on grape quality. Berry samples, collected at veraison and maturity, were investigated at transcriptional and biochemical levels to depict the impact of rootstock on berry maturation. Results RNA- and miRNA-seq analyses highlighted that, at veraison, the transcriptomes of the berry skin are extremely similar, while variations associated with the different rootstocks become evident at maturity, suggesting a greater diversification at transcriptional level towards the end of the ripening process. In the experimental design, resembling standard agronomic growth conditions, the vines grafted on the two different rootstocks do not show a high degree of diversity. In general, the few genes differentially expressed at veraison were linked to photosynthesis, putatively because of a ripening delay in not grafted vines, while at maturity the differentially expressed genes were mainly involved in the synthesis and transport of phenylpropanoids (e.g. flavonoids), cell wall loosening, and stress response. These results were supported by some differences in berry phenolic composition detected between grafted and not grafted plants, in particular in resveratrol derivatives accumulation. Conclusions Transcriptomic and biochemical data demonstrate a stronger impact of 1103 Paulsen rootstock than Mgt 101–14 or not grafted plants on ripening processes related to the secondary metabolite accumulations in berry skin tissue. Interestingly, the MYB14 gene, involved in the feedback regulation of resveratrol biosynthesis was up-regulated in 1103 Paulsen thus supporting a putative greater accumulation of stilbenes in mature berries.
Collapse
Affiliation(s)
- A Zombardo
- CREA Research Centre for Viticulture and Enology, viale Santa Margherita 80, 52100, Arezzo, Italy.,Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale delle Cascine 18, 50144, Florence, Italy
| | - C Crosatti
- CREA Research Centre for Genomics and Bioinformatics, via San Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy
| | - P Bagnaresi
- CREA Research Centre for Genomics and Bioinformatics, via San Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy
| | - L Bassolino
- CREA Research Centre for Genomics and Bioinformatics, via San Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy.,CREA Research Centre for Cereal and Industrial Crops, via di Corticella 133, 40128, Bologna, Italy
| | - N Reshef
- French Associates institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel.,Present address: Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| | - S Puccioni
- CREA Research Centre for Viticulture and Enology, viale Santa Margherita 80, 52100, Arezzo, Italy
| | - P Faccioli
- CREA Research Centre for Genomics and Bioinformatics, via San Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy
| | - A Tafuri
- CREA Research Centre for Genomics and Bioinformatics, via San Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy
| | - M Delledonne
- Department of Biotechnologies, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - A Fait
- French Associates institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel
| | - P Storchi
- CREA Research Centre for Viticulture and Enology, viale Santa Margherita 80, 52100, Arezzo, Italy
| | - L Cattivelli
- CREA Research Centre for Genomics and Bioinformatics, via San Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy
| | - E Mica
- CREA Research Centre for Genomics and Bioinformatics, via San Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy.
| |
Collapse
|
16
|
Huang Y, Liang D, Xia H, Lin LJ, Wang J, Lv XL. Lignin and Quercetin Synthesis Underlies Berry Russeting in 'Sunshine Muscat' Grape. Biomolecules 2020; 10:biom10050690. [PMID: 32365571 PMCID: PMC7277627 DOI: 10.3390/biom10050690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 01/23/2023] Open
Abstract
In order to further explore the mechanism of 'sunshine muscat' grape russet formation, transcriptomic and metabolomic analyses were performed on 'sunshine muscat' grape peels with and without russet. A total of 1491 differentially expressed genes (DEGs) were discovered based on these analyses. The phenylpropane synthesis pathway was the key metabolic pathway identified, and 28 DEGs related to phenylpropane synthesis pathway were screened, of which 16 were related to lignin synthesis. In addition, 60 differential metabolites were screened. There were 29 phenolic substances among the differential metabolites, which were all up-regulated and 10 were quercetin-related glycosides. Our results indicate that phenols likely play a dominant role in the formation of 'sunshine muscat' grape russet, and the synthesis of lignin and quercetin may be the key factors underlying russet formation.
Collapse
Affiliation(s)
| | | | | | | | - Jin Wang
- Correspondence: (J.W.); (X.-L.L.); Tel.: +86-131-1183-2583 (J.W.); +86-186-0835-2199 (X.-L.L.)
| | - Xiu-Lan Lv
- Correspondence: (J.W.); (X.-L.L.); Tel.: +86-131-1183-2583 (J.W.); +86-186-0835-2199 (X.-L.L.)
| |
Collapse
|
17
|
Pietrowska-Borek M, Wojdyła-Mamoń A, Dobrogojski J, Młynarska-Cieślak A, Baranowski MR, Dąbrowski JM, Kowalska J, Jemielity J, Borek S, Pedreño MA, Guranowski A. Purine and pyrimidine dinucleoside polyphosphates differentially affect the phenylpropanoid pathway in Vitis vinifera L. cv. Monastrell suspension cultured cells. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 147:125-132. [PMID: 31855818 DOI: 10.1016/j.plaphy.2019.12.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/25/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
It is known that the concentration of dinucleoside polyphosphates (NpnN's) in cells increases under stress and that adverse environmental factors induce biosynthesis of phenylpropanoids, which protect the plant against stress. Previously, we showed that purine NpnN's such as Ap3A and Ap4A induce both the activity of enzymes of the phenylpropanoid pathway and the expression of relevant genes in Arabidopsis seedlings. Moreover, we showed that Ap3A induced stilbene biosynthesis in Vitis vinifera cv. Monastrell suspension cultured cells. Data presented in this paper show that pyrimidine-containing NpnN's also modify the biosynthesis of stilbenes, affecting the transcript level of genes encoding key enzymes of the phenylpropanoid pathway and of these, Up4U caused the most effective accumulation of trans-resveratrol in the culture media. Similar effect was caused by Ap3A and Gp3G. Other pyrimidine NpnN's, such as Cp3C, Cp4C, and Ap4C, strongly inhibited the biosynthesis of stilbenes, but markedly (6- to 8-fold) induced the expression of the cinnamoyl-CoA reductase gene that controls lignin biosynthesis. Purine counterparts also clearly induced biosynthesis of trans-resveratrol and trans-piceid, but only slightly induced the expression of genes involved in lignin biosynthesis. In cells, Up3U caused a greater accumulation of trans-resveratrol and trans-piceid than did Up4U. Each of the NpnN's studied induced expression of the gene encoding the resveratrol transporter VvABCG44, which operates within the Vitis vinifera cell membrane. AMP, GMP, UMP, and CMP, potential products of NpnN degradation, did not affect the accumulation of stilbenes. The results obtained strongly support that NpnN's play a role as signaling molecules in plants.
