1
|
Yoshinori F, Imai K, Horton P. Prediction of mitochondrial targeting signals and their cleavage sites. Methods Enzymol 2024; 706:161-192. [PMID: 39455214 DOI: 10.1016/bs.mie.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
In this chapter we survey prediction tools and computational methods for the prediction of amino acid sequence elements which target proteins to the mitochondria. We will primarily focus on the prediction of N-terminal mitochondrial targeting signals (MTSs) and their N-terminal cleavage sites by mitochondrial peptidases. We first give practical details useful for using and installing some prediction tools. Then we describe procedures for preparing datasets of MTS containing proteins for statistical analysis or development of new prediction methods. Following that we lightly survey some of the computational techniques used by prediction tools. Finally, after discussing some caveats regarding the reliability of such methods to predict the effects of mutations on MTS function; we close with a discussion of possible future directions of computer prediction methods related to mitochondrial proteins.
Collapse
Affiliation(s)
- Fukasawa Yoshinori
- Center for Bioscience Research and Education, Utsunomiya University, Japan
| | - Kenichiro Imai
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Japan
| | - Paul Horton
- Department of Computer Science and Information Engineering, National Cheng Kung University, Taiwan.
| |
Collapse
|
2
|
Eckardt NA, Avin-Wittenberg T, Bassham DC, Chen P, Chen Q, Fang J, Genschik P, Ghifari AS, Guercio AM, Gibbs DJ, Heese M, Jarvis RP, Michaeli S, Murcha MW, Mursalimov S, Noir S, Palayam M, Peixoto B, Rodriguez PL, Schaller A, Schnittger A, Serino G, Shabek N, Stintzi A, Theodoulou FL, Üstün S, van Wijk KJ, Wei N, Xie Q, Yu F, Zhang H. The lowdown on breakdown: Open questions in plant proteolysis. THE PLANT CELL 2024; 36:2931-2975. [PMID: 38980154 PMCID: PMC11371169 DOI: 10.1093/plcell/koae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/16/2024] [Accepted: 06/19/2024] [Indexed: 07/10/2024]
Abstract
Proteolysis, including post-translational proteolytic processing as well as protein degradation and amino acid recycling, is an essential component of the growth and development of living organisms. In this article, experts in plant proteolysis pose and discuss compelling open questions in their areas of research. Topics covered include the role of proteolysis in the cell cycle, DNA damage response, mitochondrial function, the generation of N-terminal signals (degrons) that mark many proteins for degradation (N-terminal acetylation, the Arg/N-degron pathway, and the chloroplast N-degron pathway), developmental and metabolic signaling (photomorphogenesis, abscisic acid and strigolactone signaling, sugar metabolism, and postharvest regulation), plant responses to environmental signals (endoplasmic-reticulum-associated degradation, chloroplast-associated degradation, drought tolerance, and the growth-defense trade-off), and the functional diversification of peptidases. We hope these thought-provoking discussions help to stimulate further research.
Collapse
Affiliation(s)
| | - Tamar Avin-Wittenberg
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Poyu Chen
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Qian Chen
- Ministry of Agriculture and Rural Affairs Key Laboratory for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jun Fang
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Pascal Genschik
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, Strasbourg 67084, France
| | - Abi S Ghifari
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Angelica M Guercio
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Daniel J Gibbs
- School of Biosciences, University of Birmingham, Edgbaston B1 2RU, UK
| | - Maren Heese
- Department of Developmental Biology, University of Hamburg, Ohnhorststr. 18, Hamburg 22609, Germany
| | - R Paul Jarvis
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Simon Michaeli
- Department of Postharvest Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Monika W Murcha
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Sergey Mursalimov
- Department of Postharvest Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Sandra Noir
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, Strasbourg 67084, France
| | - Malathy Palayam
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Bruno Peixoto
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Cientificas-Universidad Politecnica de Valencia, Valencia ES-46022, Spain
| | - Andreas Schaller
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart 70599, Germany
| | - Arp Schnittger
- Department of Developmental Biology, University of Hamburg, Ohnhorststr. 18, Hamburg 22609, Germany
| | - Giovanna Serino
- Department of Biology and Biotechnology, Sapienza Universita’ di Roma, p.le A. Moro 5, Rome 00185, Italy
| | - Nitzan Shabek
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Annick Stintzi
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart 70599, Germany
| | | | - Suayib Üstün
- Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Bochum 44780, Germany
| | - Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY 14853, USA
| | - Ning Wei
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feifei Yu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100083, China
| | - Hongtao Zhang
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden AL5 2JQ, UK
| |
Collapse
|
3
|
Rowland E, Kim J, Friso G, Poliakov A, Ponnala L, Sun Q, van Wijk KJ. The CLP and PREP protease systems coordinate maturation and degradation of the chloroplast proteome in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2022; 236:1339-1357. [PMID: 35946374 DOI: 10.1111/nph.18426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
A network of peptidases governs proteostasis in plant chloroplasts and mitochondria. This study reveals strong genetic and functional interactions in Arabidopsis between the chloroplast stromal CLP chaperone-protease system and the PREP1,2 peptidases, which are dually localized to chloroplast stroma and the mitochondrial matrix. Higher order mutants defective in CLP or PREP proteins were generated and analyzed by quantitative proteomics and N-terminal proteomics (terminal amine isotopic labeling of substrates (TAILS)). Strong synergistic interactions were observed between the CLP protease system (clpr1-2, clpr2-1, clpc1-1, clpt1, clpt2) and both PREP homologs (prep1, prep2) resulting in embryo lethality or growth and developmental phenotypes. Synergistic interactions were observed even when only one of the PREP proteins was lacking, suggesting that PREP1 and PREP2 have divergent substrates. Proteome phenotypes were driven by the loss of CLP protease capacity, with little impact from the PREP peptidases. Chloroplast N-terminal proteomes showed that many nuclear encoded chloroplast proteins have alternatively processed N-termini in prep1prep2, clpt1clpt2 and prep1prep2clpt1clpt2. Loss of chloroplast protease capacity interferes with stromal processing peptidase (SPP) activity due to folding stress and low levels of accumulated cleaved cTP fragments. PREP1,2 proteolysis of cleaved cTPs is complemented by unknown proteases. A model for CLP and PREP activity within a hierarchical chloroplast proteolysis network is proposed.
