1
|
Tenorio Berrío R, Dubois M. Single-cell transcriptomics reveals heterogeneity in plant responses to the environment: a focus on biotic and abiotic interactions. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5188-5203. [PMID: 38466621 DOI: 10.1093/jxb/erae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
Biotic and abiotic environmental cues are major factors influencing plant growth and productivity. Interactions with biotic (e.g. symbionts and pathogens) and abiotic (e.g. changes in temperature, water, or nutrient availability) factors trigger signaling and downstream transcriptome adjustments in plants. While bulk RNA-sequencing technologies have traditionally been used to profile these transcriptional changes, tissue homogenization may mask heterogeneity of responses resulting from the cellular complexity of organs. Thus, whether different cell types respond equally to environmental fluctuations, or whether subsets of the responses are cell-type specific, are long-lasting questions in plant biology. The recent breakthrough of single-cell transcriptomics in plant research offers an unprecedented view of cellular responses under changing environmental conditions. In this review, we discuss the contribution of single-cell transcriptomics to the understanding of cell-type-specific plant responses to biotic and abiotic environmental interactions. Besides major biological findings, we present some technical challenges coupled to single-cell studies of plant-environment interactions, proposing possible solutions and exciting paths for future research.
Collapse
Affiliation(s)
- Rubén Tenorio Berrío
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Marieke Dubois
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
2
|
Kraus M, Pleskot R, Van Damme D. Structural and Evolutionary Aspects of Plant Endocytosis. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:521-550. [PMID: 38237062 DOI: 10.1146/annurev-arplant-070122-023455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Endocytosis is an essential eukaryotic process that maintains the homeostasis of the plasma membrane proteome by vesicle-mediated internalization. Its predominant mode of operation utilizes the polymerization of the scaffold protein clathrin forming a coat around the vesicle; therefore, it is termed clathrin-mediated endocytosis (CME). Throughout evolution, the machinery that mediates CME is marked by losses, multiplications, and innovations. CME employs a limited number of conserved structural domains and folds, whose assembly and connections are species dependent. In plants, many of the domains are grouped into an ancient multimeric complex, the TPLATE complex, which occupies a central position as an interaction hub for the endocytic machinery. In this review, we provide an overview of the current knowledge regarding the structural aspects of plant CME, and we draw comparisons to other model systems. To do so, we have taken advantage of recent developments with respect to artificial intelligence-based protein structure prediction.
Collapse
Affiliation(s)
- Michael Kraus
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; ,
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Roman Pleskot
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic;
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; ,
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
3
|
Wang G, Chen X, Yu C, Shi X, Lan W, Gao C, Yang J, Dai H, Zhang X, Zhang H, Zhao B, Xie Q, Yu N, He Z, Zhang Y, Wang E. Release of a ubiquitin brake activates OsCERK1-triggered immunity in rice. Nature 2024; 629:1158-1164. [PMID: 38750355 DOI: 10.1038/s41586-024-07418-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 04/12/2024] [Indexed: 05/31/2024]
Abstract
Plant pattern-recognition receptors perceive microorganism-associated molecular patterns to activate immune signalling1,2. Activation of the pattern-recognition receptor kinase CERK1 is essential for immunity, but tight inhibition of receptor kinases in the absence of pathogen is crucial to prevent autoimmunity3,4. Here we find that the U-box ubiquitin E3 ligase OsCIE1 acts as a molecular brake to inhibit OsCERK1 in rice. During homeostasis, OsCIE1 ubiquitinates OsCERK1, reducing its kinase activity. In the presence of the microorganism-associated molecular pattern chitin, active OsCERK1 phosphorylates OsCIE1 and blocks its E3 ligase activity, thus releasing the brake and promoting immunity. Phosphorylation of a serine within the U-box of OsCIE1 prevents its interaction with E2 ubiquitin-conjugating enzymes and serves as a phosphorylation switch. This phosphorylation site is conserved in E3 ligases from plants to animals. Our work identifies a ligand-released brake that enables dynamic immune regulation.
Collapse
Affiliation(s)
- Gang Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- The New Cornerstone Science Laboratory, Shenzhen, China
| | - Xi Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- The New Cornerstone Science Laboratory, Shenzhen, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Chengzhi Yu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xiaobao Shi
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- The New Cornerstone Science Laboratory, Shenzhen, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Wenxian Lan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Chaofeng Gao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- The New Cornerstone Science Laboratory, Shenzhen, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Jun Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- The New Cornerstone Science Laboratory, Shenzhen, China
| | - Huiling Dai
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- The New Cornerstone Science Laboratory, Shenzhen, China
| | - Xiaowei Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- The New Cornerstone Science Laboratory, Shenzhen, China
| | - Huili Zhang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Boyu Zhao
- The New Cornerstone Science Laboratory, Shenzhen, China
- School of Life Science, Shanghai Normal University, Shanghai, China
| | - Qi Xie
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Nan Yu
- School of Life Science, Shanghai Normal University, Shanghai, China
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China.
| | - Yu Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
- The New Cornerstone Science Laboratory, Shenzhen, China.
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China.
| |
Collapse
|
4
|
Gao JP, Liang W, Liu CW, Xie F, Murray JD. Unraveling the rhizobial infection thread. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2235-2245. [PMID: 38262702 DOI: 10.1093/jxb/erae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/23/2024] [Indexed: 01/25/2024]
Abstract
Most legumes can form an endosymbiotic association with soil bacteria called rhizobia, which colonize specialized root structures called nodules where they fix nitrogen. To colonize nodule cells, rhizobia must first traverse the epidermis and outer cortical cell layers of the root. In most legumes, this involves formation of the infection thread, an intracellular structure that becomes colonized by rhizobia, guiding their passage through the outer cell layers of the root and into the newly formed nodule cells. In this brief review, we recount the early research milestones relating to the rhizobial infection thread and highlight two relatively recent advances in the symbiotic infection mechanism, the eukaryotically conserved 'MYB-AUR1-MAP' mitotic module, which links cytokinesis mechanisms to intracellular infection, and the discovery of the 'infectosome' complex, which guides infection thread growth. We also discuss the potential intertwining of the two modules and the hypothesis that cytokinesis served as a foundation for intracellular infection of symbiotic microbes.
Collapse
Affiliation(s)
- Jin-Peng Gao
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wenjie Liang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Cheng-Wu Liu
- School of Life Sciences, Division of Life Sciences and Medicine, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, Hefei 230026, China
| | - Fang Xie
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jeremy D Murray
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- John Innes Centre, CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
5
|
Zhang C, Chen L, Hou S. The emerging roles of clathrin-mediated endocytosis in plant development and stress responses. JOURNAL OF PLANT PHYSIOLOGY 2024; 295:154189. [PMID: 38432037 DOI: 10.1016/j.jplph.2024.154189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 03/05/2024]
Abstract
Clathrin-mediated endocytosis (CME) is a highly conserved pathway that plays a crucial role in the endocytosis of plasma membrane proteins in eukaryotic cells. The pathway is initiated when the adaptor protein complex 2 (AP2) and TPLATE complex (TPC) work together to recognize cargo proteins and recruit clathrin. This review provides a concise overview of the functions of each subunit of AP2 and TPC, and highlights the involvement of CME in various biological processes, such as pollen development, root development, nutrient transport, extracellular signal transduction, auxin polar transport, hyperosmotic stress, salinity stress, high ammonium stress, and disease resistance. Additionally, the review explores the regulation of CME by phytohormones, clathrin-mediated exocytosis (CMX), and AP2M phosphorylation. It also suggests potential future research directions for CME.
Collapse
Affiliation(s)
- Chi Zhang
- Key Laboratory of Gene Editing for Breeding, Gansu Province, Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Liang Chen
- Key Laboratory of Gene Editing for Breeding, Gansu Province, Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Suiwen Hou
- Key Laboratory of Gene Editing for Breeding, Gansu Province, Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
6
|
Chen D, Li D, Li Z, Song Y, Li Q, Wang L, Zhou D, Xie F, Li Y. Legume nodulation and nitrogen fixation require interaction of DnaJ-like protein and lipid transfer protein. PLANT PHYSIOLOGY 2023; 193:2164-2179. [PMID: 37610417 DOI: 10.1093/plphys/kiad437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/11/2023] [Indexed: 08/24/2023]
Abstract
The lipid transport protein (LTP) product of the AsE246 gene of Chinese milk vetch (Astragalus sinicus) contributes to the transport of plant-synthesized lipids to the symbiosome membranes (SMs) that are required for nodule organogenesis in this legume. However, the mechanisms used by nodule-specific LTPs remain unknown. In this study, a functional protein in the DnaJ-like family, designated AsDJL1, was identified and shown to interact with AsE246. Immunofluorescence showed that AsDJL1 was expressed in infection threads (ITs) and in nodule cells and that it co-localized with rhizobium, and an immunoelectron microscopy assay localized the protein to SMs. Via co-transformation into Nicotiana benthamiana cells, AsDJL1 and AsE246 displayed subcellular co-localization in the cells of this heterologous host. Co-immunoprecipitation assays confirmed that AsDJL1 interacted with AsE246 in nodules. The essential interacting region of AsDJL1 was determined to be the zinc finger domain at its C-terminus. Chinese milk vetch plants transfected with AsDJL1-RNAi had significantly decreased numbers of ITs, nodule primordia and nodules as well as reduced (by 83%) nodule nitrogenase activity compared with the controls. By contrast, AsDJL1 overexpression led to increased nodule fresh weight and nitrogenase activity. RNAi-AsDJL1 also significantly affected the abundance of lipids, especially digalactosyldiacylglycerol, in early-infected roots and transgenic nodules. Taken together, the results of this study provide insights into the symbiotic functions of AsDJL1, which may participate in lipid transport to SMs and play an essential role in rhizobial infection and nodule organogenesis.
