1
|
Zhou P, Liu X, Liang Y, Zhang Y, Li X, Zhang D. A simple, highly efficient Agrobacterium tumefaciens-mediated moss transformation system with broad applications. ABIOTECH 2024; 5:476-487. [PMID: 39650136 PMCID: PMC11624164 DOI: 10.1007/s42994-024-00174-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/20/2024] [Indexed: 12/11/2024]
Abstract
Mosses, particularly desiccation-tolerant (DT) species, are important model organisms for studying genes involved in plant development and stress resistance. The lack of a simple and efficient stable moss transformation system has hindered progress in deciphering the genetic mechanisms underlying traits of interest in these organisms. Here, we present an Agrobacterium tumefaciens-mediated transformation system for DT mosses that uses Agrobacterium strain EHA105 harboring the binary vector pCAMBIA1301-GUS. This system achieved transformation efficiencies of 74% and 81% in Physcomitrium patens and Bryum argenteum protonemata, respectively, without the need for culture and callus formation prior to regeneration. We detected GUS enzyme activity in the regenerated transgenic moss via histochemical staining. Southern blot, PCR, and RT-qPCR analyses confirmed the presence of the GUS gene. In addition, we successfully used this system to transform wild DT Syntrichia caninervis. Furthermore, P. patens and B. argenteum transformed using this system with the stress resistance gene EsDREB from the desert plant Eremosparton songoricum (Litv.) exhibited improved salt tolerance. We thus present an efficient tool for the genetic analysis of DT moss species, paving the way for the development of stress-resistant crop cultivars. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-024-00174-4.
Collapse
Affiliation(s)
- Ping Zhou
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011 China
- Department of Food Science and Engineering, Moutai Institute, Renhuai, 564502 China
| | - Xiujin Liu
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011 China
- Present Address: Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011 China
| | - Yuqing Liang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011 China
- Present Address: Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011 China
| | - Yan Zhang
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Xiaoshuang Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011 China
- Present Address: Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011 China
| | - Daoyuan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011 China
- Present Address: Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011 China
| |
Collapse
|
2
|
Peng L, Huang X, Qi M, Pritchard HW, Xue H. Mechanistic insights derived from re-establishment of desiccation tolerance in germinating xerophytic seeds: Caragana korshinskii as an example. FRONTIERS IN PLANT SCIENCE 2022; 13:1029997. [PMID: 36420023 PMCID: PMC9677110 DOI: 10.3389/fpls.2022.1029997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 09/27/2022] [Indexed: 05/13/2023]
Abstract
Germplasm conservation strongly depends on the desiccation tolerance (DT) of seeds. Xerophytic seeds have strong desiccation resistance, which makes them excellent models to study DT. Although some experimental strategies have been applied previously, most methods are difficult to apply to xerophytic seeds. In this review, we attempted to synthesize current strategies for the study of seed DT and provide an in-depth look at Caragana korshinskii as an example. First, we analyze congenital advantages of xerophytes in the study of seed DT. Second, we summarize several strategies used to study DT and illustrate a suitable strategy for xerophytic species. Then, based on our previous studies work with C. korshinskii, a feasible technical strategy for DT re-establishment is provided and we provide illustrate some special molecular mechanisms seen in xerophytic seeds. Finally, several steps to unveil the DT mechanism of xerophytic seeds are suggested, and three scientific questions that the field should consider are listed. We hope to optimize and utilize this strategy for more xerophytic species to more systematically decipher the physiological and molecular processes of seed DT and provide more candidate genes for molecular breeding.
Collapse
Affiliation(s)
- Long Peng
- The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Xu Huang
- National Engineering Research Center of Tree breeding and Ecological remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Manyao Qi
- National Engineering Research Center of Tree breeding and Ecological remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Hugh W. Pritchard
- Chinese Academy of Sciences, Kunming Institute of Botany, Kunming, China
- Royal Botanic Gardens, Kew, Wakehurst, West Sussex, United Kingdom
| | - Hua Xue
- National Engineering Research Center of Tree breeding and Ecological remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- *Correspondence: Hua Xue,
| |
Collapse
|
3
|
Whitehouse KJ, Hay FR, Lusty C. Why Seed Physiology Is Important for Genebanking. PLANTS 2020; 9:plants9050584. [PMID: 32370279 PMCID: PMC7284513 DOI: 10.3390/plants9050584] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 11/16/2022]
Abstract
Genebank management is a field in its own right; it is multifaceted, requiring a diverse set of skills and knowledge. Seed physiology is one area that is critical to the successful operation of seed genebanks, requiring understanding of seed quality during development and maturation, seed dormancy and germination, and seed longevity in storage of the target species. Careful management of the workflow between these activities, as seeds move from harvest to storage, and the recording and management of all relevant associated data, is key to ensuring the effective conservation of plant genetic resources. This review will discuss various aspects of seed physiology that genebank managers should be aware of, to ensure appropriate decisions are made about the handling and management of their seed collections.