Collapse
Affiliation(s)
- Elden Rowland
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY, 14853, USA
| | - Jitae Kim
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY, 14853, USA
- S-Korea Bioenergy Research Center, Chonnam National University, Gwangju, 61186, South Korea
| | - Giulia Friso
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY, 14853, USA
| | - Anton Poliakov
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY, 14853, USA
| | | | - Qi Sun
- Computational Biology Service Unit, Cornell University, Ithaca, NY, 14853, USA
| | - Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
4
|
Meinnel T, Giglione C. N-terminal modifications, the associated processing machinery, and their evolution in plastid-containing organisms. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6013-6033. [PMID: 35768189 DOI: 10.1093/jxb/erac290] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
The N-terminus is a frequent site of protein modifications. Referring primarily to knowledge gained from land plants, here we review the modifications that change protein N-terminal residues and provide updated information about the associated machinery, including that in Archaeplastida. These N-terminal modifications include many proteolytic events as well as small group additions such as acylation or arginylation and oxidation. Compared with that of the mitochondrion, the plastid-dedicated N-terminal modification landscape is far more complex. In parallel, we extend this review to plastid-containing Chromalveolata including Stramenopiles, Apicomplexa, and Rhizaria. We report a well-conserved machinery, especially in the plastid. Consideration of the two most abundant proteins on Earth-Rubisco and actin-reveals the complexity of N-terminal modification processes. The progressive gene transfer from the plastid to the nuclear genome during evolution is exemplified by the N-terminus modification machinery, which appears to be one of the latest to have been transferred to the nuclear genome together with crucial major photosynthetic landmarks. This is evidenced by the greater number of plastid genes in Paulinellidae and red algae, the most recent and fossil recipients of primary endosymbiosis.
Collapse
Affiliation(s)
- Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
5
|
Genome-Wide Analysis of the Peptidase M24 Superfamily in Triticum aestivum Demonstrates That TaM24-9 Is Involved in Abiotic Stress Response. Int J Mol Sci 2022; 23:ijms23136904. [PMID: 35805912 PMCID: PMC9266489 DOI: 10.3390/ijms23136904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 02/04/2023] Open
Abstract
The peptidase M24 (Metallopeptidase 24, M24) superfamily is essential for plant growth, stress response, and pathogen defense. At present, there are few systematic reports on the identification and classification of members of the peptidase M24 proteins superfamily in wheat. In this work, we identified 53 putative candidate TaM24 genes. According to the protein sequences characteristics, these members can be roughly divided into three subfamilies: I, II, III. Most TaM24 genes are complex with multiple exons, and the motifs are relatively conserved in each sub-group. Through chromosome mapping analysis, we found that the 53 genes were unevenly distributed on 19 wheat chromosomes (except 3A and 3D), of which 68% were in triads. Analysis of gene duplication events showed that 62% of TaM24 genes in wheat came from fragment duplication events, and there were no tandem duplication events to amplify genes. Analysis of the promoter sequences of TaM24 genes revealed that cis-acting elements were rich in response elements to drought, osmotic stress, ABA, and MeJA. We also studied the expression of TaM24 in wheat tissues at developmental stages and abiotic stress. Then we selected TaM24-9 as the target for further analysis. The results showed that TaM24-9 genes strengthened the drought and salt tolerance of plants. Overall, our analysis showed that members of the peptidase M24 genes may participate in the abiotic stress response and provided potential gene resources for improving wheat resistance.
Collapse
|
6
|
Proteolytic regulation of mitochondrial oxidative phosphorylation components in plants. Biochem Soc Trans 2022; 50:1119-1132. [PMID: 35587610 PMCID: PMC9246333 DOI: 10.1042/bst20220195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/07/2022] [Accepted: 05/03/2022] [Indexed: 11/28/2022]
Abstract
Mitochondrial function relies on the homeostasis and quality control of their proteome, including components of the oxidative phosphorylation (OXPHOS) pathway that generates energy in form of ATP. OXPHOS subunits are under constant exposure to reactive oxygen species due to their oxidation-reduction activities, which consequently make them prone to oxidative damage, misfolding, and aggregation. As a result, quality control mechanisms through turnover and degradation are required for maintaining mitochondrial activity. Degradation of OXPHOS subunits can be achieved through proteomic turnover or modular degradation. In this review, we present multiple protein degradation pathways in plant mitochondria. Specifically, we focus on the intricate turnover of OXPHOS subunits, prior to protein import via cytosolic proteasomal degradation and post import and assembly via intra-mitochondrial proteolysis involving multiple AAA+ proteases. Together, these proteolytic pathways maintain the activity and homeostasis of OXPHOS components.
Collapse
|
7
|
Heidorn-Czarna M, Maziak A, Janska H. Protein Processing in Plant Mitochondria Compared to Yeast and Mammals. FRONTIERS IN PLANT SCIENCE 2022; 13:824080. [PMID: 35185991 PMCID: PMC8847149 DOI: 10.3389/fpls.2022.824080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/12/2022] [Indexed: 05/02/2023]
Abstract
Limited proteolysis, called protein processing, is an essential post-translational mechanism that controls protein localization, activity, and in consequence, function. This process is prevalent for mitochondrial proteins, mainly synthesized as precursor proteins with N-terminal sequences (presequences) that act as targeting signals and are removed upon import into the organelle. Mitochondria have a distinct and highly conserved proteolytic system that includes proteases with sole function in presequence processing and proteases, which show diverse mitochondrial functions with limited proteolysis as an additional one. In virtually all mitochondria, the primary processing of N-terminal signals is catalyzed by the well-characterized mitochondrial processing peptidase (MPP). Subsequently, a second proteolytic cleavage occurs, leading to more stabilized residues at the newly formed N-terminus. Lately, mitochondrial proteases, intermediate cleavage peptidase 55 (ICP55) and octapeptidyl protease 1 (OCT1), involved in proteolytic cleavage after MPP and their substrates have been described in the plant, yeast, and mammalian mitochondria. Mitochondrial proteins can also be processed by removing a peptide from their N- or C-terminus as a maturation step during insertion into the membrane or as a regulatory mechanism in maintaining their function. This type of limited proteolysis is characteristic for processing proteases, such as IMP and rhomboid proteases, or the general mitochondrial quality control proteases ATP23, m-AAA, i-AAA, and OMA1. Identification of processing protease substrates and defining their consensus cleavage motifs is now possible with the help of large-scale quantitative mass spectrometry-based N-terminomics, such as combined fractional diagonal chromatography (COFRADIC), charge-based fractional diagonal chromatography (ChaFRADIC), or terminal amine isotopic labeling of substrates (TAILS). This review summarizes the current knowledge on the characterization of mitochondrial processing peptidases and selected N-terminomics techniques used to uncover protease substrates in the plant, yeast, and mammalian mitochondria.