Collapse
Affiliation(s)
- Dasong Chen
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dongzhi Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ziqi Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuting Song
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingsong Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lihong Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Donglai Zhou
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fuli Xie
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Youguo Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
7
|
Liu Z, Yang J, Long Y, Zhang C, Wang D, Zhang X, Dong W, Zhao L, Liu C, Zhai J, Wang E. Single-nucleus transcriptomes reveal spatiotemporal symbiotic perception and early response in Medicago. NATURE PLANTS 2023; 9:1734-1748. [PMID: 37749242 DOI: 10.1038/s41477-023-01524-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 08/25/2023] [Indexed: 09/27/2023]
Abstract
Establishing legume-rhizobial symbiosis requires precise coordination of complex responses in a time- and cell type-specific manner. Encountering Rhizobium, rapid changes of gene expression levels in host plants occur in the first few hours, which prepare the plants to turn off defence and form a symbiotic relationship with the microbes. Here, we applied single-nucleus RNA sequencing to characterize the roots of Medicago truncatula at 30 min, 6 h and 24 h after nod factor treatment. We found drastic global gene expression reprogramming at 30 min in the epidermis and cortex and most of these changes were restored at 6 h. Moreover, plant defence response genes are activated at 30 min and subsequently suppressed at 6 h in non-meristem cells. Only in the cortical cells but not in other cell types, we found the flavonoid synthase genes required to recruit rhizobia are highly expressed 30 min after inoculation with nod factors. A gene module enriched for symbiotic nitrogen fixation genes showed that MtFER (MtFERONIA) and LYK3 (LysM domain receptor-like kinase 3) share similar responses to symbiotic signals. We further found that MtFER can be phosphorylated by LYK3 and it participates in rhizobial symbiosis. Our results expand our understanding of dynamic spatiotemporal symbiotic responses at the single-cell level.
Collapse
Affiliation(s)
- Zhijian Liu
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Jun Yang
- New Cornerstone Science Laboratory, National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yanping Long
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Chi Zhang
- New Cornerstone Science Laboratory, National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Dapeng Wang
- New Cornerstone Science Laboratory, National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xiaowei Zhang
- New Cornerstone Science Laboratory, National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Wentao Dong
- New Cornerstone Science Laboratory, National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Li Zhao
- School of Life Sciences, Division of Life Sciences and Medicine, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, Hefei, China
| | - Chengwu Liu
- School of Life Sciences, Division of Life Sciences and Medicine, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, Hefei, China
| | - Jixian Zhai
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, China.
| | - Ertao Wang
- New Cornerstone Science Laboratory, National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
8
|
Ganotra J, Sharma B, Biswal B, Bhardwaj D, Tuteja N. Emerging role of small GTPases and their interactome in plants to combat abiotic and biotic stress. PROTOPLASMA 2023; 260:1007-1029. [PMID: 36525153 DOI: 10.1007/s00709-022-01830-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/05/2022] [Indexed: 06/07/2023]
Abstract
Plants are frequently subjected to abiotic and biotic stress which causes major impediments in their growth and development. It is emerging that small guanosine triphosphatases (small GTPases), also known as monomeric GTP-binding proteins, assist plants in managing environmental stress. Small GTPases function as tightly regulated molecular switches that get activated with the aid of guanosine triphosphate (GTP) and deactivated by the subsequent hydrolysis of GTP to guanosine diphosphate (GDP). All small GTPases except Rat sarcoma (Ras) are found in plants, including Ras-like in brain (Rab), Rho of plant (Rop), ADP-ribosylation factor (Arf) and Ras-like nuclear (Ran). The members of small GTPases in plants interact with several downstream effectors to counteract the negative effects of environmental stress and disease-causing pathogens. In this review, we describe processes of stress alleviation by developing pathways involving several small GTPases and their associated proteins which are important for neutralizing fungal infections, stomatal regulation, and activation of abiotic stress-tolerant genes in plants. Previous reviews on small GTPases in plants were primarily focused on Rab GTPases, abiotic stress, and membrane trafficking, whereas this review seeks to improve our understanding of the role of all small GTPases in plants as well as their interactome in regulating mechanisms to combat abiotic and biotic stress. This review brings to the attention of scientists recent research on small GTPases so that they can employ genome editing tools to precisely engineer economically important plants through the overexpression/knock-out/knock-in of stress-related small GTPase genes.
Collapse
Affiliation(s)
- Jahanvi Ganotra
- Department of Botany, Central University of Jammu, Jammu and Kashmir, Jammu, 181143, India
| | - Bhawana Sharma
- Department of Botany, Central University of Jammu, Jammu and Kashmir, Jammu, 181143, India
| | - Brijesh Biswal
- Department of Botany, Central University of Jammu, Jammu and Kashmir, Jammu, 181143, India
| | - Deepak Bhardwaj
- Department of Botany, Central University of Jammu, Jammu and Kashmir, Jammu, 181143, India.
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
9
|
Li E, Zhang YL, Qin Z, Xu M, Qiao Q, Li S, Li SW, Zhang Y. Signaling network controlling ROP-mediated tip growth in Arabidopsis and beyond. PLANT COMMUNICATIONS 2023; 4:100451. [PMID: 36114666 PMCID: PMC9860187 DOI: 10.1016/j.xplc.2022.100451] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/24/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Cell polarity operates across a broad range of spatial and temporal scales and is essential for specific biological functions of polarized cells. Tip growth is a special type of polarization in which a single and unique polarization site is established and maintained, as for the growth of root hairs and pollen tubes in plants. Extensive studies in past decades have demonstrated that the spatiotemporal localization and activity of Rho of Plants (ROPs), the only class of Rho GTPases in plants, are critical for tip growth. ROPs are switched on or off by different factors to initiate dynamic intracellular activities, leading to tip growth. Recent studies have also uncovered several feedback modules for ROP signaling. In this review, we summarize recent progress on ROP signaling in tip growth, focusing on molecular mechanisms that underlie the dynamic distribution and activity of ROPs in Arabidopsis. We also highlight feedback modules that control ROP-mediated tip growth and provide a perspective for building a complex ROP signaling network. Finally, we provide an evolutionary perspective for ROP-mediated tip growth in Physcomitrella patens and during plant-rhizobia interaction.
Collapse
Affiliation(s)
- En Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Yu-Ling Zhang
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zheng Qin
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Meng Xu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Qian Qiao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Shan-Wei Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|
10
|
Luo Y, Liu W, Sun J, Zhang ZR, Yang WC. Quantitative proteomics reveals key pathways in the symbiotic interface and the likely extracellular property of soybean symbiosome. J Genet Genomics 2023; 50:7-19. [PMID: 35470091 DOI: 10.1016/j.jgg.2022.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023]
Abstract
An effective symbiosis between legumes and rhizobia relies largely on diverse proteins at the plant-rhizobium interface for material transportation and signal transduction during symbiotic nitrogen fixation. Here, we report a comprehensive proteome atlas of the soybean symbiosome membrane (SM), peribacteroid space (PBS), and root microsomal fraction (RMF) using state-of-the-art label-free quantitative proteomic technology. In total, 1759 soybean proteins with diverse functions are detected in the SM, and 1476 soybean proteins and 369 rhizobial proteins are detected in the PBS. The diversity of SM proteins detected suggests multiple origins of the SM. Quantitative comparative analysis highlights amino acid metabolism and nutrient uptake in the SM, indicative of the key pathways in nitrogen assimilation. The detection of soybean secretory proteins in the PBS and receptor-like kinases in the SM provides evidence for the likely extracellular property of the symbiosome and the potential signaling communication between both symbionts at the symbiotic interface. Our proteomic data provide clues for how some of the sophisticated regulation between soybean and rhizobium at the symbiotic interface is achieved, and suggest approaches for symbiosis engineering.
Collapse
Affiliation(s)
- Yu Luo
- The State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Wei Liu
- The State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Juan Sun
- The State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng-Rong Zhang
- The State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Cai Yang
- The State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
Shi X, Li S, Yang L, Liu X, Merzendorfer H, Zhu KY, Zhang J. Clathrin heavy chain is essential for the development and reproduction of Locusta migratoria. INSECT SCIENCE 2022; 29:1601-1611. [PMID: 35290723 DOI: 10.1111/1744-7917.13030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/19/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Clathrin heavy chain (Chc) is a constituent of clathrin-coated vesicles and serves important functions in endocytosis and intracellular membrane trafficking but appears to have physiological roles also at the organismal level. Most of what we know about Chc functions originates from studies performed in fungal or vertebrate cells. However, the physiological functions of Chc in insects remain poorly understood. Here, we identified a Chc ortholog from a Locusta migratoria transcriptome database. RT-qPCR revealed that LmChc was constitutively expressed in fifth-instar nymphs. In this developmental stage, LmChc showed the highest expression in the ovary followed by hemolymph, testis, hindgut, midgut, and foregut. In isolated hemocytes, we detected the Chc protein in patches at the plasma membrane. To examine the role of LmChc in L. migratoria during development, RNA interference was performed by injecting dsRNA into the early fifth-instar nymphs. Silencing of LmChc caused a lethal phenotype with molting defect from nymph to adult. In addition, silencing of LmChc resulted in abnormal development of the ovaries, the size of which was significantly smaller than that in controls. Taken together, our results suggest that LmChc is a vital gene in L. migratoria that plays an important role in growth, development, and reproduction. LmChc may be used as an efficient RNAi target gene for developing dsRNA-based biological insecticides to manage insect pests.