Collapse
Affiliation(s)
- Katherine J. Whitehouse
- Australian Grains Genebank, Agriculture Victoria Research, Departments of Jobs, Precincts and Regions, Private Bag 260, Horsham, Victoria 3401, Australia;
| | - Fiona R. Hay
- Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark
- Correspondence: ; Tel.: +45-87-15-60-00
| | - Charlotte Lusty
- Global Crop Diversity Trust, Platz Der Vereinten Nationen 7, 53113 Bonn, Germany;
| |
Collapse
|
4
|
Ventura L, Donà M, Macovei A, Carbonera D, Buttafava A, Mondoni A, Rossi G, Balestrazzi A. Understanding the molecular pathways associated with seed vigor. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 60:196-206. [PMID: 22995217 DOI: 10.1016/j.plaphy.2012.07.031] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 07/31/2012] [Indexed: 05/17/2023]
Abstract
Farmers and growers are constantly looking for high quality seeds able to ensure uniform field establishment and increased production. Seed priming is used to induce pre-germinative metabolism and then enhance germination efficiency and crop yields. It has been hypothesized that priming treatments might also improve stress tolerance in germinating seeds, leaving a sort of 'stress memory'. However, the molecular bases of priming still need to be clarified and the identification of molecular indicators of seed vigor is nowadays a relevant goal for the basic and applied research in seed biology. It is generally acknowledged that enhanced seed vigor and successful priming depend on DNA repair mechanisms, activated during imbibition. The complexity of the networks of DNA damage control/repair functions has been only partially elucidated in plants and the specific literature that address seeds remains scanty. The DNA repair pathways hereby described (Nucleotide and Base Excision Repair, Non-Homologous End Joining, Homologous Recombination) play specific roles, all of them being critical to ensure genome stability. This review also focuses on some novel regulatory mechanisms of DNA repair (chromatin remodeling and small RNAs) while the possible use of telomere sequences as markers of aging in seed banks is discussed. The significant contribution provided by Electron Paramagnetic Resonance in elucidating the kinetics of seed aging, in terms of free radical profiles and membrane integrity is reported.
Collapse
Affiliation(s)
- Lorenzo Ventura
- Dipartimento di Chimica, via Taramelli 12, 27100 Pavia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Scott RW, Winichayakul S, Roldan M, Cookson R, Willingham M, Castle M, Pueschel R, Peng CC, Tzen JTC, Roberts NJ. Elevation of oil body integrity and emulsion stability by polyoleosins, multiple oleosin units joined in tandem head-to-tail fusions. PLANT BIOTECHNOLOGY JOURNAL 2010; 8:912-927. [PMID: 20444209 DOI: 10.1111/j.1467-7652.2010.00522.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We have successfully created polyoleosins by joining multiple oleosin units in tandem head-to-tail fusions. Constructs encoding recombinant proteins of 1, 3 and 6 oleosin repeats were purposely expressed both in planta and in Escherichia coli. Recombinant polyoleosins accumulated in the seed oil bodies of transgenic plants and in the inclusion bodies of E. coli. Although polyoleosin was estimated to only accumulate to <2% of the total oil body protein in planta, their presence increased the freezing tolerance of imbibed seeds as well as emulsion stability and structural integrity of purified oil bodies; these increases were greater with increasing oleosin repeat number. Interestingly, the hexameric form of polyoleosin also led to an observable delay in germination which could be overcome with the addition of external sucrose. Prokaryotically produced polyoleosin was purified and used to generate artificial oil bodies and the increase in structural integrity of artificial oil bodies-containing polyoleosin was found to mimic those produced in planta. We describe here the construction of polyoleosins, their purification from E. coli, and properties imparted on seeds as well as native and artificial oil bodies. A putative mechanism to account for these properties is also proposed.