Collapse
Affiliation(s)
- Małgorzata Pietrowska-Borek
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632, Poznań, Poland.
| | - Anna Wojdyła-Mamoń
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632, Poznań, Poland
| | - Jędrzej Dobrogojski
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632, Poznań, Poland
| | - Agnieszka Młynarska-Cieślak
- Division of Biophysics Institute of Experimental Physics, Faculty of Physics University of Warsaw, Żwirki i Wigury 93, 02-089, Warsaw, Poland
| | - Marek R Baranowski
- Division of Biophysics Institute of Experimental Physics, Faculty of Physics University of Warsaw, Żwirki i Wigury 93, 02-089, Warsaw, Poland
| | - Jakub M Dąbrowski
- Division of Biophysics Institute of Experimental Physics, Faculty of Physics University of Warsaw, Żwirki i Wigury 93, 02-089, Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics Institute of Experimental Physics, Faculty of Physics University of Warsaw, Żwirki i Wigury 93, 02-089, Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Sławomir Borek
- Department of Plant Physiology, Adam Mickiewicz University Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Maria Angeles Pedreño
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Andrzej Guranowski
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632, Poznań, Poland
| |
Collapse
|
18
|
Sun RZ, Cheng G, Li Q, Zhu YR, Zhang X, Wang Y, He YN, Li SY, He L, Chen W, Pan QH, Duan CQ, Wang J. Comparative physiological, metabolomic, and transcriptomic analyses reveal developmental stage-dependent effects of cluster bagging on phenolic metabolism in Cabernet Sauvignon grape berries. BMC PLANT BIOLOGY 2019; 19:583. [PMID: 31878879 PMCID: PMC6933938 DOI: 10.1186/s12870-019-2186-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/05/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Light conditions significantly influence grape berry ripening and the accumulation of phenolic compounds, but the underlying molecular basis remains partially understood. Here, we applied integrated transcriptomics and pathway-level metabolomics analyses to investigate the effect of cluster bagging during various developmental stages on phenolic metabolism in Cabernet Sauvignon grapes. RESULTS Bagging treatments had limited effects on berry quality attributes at harvest and did not consistently affect phenolic acid biosynthesis between seasons. Significantly elevated flavan-3-ol and flavonol contents were detected in re-exposed berries after bagging during early-developmental stages, while bagging after véraison markedly inhibited skin anthocyanin accumulation. Several anthocyanin derivatives and flavonol glycosides were identified as marker phenolic metabolites for distinguishing bagged and non-bagged grapes. Coordinated transcriptional changes in the light signaling components CRY2 and HY5/HYHs, transcription regulator MYBA1, and enzymes LAR, ANR, UFGT and FLS4, coincided well with light-responsive biosynthesis of the corresponding flavonoids. The activation of multiple hormone signaling pathways after both light exclusion and re-exposure treatments was inconsistent with the changes in phenolic accumulation, indicating a limited role of plant hormones in mediating light/darkness-regulated phenolic biosynthesis processes. Furthermore, gene-gene and gene-metabolite network analyses discovered that the light-responsive expression of genes encoding bHLH, MYB, WRKY, NAC, and MADS-box transcription factors, and proteins involved in genetic information processing and epigenetic regulation such as nucleosome assembly and histone acetylation, showed a high positive correlation with grape berry phenolic accumulation in response to different light regimes. CONCLUSIONS Altogether, our findings provide novel insights into the understanding of berry phenolic biosynthesis under light/darkness and practical guidance for improving grape features.
Collapse
Affiliation(s)
- Run-Ze Sun
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Science, Beijing, 100093, China
| | - Guo Cheng
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Grape and Wine Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Qiang Li
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yan-Rong Zhu
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Nongfu Spring Co. Ltd., Hangzhou, 310000, China
| | - Xue Zhang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Ruifeng Oseis (Yantai) Wine Manor Co. Ltd., Yantai, 264010, China
| | - Yu Wang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China
| | - Yan-Nan He
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- College of Bioscience & Bioengineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Si-Yu Li
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China
| | - Lei He
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China
| | - Wu Chen
- CITIC Guoan Wine Co. Ltd., Xinjiang, 832200, Manasi, China
| | - Qiu-Hong Pan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China
| | - Chang-Qing Duan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China
| | - Jun Wang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China.
| |
Collapse
|
19
|
Liu Z, Xu J, Wu X, Wang Y, Lin Y, Wu D, Zhang H, Qin J. Molecular Analysis of UV-C Induced Resveratrol Accumulation in Polygonum cuspidatum Leaves. Int J Mol Sci 2019; 20:ijms20246185. [PMID: 31817915 PMCID: PMC6940797 DOI: 10.3390/ijms20246185] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/29/2019] [Accepted: 12/04/2019] [Indexed: 01/18/2023] Open
Abstract
Resveratrol is one of the most studied plant secondary metabolites owing to its numerous health benefits. It is accumulated in some plants following biotic and abiotic stress pressures, including UV-C irradiation. Polygonum cuspidatum represents the major natural source of concentrated resveratrol but the underlying mechanisms as well as the effects of UV-C irradiation on resveratrol content have not yet been documented. Herein, we found that UV-C irradiation significantly increased by 2.6-fold and 1.6-fold the resveratrol content in irradiated leaf samples followed by a dark incubation for 6 h and 12 h, respectively, compared to the untreated samples. De novo transcriptome sequencing and assembly resulted into 165,013 unigenes with 98 unigenes mapped to the resveratrol biosynthetic pathway. Differential expression analysis showed that P.cuspidatum strongly induced the genes directly involved in the resveratrol synthesis, including phenylalanine ammonia-lyase, cinnamic acid 4-hydroxylase, 4-coumarate-CoA ligase and stilbene synthase (STS) genes, while strongly decreased the chalcone synthase (CHS) genes after exposure to UV-C. Since CHS and STS share the same substrate, P. cuspidatum tends to preferentially divert the substrate to the resveratrol synthesis pathway under UV-C treatment. We identified several members of the MYB, bHLH and ERF families as potential regulators of the resveratrol biosynthesis genes.
Collapse
|
20
|
|
21
|
Lemaire-Chamley M, Mounet F, Deborde C, Maucourt M, Jacob D, Moing A. NMR-Based Tissular and Developmental Metabolomics of Tomato Fruit. Metabolites 2019; 9:metabo9050093. [PMID: 31075946 PMCID: PMC6571556 DOI: 10.3390/metabo9050093] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 04/30/2019] [Accepted: 05/07/2019] [Indexed: 11/30/2022] Open
Abstract
Fruit is a complex organ containing seeds and several interconnected tissues with dedicated roles. However, most biochemical or molecular studies about fleshy fruit development concern the entire fruit, the fruit without seeds, or pericarp only. We studied tomato (Solanum lycopersicum) fruit at four stages of development (12, 20, 35, and 45 days post-anthesis). We separated the seeds and the other tissues, exocarp, mesocarp, columella with placenta and locular tissue, and analyzed them individually using proton NMR metabolomic profiling for the quantification of major polar metabolites, enzymatic analysis of starch, and LC-DAD analysis of isoprenoids. Pericarp tissue represented about half of the entire fruit mass only. The composition of each fruit tissue changed during fruit development. An ANOVA-PCA highlighted common, and specific metabolite trends between tissues e.g., higher contents of chlorogenate in locular tissue and of starch in columella. Euclidian distances based on compositional data showed proximities within and between tissues. Several metabolic regulations differed between tissues as revealed by the comparison of metabolite networks based on correlations between compounds. This work stressed the role of specific tissues less studied than pericarp but that impact fruit organoleptic quality including its shape and taste, and fruit processing quality.
Collapse
Affiliation(s)
- Martine Lemaire-Chamley
- UMR1332 Biologie du Fruit et Pathologie, INRA, University Bordeaux, Centre INRA de Nouvelle Aquitaine-Bordeaux, 71 av Edouard Bourlaux, 33140 Villenave d'Ornon, France.
| | - Fabien Mounet
- UMR1332 Biologie du Fruit et Pathologie, INRA, University Bordeaux, Centre INRA de Nouvelle Aquitaine-Bordeaux, 71 av Edouard Bourlaux, 33140 Villenave d'Ornon, France.
| | - Catherine Deborde
- UMR1332 Biologie du Fruit et Pathologie, INRA, University Bordeaux, Centre INRA de Nouvelle Aquitaine-Bordeaux, 71 av Edouard Bourlaux, 33140 Villenave d'Ornon, France.
- Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux, MetaboHUB, IBVM, Centre INRA de Nouvelle Aquitaine-Bordeaux, 71 av Edouard Bourlaux, 33140 Villenave d'Ornon, France.
| | - Mickaël Maucourt
- UMR1332 Biologie du Fruit et Pathologie, INRA, University Bordeaux, Centre INRA de Nouvelle Aquitaine-Bordeaux, 71 av Edouard Bourlaux, 33140 Villenave d'Ornon, France.
- Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux, MetaboHUB, IBVM, Centre INRA de Nouvelle Aquitaine-Bordeaux, 71 av Edouard Bourlaux, 33140 Villenave d'Ornon, France.
| | - Daniel Jacob
- UMR1332 Biologie du Fruit et Pathologie, INRA, University Bordeaux, Centre INRA de Nouvelle Aquitaine-Bordeaux, 71 av Edouard Bourlaux, 33140 Villenave d'Ornon, France.
- Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux, MetaboHUB, IBVM, Centre INRA de Nouvelle Aquitaine-Bordeaux, 71 av Edouard Bourlaux, 33140 Villenave d'Ornon, France.
| | - Annick Moing
- UMR1332 Biologie du Fruit et Pathologie, INRA, University Bordeaux, Centre INRA de Nouvelle Aquitaine-Bordeaux, 71 av Edouard Bourlaux, 33140 Villenave d'Ornon, France.
- Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux, MetaboHUB, IBVM, Centre INRA de Nouvelle Aquitaine-Bordeaux, 71 av Edouard Bourlaux, 33140 Villenave d'Ornon, France.
| |
Collapse
|
22
|
The Role of UV-B light on Small RNA Activity During Grapevine Berry Development. G3-GENES GENOMES GENETICS 2019; 9:769-787. [PMID: 30647106 PMCID: PMC6404619 DOI: 10.1534/g3.118.200805] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
We explored the effects of ultraviolet B radiation (UV-B) on the developmental dynamics of microRNAs and phased small-interfering-RNA (phasi-RNAs)-producing loci by sequencing small RNAs in vegetative and reproductive organs of grapevine (Vitis vinifera L.). In particular, we tested different UV-B conditions in in vitro-grown plantlets (high-fluence exposition) and in berries from field-grown (radiation filtering) and greenhouse-grown (low- and high-fluence expositions) adult plants throughout fruit development and ripening. The functional significance of the observed UV-coordinated miRNA responses was supported by degradome evidences of ARGONAUTE (AGO)-programmed slicing of mRNAs. Co-expression patterns of the up-regulated miRNAs miR156, miR482, miR530, and miR828 with cognate target gene expressions in response to high-fluence UV-B was tested by q-RT-PCR. The observed UV-response relationships were also interrogated against two published UV-stress and developmental transcriptome datasets. Together, the dynamics observed between miRNAs and targets suggest that changes in target abundance are mediated transcriptionally and, in some cases, modulated post-transcriptionally by miRNAs. Despite the major changes in target abundance are being controlled primarily by those developmental effects that are similar between treatments, we show evidence for novel miRNA-regulatory networks in grape. A model is proposed where high-fluence UV-B increases miR168 and miR530 that target ARGONAUTE 1 (AGO1) and a Plus-3 domain mRNA, respectively, while decreasing miR403 that targets AGO2, thereby coordinating post-transcriptional gene silencing activities by different AGOs. Up-regulation of miR3627/4376 could facilitate anthocyanin accumulation by antagonizing a calcium effector, whereas miR395 and miR399, induced by micronutrient deficiencies known to trigger anthocyanin accumulation, respond positively to UV-B radiation. Finally, increases in the abundance of an anthocyanin-regulatory MYB-bHLH-WD40 complex elucidated in Arabidopsis, mediated by UV-B-induced changes in miR156/miR535, could contribute to the observed up-regulation of miR828. In turn, miR828 would regulate the AtMYB113-ortologues MYBA5, A6 and A7 (and thereby anthocyanins) via a widely conserved and previously validated auto-regulatory loop involving miR828 and phasi TAS4abc RNAs.
Collapse
|
23
|
Ma F, Yao W, Wang L, Wang Y. Dynamic translocation of stilbene synthase VpSTS29 from a Chinese wild Vitis species upon UV irradiation. PHYTOCHEMISTRY 2019; 159:137-147. [PMID: 30611873 DOI: 10.1016/j.phytochem.2018.12.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 12/09/2018] [Accepted: 12/26/2018] [Indexed: 06/09/2023]
Abstract
Stilbene phytoalexins derived from grapevine can be rapidly accumulated when exposed to an artificial UV-C treatment. However, the underlying mechanisms involved in this accumulation and translocation are unclear. Here, we describe an investigation of the influence of UV-C treatment on the dynamic subcellular distribution of a member of a stilbene synthase family VpSTS29 derived from Chinese wild Vitis pseudoreticulata W.T. Wang when over-expressed in V. vinifera L. cv. Thompson Seedless. Our results show that VpSTS29-GFP was accumulated at a relatively high level in roots and mature leaves of transgenic grape lines, and was predominantly distributed in the cytoplasm. When exposed to UV-C irradiation, VpSTS29 displayed UV-induced feature coupled with the accumulation of stilbene compounds. Notably, VpSTS29-GFP can be translocated from the cytoplasm into chloroplasts upon UV-irradiation. Leaves from the two VpSTS29-GFP-expressing lines displayed more serious UV damage, showing withering and marginal scorching phenotype, and decreased content of H2O2, compared to the untransformed plant. Also, overexpression of VpSTS29 altered the expression of genes related to redox regulation, stilbene biosynthesis and light stimulus. Co-expression of VpSTS29-GFP with Glycolate oxidase 1 (myc-VpGLO1) confirmed the ability of stilbenes to decrease the content of H2O2 in Arabidopsis mesophyll protoplasts. These results provide new insight into the biological functions and properties of stilbene synthase and its product in response to environmental stimulus.
Collapse
Affiliation(s)
- Fuli Ma
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, People's Republic of China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, People's Republic of China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Wenkong Yao
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, People's Republic of China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, People's Republic of China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Lei Wang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, People's Republic of China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, People's Republic of China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yuejin Wang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, People's Republic of China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, People's Republic of China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
24
|
Vandelle E, Vannozzi A, Wong D, Danzi D, Digby AM, Dal Santo S, Astegno A. Identification, characterization, and expression analysis of calmodulin and calmodulin-like genes in grapevine (Vitis vinifera) reveal likely roles in stress responses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 129:221-237. [PMID: 29908490 DOI: 10.1016/j.plaphy.2018.06.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 05/09/2018] [Accepted: 06/02/2018] [Indexed: 05/23/2023]
Abstract
Calcium (Ca2+) is an ubiquitous key second messenger in plants, where it modulates many developmental and adaptive processes in response to various stimuli. Several proteins containing Ca2+ binding domain have been identified in plants, including calmodulin (CaM) and calmodulin-like (CML) proteins, which play critical roles in translating Ca2+ signals into proper cellular responses. In this work, a genome-wide analysis conducted in Vitis vinifera identified three CaM- and 62 CML-encoding genes. We assigned gene family nomenclature, analyzed gene structure, chromosomal location and gene duplication, as well as protein motif organization. The phylogenetic clustering revealed a total of eight subgroups, including one unique clade of VviCaMs distinct from VviCMLs. VviCaMs were found to contain four EF-hand motifs whereas VviCML proteins have one to five. Most of grapevine CML genes were intronless, while VviCaMs were intron rich. All the genes were well spread among the 19 grapevine chromosomes and displayed a high level of duplication. The expression profiling of VviCaM/VviCML genes revealed a broad expression pattern across all grape organs and tissues at various developmental stages, and a significant modulation in biotic stress-related responses. Our results highlight the complexity of CaM/CML protein family also in grapevine, supporting the versatile role of its different members in modulating cellular responses to various stimuli, in particular to biotic stresses. This work lays the foundation for further functional and structural studies on specific grapevine CaMs/CMLs in order to better understand the role of Ca2+-binding proteins in grapevine and to explore their potential for further biotechnological applications.