Collapse
Affiliation(s)
- Xuekai Shi
- Institute of Applied Biology, Shanxi University, Taiyuan, China
- College of Life Science, Shanxi University, Taiyuan, China
| | - Shuai Li
- Institute of Applied Biology, Shanxi University, Taiyuan, China
- College of Life Science, Shanxi University, Taiyuan, China
| | - Lin Yang
- Institute of Applied Biology, Shanxi University, Taiyuan, China
- College of Life Science, Shanxi University, Taiyuan, China
| | - Xiaojian Liu
- Institute of Applied Biology, Shanxi University, Taiyuan, China
| | | | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, Kansas, USA
| | - Jianzhen Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, China
| |
Collapse
|
12
|
Visualization of the Crossroads between a Nascent Infection Thread and the First Cell Division Event in Phaseolus vulgaris Nodulation. Int J Mol Sci 2022; 23:ijms23095267. [PMID: 35563659 PMCID: PMC9105610 DOI: 10.3390/ijms23095267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022] Open
Abstract
The development of a symbiotic nitrogen-fixing nodule in legumes involves infection and organogenesis. Infection begins when rhizobia enter a root hair through an inward structure, the infection thread (IT), which guides the bacteria towards the cortical tissue. Concurrently, organogenesis takes place by inducing cortical cell division (CCD) at the infection site. Genetic analysis showed that both events are well-coordinated; however, the dynamics connecting them remain to be elucidated. To visualize the crossroads between IT and CCD, we benefited from the fact that, in Phaseolus vulgaris nodulation, where the first division occurs in subepidermal cortical cells located underneath the infection site, we traced a Rhizobium etli strain expressing DsRed, the plant cytokinesis marker YFP-PvKNOLLE, a nuclear stain and cell wall auto-fluorescence. We found that the IT exits the root hair to penetrate an underlying subepidermal cortical (S-E) cell when it is concluding cytokinesis.
Collapse
|
13
|
Chen W, Chi Y, Zhang J, Bai B, Ji X, Shen Y. MtWRP1, a Novel Fabacean Specific Gene, Regulates Root Nodulation and Plant Growth in Medicago truncatula. Genes (Basel) 2022; 13:genes13020193. [PMID: 35205237 PMCID: PMC8871812 DOI: 10.3390/genes13020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
Fabaceans symbiotically interact with nitrogen-fixing rhizobacteria to form root nodules. Some fabacean specific proteins play important roles in the symbiosis. WRKY-related Protein (WRP) is a novel fabacean specific protein, whose functions have not been well characterized. In this study, MtWRP1 was functionally characterized in Medicago truncatula. It contains a WRKY domain at C-terminal and a novel transmembrane (TM) domain at N-terminal, and its WRKY domain was highly similar to the N-terminal WRKY domain of the group I WRKY proteins. The TM domain was highly homologous to the eukaryotic cytochrome b561 (Cytb561) proteins from birds. Subcellular localization revealed that MtWRP1 was targeted to the Golgi apparatus through the novel TM domain. MtWRP1 was highly expressed in roots and nodules, suggesting its possible roles in the regulation of root growth and nodulation. Both MtWRP1-overexpression transgenic M. truncatula and MtWRP1 mutants showed altered root nodulation and plant growth performance. Specifically, the formation of root nodules was significantly reduced in the absence of MtWRP1. These results demonstrated that MtWRP1 plays critical roles in root nodulation and plant growth.
Collapse
|
14
|
Smokvarska M, Jaillais Y, Martinière A. Function of membrane domains in rho-of-plant signaling. PLANT PHYSIOLOGY 2021; 185:663-681. [PMID: 33793925 PMCID: PMC8133555 DOI: 10.1093/plphys/kiaa082] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/25/2020] [Indexed: 05/18/2023]
Abstract
In a crowded environment, establishing interactions between different molecular partners can take a long time. Biological membranes have solved this issue, as they simultaneously are fluid and possess compartmentalized domains. This nanoscale organization of the membrane is often based on weak, local, and multivalent interactions between lipids and proteins. However, from local interactions at the nanoscale, different functional properties emerge at the higher scale, and these are critical to regulate and integrate cellular signaling. Rho of Plant (ROP) proteins are small guanosine triphosphate hydrolase enzymes (GTPases) involved in hormonal, biotic, and abiotic signaling, as well as fundamental cell biological properties such as polarity, vesicular trafficking, and cytoskeleton dynamics. Association with the membrane is essential for ROP function, as well as their precise targeting within micrometer-sized polar domains (i.e. microdomains) and nanometer-sized clusters (i.e. nanodomains). Here, we review our current knowledge about the formation and the maintenance of the ROP domains in membranes. Furthermore, we propose a model for ROP membrane targeting and discuss how the nanoscale organization of ROPs in membranes could determine signaling parameters like signal specificity, amplification, and integration.
Collapse
Affiliation(s)
- Marija Smokvarska
- BPMP, CNRS, INRAE, Univ Montpellier, Montpellier SupAgro, 34060 Montpellier, France
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, CNRS, INRAE, Université de Lyon, ENS de Lyon, UCB Lyon 1, F-69342 Lyon, France
| | - Alexandre Martinière
- BPMP, CNRS, INRAE, Univ Montpellier, Montpellier SupAgro, 34060 Montpellier, France
- Author for communication:
| |
Collapse
|
15
|
García-Soto I, Boussageon R, Cruz-Farfán YM, Castro-Chilpa JD, Hernández-Cerezo LX, Bustos-Zagal V, Leija-Salas A, Hernández G, Torres M, Formey D, Courty PE, Wipf D, Serrano M, Tromas A. The Lotus japonicus ROP3 Is Involved in the Establishment of the Nitrogen-Fixing Symbiosis but Not of the Arbuscular Mycorrhizal Symbiosis. FRONTIERS IN PLANT SCIENCE 2021; 12:696450. [PMID: 34868100 PMCID: PMC8636059 DOI: 10.3389/fpls.2021.696450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 10/25/2021] [Indexed: 05/17/2023]
Abstract
Legumes form root mutualistic symbioses with some soil microbes promoting their growth, rhizobia, and arbuscular mycorrhizal fungi (AMF). A conserved set of plant proteins rules the transduction of symbiotic signals from rhizobia and AMF in a so-called common symbiotic signaling pathway (CSSP). Despite considerable efforts and advances over the past 20 years, there are still key elements to be discovered about the establishment of these root symbioses. Rhizobia and AMF root colonization are possible after a deep cell reorganization. In the interaction between the model legume Lotus japonicus and Mesorhizobium loti, this reorganization has been shown to be dependent on a SCAR/Wave-like signaling module, including Rho-GTPase (ROP in plants). Here, we studied the potential role of ROP3 in the nitrogen-fixing symbiosis (NFS) as well as in the arbuscular mycorrhizal symbiosis (AMS). We performed a detailed phenotypic study on the effects of the loss of a single ROP on the establishment of both root symbioses. Moreover, we evaluated the expression of key genes related to CSSP and to the rhizobial-specific pathway. Under our experimental conditions, rop3 mutant showed less nodule formation at 7- and 21-days post inoculation as well as less microcolonies and a higher frequency of epidermal infection threads. However, AMF root colonization was not affected. These results suggest a role of ROP3 as a positive regulator of infection thread formation and nodulation in L. japonicus. In addition, CSSP gene expression was neither affected in NFS nor in AMS condition in rop3 mutant. whereas the expression level of some genes belonging to the rhizobial-specific pathway, like RACK1, decreased in the NFS. In conclusion, ROP3 appears to be involved in the NFS, but is neither required for intra-radical growth of AMF nor arbuscule formation.