Collapse
|
8
|
Hofsetz E, Demir F, Szczepanowska K, Kukat A, Kizhakkedathu JN, Trifunovic A, Huesgen PF. The Mouse Heart Mitochondria N Terminome Provides Insights into ClpXP-Mediated Proteolysis. Mol Cell Proteomics 2020; 19:1330-1345. [PMID: 32467259 PMCID: PMC8014998 DOI: 10.1074/mcp.ra120.002082] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/24/2020] [Indexed: 12/29/2022] Open
Abstract
The mammalian mitochondrial proteome consists of more than 1100 annotated proteins and their proteostasis is regulated by only a few ATP-dependent protease complexes. Technical advances in protein mass spectrometry allowed for detailed description of the mitoproteome from different species and tissues and their changes under specific conditions. However, protease-substrate relations within mitochondria are still poorly understood. Here, we combined Terminal Amine Isotope Labeling of Substrates (TAILS) N termini profiling of heart mitochondria proteomes isolated from wild type and Clpp-/- mice with a classical substrate-trapping screen using FLAG-tagged proteolytically active and inactive CLPP variants to identify new ClpXP substrates in mammalian mitochondria. Using TAILS, we identified N termini of more than 200 mitochondrial proteins. Expected N termini confirmed sequence determinants for mitochondrial targeting signal (MTS) cleavage and subsequent N-terminal processing after import, but the majority were protease-generated neo-N termini mapping to positions within the proteins. Quantitative comparison revealed widespread changes in protein processing patterns, including both strong increases or decreases in the abundance of specific neo-N termini, as well as an overall increase in the abundance of protease-generated neo-N termini in CLPP-deficient mitochondria that indicated altered mitochondrial proteostasis. Based on the combination of altered processing patterns, protein accumulation and stabilization in CLPP-deficient mice and interaction with CLPP, we identified OAT, HSPA9 and POLDIP2 and as novel bona fide ClpXP substrates. Finally, we propose that ClpXP participates in the cooperative degradation of UQCRC1. Together, our data provide the first landscape of the heart mitochondria N terminome and give further insights into regulatory and assisted proteolysis mediated by ClpXP.
Collapse
Affiliation(s)
- Eduard Hofsetz
- Institute for Mitochondrial Diseases and Aging at CECAD Research Centre, and Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Cologne, Germany, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
| | - Fatih Demir
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Germany
| | - Karolina Szczepanowska
- Institute for Mitochondrial Diseases and Aging at CECAD Research Centre, and Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Cologne, Germany, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
| | - Alexandra Kukat
- Institute for Mitochondrial Diseases and Aging at CECAD Research Centre, and Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Cologne, Germany, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
| | - Jayachandran N Kizhakkedathu
- Centre for Blood Research, School of Biomedical Engineering, Department of Pathology & Laboratory Medicine, Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aleksandra Trifunovic
- Institute for Mitochondrial Diseases and Aging at CECAD Research Centre, and Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Cologne, Germany, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany.
| | - Pitter F Huesgen
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Cologne, Germany, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany; Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Germany; Institute for Biochemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany.
| |
Collapse
|
9
|
Huang S, Li L, Petereit J, Millar AH. Protein turnover rates in plant mitochondria. Mitochondrion 2020; 53:57-65. [DOI: 10.1016/j.mito.2020.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/22/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023]
|
10
|
Borniego ML, Molina MC, Guiamét JJ, Martinez DE. Physiological and Proteomic Changes in the Apoplast Accompany Leaf Senescence in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 10:1635. [PMID: 31969890 PMCID: PMC6960232 DOI: 10.3389/fpls.2019.01635] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/20/2019] [Indexed: 05/14/2023]
Abstract
The apoplast, i.e. the cellular compartment external to the plasma membrane, undergoes important changes during senescence. Apoplastic fluid volume increases quite significantly in senescing leaves, thereby diluting its contents. Its pH elevates by about 0.8 units, similar to the apoplast alkalization in response to abiotic stresses. The levels of 159 proteins decrease, whereas 24 proteins increase in relative abundance in the apoplast of senescing leaves. Around half of the apoplastic proteins of non-senescent leaves contain a N-terminal signal peptide for secretion, while all the identified senescence-associated apoplastic proteins contain the signal peptide. Several of the apoplastic proteins that accumulate during senescence also accumulate in stress responses, suggesting that the apoplast may constitute a compartment where developmental and stress-related programs overlap. Other senescence-related apoplastic proteins are involved in cell wall modifications, proteolysis, carbohydrate, ROS and amino acid metabolism, signaling, lipid transport, etc. The most abundant senescence-associated apoplastic proteins, PR2 and PR5 (e.g. pathogenesis related proteins PR2 and PR5) are related to leaf aging rather than to the chloroplast degradation program, as their levels increase only in leaves undergoing developmental senescence, but not in dark-induced senescent leaves. Changes in the apoplastic space may be relevant for signaling and molecular trafficking underlying senescence.
Collapse
Affiliation(s)
| | | | | | - Dana E. Martinez
- Instituto de Fisiología Vegetal (INFIVE), CONICET-Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
11
|
Ghifari AS, Huang S, Murcha MW. The peptidases involved in plant mitochondrial protein import. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6005-6018. [PMID: 31738432 DOI: 10.1093/jxb/erz365] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/08/2019] [Indexed: 05/17/2023]
Abstract
The endosymbiotic origin of the mitochondrion and the subsequent transfer of its genome to the host nucleus has resulted in intricate mechanisms of regulating mitochondrial biogenesis and protein content. The majority of mitochondrial proteins are nuclear encoded and synthesized in the cytosol, thus requiring specialized and dedicated machinery for the correct targeting import and sorting of its proteome. Most proteins targeted to the mitochondria utilize N-terminal targeting signals called presequences that are cleaved upon import. This cleavage is carried out by a variety of peptidases, generating free peptides that can be detrimental to organellar and cellular activity. Research over the last few decades has elucidated a range of mitochondrial peptidases that are involved in the initial removal of the targeting signal and its sequential degradation, allowing for the recovery of single amino acids. The significance of these processing pathways goes beyond presequence degradation after protein import, whereby the deletion of processing peptidases induces plant stress responses, compromises mitochondrial respiratory capability, and alters overall plant growth and development. Here, we review the multitude of plant mitochondrial peptidases that are known to be involved in protein import and processing of targeting signals to detail how their activities can affect organellar protein homeostasis and overall plant growth.