Collapse
Affiliation(s)
- Elodie Vandelle
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
| | - Alessandro Vannozzi
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, 35020 Legnaro, Padova, Italy.
| | - Darren Wong
- Ecology and Evolution, Research School of Biology, The Australian National University, Acton ACT 2601, Australia.
| | - Davide Danzi
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
| | - Anne-Marie Digby
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
| | - Silvia Dal Santo
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
| | - Alessandra Astegno
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
| |
Collapse
|
25
|
Ma F, Wang L, Wang Y. Ectopic expression of VpSTS29, a stilbene synthase gene from Vitis pseudoreticulata, indicates STS presence in cytosolic oil bodies. PLANTA 2018; 248:89-103. [PMID: 29589146 DOI: 10.1007/s00425-018-2883-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/17/2018] [Indexed: 05/03/2023]
Abstract
Stilbene synthase (STS) and its metabolic products are accumulated in senescing grapevine leaves. Ectopic expression of VpSTS29 in Arabidopsis shows the presence of VpSTS29 in oil bodies and increases trans-piceid in developing leaves. Stilbenes are the natural antimicrobial phytoalexins that are synthesised via the phenylpropanoid pathway. STS is the key enzyme catalysing the production of stilbenes. We have previously reported that the VpSTS29 gene plays an important role in powdery mildew resistance in Vitis pseudoreticulata. However, the synthesis and accumulation of these stilbene products in plant cells remain unclear. Here, we demonstrate that VpSTS29 is present in cytosolic oil bodies and can be transported into the vacuole at particular plant-developmental stages. Western blot and high-performance liquid chromatography showed that STS and trans-piceid accumulated in senescent grape leaves and in pVpSTS29::VpSTS29-expressing Arabidopsis during age-dependent leaf senescence. Subcellular localisation analyses indicated VpSTS29-GFP was present in the cytoplasm and in STS-containing bodies in Arabidopsis. Nile red staining, co-localisation and immunohistochemistry analyses of leaves confirmed that the STS-containing bodies were oil bodies and that these moved randomly in the cytoplasm and vacuole. Detection of protein profiles revealed that no free GFP was detected in the pVpSTS29::VpSTS29-GFP-expressing protoplasts or in Arabidopsis during the dark-light cycle, demonstrating that GFP fluorescence distributed in the STS-containing bodies and vacuole was the VpSTS29-GFP fusion protein. Intriguingly, in comparison to the controls, over-expression of VpSTS29 in Arabidopsis resulted in relatively high levels of trans-piceid, chlorophyll content and of photochemical efficiency accompanied by delayed leaf senescence. These results provide exciting new insights into the subcellular localisation of STS in plant cells and information about stilbene synthesis and storage.
Collapse
Affiliation(s)
- Fuli Ma
- College of Horticulture, Northwest A & F University, No. 3 Taicheng Road, Yangling, 712100, Shaanxi, People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Lei Wang
- College of Horticulture, Northwest A & F University, No. 3 Taicheng Road, Yangling, 712100, Shaanxi, People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Yuejin Wang
- College of Horticulture, Northwest A & F University, No. 3 Taicheng Road, Yangling, 712100, Shaanxi, People's Republic of China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China.
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
26
|
Billet K, Houillé B, Dugé de Bernonville T, Besseau S, Oudin A, Courdavault V, Delanoue G, Guérin L, Clastre M, Giglioli-Guivarc'h N, Lanoue A. Field-Based Metabolomics of Vitis vinifera L. Stems Provides New Insights for Genotype Discrimination and Polyphenol Metabolism Structuring. FRONTIERS IN PLANT SCIENCE 2018; 9:798. [PMID: 29977248 PMCID: PMC6021511 DOI: 10.3389/fpls.2018.00798] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/24/2018] [Indexed: 05/21/2023]
Abstract
Grape accumulates numerous polyphenols with abundant health benefit and organoleptic properties that in planta act as key components of the plant defense system against diseases. Considerable advances have been made in the chemical characterization of wine metabolites particularly volatile and polyphenolic compounds. However, the metabotyping (metabolite-phenotype characterization) of grape varieties, from polyphenolic-rich vineyard by-product is unprecedented. As this composition might result from the complex interaction between genotype, environment and viticultural practices, a field experiment was setting up with uniform pedo-climatic factors and viticultural practices of growing vines to favor the genetic determinism of polyphenol expression. As a result, UPLC-MS-based targeted metabolomic analyses of grape stems from 8 Vitis vinifera L. cultivars allowed the determination of 42 polyphenols related to phenolic acids, flavonoids, procyanidins, and stilbenoids as resveratrol oligomers (degree of oligomerization 1-4). Using a partial least-square discriminant analysis approach, grape stem chemical profiles were discriminated according to their genotypic origin showing that polyphenol profile express a varietal signature. Furthermore, hierarchical clustering highlights various degree of polyphenol similarity between grape varieties that were in agreement with the genetic distance using clustering analyses of 22 microsatellite DNA markers. Metabolite correlation network suggested that several polyphenol subclasses were differently controlled. The present polyphenol metabotyping approach coupled to multivariate statistical analyses might assist grape selection programs to improve metabolites with both health-benefit potential and plant defense traits.
Collapse
Affiliation(s)
- Kévin Billet
- EA 2106 Biomolécules et Biotechnologie Végétales, Université de Tours, Faculté des Sciences Pharmaceutiques, Tours, France
| | - Benjamin Houillé
- EA 2106 Biomolécules et Biotechnologie Végétales, Université de Tours, Faculté des Sciences Pharmaceutiques, Tours, France
| | - Thomas Dugé de Bernonville
- EA 2106 Biomolécules et Biotechnologie Végétales, Université de Tours, Faculté des Sciences Pharmaceutiques, Tours, France
| | - Sébastien Besseau
- EA 2106 Biomolécules et Biotechnologie Végétales, Université de Tours, Faculté des Sciences Pharmaceutiques, Tours, France
| | - Audrey Oudin
- EA 2106 Biomolécules et Biotechnologie Végétales, Université de Tours, Faculté des Sciences Pharmaceutiques, Tours, France
| | - Vincent Courdavault
- EA 2106 Biomolécules et Biotechnologie Végétales, Université de Tours, Faculté des Sciences Pharmaceutiques, Tours, France
| | | | | | - Marc Clastre
- EA 2106 Biomolécules et Biotechnologie Végétales, Université de Tours, Faculté des Sciences Pharmaceutiques, Tours, France
| | - Nathalie Giglioli-Guivarc'h
- EA 2106 Biomolécules et Biotechnologie Végétales, Université de Tours, Faculté des Sciences Pharmaceutiques, Tours, France
| | - Arnaud Lanoue
- EA 2106 Biomolécules et Biotechnologie Végétales, Université de Tours, Faculté des Sciences Pharmaceutiques, Tours, France
| |
Collapse
|
27
|
Yin X, Huang L, Zhang X, Guo C, Wang H, Li Z, Wang X. Expression patterns and promoter characteristics of the Vitis quinquangularis VqSTS36 gene involved in abiotic and biotic stress response. PROTOPLASMA 2017; 254:2247-2261. [PMID: 28470373 DOI: 10.1007/s00709-017-1116-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 04/23/2017] [Indexed: 05/13/2023]
Abstract
Resveratrol is a stilbene compound that is synthesized by plants in response to biotic stress and has been linked to health benefits associated with the consumption of certain foods and food products, such as grapes and wine. The final step in the biosynthesis of resveratrol is catalyzed by the enzyme stilbene synthase (STS). Here, we assessed the expression of two STS genes (VqSTS36 and VpSTS36) from the wild grape species Vitis quinquangularis (accession 'Shang-24'; powdery mildew (PM) resistant) and Vitis pseudoreticulata (accession 'Hunan-1'; PM susceptible) following infection by Uncinula necator (Schw.) Burr, the causal agent of PM disease. Some correlation was observed between the relative levels of STS36 transcript and disease resistance. We also cloned the 5' upstream sequence of both VpSTS36 and VqSTS36 and generated a series of 5' VqSTS36 promoter deletions fused to the GUS reporter gene in order to analyze expression in response to wounding, the application of exogenous stress-associated hormones, and biotic stress in tobacco leaves. The promoter was shown to be induced by the hormone salicylic acid (SA), inoculation with the fungal pathogen Erysiphe cichoracearum, and by wounding. These results suggest that VqSTS36 is regulated by biotic stresses and that it plays an important role in mediating disease resistance in grape.