Collapse
Affiliation(s)
- Ivette García-Soto
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
- Programa de Doctorado en Ciencias Bioquímicas, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
- *Correspondence: Ivette García-Soto,
| | - Raphael Boussageon
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | | | | | | | - Victor Bustos-Zagal
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Alfonso Leija-Salas
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Georgina Hernández
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Martha Torres
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Damien Formey
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Pierre-Emmanuel Courty
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Daniel Wipf
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Mario Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
- Mario Serrano,
| | - Alexandre Tromas
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
- La Cité College, Bureau de la Recherche et de l’Innovation, Ottawa, ON, Canada
- Alexandre Tromas,
| |
Collapse
|
16
|
Liu J, Liu MX, Qiu LP, Xie F. SPIKE1 Activates the GTPase ROP6 to Guide the Polarized Growth of Infection Threads in Lotus japonicus. THE PLANT CELL 2020; 32:3774-3791. [PMID: 33023954 PMCID: PMC7721321 DOI: 10.1105/tpc.20.00109] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 09/11/2020] [Accepted: 10/01/2020] [Indexed: 05/22/2023]
Abstract
In legumes, rhizobia attach to root hair tips and secrete nodulation factor to activate rhizobial infection and nodule organogenesis. Endosymbiotic rhizobia enter nodule primordia via a specialized transcellular compartment known as the infection thread (IT). The IT elongates by polar tip growth, following the path of the migrating nucleus along and within the root hair cell. Rho-family ROP GTPases are known to regulate the polarized growth of cells, but their role in regulating polarized IT growth is poorly understood. Here, we show that LjSPK1, a DOCK family guanine nucleotide exchange factor (GEF), interacts with three type I ROP GTPases. Genetic analyses showed that these three ROP GTPases are involved in root hair development, but only LjROP6 is required for IT formation after rhizobia inoculation. Misdirected ITs formed in the root hairs of Ljspk1 and Ljrop6 mutants. We show that LjSPK1 functions as a GEF that activates LjROP6. LjROP6 enhanced the plasma membrane localization LjSPK1 in Nicotiana benthamiana leaf cells and Lotus japonicus root hairs, and LjSPK1 and LjROP6 interact at the plasma membrane. Taken together, these results shed light on how the LjROP6-LjSPK1 module mediates the polarized growth of ITs in L. japonicus.
Collapse
Affiliation(s)
- Jing Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100864, China
| | - Miao Xia Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Li Ping Qiu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Fang Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
17
|
Engelhardt S, Trutzenberg A, Hückelhoven R. Regulation and Functions of ROP GTPases in Plant-Microbe Interactions. Cells 2020; 9:E2016. [PMID: 32887298 PMCID: PMC7565977 DOI: 10.3390/cells9092016] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023] Open
Abstract
Rho proteins of plants (ROPs) form a specific clade of Rho GTPases, which are involved in either plant immunity or susceptibility to diseases. They are intensively studied in grass host plants, in which ROPs are signaling hubs downstream of both cell surface immune receptor kinases and intracellular nucleotide-binding leucine-rich repeat receptors, which activate major branches of plant immune signaling. Additionally, invasive fungal pathogens may co-opt the function of ROPs for manipulation of the cytoskeleton, cell invasion and host cell developmental reprogramming, which promote pathogenic colonization. Strikingly, mammalian bacterial pathogens also initiate both effector-triggered susceptibility for cell invasion and effector-triggered immunity via Rho GTPases. In this review, we summarize central concepts of Rho signaling in disease and immunity of plants and briefly compare them to important findings in the mammalian research field. We focus on Rho activation, downstream signaling and cellular reorganization under control of Rho proteins involved in disease progression and pathogen resistance.
Collapse
Affiliation(s)
| | | | - Ralph Hückelhoven
- Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Straße 2, 85354 Freising, Germany; (S.E.); (A.T.)
| |
Collapse
|
18
|
Xiao A, Yu H, Fan Y, Kang H, Ren Y, Huang X, Gao X, Wang C, Zhang Z, Zhu H, Cao Y. Transcriptional regulation of NIN expression by IPN2 is required for root nodule symbiosis in Lotus japonicus. THE NEW PHYTOLOGIST 2020; 227:513-528. [PMID: 32187696 DOI: 10.1111/nph.16553] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/09/2020] [Indexed: 05/14/2023]
Abstract
Expression of Nodule Inception (NIN) is essential for initiation of legume-rhizobial symbiosis. An existing model regarding the regulation of NIN expression involves two GRAS transcription factors - NSP1 (Nodulation Signaling Pathway 1) and NSP2. NSP2 forms a complex with NSP1 to directly bind to NIN promoter. However, rhizobial treatment-induced NIN expression could still be detected in the nsp1 mutant plants, suggesting that other proteins must be involved in the regulation of NIN expression. A combination of molecular, biochemical and genetic analyses was used to investigate the molecular basis of IPN2 in regulating root development and NIN expression in Lotus japonicus. In this study, we identified that IPN2 is a close homolog of Arabidopsis APL (ALTERED PHLOEM DEVELOPMENT) with essential function in root development. However, Lotus IPN2 has a different expression pattern compared with the Arabidopsis APL gene. IPN2 binds to the IPN2-responsive cis element (IPN2-RE) of NIN promoter and activates NIN expression. IPN2, NSP1 and NSP2 form a protein complex to directly target NIN promoter and activate NIN expression in the legume-rhizobial symbiosis. Our data refine the regulatory model of NIN expression that NSP2 works together with NSP1 and IPN2 to activate the NIN gene allowing nodulation in L. japonicus.
Collapse
Affiliation(s)
- Aifang Xiao
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haixiang Yu
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuqian Fan
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Heng Kang
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yaping Ren
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoqin Huang
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiumei Gao
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chao Wang
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhongming Zhang
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hui Zhu
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yangrong Cao
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
19
|
Qiao Z, Zogli P, Libault M. Plant Hormones Differentially Control the Sub-Cellular Localization of Plasma Membrane Microdomains during the Early Stage of Soybean Nodulation. Genes (Basel) 2019; 10:E1012. [PMID: 31817452 PMCID: PMC6947267 DOI: 10.3390/genes10121012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/30/2019] [Accepted: 12/02/2019] [Indexed: 01/31/2023] Open
Abstract
Phytohormones regulate the mutualistic symbiotic interaction between legumes and rhizobia, nitrogen-fixing soil bacteria, notably by controlling the formation of the infection thread in the root hair (RH). At the cellular level, the formation of the infection thread is promoted by the translocation of plasma membrane microdomains at the tip of the RH. We hypothesize that phytohormones regulate the translocation of plasma membrane microdomains to regulate infection thread formation. Accordingly, we treated with hormone and hormone inhibitors transgenic soybean roots expressing fusions between the Green Fluorescent Protein (GFP) and GmFWL1 or GmFLOT2/4, two microdomain-associated proteins translocated at the tip of the soybean RH in response to rhizobia. Auxin and cytokinin treatments are sufficient to trigger or inhibit the translocation of GmFWL1 and GmFLOT2/4 to the RH tip independently of the presence of rhizobia, respectively. Unexpectedly, the application of salicylic acid, a phytohormone regulating the plant defense system, also promotes the translocation of GmFWL1 and GmFLOT2/4 to the RH tip regardless of the presence of rhizobia. These results suggest that phytohormones are playing a central role in controlling the early stages of rhizobia infection by regulating the translocation of plasma membrane microdomains. They also support the concept of crosstalk of phytohormones to control nodulation.
Collapse
Affiliation(s)
- Zhenzhen Qiao
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA;
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Prince Zogli
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Beadle Center, Lincoln, NE 68503, USA;
| | - Marc Libault
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Beadle Center, Lincoln, NE 68503, USA;
| |
Collapse
|
20
|
Stefano G, Renna L, Wormsbaecher C, Gamble J, Zienkiewicz K, Brandizzi F. Plant Endocytosis Requires the ER Membrane-Anchored Proteins VAP27-1 and VAP27-3. Cell Rep 2019; 23:2299-2307. [PMID: 29791842 DOI: 10.1016/j.celrep.2018.04.091] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 03/26/2018] [Accepted: 04/20/2018] [Indexed: 12/22/2022] Open
Abstract
Through yet-undefined mechanisms, the plant endoplasmic reticulum (ER) has a critical role in endocytosis. The plant ER establishes a close association with endosomes and contacts the plasma membrane (PM) at ER-PM contact sites (EPCSs) demarcated by the ER membrane-associated VAMP-associated-proteins (VAP). Here, we investigated two plant VAPs, VAP27-1 and VAP27-3, and found an interaction with clathrin and a requirement for the homeostasis of clathrin dynamics at endocytic membranes and endocytosis. We also demonstrated direct interaction of VAP27-proteins with phosphatidylinositol-phosphate lipids (PIPs) that populate endocytic membranes. These results support that, through interaction with PIPs, VAP27-proteins bridge the ER with endocytic membranes and maintain endocytic traffic, likely through their interaction with clathrin.
Collapse
Affiliation(s)
- Giovanni Stefano
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA; Plant Biology Department, Michigan State University, East Lansing, MI 48824, USA
| | - Luciana Renna
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA
| | | | - Jessie Gamble
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA
| | | | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA; Plant Biology Department, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
21
|
Ekanayake G, LaMontagne ED, Heese A. Never Walk Alone: Clathrin-Coated Vesicle (CCV) Components in Plant Immunity. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:387-409. [PMID: 31386597 DOI: 10.1146/annurev-phyto-080417-045841] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
At the host-pathogen interface, the protein composition of the plasma membrane (PM) has important implications for how a plant cell perceives and responds to invading microbial pathogens. A plant's ability to modulate its PM composition is critical for regulating the strength, duration, and integration of immune responses. One mechanism by which plant cells reprogram their cell surface is vesicular trafficking, including secretion and endocytosis. These trafficking processes add or remove cargo proteins (such as pattern-recognition receptors, transporters, and other proteins with immune functions) to or from the PM via small, membrane-bound vesicles. Clathrin-coated vesicles (CCVs) that form at the PM and trans-Golgi network/early endosomes have emerged as the prominent vesicle type in the regulation of plant immune responses. In this review, we discuss the roles of the CCV core, adaptors, and accessory components in plant defense signaling and immunity against various microbial pathogens.