Collapse
Affiliation(s)
- Richard W Scott
- AgResearch Limited, Forage Biotechnology, Tennent Drive, Palmerston North, New Zealand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Shu S, Wang Y, Chen W, Wang Z. Influence of dehydration on the desert moss in molecular mobility and membrane fluidity monitored by spin label. BIOCHEM SYST ECOL 2008. [DOI: 10.1016/j.bse.2008.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Saavedra L, Svensson J, Carballo V, Izmendi D, Welin B, Vidal S. A dehydrin gene in Physcomitrella patens is required for salt and osmotic stress tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 45:237-49. [PMID: 16367967 DOI: 10.1111/j.1365-313x.2005.02603.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We isolated a dehydrin-like (DHN-like) gene fragment, PpDHNA, from the moss Physcomitrella patens by PCR amplification using degenerate primers directed against conserved amino acid segments of DHNs of higher plants. The full-length cDNA was found to encode a 59.2-kDa glycine-rich protein, DHNA, with typical characteristics of DHNs, including the presence of several Y repeats and one conserved K segment. DHNA had a high sequence similarity with a protein from Tortula ruralis, Tr288, which is thought to be involved in cellular dehydration tolerance/repair in this moss. Northern and Western analysis showed that PpDHNA is upregulated upon treatment of plants with abscisic acid, NaCl or mannitol, indicating a similar expression pattern to DHNs from higher plants. To analyze the contribution of DHNA to osmotic stress tolerance, we generated a knockout mutant (dhnA) by disruption of the gene using homologous recombination. Growth and stress response studies of the mutant showed that dhnA was severely impaired in its capacity to resume growth after salt and osmotic-stress treatments. We provide direct genetic evidence in any plant species for a DHN exerting a protective role during cellular dehydration allowing recovery when returned to optimal growth conditions.
Collapse
Affiliation(s)
- Laura Saavedra
- Laboratorio de Biología Molecular Vegetal, Facultad de Ciencias, Universidad de la República, Iguá 4225, CP 11400, Montevideo, Uruguay
| | | | | | | | | | | |
Collapse
|
8
|
Chapter 6 Effects of Sugars on the Stability and Structure of Lipid Membranes During Drying. ADVANCES IN PLANAR LIPID BILAYERS AND LIPOSOMES VOLUME 3 2006. [DOI: 10.1016/s1554-4516(05)03006-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
9
|
Jamil K, Crowe JH, Tablin F, Oliver AE. Arbutin Enhances Recovery and Osteogenic Differentiation in Dried and Rehydrated Human Mesenchymal Stem Cells. ACTA ACUST UNITED AC 2005. [DOI: 10.1089/cpt.2005.3.244] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Kamran Jamil
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, California
| | - John H. Crowe
- Section of Molecular and Cellular Biology, University of California, Davis, California
| | - Fern Tablin
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, California
| | - Ann E. Oliver
- Section of Molecular and Cellular Biology, University of California, Davis, California
| |
Collapse
|
10
|
Popova AV, Hincha DK. Specific interactions of tryptophan with phosphatidylcholine and digalactosyldiacylglycerol in pure and mixed bilayers in the dry and hydrated state. Chem Phys Lipids 2004; 132:171-84. [PMID: 15555603 DOI: 10.1016/j.chemphyslip.2004.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2004] [Accepted: 06/30/2004] [Indexed: 11/24/2022]
Abstract
Amphiphilic solutes play an important role in the desiccation tolerance of plant cells, because they can reversibly partition into cellular membranes during dehydration. Their effects on membrane stability depend on their chemical structure, but also on the lipid composition of the host membrane. We have shown recently that tryptophan destabilizes liposomes during freezing. The degree of destabilization depends on the presence of glycolipids in the membranes, but not on the phase preference (bilayer or non-bilayer) of the lipids in mixtures with the bilayer lipid phosphatidylcholine. Here, we have investigated the influence of tryptophan on the phase behavior and intermolecular interactions in dry and hydrated bilayers made from the phospholipid egg phosphatidylcholine and the plant chloroplast glycolipid digalactosyldiacylglycerol, or from a mixture (1:1) of these lipids, using Fourier-transform infrared spectroscopy. To distinguish effects of the hydrophobic ring structure of tryptophan from those of the amino acid moiety, we also performed experiments with the hydrophilic amino acid glycine. Our data show that there are specific interactions between tryptophan and either phospholipid or glycolipid in the dry state, as well as H-bonding interactions between the lipids and both solutes. In the rehydrated state, the H-bonding interactions between amino acids and lipids are mostly replaced by interactions between water and lipids, while the hydrophobic interactions between lipids and tryptophan mostly persist.