Collapse
Affiliation(s)
- Xiangjing Yin
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Li Huang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiuming Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chunlei Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hao Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhi Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
28
|
Dubrovina AS, Kiselev KV. Regulation of stilbene biosynthesis in plants. PLANTA 2017; 246:597-623. [PMID: 28685295 DOI: 10.1007/s00425-017-2730-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/28/2017] [Indexed: 05/18/2023]
Abstract
This review analyzes the advances in understanding the natural signaling pathways and environmental factors regulating stilbene biosynthesis. We also discuss the studies reporting on stilbene content and repertoire in plants. Stilbenes, including the most-studied stilbene resveratrol, are a family of phenolic plant secondary metabolites that have been the subject of intensive research due to their valuable pharmaceutical effects and contribution to plant disease resistance. Understanding the natural mechanisms regulating stilbene biosynthesis in plants could be useful for both the development of new plant protection strategies and for commercial stilbene production. In this review, we focus on the environmental factors and cell signaling pathways regulating stilbene biosynthesis in plants and make a comparison with the regulation of flavonoid biosynthesis. This review also analyzes the recent data on stilbene biosynthetic genes and summarizes the available studies reporting on both stilbene content and stilbene composition in different plant families.
Collapse
Affiliation(s)
- A S Dubrovina
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia.
| | - K V Kiselev
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia.
- Department of Biotechnology and Microbiology, The School of Natural Sciences, Far Eastern Federal University, Vladivostok, 690090, Russia.
| |
Collapse
|
29
|
Costantini L, Kappel CD, Trenti M, Battilana J, Emanuelli F, Sordo M, Moretto M, Camps C, Larcher R, Delrot S, Grando MS. Drawing Links from Transcriptome to Metabolites: The Evolution of Aroma in the Ripening Berry of Moscato Bianco ( Vitis vinifera L.). FRONTIERS IN PLANT SCIENCE 2017; 8:780. [PMID: 28559906 PMCID: PMC5432621 DOI: 10.3389/fpls.2017.00780] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/25/2017] [Indexed: 05/29/2023]
Abstract
Monoterpenes confer typical floral notes to "Muscat" grapevine varieties and, to a lesser extent, to other aromatic non-Muscat varieties. Previous studies have led to the identification and functional characterization of some enzymes and genes in this pathway. However, the underlying genetic map is still far from being complete. For example, the specific steps of monoterpene metabolism and its regulation are largely unknown. With the aim of identifying new candidates for the missing links, we applied an integrative functional genomics approach based on the targeted metabolic and genome-wide transcript profiling of Moscato Bianco ripening berries. In particular, gas chromatography-mass spectrometry analysis of free and bound terpenoid compounds was combined with microarray analysis in the skins of berries collected at five developmental stages from pre-veraison to over-ripening. Differentially expressed metabolites and probes were identified in the pairwise comparison between time points by using the early stage as a reference. Metabolic and transcriptomic data were integrated through pairwise correlation and clustering approaches to discover genes linked with particular metabolites or groups of metabolites. These candidate transcripts were further checked for co-localization with quantitative trait loci (QTLs) affecting aromatic compounds. Our findings provide insights into the biological networks of grapevine secondary metabolism, both at the catalytic and regulatory levels. Examples include a nudix hydrolase as component of a terpene synthase-independent pathway for monoterpene biosynthesis, genes potentially involved in monoterpene metabolism (cytochrome P450 hydroxylases, epoxide hydrolases, glucosyltransferases), transport (vesicle-associated proteins, ABCG transporters, glutathione S-transferases, amino acid permeases), and transcriptional control (transcription factors of the ERF, MYB and NAC families, intermediates in light- and circadian cycle-mediated regulation with supporting evidence from the literature and additional regulatory genes with a previously unreported association to monoterpene accumulation).
Collapse
Affiliation(s)
- Laura Costantini
- Grapevine Genetics and Breeding Unit, Genomics and Biology of Fruit Crop Department, Research and Innovation Centre, Fondazione Edmund MachSan Michele all'Adige, Italy
| | - Christian D. Kappel
- UMR Ecophysiology and Grape Functional Genomics, Institut des Sciences de la Vigne et du Vin, University of BordeauxVillenave d'Ornon, France
| | - Massimiliano Trenti
- Grapevine Genetics and Breeding Unit, Genomics and Biology of Fruit Crop Department, Research and Innovation Centre, Fondazione Edmund MachSan Michele all'Adige, Italy
| | - Juri Battilana
- Grapevine Genetics and Breeding Unit, Genomics and Biology of Fruit Crop Department, Research and Innovation Centre, Fondazione Edmund MachSan Michele all'Adige, Italy
| | - Francesco Emanuelli
- Grapevine Genetics and Breeding Unit, Genomics and Biology of Fruit Crop Department, Research and Innovation Centre, Fondazione Edmund MachSan Michele all'Adige, Italy
| | - Maddalena Sordo
- Grapevine Genetics and Breeding Unit, Genomics and Biology of Fruit Crop Department, Research and Innovation Centre, Fondazione Edmund MachSan Michele all'Adige, Italy
| | - Marco Moretto
- Computational Biology Platform, Research and Innovation Centre, Fondazione Edmund MachSan Michele all'Adige, Italy
| | - Céline Camps
- UMR Ecophysiology and Grape Functional Genomics, Institut des Sciences de la Vigne et du Vin, University of BordeauxVillenave d'Ornon, France
| | - Roberto Larcher
- Experiment and Technological Services Department, Technology Transfer Centre, Fondazione Edmund MachSan Michele all'Adige, Italy
| | - Serge Delrot
- UMR Ecophysiology and Grape Functional Genomics, Institut des Sciences de la Vigne et du Vin, University of BordeauxVillenave d'Ornon, France
| | - Maria S. Grando
- Grapevine Genetics and Breeding Unit, Genomics and Biology of Fruit Crop Department, Research and Innovation Centre, Fondazione Edmund MachSan Michele all'Adige, Italy
- Center Agriculture Food Environment, University of TrentoSan Michele all'Adige, Italy
| |
Collapse
|
30
|
Hasan M, Bae H. An Overview of Stress-Induced Resveratrol Synthesis in Grapes: Perspectives for Resveratrol-Enriched Grape Products. Molecules 2017; 22:E294. [PMID: 28216605 PMCID: PMC6155908 DOI: 10.3390/molecules22020294] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/09/2017] [Indexed: 12/20/2022] Open
Abstract
Resveratrol is the most important stilbene phytoalexin synthesized naturally or induced in plants, as a part of their defense mechanism. Grapes and their derivative products, including juice and wine, are the most important natural sources of resveratrol, consisting of notably higher amounts than other natural sources like peanuts. Consumption of red wine with its presence of resveratrol explained the "French Paradox". Hence, the demand of resveratrol from grapes is increasing. Moreover, as a natural source of resveratrol, grapes became very important in the nutraceutical industry for their benefits to human health. The accumulation of resveratrol in grape skin, juice, and wine has been found to be induced by the external stimuli: microbial infection, ultrasonication (US) treatment, light-emitting diode (LED), ultra violet (UV) irradiation, elicitors or signaling compounds, macronutrients, and fungicides. Phenylalanine ammonia lyase, cinnamate-4-hydroxylase, coumaroyl-CoA ligase, and stilbene synthase play a key role in the synthesis of resveratrol. The up-regulation of those genes have the positive relationship with the elicited accumulation of resveratrol. In this review, we encapsulate the effect of different external stimuli (biotic and abiotic stresses or signaling compounds) in order to obtain the maximum accumulation of resveratrol in grape skin, leaves, juice, wine, and cell cultures.