Collapse
Affiliation(s)
- Gayani Ekanayake
- Division of Biochemistry, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, USA; ,
| | - Erica D LaMontagne
- Division of Biochemistry, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, USA; ,
| | - Antje Heese
- Division of Biochemistry, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, USA; ,
| |
Collapse
|
22
|
Duan L, Pei J, Ren Y, Li H, Zhou X, Zhu H, Duanmu D, Wen J, Mysore KS, Cao Y, Zhang Z. A Dihydroflavonol-4-Reductase-Like Protein Interacts with NFR5 and Regulates Rhizobial Infection in Lotus japonicus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:401-412. [PMID: 30295579 DOI: 10.1094/mpmi-04-18-0104-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In almost all symbiotic interactions between rhizobia and leguminous plants, host flavonoid-induced synthesis of Nod factors in rhizobia is required to initiate symbiotic response in plants. In this study, we found that Lotus japonicus Nod factor receptor 5 (LjNFR5) might directly regulate flavonoid biosynthesis during symbiotic interaction with rhizobia. A yeast two-hybrid analysis revealed that a dihydroflavonol-4-reductase-like protein (LjDFL1) interacts with LjNFR5. The interaction between MtDFL1 and MtNFP, two Medicago truncatula proteins with homology to LjDFL1 and LjNFR5, respectively, was also shown, suggesting that interaction between these two proteins might be conserved in different legumes. LjDFL1 was highly expressed in root hairs and epidermal cells of root tips. Lotus ljdfl1 mutants and Medicago mtdfl1 mutants produced significantly fewer infection threads (ITs) than the wild-type control plants following rhizobial treatment. Furthermore, the roots of stable transgenic L. japonicus plants overexpressing LjDFL1 formed more ITs than control roots after exposure to rhizobia. These data indicated that LjDFL1 is a positive regulator of symbiotic signaling. However, the expression of LjDFL1 was suppressed by rhizobial treatment, suggesting that a negative feedback loop might be involved in regulation of the symbiotic response in L. japonicus.
Collapse
Affiliation(s)
- Liujian Duan
- 1 State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; and
| | - Junqing Pei
- 1 State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; and
| | - Yaping Ren
- 1 State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; and
| | - Hao Li
- 1 State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; and
| | - Xiangzhen Zhou
- 1 State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; and
| | - Hui Zhu
- 1 State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; and
| | - Deqiang Duanmu
- 1 State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; and
| | - Jiangqi Wen
- 1 State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; and
| | - Kirankumar S Mysore
- 2 Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, U.S.A
| | - Yangrong Cao
- 1 State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; and
| | - Zhongming Zhang
- 1 State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; and
| |
Collapse
|
23
|
Yin J, Guan X, Zhang H, Wang L, Li H, Zhang Q, Chen T, Xu Z, Hong Z, Cao Y, Zhang Z. An MAP kinase interacts with LHK1 and regulates nodule organogenesis in Lotus japonicus. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1203-1217. [DOI: 10.1007/s11427-018-9444-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/07/2018] [Indexed: 10/27/2022]
|
24
|
Russo G, Carotenuto G, Fiorilli V, Volpe V, Chiapello M, Van Damme D, Genre A. Ectopic activation of cortical cell division during the accommodation of arbuscular mycorrhizal fungi. THE NEW PHYTOLOGIST 2019; 221:1036-1048. [PMID: 15558330 DOI: 10.1111/nph.15398] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/17/2018] [Indexed: 05/12/2023]
Abstract
Arbuscular mycorrhizas (AMs) between plants and soil fungi are widespread symbioses with a major role in soil nutrient uptake. In this study we investigated the induction of root cortical cell division during AM colonization by combining morphometric and gene expression analyses with promoter activation and protein localization studies of the cell-plate-associated exocytic marker TPLATE. Our results show that TPLATE promoter is activated in colonized cells of the root cortex where we also observed the appearance of cells that are half the size of the surrounding cells. Furthermore, TPLATE-green fluorescent protein recruitment to developing cell plates highlighted ectopic cell division events in the inner root cortex during early AM colonization. Lastly, transcripts of TPLATE, KNOLLE and Cyclinlike 1 (CYC1) are all upregulated in the same context, alongside endocytic markers Adaptor-Related Protein complex 2 alpha 1 subunit (AP2A1) and Clathrin Heavy Chain 2 (CHC2), known to be active during cell plate formation. This pattern of gene expression was recorded in wild-type Medicago truncatula roots, but not in a common symbiotic signalling pathway mutant where fungal colonization is blocked at the epidermal level. Altogether, these results suggest the activation of cell-division-related mechanisms by AM hosts during the accommodation of the symbiotic fungus.
Collapse
Affiliation(s)
- Giulia Russo
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torin, Italy
| | - Gennaro Carotenuto
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torin, Italy
| | - Valentina Fiorilli
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torin, Italy
| | - Veronica Volpe
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torin, Italy
| | - Marco Chiapello
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torin, Italy
| | - Daniel Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052, Ghent, Belgium
| | - Andrea Genre
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torin, Italy
| |
Collapse
|
25
|
Tsikou D, Ramirez EE, Psarrakou IS, Wong JE, Jensen DB, Isono E, Radutoiu S, Papadopoulou KK. A Lotus japonicus E3 ligase interacts with the Nod Factor Receptor 5 and positively regulates nodulation. BMC PLANT BIOLOGY 2018; 18:217. [PMID: 30285618 PMCID: PMC6171183 DOI: 10.1186/s12870-018-1425-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 09/13/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND Post-translational modification of receptor proteins is involved in activation and de-activation of signalling systems in plants. Both ubiquitination and deubiquitination have been implicated in plant interactions with pathogens and symbionts. RESULTS Here we present LjPUB13, a PUB-ARMADILLO repeat E3 ligase that specifically ubiquitinates the kinase domain of the Nod Factor receptor NFR5 and has a direct role in nodule organogenesis events in Lotus japonicus. Phenotypic analyses of three LORE1 retroelement insertion plant lines revealed that pub13 plants display delayed and reduced nodulation capacity and retarded growth. LjPUB13 expression is spatially regulated during symbiosis with Mesorhizobium loti, with increased levels in young developing nodules. CONCLUSION LjPUB13 is an E3 ligase with a positive regulatory role during the initial stages of nodulation in L. japonicus.
Collapse
Affiliation(s)
- Daniela Tsikou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500, Larisa, Greece
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej, 8000 C, Aarhus, Denmark
| | - Estrella E Ramirez
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej, 8000 C, Aarhus, Denmark
| | - Ioanna S Psarrakou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500, Larisa, Greece
| | - Jaslyn E Wong
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej, 8000 C, Aarhus, Denmark
| | - Dorthe B Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej, 8000 C, Aarhus, Denmark
| | - Erika Isono
- Department of Plant Systems Biology, Technical University of Munich, Emil-Ramann-Strabe 4, Freising, Germany
| | - Simona Radutoiu
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej, 8000 C, Aarhus, Denmark.
| | - Kalliope K Papadopoulou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500, Larisa, Greece.
| |
Collapse
|
26
|
Tsyganova AV, Tsyganov VE. Plant Genetic Control over Infection Thread Development during Legume-Rhizobium Symbiosis. Symbiosis 2018. [DOI: 10.5772/intechopen.70689] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Han X, Shi Y, Liu G, Guo Y, Yang Y. Activation of ROP6 GTPase by Phosphatidylglycerol in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:347. [PMID: 29599797 PMCID: PMC5862815 DOI: 10.3389/fpls.2018.00347] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 03/01/2018] [Indexed: 05/05/2023]
Abstract
Plant Rho-like GTPases (ROPs) are switch-like proteins which play essential roles in controlling cell polarity development and cellular activities. ROPs are regulated by many factors, such as auxin, light, and RopGEFs and RopGAPs proteins. However, it has not been reported yet whether small molecules play a role in the regulation of ROP activity. Here, we showed that AtROP6 specially bound to a phospholipid, phosphatidylglycerol (PG), by the protein-lipid overlay and liposome sedimentation assays, and further MST assay gave a dissociation constant (Kd) of 4.8 ± 0.4 μM for binding of PG to His-AtROP6. PG profile analysis in Arabidopsis revealed that PG existed both in leaves and roots but with distinctive fatty acyl chain patterns. By evaluating AtROP6 activity using RIC1 effector binding-based assay, we found that PG stimulated AtROP6 activity. In the FM4-64 uptake experiment, PG inhibited AtROP6-mediated endocytosis process. By evaluating internalization of PIN2, PG was shown to regulate endocytosis process coordinately with NAA. Further root gravitropism experiment revealed that PG enhanced the AtROP6-mediated root gravity response. These results suggest that the phospholipid PG physically binds AtROP6, stimulates its activity and influences AtROP6-mediated root gravity response in Arabidopsis.