Collapse
Affiliation(s)
- Abi S Ghifari
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth WA, Australia
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Perth WA, Australia
| | - Shaobai Huang
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth WA, Australia
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Perth WA, Australia
| | - Monika W Murcha
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth WA, Australia
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Perth WA, Australia
| |
Collapse
|
12
|
Liu Y, Mauve C, Lamothe-Sibold M, Guérard F, Glab N, Hodges M, Jossier M. Photorespiratory serine hydroxymethyltransferase 1 activity impacts abiotic stress tolerance and stomatal closure. PLANT, CELL & ENVIRONMENT 2019; 42:2567-2583. [PMID: 31134633 DOI: 10.1111/pce.13595] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 05/22/2023]
Abstract
The photorespiratory cycle is a crucial pathway in photosynthetic organisms because it removes toxic 2-phosphoglycolate made by the oxygenase activity of ribulose-1,5-bisphosphate carboxylase/oxygenase and retrieves its carbon as 3-phosphoglycerate. Mitochondrial serine hydroxymethyltransferase 1 (SHMT1) is an essential photorespiratory enzyme converting glycine to serine. SHMT1 regulation remains poorly understood although it could involve the phosphorylation of serine 31. Here, we report the complementation of Arabidopsis thaliana shm1-1 by SHMT1 wild-type, phosphorylation-mimetic (S31D) or nonphophorylatable (S31A) forms. All SHMT1 forms could almost fully complement the photorespiratory growth phenotype of shm1-1; however, each transgenic line had only 50% of normal SHMT activity. In response to either a salt or drought stress, Compl-S31D lines showed a more severe growth deficiency compared with the other transgenic lines. This sensitivity to salt appeared to reflect reduced SHMT1-S31D protein amounts and a lower activity that impacted leaf metabolism leading to proline underaccumulation and overaccumulation of polyamines. The S31D mutation in SHMT1 also led to a reduction in salt-induced and ABA-induced stomatal closure. Taken together, our results highlight the importance of maintaining photorespiratory SHMT1 activity in salt and drought stress conditions and indicate that SHMT1 S31 phosphorylation could be involved in modulating SHMT1 protein stability.
Collapse
Affiliation(s)
- Yanpei Liu
- Institute of Plant Sciences Paris-Saclay, CNRS, Université Paris-Sud, INRA, Université d'Evry, Université Paris-Diderot, Université Paris-Saclay, Orsay Cedex, 91405, France
| | - Caroline Mauve
- Institute of Plant Sciences Paris-Saclay, CNRS, Université Paris-Sud, INRA, Université d'Evry, Université Paris-Diderot, Université Paris-Saclay, Orsay Cedex, 91405, France
| | - Marlène Lamothe-Sibold
- Institute of Plant Sciences Paris-Saclay, CNRS, Université Paris-Sud, INRA, Université d'Evry, Université Paris-Diderot, Université Paris-Saclay, Orsay Cedex, 91405, France
| | - Florence Guérard
- Institute of Plant Sciences Paris-Saclay, CNRS, Université Paris-Sud, INRA, Université d'Evry, Université Paris-Diderot, Université Paris-Saclay, Orsay Cedex, 91405, France
| | - Nathalie Glab
- Institute of Plant Sciences Paris-Saclay, CNRS, Université Paris-Sud, INRA, Université d'Evry, Université Paris-Diderot, Université Paris-Saclay, Orsay Cedex, 91405, France
| | - Michael Hodges
- Institute of Plant Sciences Paris-Saclay, CNRS, Université Paris-Sud, INRA, Université d'Evry, Université Paris-Diderot, Université Paris-Saclay, Orsay Cedex, 91405, France
| | - Mathieu Jossier
- Institute of Plant Sciences Paris-Saclay, CNRS, Université Paris-Sud, INRA, Université d'Evry, Université Paris-Diderot, Université Paris-Saclay, Orsay Cedex, 91405, France
| |
Collapse
|
13
|
Singh R, Goyal VD, Kumar A, Sabharwal NS, Makde RD. Crystal structures and biochemical analyses of intermediate cleavage peptidase: role of dynamics in enzymatic function. FEBS Lett 2019; 593:443-454. [PMID: 30582634 DOI: 10.1002/1873-3468.13321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/19/2018] [Accepted: 12/19/2018] [Indexed: 01/20/2023]
Abstract
Intermediate cleavage peptidase (Icp55) processes a subset of mitochondrial matrix proteins by removing a bulky residue at their N termini, leaving behind smaller N-terminal residues (icp activity). This contributes towards the stability of the mitochondrial proteome. We report crystal structures of yeast Icp55 including one bound to the apstatin inhibitor. Apart from icp activity, the enzyme was found to exhibit Xaa-Pro aminopeptidase activity in vitro. Structural and biochemical data suggest that the enzyme exists in a rapid equilibrium between monomer and dimer. Furthermore, the dimer, and not the monomer, was found to be the active species with loop dynamics at the dimer interface playing an important role in activity. Based on the new evidence, we propose a model for binding and processing of cellular targets by Icp55. DATABASE: The atomic coordinates and structure factors for the structures of Icp55 (code 6A9T, 6A9U, 6A9V) have been deposited in the Protein Data Bank (PDB) (http://www.pdb.org/).
Collapse
Affiliation(s)
- Rahul Singh
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Venuka Durani Goyal
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Ashwani Kumar
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Naripjeet Singh Sabharwal
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Ravindra D Makde
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
14
|
Baik AS, Mironov KS, Arkhipov DV, Piotrovskii MS, Pojidaeva ES. Characterization of Aminopeptidase P from the Unicellular Cyanobacterium Synechocystis sp. PCC6803. DOKL BIOCHEM BIOPHYS 2018; 481:190-194. [PMID: 30168056 DOI: 10.1134/s1607672918040038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Indexed: 11/23/2022]
Abstract
The PepP protein has been purified in vitro and characterized for the first time. It is encoded by the sll0136 gene of the unicellular cyanobacterium Synechocystis sp. PCC6803. It is established that the PepP protein is a Mn2+-dependent Xaa-Pro-specific aminopeptidase. The protein in the reaction of hydrolysis of the fluorescent peptide Lys(N-Abz)-Pro-Pro-pNA has a maximal activity at pH 7.6 and 32°C.
Collapse
Affiliation(s)
- A S Baik
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia.
| | - K S Mironov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia
| | - D V Arkhipov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia
| | - M S Piotrovskii
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia
| | - E S Pojidaeva
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia
| |
Collapse
|
15
|
Plant mitochondrial protein import: the ins and outs. Biochem J 2018; 475:2191-2208. [PMID: 30018142 DOI: 10.1042/bcj20170521] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 01/29/2023]
Abstract
The majority of the mitochondrial proteome, required to fulfil its diverse range of functions, is cytosolically synthesised and translocated via specialised machinery. The dedicated translocases, receptors, and associated proteins have been characterised in great detail in yeast over the last several decades, yet many of the mechanisms that regulate these processes in higher eukaryotes are still unknown. In this review, we highlight the current knowledge of mitochondrial protein import in plants. Despite the fact that the mechanisms of mitochondrial protein import have remained conserved across species, many unique features have arisen in plants to encompass the developmental, tissue-specific, and stress-responsive regulation in planta. An understanding of unique features and mechanisms in plants provides us with a unique insight into the regulation of mitochondrial biogenesis in higher eukaryotes.