Collapse
Affiliation(s)
- Mohidul Hasan
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Korea.
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Korea.
| |
Collapse
|
31
|
Adrian M, Lucio M, Roullier-Gall C, Héloir MC, Trouvelot S, Daire X, Kanawati B, Lemaître-Guillier C, Poinssot B, Gougeon R, Schmitt-Kopplin P. Metabolic Fingerprint of PS3-Induced Resistance of Grapevine Leaves against Plasmopara viticola Revealed Differences in Elicitor-Triggered Defenses. FRONTIERS IN PLANT SCIENCE 2017; 8:101. [PMID: 28261225 PMCID: PMC5306141 DOI: 10.3389/fpls.2017.00101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/18/2017] [Indexed: 05/05/2023]
Abstract
Induction of plant resistance against pathogens by defense elicitors constitutes an attractive strategy to reduce the use of fungicides in crop protection. However, all elicitors do not systematically confer protection against pathogens. Elicitor-induced resistance (IR) thus merits to be further characterized in order to understand what makes an elicitor efficient. In this study, the oligosaccharidic defense elicitors H13 and PS3, respectively, ineffective and effective to trigger resistance of grapevine leaves against downy mildew, were used to compare their effect on the global leaf metabolism. Ultra high resolution mass spectrometry (FT-ICR-MS) analysis allowed us to obtain and compare the specific metabolic fingerprint induced by each elicitor and to characterize the associated metabolic pathways. Moreover, erythritol phosphate was identified as a putative marker of elicitor-IR.
Collapse
Affiliation(s)
- Marielle Adrian
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-ComtéDijon, France
- *Correspondence: Marielle Adrian,
| | - Marianna Lucio
- Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherberg, Germany
| | - Chloé Roullier-Gall
- Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherberg, Germany
| | - Marie-Claire Héloir
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-ComtéDijon, France
| | - Sophie Trouvelot
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-ComtéDijon, France
| | - Xavier Daire
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-ComtéDijon, France
| | - Basem Kanawati
- Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherberg, Germany
| | | | - Benoît Poinssot
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-ComtéDijon, France
| | - Régis Gougeon
- UMR PAM Université de Bourgogne/AgroSupDijon, Institut Universitaire de la Vigne et du Vin, Jules GuyotDijon, France
| | - Philippe Schmitt-Kopplin
- Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherberg, Germany
- Chair of Analytical Food Chemistry, Technische Universität MünchenFreising-Weihenstephan, Germany
| |
Collapse
|
32
|
Wu B, Gao L, Gao J, Xu Y, Liu H, Cao X, Zhang B, Chen K. Genome-Wide Identification, Expression Patterns, and Functional Analysis of UDP Glycosyltransferase Family in Peach ( Prunus persica L. Batsch). FRONTIERS IN PLANT SCIENCE 2017; 8:389. [PMID: 28382047 PMCID: PMC5360731 DOI: 10.3389/fpls.2017.00389] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 03/07/2017] [Indexed: 05/18/2023]
Abstract
Peach (Prunus persica L. Batsch) is a commercial grown fruit trees, important because of its essential nutrients and flavor promoting secondary metabolites. The glycosylation processes mediated by UDP-glycosyltransferases (UGTs) play an important role in regulating secondary metabolites availability. Identification and characterization of peach UGTs is therefore a research priority. A total of 168 peach UGT genes that distributed unevenly across chromosomes were identified based on their conserved PSPG motifs. Phylogenetic analysis of these genes with plant UGTs clustered them into 16 groups (A-P). Comparison of the patterns of intron-extron and their positions within genes revealed one highly conserved intron insertion event in peach UGTs. Tissue specificity, temporal expression patterns in peach fruit during development and ripening, and in response to abiotic stress UV-B irradiation was investigated using RNA-seq strategy. The relationship between UGTs transcript levels and concentrations of glycosylated volatiles was examined to select candidates for functional analysis. Heterologous expressing these candidate genes in Escherichia coli identified UGTs that were involved in the in vitro volatile glycosylation. Our results provide an important source for the identification of functional UGT genes to potential manipulate secondary biosynthesis in peach.
Collapse
|
33
|
Serrano A, Espinoza C, Armijo G, Inostroza-Blancheteau C, Poblete E, Meyer-Regueiro C, Arce A, Parada F, Santibáñez C, Arce-Johnson P. Omics Approaches for Understanding Grapevine Berry Development: Regulatory Networks Associated with Endogenous Processes and Environmental Responses. FRONTIERS IN PLANT SCIENCE 2017; 8:1486. [PMID: 28936215 PMCID: PMC5594091 DOI: 10.3389/fpls.2017.01486] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/10/2017] [Indexed: 05/21/2023]
Abstract
Grapevine fruit development is a dynamic process that can be divided into three stages: formation (I), lag (II), and ripening (III), in which physiological and biochemical changes occur, leading to cell differentiation and accumulation of different solutes. These stages can be positively or negatively affected by multiple environmental factors. During the last decade, efforts have been made to understand berry development from a global perspective. Special attention has been paid to transcriptional and metabolic networks associated with the control of grape berry development, and how external factors affect the ripening process. In this review, we focus on the integration of global approaches, including proteomics, metabolomics, and especially transcriptomics, to understand grape berry development. Several aspects will be considered, including seed development and the production of seedless fruits; veraison, at which anthocyanin accumulation begins in the berry skin of colored varieties; and hormonal regulation of berry development and signaling throughout ripening, focusing on the transcriptional regulation of hormone receptors, protein kinases, and genes related to secondary messenger sensing. Finally, berry responses to different environmental factors, including abiotic (temperature, water-related stress and UV-B radiation) and biotic (fungi and viruses) stresses, and how they can significantly modify both, development and composition of vine fruit, will be discussed. Until now, advances have been made due to the application of Omics tools at different molecular levels. However, the potential of these technologies should not be limited to the study of single-level questions; instead, data obtained by these platforms should be integrated to unravel the molecular aspects of grapevine development. Therefore, the current challenge is the generation of new tools that integrate large-scale data to assess new questions in this field, and to support agronomical practices.