Collapse
Affiliation(s)
- Antoaneta V Popova
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14424 Potsdam, Germany
| | | |
Collapse
|
11
|
Franks PJ, Drake PL. Desiccation-induced loss of seed viability is associated with a 10-fold increase in CO 2 evolution in seeds of the rare tropical rainforest tree Idiospermum australiense. THE NEW PHYTOLOGIST 2003; 159:253-261. [PMID: 33873666 DOI: 10.1046/j.1469-8137.2003.00776.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
• Here the relationship was investigated between metabolic activity, state of hydration and seed viability in the desiccation-intolerant (recalcitrant) seeds of Idiospermum australiense, a rare and primitive angiosperm tree restricted to wet tropical forest. • Seed CO2 evolution rate, R, was monitored in fully hydrated (control) seeds and seeds that were allowed to desiccate under ambient conditions over a period of c. 90 d. • During desiccation R increased dramatically toward a peak at a seed relative water content of 39 ± 3% (relative to maximum water content, which corresponded to 0.45 ± 0.03 g water g-1 d. wt) followed by a decline toward zero with total desiccation. This peak constituted a 10-fold increase in mean R, relative to the control. Exposing seeds to O2 -free air at this peak induced a further large, but transient, increase in CO2 evolution, indicating that the peak developed in the presence of oxidative phosphorylation, rather than due to the absence of it. • The magnitude and mode of the observed increase in CO2 evolution in response to desiccation is unlike any reported so far and thus adds new information about metabolic changes that may occur as the water content of desiccation-intolerant seeds declines.
Collapse
Affiliation(s)
- P J Franks
- School of Tropical Biology, James Cook University, Cairns, Queensland, Australia; Present address: Organismic and Evolutionary Biology, Harvard University, 3119 Biological Laboratories, 16 Divinity Avenue, Cambridge MA 02138, USA
| | - P L Drake
- School of Tropical Biology, James Cook University, Cairns, Queensland, Australia; Present address: Organismic and Evolutionary Biology, Harvard University, 3119 Biological Laboratories, 16 Divinity Avenue, Cambridge MA 02138, USA
| |
Collapse
|
12
|
Popova AV, Heyer AG, Hincha DK. Differential destabilization of membranes by tryptophan and phenylalanine during freezing: the roles of lipid composition and membrane fusion. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1561:109-18. [PMID: 11988185 DOI: 10.1016/s0005-2736(01)00462-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The stability of cellular membranes during dehydration can be strongly influenced by the partitioning of amphiphilic solutes from the aqueous phase into the membranes. The effects of partitioning on membrane stability depend in a complex manner on the structural properties of the amphiphiles and on membrane lipid composition. Here, we have investigated the effects of the amphiphilic aromatic amino acids Trp and Phe on membrane stability during freezing. Both amino acids were cryotoxic to isolated chloroplast thylakoid membranes and to large unilamellar liposomes, but Trp had a much stronger effect than Phe. In liposomes, both amino acids induced solute leakage and membrane fusion during freezing. The presence of the chloroplast galactolipids monogalactosyldiacylglycerol or digalactosyldiacylglycerol in egg phosphatidylcholine (EPC) membranes reduced leakage from liposomes during freezing in the presence of up to 5 mM Trp, as compared to membranes composed of pure EPC. The presence of the nonbilayer-forming lipid phosphatidylethanolamine increased leakage. Membrane fusion followed a similar trend, but was dramatically reduced when the anthracycline antibiotic daunomycin was incorporated into the membranes. Daunomycin has been shown to stabilize the bilayer phase of membranes in the presence of nonbilayer lipids and was therefore expected to reduce fusion. Surprisingly, this had only a small influence on leakage. Collectively, these data indicate that Trp and Phe induce solute leakage from liposomes during freezing by a mechanism that is largely independent of fusion events.