Collapse
|
28
|
Zeng X, Li Y, Ling H, Liu S, Liu M, Chen J, Guo S. Transcriptomic analyses reveal clathrin-mediated endocytosis involved in symbiotic seed germination of Gastrodia elata. BOTANICAL STUDIES 2017; 58:31. [PMID: 28741080 PMCID: PMC5524656 DOI: 10.1186/s40529-017-0185-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 07/10/2017] [Indexed: 05/23/2023]
Abstract
BACKGROUND Gastrodia elata is a well-known medicinal orchid. In nature, the germination rate of G. elata is extremely poor, because there is no endosperm within the mature seed. It is crucial for G. elata to obtain nutrition from mycorrhizal fungi (Mycena) at the early-stage of germination. After germination, the seed gives rise to a protocorm. However, there are no "omic" studies on understanding the interaction between Gastrodia and Mycena. Here, we used transcriptomic approaches to explore changes in seed germination of G. elata. RESULTS Based on RNA-Seq, a total of ~221 million clean reads were assembled denovo into 139,756 unigenes, including 42,140 unigenes that were annotated in public databases. Meanwhile, 1750 unigenes were identified as differentially expressed genes. Most of these differentially expressed genes were putatively involved in energy metabolism, plant defense, molecular signaling, and secondary metabolism. Additionally, numerous genes involved in clathrin-mediated endocytosis were identified from our data. Most of these genes (e.g., clathrin, adaptor protein, dynamin, HSC70) were basally expressed in seeds and highly expressed in protocorms. CONCLUSIONS Our data suggested that clathrin-mediated endocytosis could play important roles in symbiotic seed germination of G. elata with Mycena infections.
Collapse
Affiliation(s)
- Xu Zeng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193 People’s Republic of China
| | - Yuanyuan Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193 People’s Republic of China
| | - Hong Ling
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193 People’s Republic of China
| | - Sisi Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193 People’s Republic of China
| | - Mengmeng Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193 People’s Republic of China
| | - Juan Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193 People’s Republic of China
| | - Shunxing Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193 People’s Republic of China
| |
Collapse
|
29
|
Kelly S, Radutoiu S, Stougaard J. Legume LysM receptors mediate symbiotic and pathogenic signalling. CURRENT OPINION IN PLANT BIOLOGY 2017; 39:152-158. [PMID: 28787662 DOI: 10.1016/j.pbi.2017.06.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/14/2017] [Accepted: 06/16/2017] [Indexed: 05/13/2023]
Abstract
Legume-rhizobia symbiosis is coordinated through the production and perception of signal molecules by both partners with legume LysM receptor kinases performing a central role in this process. Receptor complex formation and signalling outputs derived from these are regulated through ligand binding and further modulated by a diverse variety of interactors. The challenge now is to understand the molecular mechanisms of these reported interactors. Recently attributed roles of LysM receptors in the perception of rhizobial exopolysaccharide, distinguishing between pathogens and symbionts, and assembly of root and rhizosphere communities expand on the importance of these receptors. These studies also highlight challenges, such as identification of cognate ligands, formation of responsive receptor complexes and separation of downstream signal transduction pathways.
Collapse
Affiliation(s)
- Simon Kelly
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, University of Aarhus, DK - 8000 Aarhus, Denmark
| | - Simona Radutoiu
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, University of Aarhus, DK - 8000 Aarhus, Denmark
| | - Jens Stougaard
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, University of Aarhus, DK - 8000 Aarhus, Denmark.
| |
Collapse
|
30
|
Xu X, Wang C, Chen J, Yang S. Streptomyces virginiae PPDC Is a New Type of Phenylpyruvate Decarboxylase Composed of Two Subunits. ACS Chem Biol 2017; 12:2008-2014. [PMID: 28719183 DOI: 10.1021/acschembio.7b00307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Streptomyces virginiae phenylpyruvate decarboxylase (PPDC) has not been identified before. Two putative branched-chain α-keto acid dehydrogenase subunit genes bkdC and bkdD from S. virginiae are similar to halves of other PPDC coding sequences. We cloned and characterized them biochemically in this work. The two proteins formed a stable complex attested by pull-down assay, consistent with the finding that their soluble expression was obtained only when they were coexpressed in Escherichia coli. The subunits were redesignated as SvPPDCα and SvPPDCβ, because the SvPPDCα/β complex catalyzed the conversion of phenylpyruvate to phenylacetaldehyde, reflecting the nature of the enzyme. Moreover, mutations of conserved residues in either of the two subunits led to inactivation or decreased specific activity of the enzymatic reaction. All previously identified PPDCs are encoded by a single gene. Here, we identified a new type of PPDC that contains two subunits, which gives new insights into the PPDC family.
Collapse
Affiliation(s)
- Xiaoshu Xu
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | | | - Sheng Yang
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing 210009, China
| |
Collapse
|
31
|
Yuan Z, Zhang Z, Wang X, Li L, Cai K, Han H. Novel impacts of functionalized multi-walled carbon nanotubes in plants: promotion of nodulation and nitrogenase activity in the rhizobium-legume system. NANOSCALE 2017; 9:9921-9937. [PMID: 28678233 DOI: 10.1039/c7nr01948c] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The rhizobium-legume symbiosis system is critical for nitrogen-cycle balance in agriculture. However, the potential effects of carbon nanomaterials (CNMs) on this system remain largely unknown. Herein, we studied the effects of four carbon-based materials (activated carbon (AC), single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs) and graphene oxide (GO)) on the rhizobium-legume symbiosis system consisting of Lotus japonicus and Mesorhizobium loti MAFF303099. Under non-symbiotic conditions, the bacterial growth and root development of plants were both clearly inhibited by SWCNTs and GO, while the elongation of plant stems was enhanced by MWCNTs to a certain degree. More importantly, only MWCNTs could increase the number of nodules and enhance the activity of nitrogenase in the rhizobium-plant interaction. Further analyses showed that the average number of nodules in plants treated with 100 μg mL-1 MWCNTs was significantly increased by 39% at 14 days post inoculation (dpi) and by 41% at 28 dpi. Meanwhile, the biological nitrogen fixation of the nodules was promoted by more than 10% under 100 μg mL-1 MWCNT treatment, which enhanced the above- and below-ground fresh biomass by 14% and 25% respectively at 28 dpi. Transmission electron microscopy images further indicated that MWCNTs penetrated the cell wall, and pierced through the cell membrane to be transmitted into the cytoplasm. In addition, gene expression analysis showed that the promotion of nodulation by MWCNTs was correlated with the up-regulation of certain genes involved in this signaling pathway. In particular, the expression of NIN, a crucial gene regulating the development of nodules, was significantly elevated 2-fold by MWCNTs at an early stage of nodulation. These findings are expected to facilitate the understanding and future utilization of MWCNTs in agriculture.
Collapse
Affiliation(s)
- Zhaodong Yuan
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology and College of Science, Huazhong Agricultural University, Wuhan, 430070, PR China.
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
The superfamily of small monomeric GTPases originated in a common ancestor of eukaryotic multicellular organisms and, since then, it has evolved independently in each lineage to cope with the environmental challenges imposed by their different life styles. Members of the small GTPase family function in the control of vesicle trafficking, cytoskeleton rearrangements and signaling during crucial biological processes, such as cell growth and responses to environmental cues. In this review, we discuss the emerging roles of these small GTPases in the pathogenic and symbiotic interactions established by plants with microorganisms present in their nearest environment, in which membrane trafficking is crucial along the different steps of the interaction, from recognition and signal transduction to nutrient exchange.
Collapse
Affiliation(s)
- Claudio Rivero
- a Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas , La Plata , Argentina
| | - Soledad Traubenik
- a Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas , La Plata , Argentina
| | - María Eugenia Zanetti
- a Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas , La Plata , Argentina
| | - Flavio Antonio Blanco
- a Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas , La Plata , Argentina
| |
Collapse
|
33
|
Jayaraman D, Richards AL, Westphall MS, Coon JJ, Ané JM. Identification of the phosphorylation targets of symbiotic receptor-like kinases using a high-throughput multiplexed assay for kinase specificity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:1196-1207. [PMID: 28267253 PMCID: PMC5461195 DOI: 10.1111/tpj.13529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 02/17/2017] [Accepted: 03/01/2017] [Indexed: 05/29/2023]
Abstract
Detecting the phosphorylation substrates of multiple kinases in a single experiment is a challenge, and new techniques are being developed to overcome this challenge. Here, we used a multiplexed assay for kinase specificity (MAKS) to identify the substrates directly and to map the phosphorylation site(s) of plant symbiotic receptor-like kinases. The symbiotic receptor-like kinases nodulation receptor-like kinase (NORK) and lysin motif domain-containing receptor-like kinase 3 (LYK3) are indispensable for the establishment of root nodule symbiosis. Although some interacting proteins have been identified for these symbiotic receptor-like kinases, very little is known about their phosphorylation substrates. Using this high-throughput approach, we identified several other potential phosphorylation targets for both these symbiotic receptor-like kinases. In particular, we also discovered the phosphorylation of LYK3 by NORK itself, which was also confirmed by pairwise kinase assays. Motif analysis of potential targets for these kinases revealed that the acidic motif xxxsDxxx was common to both of them. In summary, this high-throughput technique catalogs the potential phosphorylation substrates of multiple kinases in a single efficient experiment, the biological characterization of which should provide a better understanding of phosphorylation signaling cascade in symbiosis.