Collapse
|
16
|
Decoding the Divergent Subcellular Location of Two Highly Similar Paralogous LEA Proteins. Int J Mol Sci 2018; 19:ijms19061620. [PMID: 29857468 PMCID: PMC6032150 DOI: 10.3390/ijms19061620] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 11/17/2022] Open
Abstract
Many mitochondrial proteins are synthesized as precursors in the cytosol with an N-terminal mitochondrial targeting sequence (MTS) which is cleaved off upon import. Although much is known about import mechanisms and MTS structural features, the variability of MTS still hampers robust sub-cellular software predictions. Here, we took advantage of two paralogous late embryogenesis abundant proteins (LEA) from Arabidopsis with different subcellular locations to investigate structural determinants of mitochondrial import and gain insight into the evolution of the LEA genes. LEA38 and LEA2 are short proteins of the LEA_3 family, which are very similar along their whole sequence, but LEA38 is targeted to mitochondria while LEA2 is cytosolic. Differences in the N-terminal protein sequences were used to generate a series of mutated LEA2 which were expressed as GFP-fusion proteins in leaf protoplasts. By combining three types of mutation (substitution, charge inversion, and segment replacement), we were able to redirect the mutated LEA2 to mitochondria. Analysis of the effect of the mutations and determination of the LEA38 MTS cleavage site highlighted important structural features within and beyond the MTS. Overall, these results provide an explanation for the likely loss of mitochondrial location after duplication of the ancestral gene.
Collapse
|
17
|
Ruszkowski M, Sekula B, Ruszkowska A, Dauter Z. Chloroplastic Serine Hydroxymethyltransferase From Medicago truncatula: A Structural Characterization. FRONTIERS IN PLANT SCIENCE 2018; 9:584. [PMID: 29868052 PMCID: PMC5958214 DOI: 10.3389/fpls.2018.00584] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/13/2018] [Indexed: 05/25/2023]
Abstract
Serine hydroxymethyltransferase (SHMT, EC 2.1.2.1) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme which catalyzes the reversible serine-to-glycine conversion in either a tetrahydrofolate-dependent or -independent manner. The enzyme is also responsible for the tetrahydrofolate-independent cleavage of other β-hydroxy amino acids. In addition to being an essential player in the serine homeostasis, SHMT action is the main source of activated one-carbon units, which links SHMT activity with the control of cell proliferation. In plants, studies of SHMT enzymes are more complicated than of those of, e.g., bacterial or mammalian origins because plant genomes encode multiple SHMT isozymes that are targeted to different subcellular compartments: cytosol, mitochondria, plastids, and nucleus. Here we report crystal structures of chloroplast-targeted SHMT from Medicago truncatula (MtSHMT3). MtSHMT3 is a tetramer in solution, composed of two tight and obligate dimers. Our complexes with PLP internal aldimine, PLP-serine and PLP-glycine external aldimines, and PLP internal aldimine with a free glycine reveal structural details of the MtSHMT3-catalyzed reaction. Capturing the enzyme in different stages along the course of the slow tetrahydrofolate-independent serine-to-glycine conversion allowed to observe a unique conformation of the PLP-serine γ-hydroxyl group, and a concerted movement of two tyrosine residues in the active site.
Collapse
Affiliation(s)
- Milosz Ruszkowski
- Synchrotron Radiation Research Section of MCL, National Cancer Institute, Argonne, IL, United States
| | - Bartosz Sekula
- Synchrotron Radiation Research Section of MCL, National Cancer Institute, Argonne, IL, United States
| | - Agnieszka Ruszkowska
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN, United States
| | - Zbigniew Dauter
- Synchrotron Radiation Research Section of MCL, National Cancer Institute, Argonne, IL, United States
| |
Collapse
|
18
|
Demir F, Niedermaier S, Villamor JG, Huesgen PF. Quantitative proteomics in plant protease substrate identification. THE NEW PHYTOLOGIST 2018; 218:936-943. [PMID: 28493421 DOI: 10.1111/nph.14587] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/07/2017] [Indexed: 05/17/2023]
Abstract
Contents Summary 936 I. Introduction 936 II. The quest for plant protease substrates - proteomics to the rescue? 937 III. Quantitative proteome comparison reveals candidate substrates 938 IV. Dynamic metabolic stable isotope labeling to measure protein turnover in vivo 938 V. Terminomics - large-scale identification of protease cleavage sites 939 VI. Substrate or not substrate, that is the question 940 VII. Concluding remarks 941 Acknowledgements 941 References 941 SUMMARY: Proteolysis is a central regulatory mechanism of protein homeostasis and protein function that affects all aspects of plant life. Higher plants encode for hundreds of proteases, but their physiological substrates and hence their molecular functions remain mostly unknown. Current quantitative mass spectrometry-based proteomics enables unbiased large-scale interrogation of the proteome and its modifications. Here we provide an overview of proteomics techniques that allow profiling of changes in protein abundance, measurement of proteome turnover rates, identification of protease cleavage sites in vivo and in vitro and determination of protease sequence specificity. We discuss how these techniques can help to reveal protease substrates and determine plant protease function, illustrated by recent studies on selected plant proteases.
Collapse
Affiliation(s)
- Fatih Demir
- ZEA-3 Analytics, Central Institute for Engineering, Electronics and Analytics, Forschungszentrum Jülich, Wilhelm-Johnen-Str., Jülich, 52425, Germany
| | - Stefan Niedermaier
- ZEA-3 Analytics, Central Institute for Engineering, Electronics and Analytics, Forschungszentrum Jülich, Wilhelm-Johnen-Str., Jülich, 52425, Germany
| | - Joji Grace Villamor
- ZEA-3 Analytics, Central Institute for Engineering, Electronics and Analytics, Forschungszentrum Jülich, Wilhelm-Johnen-Str., Jülich, 52425, Germany
| | - Pitter Florian Huesgen
- ZEA-3 Analytics, Central Institute for Engineering, Electronics and Analytics, Forschungszentrum Jülich, Wilhelm-Johnen-Str., Jülich, 52425, Germany
| |
Collapse
|
19
|
Majsec K, Bhuiyan NH, Sun Q, Kumari S, Kumar V, Ware D, van Wijk KJ. The Plastid and Mitochondrial Peptidase Network in Arabidopsis thaliana: A Foundation for Testing Genetic Interactions and Functions in Organellar Proteostasis. THE PLANT CELL 2017; 29:2687-2710. [PMID: 28947489 PMCID: PMC5728138 DOI: 10.1105/tpc.17.00481] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/29/2017] [Accepted: 09/21/2017] [Indexed: 05/17/2023]
Abstract
Plant plastids and mitochondria have dynamic proteomes. Protein homeostasis in these organelles is maintained by a proteostasis network containing protein chaperones, peptidases, and their substrate recognition factors. However, many peptidases, as well as their functional connections and substrates, are poorly characterized. This review provides a systematic insight into the organellar peptidase network in Arabidopsis thaliana We present a compendium of known and putative Arabidopsis peptidases and inhibitors, and compare the distribution of plastid and mitochondrial peptidases to the total peptidase complement. This comparison shows striking biases, such as the (near) absence of cysteine and aspartic peptidases and peptidase inhibitors, whereas other peptidase families were exclusively organellar; reasons for such biases are discussed. A genome-wide mRNA-based coexpression data set was generated based on quality controlled and normalized public data, and used to infer additional plastid peptidases and to generate a coexpression network for 97 organellar peptidase baits (1742 genes, making 2544 edges). The graphical network includes 10 modules with specialized/enriched functions, such as mitochondrial protein maturation, thermotolerance, senescence, or enriched subcellular locations such as the thylakoid lumen or chloroplast envelope. The peptidase compendium, including the autophagy and proteosomal systems, and the annotation based on the MEROPS nomenclature of peptidase clans and families, is incorporated into the Plant Proteome Database.