Collapse
Affiliation(s)
- Antoaneta V Popova
- Institute of Biophysics, Bulgarian Academy of Sciences, Acad. G. Bonchev str. bl. 21, 1113 Sofia, Bulgaria
| | | | | |
Collapse
|
13
|
Abstract
This paper reviews our work on the partitioning of amphiphilic compounds from the cytoplasm into membranes during drying of plant systems, and discusses how relevant this phenomenon might be for anhydrobiosis. Amphiphilic guest molecules do partition into membranes and oil bodies, as demonstrated by the results of in vivo electron paramagnetic resonance spectroscopy on incorporated spin probes. Arguments for the likelihood of endogenous cytoplasmic amphiphiles behaving similarly during dehydration and rehydration of plant systems are presented. Negative and positive aspects of the partitioning are summarized. Positive aspects are the automatic insertion of amphiphilic antioxidants into membranes of the dehydrating organism, and the control of membrane fluidity and the phase transition temperature. A negative aspect is the perturbation of membrane structure, leading to increased permeability and loss of function. The finding that after an initial fluidization during dehydration, the membrane surface becomes immobilized in desiccation-tolerant systems and not in desiccation-sensitive systems, is discussed in the light of a strict control of the effect of partitioning. The adaptive significance of amphiphile partitioning into the membranes of anhydrobiotes is discussed.
Collapse
Affiliation(s)
- Folkert A Hoekstra
- Department of Plant Sciences, Wageningen University, Laboratory of Plant Physiology, Arboretumlaan 4, NL-6703 BD Wageningen, The Netherlands.
| | | |
Collapse
|
14
|
Golovina EA, Hoekstra FA. Membrane behavior as influenced by partitioning of amphiphiles during drying: a comparative study in anhydrobiotic plant systems. Comp Biochem Physiol A Mol Integr Physiol 2002; 131:545-58. [PMID: 11867280 DOI: 10.1016/s1095-6433(01)00506-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
During cellular desiccation, reduction in volume can in principle cause amphiphilic compounds to partition from the cytoplasm into membranes, with structural perturbance as the result. Here, we studied the effect of partitioning of endogenous amphiphiles on membrane surface dynamics in desiccation-tolerant and -intolerant, higher and lower plant systems, using electron paramagnetic resonance (EPR) spin probe techniques. Labeling cells with the amphiphilic spin probe perdeuterated TEMPONE (PDT) enabled partitioning into the various phases to be followed. During drying, PDT molecules preferentially partitioned from the aqueous cytoplasm into the membrane surface and, at advanced stages of water loss, also into oil bodies. There was no specific partition behavior that could be correlated with lower/higher plants or with desiccation-tolerance. In vivo labeling with 5-doxylstearate (5-DS) enabled membrane surface fluidity to be characterized. In hydrated plants, the 5-DS spectra contained an immobile and a fluid component. The characteristics of the immobile component could not be specifically correlated with either lower or higher plants, or with desiccation tolerance. The relative contribution of the fluid component to the 5-DS spectra was higher in lower plants than in higher plants, but considerably decreased with drying in all desiccation-tolerant organisms. In contrast, the proportion of the fluid component in desiccation-sensitive wheat seedling root was higher than that in desiccation-tolerant wheat axis and considerably increased at the onset of water loss. We suggest that partitioning of amphipaths fluidize the membrane surface, but that in desiccation-tolerant systems the membranes are protected from excessive fluidization.
Collapse
Affiliation(s)
- Elena A Golovina
- Timiryazev Institute of Plant Physiology, Botanicheskaya 35, Moscow, 127276, Russia.
| | | |
Collapse
|
15
|
Oliver AE, Leprince O, Wolkers WF, Hincha DK, Heyer AG, Crowe JH. Non-disaccharide-based mechanisms of protection during drying. Cryobiology 2001; 43:151-67. [PMID: 11846470 DOI: 10.1006/cryo.2001.2359] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Few tissues or organisms can survive the removal of nearly all their intra and extracellular water. These few have developed specialized adaptations to protect their cellular components from the damage caused by desiccation and rehydration. One mechanism, common to almost all such organisms, is the accumulation of disaccharides within cells and tissues at the onset of dehydration. This adaptation has been extensively studied and will not be considered in this review. It has become increasingly clear that true desiccation tolerance is likely to involve several mechanisms working in concert; thus, we will highlight several other important and complimentary adaptations found especially in the dehydration-resistant tissues of higher plants. These include the scavenging of reactive oxygen species, the down-regulation of metabolism, and the accumulation of certain amphiphilic solutes, proteins, and polysaccharides.
Collapse
Affiliation(s)
- A E Oliver
- Section of Molecular and Cellular Biology, University of California, Davis, CA 95616, U.S.A
| | | | | | | | | | | |
Collapse
|