Collapse
Affiliation(s)
- Dhileepkumar Jayaraman
- Department of Agronomy, 1575 Linden Drive, University of Wisconsin–Madison, WI 53706, USA
| | - Alicia L. Richards
- Department of Chemistry, 1101 University Avenue, University of Wisconsin–Madison, WI 53706, USA
- Genome Center of Wisconsin, University of Wisconsin–Madison, 425 Henry Mall, WI 53706, USA
| | - Michael S. Westphall
- Department of Chemistry, 1101 University Avenue, University of Wisconsin–Madison, WI 53706, USA
- Genome Center of Wisconsin, University of Wisconsin–Madison, 425 Henry Mall, WI 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, 420 Henry Mall, WI 53706, USA
| | - Joshua J. Coon
- Department of Chemistry, 1101 University Avenue, University of Wisconsin–Madison, WI 53706, USA
- Genome Center of Wisconsin, University of Wisconsin–Madison, 425 Henry Mall, WI 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, 420 Henry Mall, WI 53706, USA
| | - Jean-Michel Ané
- Department of Agronomy, 1575 Linden Drive, University of Wisconsin–Madison, WI 53706, USA
- Department of Bacteriology, 1550 Linden Drive, University of Wisconsin–Madison, WI 53706, USA
| |
Collapse
|
34
|
Wang C, Wang G, Zhang C, Zhu P, Dai H, Yu N, He Z, Xu L, Wang E. OsCERK1-Mediated Chitin Perception and Immune Signaling Requires Receptor-like Cytoplasmic Kinase 185 to Activate an MAPK Cascade in Rice. MOLECULAR PLANT 2017; 10:619-633. [PMID: 28111288 DOI: 10.1016/j.molp.2017.01.006] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/02/2017] [Accepted: 01/10/2017] [Indexed: 05/06/2023]
Abstract
Conserved pathogen-associated molecular patterns (PAMPs), such as chitin, are perceived by pattern recognition receptors (PRRs) located at the host cell surface and trigger rapid activation of mitogen-activated protein kinase (MAPK) cascades, which are required for plant resistance to pathogens. However, the direct links from PAMP perception to MAPK activation in plants remain largely unknown. In this study, we found that the PRR-associated receptor-like cytoplasmic kinase Oryza sativa RLCK185 transmits immune signaling from the PAMP receptor OsCERK1 to an MAPK signaling cascade through interaction with an MAPK kinase kinase, OsMAPKKKε, which is the initial kinase of the MAPK cascade. OsRLCK185 interacts with and phosphorylates the C-terminal regulatory domain of OsMAPKKKε. Coexpression of phosphomimetic OsRLCK185 and OsMAPKKKε activates MAPK3/6 phosphorylation in Nicotiana benthamiana leaves. Moreover, OsMAPKKKε interacts with and phosphorylates OsMKK4, a key MAPK kinase that transduces the chitin signal. Overexpression of OsMAPKKKε increases chitin-induced MAPK3/6 activation, whereas OsMAPKKKε knockdown compromises chitin-induced MAPK3/6 activation and resistance to rice blast fungus. Taken together, our results suggest the existence of a phospho-signaling pathway from cell surface chitin perception to intracellular activation of an MAPK cascade in rice.
Collapse
Affiliation(s)
- Chao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Gang Wang
- Department of Biology, East China Normal University, Shanghai 200241, China; National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chi Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Pinkuan Zhu
- Department of Biology, East China Normal University, Shanghai 200241, China
| | - Huiling Dai
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Nan Yu
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ling Xu
- Department of Biology, East China Normal University, Shanghai 200241, China.
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
35
|
Ibáñez F, Wall L, Fabra A. Starting points in plant-bacteria nitrogen-fixing symbioses: intercellular invasion of the roots. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1905-1918. [PMID: 27756807 DOI: 10.1093/jxb/erw387] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Agricultural practices contribute to climate change by releasing greenhouse gases such as nitrous oxide that are mainly derived from nitrogen fertilizers. Therefore, understanding biological nitrogen fixation in farming systems is beneficial to agriculture and environmental preservation. In this context, a better grasp of nitrogen-fixing systems and nitrogen-fixing bacteria-plant associations will contribute to the optimization of these biological processes. Legumes and actinorhizal plants can engage in a symbiotic interaction with nitrogen-fixing rhizobia or actinomycetes, resulting in the formation of specialized root nodules. The legume-rhizobia interaction is mediated by a complex molecular signal exchange, where recognition of different bacterial determinants activates the nodulation program in the plant. To invade plants roots, bacteria follow different routes, which are determined by the host plant. Entrance via root hairs is probably the best understood. Alternatively, entry via intercellular invasion has been observed in many legumes. Although there are common features shared by intercellular infection mechanisms, differences are observed in the site of root invasion and bacterial spread on the cortex reaching and infecting a susceptible cell to form a nodule. This review focuses on intercellular bacterial invasion of roots observed in the Fabaceae and considers, within an evolutionary context, the different variants, distribution and molecular determinants involved. Intercellular invasion of actinorhizal plants and Parasponia is also discussed.
Collapse
Affiliation(s)
- Fernando Ibáñez
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Luis Wall
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
| | - Adriana Fabra
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| |
Collapse
|
36
|
Mun T, Małolepszy A, Sandal N, Stougaard J, Andersen SU. User Guide for the LORE1 Insertion Mutant Resource. Methods Mol Biol 2017; 1610:13-23. [PMID: 28439854 DOI: 10.1007/978-1-4939-7003-2_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Lotus japonicus is a model legume used in the study of plant-microbe interactions, especially in the field of biological nitrogen fixation due to its ability to enter into a symbiotic relationship with a soil bacterium, Mesorhizobium loti. The LORE1 mutant population is a valuable resource for reverse genetics in L. japonicus due to its non-transgenic nature, high tagging efficiency, and low copy count. Here, we outline a workflow for identifying, ordering, and establishing homozygous LORE1 mutant lines for a gene of interest, LjFls2, including protocols for growth and genotyping of a segregating LORE1 population.
Collapse
Affiliation(s)
- Terry Mun
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000, Aarhus C, Denmark
| | - Anna Małolepszy
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000, Aarhus C, Denmark
| | - Niels Sandal
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000, Aarhus C, Denmark
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000, Aarhus C, Denmark
| | - Stig U Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000, Aarhus C, Denmark.
| |
Collapse
|
37
|
Mun T, Bachmann A, Gupta V, Stougaard J, Andersen SU. Lotus Base: An integrated information portal for the model legume Lotus japonicus. Sci Rep 2016; 6:39447. [PMID: 28008948 PMCID: PMC5180183 DOI: 10.1038/srep39447] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/22/2016] [Indexed: 12/04/2022] Open
Abstract
Lotus japonicus is a well-characterized model legume widely used in the study of plant-microbe interactions. However, datasets from various Lotus studies are poorly integrated and lack interoperability. We recognize the need for a comprehensive repository that allows comprehensive and dynamic exploration of Lotus genomic and transcriptomic data. Equally important are user-friendly in-browser tools designed for data visualization and interpretation. Here, we present Lotus Base, which opens to the research community a large, established LORE1 insertion mutant population containing an excess of 120,000 lines, and serves the end-user tightly integrated data from Lotus, such as the reference genome, annotated proteins, and expression profiling data. We report the integration of expression data from the L. japonicus gene expression atlas project, and the development of tools to cluster and export such data, allowing users to construct, visualize, and annotate co-expression gene networks. Lotus Base takes advantage of modern advances in browser technology to deliver powerful data interpretation for biologists. Its modular construction and publicly available application programming interface enable developers to tap into the wealth of integrated Lotus data. Lotus Base is freely accessible at: https://lotus.au.dk.
Collapse
Affiliation(s)
- Terry Mun
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000 Aarhus C, Denmark
| | - Asger Bachmann
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000 Aarhus C, Denmark
- Bioinformatics Research Centre, Aarhus University, C. F. Møllers Allé 8, DK-8000 Aarhus C, Denmark
| | - Vikas Gupta
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000 Aarhus C, Denmark
- Bioinformatics Research Centre, Aarhus University, C. F. Møllers Allé 8, DK-8000 Aarhus C, Denmark
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000 Aarhus C, Denmark
| | - Stig U. Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000 Aarhus C, Denmark
| |
Collapse
|
38
|
Wang C, Yu H, Luo L, Duan L, Cai L, He X, Wen J, Mysore KS, Li G, Xiao A, Duanmu D, Cao Y, Hong Z, Zhang Z. NODULES WITH ACTIVATED DEFENSE 1 is required for maintenance of rhizobial endosymbiosis in Medicago truncatula. THE NEW PHYTOLOGIST 2016; 212:176-91. [PMID: 27245091 DOI: 10.1111/nph.14017] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/13/2016] [Indexed: 05/27/2023]
Abstract
The symbiotic interaction between legume plants and rhizobia results in the formation of root nodules, in which symbiotic plant cells host and harbor thousands of nitrogen-fixing rhizobia. Here, a Medicago truncatula nodules with activated defense 1 (nad1) mutant was identified using reverse genetics methods. The mutant phenotype was characterized using cell and molecular biology approaches. An RNA-sequencing technique was used to analyze the transcriptomic reprogramming of nad1 mutant nodules. In the nad1 mutant plants, rhizobial infection and propagation in infection threads are normal, whereas rhizobia and their symbiotic plant cells become necrotic immediately after rhizobia are released from infection threads into symbiotic cells of nodules. Defense-associated responses were detected in nad1 nodules. NAD1 is specifically present in root nodule symbiosis plants with the exception of Morus notabilis, and the transcript is highly induced in nodules. NAD1 encodes a small uncharacterized protein with two predicted transmembrane helices and is localized at the endoplasmic reticulum. Our data demonstrate a positive role for NAD1 in the maintenance of rhizobial endosymbiosis during nodulation.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haixiang Yu
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Li Luo
- Shanghai Key Lab of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Liujian Duan
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liuyang Cai
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinxing He
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiangqi Wen
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Kirankumar S Mysore
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Aifang Xiao
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Deqiang Duanmu
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yangrong Cao
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zonglie Hong
- Department of Plant, Soil and Entomological Sciences and Program of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Moscow, ID, 83844, USA
| | - Zhongming Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
39
|
Rogato A, Valkov VT, Alves LM, Apone F, Colucci G, Chiurazzi M. Down-regulated Lotus japonicus GCR1 plants exhibit nodulation signalling pathways alteration. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 247:71-82. [PMID: 27095401 DOI: 10.1016/j.plantsci.2016.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/17/2016] [Accepted: 03/18/2016] [Indexed: 06/05/2023]
Abstract
G Protein Coupled Receptor (GPCRs) are integral membrane proteins involved in various signalling pathways by perceiving many extracellular signals and transducing them to heterotrimeric G proteins, which further transduce these signals to intracellular downstream effectors. GCR1 is the only reliable plant candidate as a member of the GPCRs superfamily. In the legume/rhizobia symbiotic interaction, G proteins are involved in signalling pathways controlling different steps of the nodulation program. In order to investigate the putative hierarchic role played by GCR1 in these symbiotic pathways we identified and characterized the Lotus japonicus gene encoding the seven transmembrane GCR1 protein. The detailed molecular and topological analyses of LjGCR1 expression patterns that are presented suggest a possible involvement in the early steps of nodule organogenesis. Furthermore, phenotypic analyses of independent transgenic RNAi lines, showing a significant LjGCR1 expression down regulation, suggest an epistatic action in the control of molecular markers of nodulation pathways, although no macroscopic symbiotic phenotypes could be revealed.