Collapse
Affiliation(s)
- Kristina Majsec
- Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Nazmul H Bhuiyan
- School for Integrative Plant Sciences, Section Plant Biology, Cornell University, Ithaca, New York 14853
| | - Qi Sun
- Computational Biology Service Unit, Cornell University, Ithaca, New York 14853
| | - Sunita Kumari
- Cold Spring Harbor laboratory, Cold Spring Harbor, New York 17724
| | - Vivek Kumar
- Cold Spring Harbor laboratory, Cold Spring Harbor, New York 17724
| | - Doreen Ware
- Cold Spring Harbor laboratory, Cold Spring Harbor, New York 17724
| | - Klaas J van Wijk
- School for Integrative Plant Sciences, Section Plant Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
20
|
Singh R, Jamdar SN, Goyal VD, Kumar A, Ghosh B, Makde RD. Structure of the human aminopeptidase XPNPEP3 and comparison of its in vitro activity with Icp55 orthologs: Insights into diverse cellular processes. J Biol Chem 2017; 292:10035-10047. [PMID: 28476889 DOI: 10.1074/jbc.m117.783357] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 05/04/2017] [Indexed: 11/06/2022] Open
Abstract
The human aminopeptidase XPNPEP3 is associated with cystic kidney disease and TNF-TNFR2 cellular signaling. Its yeast and plant homolog Icp55 processes several imported mitochondrial matrix proteins leading to their stabilization. However, the molecular basis for the diverse roles of these enzymes in the cell is unknown. Here, we report the crystal structure of human XPNPEP3 with bound apstatin product at 1.65 Å resolution, and we compare its in vitro substrate specificity with those of fungal Icp55 enzymes. In contrast to the suggestions by earlier in vivo studies of mitochondrial processing, we found that these enzymes are genuine Xaa-Pro aminopeptidases, which hydrolyze peptides with proline at the second position (P1'). The mitochondrial processing activity involving cleavage of peptides lacking P1' proline was also detected in the purified enzymes. A wide proline pocket as well as molecular complementarity and capping at the S1 substrate site of XPNPEP3 provide the necessary structural features for processing the mitochondrial substrates. However, this activity was found to be significantly lower as compared with Xaa-Pro aminopeptidase activity. Because of similar activity profiles of Icp55 and XPNPEP3, we propose that XPNPEP3 plays the same mitochondrial role in humans as Icp55 does in yeast. Both Xaa-Pro aminopeptidase and mitochondrial processing activities of XPNPEP3 have implications toward mitochondrial fitness and cystic kidney disease. Furthermore, the presence of both these activities in Icp55 elucidates the unexplained processing of the mitochondrial cysteine desulfurase Nfs1 in yeast. The enzymatic and structural analyses reported here provide a valuable molecular framework for understanding the diverse cellular roles of XPNPEP3.
Collapse
Affiliation(s)
- Rahul Singh
- From the High Pressure and Synchrotron Radiation Physics Division and
| | - Sahayog N Jamdar
- Food Technology Division, Bhabha Atomic Research Centre, 400085 Mumbai, India
| | | | - Ashwani Kumar
- From the High Pressure and Synchrotron Radiation Physics Division and
| | - Biplab Ghosh
- From the High Pressure and Synchrotron Radiation Physics Division and
| | - Ravindra D Makde
- From the High Pressure and Synchrotron Radiation Physics Division and
| |
Collapse
|
21
|
Li L, Nelson C, Fenske R, Trösch J, Pružinská A, Millar AH, Huang S. Changes in specific protein degradation rates in Arabidopsis thaliana reveal multiple roles of Lon1 in mitochondrial protein homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:458-471. [PMID: 27726214 DOI: 10.1111/tpj.13392] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 09/29/2016] [Accepted: 10/03/2016] [Indexed: 05/20/2023]
Abstract
Mitochondrial Lon1 loss impairs oxidative phosphorylation complexes and TCA enzymes and causes accumulation of specific mitochondrial proteins. Analysis of over 400 mitochondrial protein degradation rates using 15 N labelling showed that 205 were significantly different between wild type (WT) and lon1-1. Those proteins included ribosomal proteins, electron transport chain subunits and TCA enzymes. For respiratory complexes I and V, decreased protein abundance correlated with higher degradation rate of subunits in total mitochondrial extracts. After blue native separation, however, the assembled complexes had slow degradation, while smaller subcomplexes displayed rapid degradation in lon1-1. In insoluble fractions, a number of TCA enzymes were more abundant but the proteins degraded slowly in lon1-1. In soluble protein fractions, TCA enzymes were less abundant but degraded more rapidly. These observations are consistent with the reported roles of Lon1 as a chaperone aiding the proper folding of newly synthesized/imported proteins to stabilise them and as a protease to degrade mitochondrial protein aggregates. HSP70, prohibitin and enzymes of photorespiration accumulated in lon1-1 and degraded slowly in all fractions, indicating an important role of Lon1 in their clearance from the proteome.
Collapse
Affiliation(s)
- Lei Li
- ARC Centre of Excellence in Plant Energy Biology, Bayliss Building M316, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Western Australia, Australia
| | - Clark Nelson
- ARC Centre of Excellence in Plant Energy Biology, Bayliss Building M316, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Western Australia, Australia
| | - Ricarda Fenske
- ARC Centre of Excellence in Plant Energy Biology, Bayliss Building M316, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Western Australia, Australia
| | - Josua Trösch
- ARC Centre of Excellence in Plant Energy Biology, Bayliss Building M316, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Western Australia, Australia
| | - Adriana Pružinská
- ARC Centre of Excellence in Plant Energy Biology, Bayliss Building M316, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Western Australia, Australia
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, Bayliss Building M316, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Western Australia, Australia
| | - Shaobai Huang
- ARC Centre of Excellence in Plant Energy Biology, Bayliss Building M316, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Western Australia, Australia
| |
Collapse
|
22
|
Li L, Nelson CJ, Trösch J, Castleden I, Huang S, Millar AH. Protein Degradation Rate in Arabidopsis thaliana Leaf Growth and Development. THE PLANT CELL 2017; 29:207-228. [PMID: 28138016 PMCID: PMC5354193 DOI: 10.1105/tpc.16.00768] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/12/2017] [Accepted: 01/30/2017] [Indexed: 05/04/2023]
Abstract
We applied 15N labeling approaches to leaves of the Arabidopsis thaliana rosette to characterize their protein degradation rate and understand its determinants. The progressive labeling of new peptides with 15N and measuring the decrease in the abundance of >60,000 existing peptides over time allowed us to define the degradation rate of 1228 proteins in vivo. We show that Arabidopsis protein half-lives vary from several hours to several months based on the exponential constant of the decay rate for each protein. This rate was calculated from the relative isotope abundance of each peptide and the fold change in protein abundance during growth. Protein complex membership and specific protein domains were found to be strong predictors of degradation rate, while N-end amino acid, hydrophobicity, or aggregation propensity of proteins were not. We discovered rapidly degrading subunits in a variety of protein complexes in plastids and identified the set of plant proteins whose degradation rate changed in different leaves of the rosette and correlated with leaf growth rate. From this information, we have calculated the protein turnover energy costs in different leaves and their key determinants within the proteome.