Collapse
Affiliation(s)
- Alejandra Serrano
- Laboratorio de Biología Molecular y Biotecnología Vegetal, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Carmen Espinoza
- Laboratorio de Biología Molecular y Biotecnología Vegetal, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Grace Armijo
- Laboratorio de Biología Molecular y Biotecnología Vegetal, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Claudio Inostroza-Blancheteau
- Núcleo de Investigación en Producción Alimentaría, Facultad de Recursos Naturales, Escuela de Agronomía, Universidad Católica de TemucoTemuco, Chile
| | - Evelyn Poblete
- Laboratorio de Biología Molecular y Biotecnología Vegetal, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Carlos Meyer-Regueiro
- Laboratorio de Biología Molecular y Biotecnología Vegetal, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Anibal Arce
- Laboratorio de Biología Molecular y Biotecnología Vegetal, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Francisca Parada
- Laboratorio de Biología Molecular y Biotecnología Vegetal, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Claudia Santibáñez
- Laboratorio de Biología Molecular y Biotecnología Vegetal, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de ChileSantiago, Chile
- Ecophysiology and Functional Genomic of Grapevine, Institut des Sciences de la Vigne et du Vin, Institut National de la Recherche Agronomique, Université de BordeauxBordeaux, France
| | - Patricio Arce-Johnson
- Laboratorio de Biología Molecular y Biotecnología Vegetal, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de ChileSantiago, Chile
- *Correspondence: Patricio Arce-Johnson,
| |
Collapse
|
34
|
Ariani P, Regaiolo A, Lovato A, Giorgetti A, Porceddu A, Camiolo S, Wong D, Castellarin S, Vandelle E, Polverari A. Genome-wide characterisation and expression profile of the grapevine ATL ubiquitin ligase family reveal biotic and abiotic stress-responsive and development-related members. Sci Rep 2016; 6:38260. [PMID: 27910910 PMCID: PMC5133618 DOI: 10.1038/srep38260] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 11/08/2016] [Indexed: 01/09/2023] Open
Abstract
The Arabidopsis Tóxicos en Levadura (ATL) protein family is a class of E3 ubiquitin ligases with a characteristic RING-H2 Zn-finger structure that mediates diverse physiological processes and stress responses in plants. We carried out a genome-wide survey of grapevine (Vitis vinifera L.) ATL genes and retrieved 96 sequences containing the canonical ATL RING-H2 domain. We analysed their genomic organisation, gene structure and evolution, protein domains and phylogenetic relationships. Clustering revealed several clades, as already reported in Arabidopsis thaliana and rice (Oryza sativa), with an expanded subgroup of grapevine-specific genes. Most of the grapevine ATL genes lacked introns and were scattered among the 19 chromosomes, with a high level of duplication retention. Expression profiling revealed that some ATL genes are expressed specifically during early or late development and may participate in the juvenile to mature plant transition, whereas others may play a role in pathogen and/or abiotic stress responses, making them key candidates for further functional analysis. Our data offer the first genome-wide overview and annotation of the grapevine ATL family, and provide a basis for investigating the roles of specific family members in grapevine physiology and stress responses, as well as potential biotechnological applications.
Collapse
Affiliation(s)
- Pietro Ariani
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, Verona, 37134, Italy
| | - Alice Regaiolo
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, Verona, 37134, Italy
| | - Arianna Lovato
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, Verona, 37134, Italy
| | - Alejandro Giorgetti
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, Verona, 37134, Italy
| | - Andrea Porceddu
- Università degli Studi di Sassari, Dipartimento di Agraria, SACEG, Via Enrico De Nicola 1, Sassari, 07100, Italy
| | - Salvatore Camiolo
- Università degli Studi di Sassari, Dipartimento di Agraria, SACEG, Via Enrico De Nicola 1, Sassari, 07100, Italy
| | - Darren Wong
- Wine Research Centre, University of British Columbia, 326-2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Simone Castellarin
- Wine Research Centre, University of British Columbia, 326-2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Elodie Vandelle
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, Verona, 37134, Italy
| | - Annalisa Polverari
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, Verona, 37134, Italy
| |
Collapse
|
35
|
Comparative Transcriptomic Analysis of Grape Berry in Response to Root Restriction during Developmental Stages. Molecules 2016; 21:molecules21111431. [PMID: 27801843 PMCID: PMC6272988 DOI: 10.3390/molecules21111431] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/16/2016] [Accepted: 10/22/2016] [Indexed: 01/05/2023] Open
Abstract
Root restriction improved berry quality by being involved in diverse aspects of grapevine life. However, the molecular mechanism driving this process is not understood very well. In this study, the ‘Summer Black’ grape berry (Vitis vinifera × V. labrusca) under root restriction was investigated, which showed an increase of total soluble solids (TSS), color index of red grapes (CIRG) value, anthocyanins accumulation, total phenolics and total procyanidins contents during berry development compared with those in control berries. The transcriptomic changes induced by root restriction in ‘Summer Black’ grape over the course of berry development were analyzed by RNA-Seq method. A total of 29,971 genes were generated in ‘Summer Black’ grape berry during development, among which, 1606 genes were significantly responded to root restriction. Furthermore, 1264, 313, 141, 246 and 19 sequences were significantly changed at S1, S2, S3, S4 and S5 sample points, respectively. The gene (VIT_04s0023g02290) predicted as a salicylate O-methyltransferase was differentially expressed in all developmental stages. Gene Ontology (GO) enrichment showed that response to organic nitrogen, response to endogenous stimulus, flavonoid metabolic process, phenylpropanoid biosynthetic process and cell wall macromolecule metabolic process were the main significant differential categories. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment revealed plant–pathogen interaction, plant hormone signal transduction, flavone and flavonol biosynthesis, flavonoid biosynthesis and glucosinolate biosynthesis were the main significant differential pathways. The results of the present study provided a genetic base for the understanding of grape berry fruit quality improvement under root restriction.
Collapse
|
36
|
Matus JT. Transcriptomic and Metabolomic Networks in the Grape Berry Illustrate That it Takes More Than Flavonoids to Fight Against Ultraviolet Radiation. FRONTIERS IN PLANT SCIENCE 2016; 7:1337. [PMID: 27625679 PMCID: PMC5003916 DOI: 10.3389/fpls.2016.01337] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 08/19/2016] [Indexed: 05/18/2023]
Abstract
Plants are constantly challenged by environmental fluctuations. In response, they have developed a wide range of morphological and biochemical adaptations committed to ameliorate the effects of abiotic stress. When exposed to higher solar radiation levels, plants activate the synthesis of a large set of enzymes and secondary metabolites as part of a complex sunscreen and antioxidant defense mechanism. Grapevine (Vitis vinifera L.) has become a widely used system for studying adaptive responses to this type of stress since changes in berry composition, positively influenced by increased ultraviolet (UV) radiation levels, improve the quality of wines subsequently produced. Despite the fact that most of the attention has been directed toward the synthesis of flavonoids, recent transcriptomic and metabolomic studies have shown that stilbenoids and isoprenoids (e.g., terpenes and carotenoids) are also an important part of the grape UV-response machinery. This minireview focuses on the latest findings referring to the metabolic responses of grapes to UV radiation and proposes a model for its transcriptional control. Depending on the berry developmental stage and the type of radiation (i.e., irradiance level, exposure length), increased UV levels activate different metabolic pathways through the activity of master regulators belonging to the basic Leucine Zipper Domain (bZIP) and R2R3-MYB transcription factor families. This transcriptional control is influenced by the interaction of other environmental factors such as light, temperature or soil water availability. In grapevine, phenylpropanoids are part of, but are not the whole story, in the fight against radiation damage.