Collapse
Affiliation(s)
- Alessandra Rogato
- Institute of Biosciences and Bioresources, IBBR, CNR, Via P. Castellino 111, 80131 Napoli, Italy
| | - Vladimir Totev Valkov
- Institute of Biosciences and Bioresources, IBBR, CNR, Via P. Castellino 111, 80131 Napoli, Italy
| | - Ludovico Martins Alves
- Institute of Biosciences and Bioresources, IBBR, CNR, Via P. Castellino 111, 80131 Napoli, Italy
| | - Fabio Apone
- Arterra Bioscience Srl, Via B. Brin 69, 80142 Napoli, Italy
| | | | - Maurizio Chiurazzi
- Institute of Biosciences and Bioresources, IBBR, CNR, Via P. Castellino 111, 80131 Napoli, Italy.
| |
Collapse
|
40
|
Qiao Z, Pingault L, Nourbakhsh-Rey M, Libault M. Comprehensive Comparative Genomic and Transcriptomic Analyses of the Legume Genes Controlling the Nodulation Process. FRONTIERS IN PLANT SCIENCE 2016; 7:34. [PMID: 26858743 PMCID: PMC4732000 DOI: 10.3389/fpls.2016.00034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/10/2016] [Indexed: 06/05/2023]
Abstract
Nitrogen is one of the most essential plant nutrients and one of the major factors limiting crop productivity. Having the goal to perform a more sustainable agriculture, there is a need to maximize biological nitrogen fixation, a feature of legumes. To enhance our understanding of the molecular mechanisms controlling the interaction between legumes and rhizobia, the symbiotic partner fixing and assimilating the atmospheric nitrogen for the plant, researchers took advantage of genetic and genomic resources developed across different legume models (e.g., Medicago truncatula, Lotus japonicus, Glycine max, and Phaseolus vulgaris) to identify key regulatory protein coding genes of the nodulation process. In this study, we are presenting the results of a comprehensive comparative genomic analysis to highlight orthologous and paralogous relationships between the legume genes controlling nodulation. Mining large transcriptomic datasets, we also identified several orthologous and paralogous genes characterized by the induction of their expression during nodulation across legume plant species. This comprehensive study prompts new insights into the evolution of the nodulation process in legume plant and will benefit the scientific community interested in the transfer of functional genomic information between species.
Collapse
|
41
|
Qiu L, Lin JS, Xu J, Sato S, Parniske M, Wang TL, Downie JA, Xie F. SCARN a Novel Class of SCAR Protein That Is Required for Root-Hair Infection during Legume Nodulation. PLoS Genet 2015; 11:e1005623. [PMID: 26517270 PMCID: PMC4627827 DOI: 10.1371/journal.pgen.1005623] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 09/30/2015] [Indexed: 12/22/2022] Open
Abstract
Rhizobial infection of legume root hairs requires a rearrangement of the actin cytoskeleton to enable the establishment of plant-made infection structures called infection threads. In the SCAR/WAVE (Suppressor of cAMP receptor defect/WASP family verpolin homologous protein) actin regulatory complex, the conserved N-terminal domains of SCAR proteins interact with other components of the SCAR/WAVE complex. The conserved C-terminal domains of SCAR proteins bind to and activate the actin-related protein 2/3 (ARP2/3) complex, which can bind to actin filaments catalyzing new actin filament formation by nucleating actin branching. We have identified, SCARN (SCAR-Nodulation), a gene required for root hair infection of Lotus japonicus by Mesorhizobium loti. Although the SCARN protein is related to Arabidopsis thaliana SCAR2 and SCAR4, it belongs to a distinct legume-sub clade. We identified other SCARN-like proteins in legumes and phylogeny analyses suggested that SCARN may have arisen from a gene duplication and acquired specialized functions in root nodule symbiosis. Mutation of SCARN reduced formation of infection-threads and their extension into the root cortex and slightly reduced root-hair length. Surprisingly two of the scarn mutants showed constitutive branching of root hairs in uninoculated plants. However we observed no effect of scarn mutations on trichome development or on the early actin cytoskeletal accumulation that is normally seen in root hair tips shortly after M. loti inoculation, distinguishing them from other symbiosis mutations affecting actin nucleation. The C-terminal domain of SCARN binds to ARPC3 and ectopic expression of the N-terminal SCAR-homology domain (but not the full length protein) inhibited nodulation. In addition, we found that SCARN expression is enhanced by M. loti in epidermal cells and that this is directly regulated by the NODULE INCEPTION (NIN) transcription factor. Characterization of Lotus japonicus mutants defective for nodule infection by rhizobia led to the identification of a gene we named SCARN. Two of the five alleles caused formation of branched root-hairs in uninoculated seedlings, suggesting SCARN plays a role in the microtubule and actin-regulated polar growth of root hairs. SCARN is one of three L. japonicus proteins containing the conserved N and C terminal domains predicted to be required for rearrangement of the actin cytoskeleton. SCARN expression is induced in response to rhizobial nodulation factors by the NIN (NODULE INCEPTION) transcription factor and appears to be adapted to promoting rhizobial infection, possibly arising from a gene duplication event. SCARN binds to ARPC3, one of the predicted components in the actin-related protein complex involved in the activation of actin nucleation.
Collapse
Affiliation(s)
- Liping Qiu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jie-shun Lin
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ji Xu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shusei Sato
- Kazusa DNA Research Institute, Kisarazu, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Martin Parniske
- University of Munich LMU, Faculty of Biology, Martinsried, Germany
| | | | | | - Fang Xie
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
42
|
Wang C, Xu X, Hong Z, Feng Y, Zhang Z. Involvement of ROP6 and clathrin in nodulation factor signaling. PLANT SIGNALING & BEHAVIOR 2015; 10:e1033127. [PMID: 26251877 PMCID: PMC4622583 DOI: 10.1080/15592324.2015.1033127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 03/13/2015] [Accepted: 03/17/2015] [Indexed: 05/02/2023]
Abstract
The symbiotic association between the legume Lotus japonicus and the nitrogen-fixing bacterium Mesorhizobium loti results in the formation of root nodules. This process begins with the recognition of the rhizobial nodulation factor (NF) by the NF receptors (NFR) at the cell surface of the host roots. The downstream signaling cascades after NFR recognition have not been fully characterized. We recently identified a clathrin heavy chain 1 (CHC1) from L. japonicus as a potential target of the NF signaling cascades. CHC is a known central component in the clathrin-mediated endocytosis (CME) in eukaryotic cells. The CHC1 gene was highly expressed in Rhizobium-infected root hairs and the CHC1 protein was present in cytoplasmic punctate structures near the infection pockets and along the infection thread membrane. Furthermore, expression of a dominant-negative variant of CHC1 or treatment with a chemical inhibitor of CME resulted in impaired phenotypes in the NF signaling, rhizobial infection and nodulation. These findings open a new avenue for future work aiming at understanding the role of endocytosis in NF signaling pathway and rhizobial infection.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Agricultural Microbiology; Huazhong Agricultural University; Wuhan, China
| | - Xiaoshu Xu
- Key Laboratory of Synthetic Biology; Institute of Plant Physiology and Ecology; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; Shanghai, China
| | - Zonglie Hong
- Department of Plant, Soil and Entomological Sciences and Program of Microbiology, Molecular Biology and Biochemistry; University of Idaho; Moscow, ID USA
| | - Yong Feng
- State Key Laboratory of Agricultural Microbiology; Huazhong Agricultural University; Wuhan, China
| | - Zhongming Zhang
- State Key Laboratory of Agricultural Microbiology; Huazhong Agricultural University; Wuhan, China
| |
Collapse
|