Collapse
Affiliation(s)
- Lei Li
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
| | - Clark J Nelson
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
| | - Josua Trösch
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
| | - Ian Castleden
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
| | - Shaobai Huang
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
| |
Collapse
|
23
|
Migdal I, Skibior-Blaszczyk R, Heidorn-Czarna M, Kolodziejczak M, Garbiec A, Janska H. AtOMA1 Affects the OXPHOS System and Plant Growth in Contrast to Other Newly Identified ATP-Independent Proteases in Arabidopsis Mitochondria. FRONTIERS IN PLANT SCIENCE 2017; 8:1543. [PMID: 28936218 PMCID: PMC5594102 DOI: 10.3389/fpls.2017.01543] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/23/2017] [Indexed: 05/17/2023]
Abstract
Compared with yeast, our knowledge on members of the ATP-independent plant mitochondrial proteolytic machinery is rather poor. In the present study, using confocal microscopy and immunoblotting, we proved that homologs of yeast Oma1, Atp23, Imp1, Imp2, and Oct1 proteases are localized in Arabidopsis mitochondria. We characterized these components of the ATP-independent proteolytic system as well as the earlier identified protease, AtICP55, with an emphasis on their significance in plant growth and functionality in the OXPHOS system. A functional complementation assay demonstrated that out of all the analyzed proteases, only AtOMA1 and AtICP55 could substitute for a lack of their yeast counterparts. We did not observe any significant developmental or morphological changes in plants lacking the studied proteases, either under optimal growth conditions or after exposure to stress, with the only exception being retarded root growth in oma1-1, thus implying that the absence of a single mitochondrial ATP-independent protease is not critical for Arabidopsis growth and development. We did not find any evidence indicating a clear functional complementation of the missing protease by any other protease at the transcript or protein level. Studies on the impact of the analyzed proteases on mitochondrial bioenergetic function revealed that out of all the studied mutants, only oma1-1 showed differences in activities and amounts of OXPHOS proteins. Among all the OXPHOS disorders found in oma1-1, the complex V deficiency is distinctive because it is mainly associated with decreased catalytic activity and not correlated with complex abundance, which has been observed in the case of supercomplex I + III2 and complex I deficiencies. Altogether, our study indicates that despite the presence of highly conservative homologs, the mitochondrial ATP-independent proteolytic system is not functionally conserved in plants as compared with yeast. Our findings also highlight the importance of AtOMA1 in maintenance of proper function of the OXPHOS system as well as in growth and development of Arabidopsis thaliana.
Collapse
Affiliation(s)
- Iwona Migdal
- Institute of Experimental Biology, Faculty of Biological Sciences, University of WroclawWroclaw, Poland
| | - Renata Skibior-Blaszczyk
- Department of Cellular Molecular Biology, Faculty of Biotechnology, University of WroclawWroclaw, Poland
| | - Malgorzata Heidorn-Czarna
- Department of Cellular Molecular Biology, Faculty of Biotechnology, University of WroclawWroclaw, Poland
| | - Marta Kolodziejczak
- Department of Cellular Molecular Biology, Faculty of Biotechnology, University of WroclawWroclaw, Poland
| | - Arnold Garbiec
- Institute of Experimental Biology, Faculty of Biological Sciences, University of WroclawWroclaw, Poland
| | - Hanna Janska
- Department of Cellular Molecular Biology, Faculty of Biotechnology, University of WroclawWroclaw, Poland
- *Correspondence: Hanna Janska,
| |
Collapse
|
24
|
Eldomery MK, Akdemir ZC, Vögtle FN, Charng WL, Mulica P, Rosenfeld JA, Gambin T, Gu S, Burrage LC, Al Shamsi A, Penney S, Jhangiani SN, Zimmerman HH, Muzny DM, Wang X, Tang J, Medikonda R, Ramachandran PV, Wong LJ, Boerwinkle E, Gibbs RA, Eng CM, Lalani SR, Hertecant J, Rodenburg RJ, Abdul-Rahman OA, Yang Y, Xia F, Wang MC, Lupski JR, Meisinger C, Sutton VR. MIPEP recessive variants cause a syndrome of left ventricular non-compaction, hypotonia, and infantile death. Genome Med 2016; 8:106. [PMID: 27799064 PMCID: PMC5088683 DOI: 10.1186/s13073-016-0360-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/26/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mitochondrial presequence proteases perform fundamental functions as they process about 70 % of all mitochondrial preproteins that are encoded in the nucleus and imported posttranslationally. The mitochondrial intermediate presequence protease MIP/Oct1, which carries out precursor processing, has not yet been established to have a role in human disease. METHODS Whole exome sequencing was performed on four unrelated probands with left ventricular non-compaction (LVNC), developmental delay (DD), seizures, and severe hypotonia. Proposed pathogenic variants were confirmed by Sanger sequencing or array comparative genomic hybridization. Functional analysis of the identified MIP variants was performed using the model organism Saccharomyces cerevisiae as the protein and its functions are highly conserved from yeast to human. RESULTS Biallelic single nucleotide variants (SNVs) or copy number variants (CNVs) in MIPEP, which encodes MIP, were present in all four probands, three of whom had infantile/childhood death. Two patients had compound heterozygous SNVs (p.L582R/p.L71Q and p.E602*/p.L306F) and one patient from a consanguineous family had a homozygous SNV (p.K343E). The fourth patient, identified through the GeneMatcher tool, a part of the Matchmaker Exchange Project, was found to have inherited a paternal SNV (p.H512D) and a maternal CNV (1.4-Mb deletion of 13q12.12) that includes MIPEP. All amino acids affected in the patients' missense variants are highly conserved from yeast to human and therefore S. cerevisiae was employed for functional analysis (for p.L71Q, p.L306F, and p.K343E). The mutations p.L339F (human p.L306F) and p.K376E (human p.K343E) resulted in a severe decrease of Oct1 protease activity and accumulation of non-processed Oct1 substrates and consequently impaired viability under respiratory growth conditions. The p.L83Q (human p.L71Q) failed to localize to the mitochondria. CONCLUSIONS Our findings reveal for the first time the role of the mitochondrial intermediate peptidase in human disease. Loss of MIP function results in a syndrome which consists of LVNC, DD, seizures, hypotonia, and cataracts. Our approach highlights the power of data exchange and the importance of an interrelationship between clinical and research efforts for disease gene discovery.