Collapse
Affiliation(s)
- José Tomás Matus
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, BarcelonaSpain
| |
Collapse
|
37
|
Nakabayashi R, Saito K. Ultrahigh resolution metabolomics for S-containing metabolites. Curr Opin Biotechnol 2016; 43:8-16. [PMID: 27459328 DOI: 10.1016/j.copbio.2016.07.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 06/30/2016] [Accepted: 07/06/2016] [Indexed: 01/09/2023]
Abstract
The advent of the genome-editing era greatly increases the opportunities for synthetic biology research that aims to enhance production of potentially useful bioactive metabolites in heterologous hosts. A wide variety of sulfur (S)-containing metabolites (S-metabolites) are known to possess bioactivities and health-promoting properties, but finding them and their chemical assignment using mass spectrometry-based metabolomics has been difficult. In this review, we highlight recent advances on the targeted metabolomic analysis of S-metabolites (S-omics) in plants using ultrahigh resolution mass spectrometry. The use of exact mass and signal intensity differences between 32S-containing monoisotopic ions and counterpart 34S isotopic ions exploits an entirely new method to characterize S-metabolites. Finally, we discuss the availability of S-omics for synthetic biology.
Collapse
Affiliation(s)
- Ryo Nakabayashi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| |
Collapse
|
38
|
Resveratrol Inhibition of Cellular Respiration: New Paradigm for an Old Mechanism. Int J Mol Sci 2016; 17:368. [PMID: 26999118 PMCID: PMC4813228 DOI: 10.3390/ijms17030368] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 02/26/2016] [Accepted: 03/08/2016] [Indexed: 12/24/2022] Open
Abstract
Resveratrol (3,4′,5-trihydroxy-trans-stilbene, RSV) has emerged as an important molecule in the biomedical area. This is due to its antioxidant and health benefits exerted in mammals. Nonetheless, early studies have also demonstrated its toxic properties toward plant-pathogenic fungi of this phytochemical. Both effects appear to be opposed and caused by different molecular mechanisms. However, the inhibition of cellular respiration is a hypothesis that might explain both toxic and beneficial properties of resveratrol, since this phytochemical: (1) decreases the production of energy of plant-pathogenic organisms, which prevents their proliferation; (2) increases adenosine monophosphate/adenosine diphosphate (AMP/ADP) ratio that can lead to AMP protein kinase (AMPK) activation, which is related to its health effects, and (3) increases the reactive oxygen species generation by the inhibition of electron transport. This pro-oxidant effect induces expression of antioxidant enzymes as a mechanism to counteract oxidative stress. In this review, evidence is discussed that supports the hypothesis that cellular respiration is the main target of resveratrol.
Collapse
|
39
|
Shiratake K, Suzuki M. Omics studies of citrus, grape and rosaceae fruit trees. BREEDING SCIENCE 2016; 66:122-38. [PMID: 27069397 PMCID: PMC4780796 DOI: 10.1270/jsbbs.66.122] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/01/2015] [Indexed: 05/06/2023]
Abstract
Recent advance of bioinformatics and analytical apparatuses such as next generation DNA sequencer (NGS) and mass spectrometer (MS) has brought a big wave of comprehensive study to biology. Comprehensive study targeting all genes, transcripts (RNAs), proteins, metabolites, hormones, ions or phenotypes is called genomics, transcriptomics, proteomics, metabolomics, hormonomics, ionomics or phenomics, respectively. These omics are powerful approaches to identify key genes for important traits, to clarify events of physiological mechanisms and to reveal unknown metabolic pathways in crops. Recently, the use of omics approach has increased dramatically in fruit tree research. Although the most reported omics studies on fruit trees are transcriptomics, proteomics and metabolomics, and a few is reported on hormonomics and ionomics. In this article, we reviewed recent omics studies of major fruit trees, i.e. citrus, grapevine and rosaceae fruit trees. The effectiveness and prospects of omics in fruit tree research will as well be highlighted.
Collapse
Affiliation(s)
- Katsuhiro Shiratake
- Graduate School of Bioagricultural Sciences, Nagoya University,
Chikusa, Nagoya, Aichi 464-8601,
Japan
- Corresponding author (e-mail: )
| | - Mami Suzuki
- Graduate School of Bioagricultural Sciences, Nagoya University,
Chikusa, Nagoya, Aichi 464-8601,
Japan
| |
Collapse
|
40
|
Suzuki M, Shiratake K. Total RNA Extraction from Grape Berry Skin for Quantitative Reverse Transcription PCR and Microarray Analysis. Bio Protoc 2016. [DOI: 10.21769/bioprotoc.1777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
41
|
Yin X, Singer SD, Qiao H, Liu Y, Jiao C, Wang H, Li Z, Fei Z, Wang Y, Fan C, Wang X. Insights into the Mechanisms Underlying Ultraviolet-C Induced Resveratrol Metabolism in Grapevine (V. amurensis Rupr.) cv. "Tonghua-3". FRONTIERS IN PLANT SCIENCE 2016; 7:503. [PMID: 27148326 PMCID: PMC4835806 DOI: 10.3389/fpls.2016.00503] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 03/29/2016] [Indexed: 05/19/2023]
Abstract
Stilbene compounds belong to a family of secondary metabolites that are derived from the phenylpropanoid pathway. Production of the stilbene phytoalexin, resveratrol, in grape (Vitis spp.) berries is known to be induced by ultraviolet-C radiation (UV-C), which has numerous regulatory effects on plant physiology. While previous studies have described changes in gene expression caused by UV-C light in several plant species, such information has yet to be reported for grapevine. We investigated both the resveratrol content and gene expression responses of berries from V. amurensis cv. Tonghua-3 following UV-C treatment, to accelerate research into resveratrol metabolism. Comparative RNA-Seq profiling of UV-C treated and untreated grape berries resulted in the identification of a large number of differentially expressed genes. Gene ontology (GO) term classification and biochemical pathway analyses suggested that UV-C treatment caused changes in various cellular processes, as well as in both hormone and secondary metabolism. The data further indicate that UV-C induced increases in resveratrol may be related to the transcriptional regulation of genes involved in the production of secondary metabolites and signaling, as well as several transcription factors. We also observed that following UV-C treatment, 22 stilbene synthase (STS) genes exhibited increases in their expression levels and a VaSTS promoter drove the expression of the GUS reporter gene when expressed in tobacco. We therefore propose that UV-C induction of VaSTS expression is an important factor in promoting resveratrol accumulation. This transcriptome data set provides new insight into the response of grape berries to UV-C treatment, and suggests candidate genes, or promoter activity of related genes, that could be used in future functional and molecular biological studies of resveratrol metabolism.
Collapse
Affiliation(s)
- Xiangjing Yin
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Stacy D. Singer
- Department of Agricultural, Food and Nutritional Science, University of AlbertaEdmonton, AB, Canada
| | - Hengbo Qiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Yajun Liu
- College of Veterinary Medicine, Shaanxi Center for Stem Cell Engineering and Technology, Northwest A&F UniversityShaanxi, China
| | - Chen Jiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Hao Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Zhi Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell UniversityIthaca, NY, USA
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Chonghui Fan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
- *Correspondence: Chonghui Fan
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
- Xiping Wang
| |
Collapse
|