Collapse
Affiliation(s)
- Mohammad K Eldomery
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zeynep C Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - F-Nora Vögtle
- Institute of Biochemistry and Molecular Biology, ZBMZ and BIOSS Centre for Biological Signalling Studies and Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Wu-Lin Charng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Patrycja Mulica
- Institute of Biochemistry and Molecular Biology, ZBMZ and BIOSS Centre for Biological Signalling Studies and Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Tomasz Gambin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Shen Gu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Texas Children's Hospital, Houston, TX, 77030, USA
| | - Aisha Al Shamsi
- Department of Pediatrics, Tawam Hospital, Al Ain, 15258, United Arab Emirates
| | - Samantha Penney
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Holly H Zimmerman
- Department of Pediatrics, University of Mississippi Medical Center, 2500N State St, Jackson, MS, 39216, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xia Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Baylor Miraca Genetics Laboratories, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jia Tang
- Medical Genetics Center, Jiang Men Maternity and Childhealth Care Hospital, Jiang Men, 529000, China
| | - Ravi Medikonda
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Prasanna V Ramachandran
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lee-Jun Wong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Baylor Miraca Genetics Laboratories, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Eric Boerwinkle
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Christine M Eng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Baylor Miraca Genetics Laboratories, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Seema R Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Texas Children's Hospital, Houston, TX, 77030, USA
| | - Jozef Hertecant
- Department of Pediatrics, Tawam Hospital, Al Ain, 15258, United Arab Emirates
| | - Richard J Rodenburg
- Radboud Center for Mitochondrial Medicine, Department of Pediatrics, RadboudUMC, 6500HB, Nijmegen, Netherlands
| | - Omar A Abdul-Rahman
- Department of Pediatrics, University of Mississippi Medical Center, 2500N State St, Jackson, MS, 39216, USA
| | - Yaping Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Baylor Miraca Genetics Laboratories, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Fan Xia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Baylor Miraca Genetics Laboratories, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Meng C Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Texas Children's Hospital, Houston, TX, 77030, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chris Meisinger
- Institute of Biochemistry and Molecular Biology, ZBMZ and BIOSS Centre for Biological Signalling Studies and Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - V Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA. .,Texas Children's Hospital, Houston, TX, 77030, USA.
| |
Collapse
|
25
|
The versatility of the mitochondrial presequence processing machinery: cleavage, quality control and turnover. Cell Tissue Res 2016; 367:73-81. [DOI: 10.1007/s00441-016-2492-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/06/2016] [Accepted: 08/10/2016] [Indexed: 12/12/2022]
|
26
|
Rowland E, Kim J, Bhuiyan NH, van Wijk KJ. The Arabidopsis Chloroplast Stromal N-Terminome: Complexities of Amino-Terminal Protein Maturation and Stability. PLANT PHYSIOLOGY 2015; 169:1881-96. [PMID: 26371235 PMCID: PMC4634096 DOI: 10.1104/pp.15.01214] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 09/14/2015] [Indexed: 05/10/2023]
Abstract
Protein amino (N) termini are prone to modifications and are major determinants of protein stability in bacteria, eukaryotes, and perhaps also in chloroplasts. Most chloroplast proteins undergo N-terminal maturation, but this is poorly understood due to insufficient experimental information. Consequently, N termini of mature chloroplast proteins cannot be accurately predicted. This motivated an extensive characterization of chloroplast protein N termini in Arabidopsis (Arabidopsis thaliana) using terminal amine isotopic labeling of substrates and mass spectrometry, generating nearly 14,000 tandem mass spectrometry spectra matching to protein N termini. Many nucleus-encoded plastid proteins accumulated with two or three different N termini; we evaluated the significance of these different proteoforms. Alanine, valine, threonine (often in N-α-acetylated form), and serine were by far the most observed N-terminal residues, even after normalization for their frequency in the plastid proteome, while other residues were absent or highly underrepresented. Plastid-encoded proteins showed a comparable distribution of N-terminal residues, but with a higher frequency of methionine. Infrequent residues (e.g. isoleucine, arginine, cysteine, proline, aspartate, and glutamate) were observed for several abundant proteins (e.g. heat shock proteins 70 and 90, Rubisco large subunit, and ferredoxin-glutamate synthase), likely reflecting functional regulation through their N termini. In contrast, the thylakoid lumenal proteome showed a wide diversity of N-terminal residues, including those typically associated with instability (aspartate, glutamate, leucine, and phenylalanine). We propose that, after cleavage of the chloroplast transit peptide by stromal processing peptidase, additional processing by unidentified peptidases occurs to avoid unstable or otherwise unfavorable N-terminal residues. The possibility of a chloroplast N-end rule is discussed.
Collapse
Affiliation(s)
- Elden Rowland
- Department of Plant Biology, Cornell University, Ithaca, New York 14850
| | - Jitae Kim
- Department of Plant Biology, Cornell University, Ithaca, New York 14850
| | - Nazmul H Bhuiyan
- Department of Plant Biology, Cornell University, Ithaca, New York 14850
| | - Klaas J van Wijk
- Department of Plant Biology, Cornell University, Ithaca, New York 14850
| |
Collapse
|
27
|
Köhler D, Dobritzsch D, Hoehenwarter W, Helm S, Steiner JM, Baginsky S. Identification of protein N-termini in Cyanophora paradoxa cyanelles: transit peptide composition and sequence determinants for precursor maturation. FRONTIERS IN PLANT SCIENCE 2015; 6:559. [PMID: 26257763 PMCID: PMC4510345 DOI: 10.3389/fpls.2015.00559] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 07/07/2015] [Indexed: 05/06/2023]
Abstract
Glaucophyta, rhodophyta, and chloroplastida represent the three main evolutionary lineages that diverged from a common ancestor after primary endosymbiosis. Comparative analyses between members of these three lineages are a rich source of information on ancestral plastid features. We analyzed the composition and the cleavage site of cyanelle transit peptides from the glaucophyte Cyanophora paradoxa by terminal amine labeling of substrates (TAILS), and compared their characteristics to those of representatives of the chloroplastida. Our data show that transit peptide architecture is similar between members of these two lineages. This entails a comparable modular structure, an overrepresentation of serine or alanine and similarities in the amino acid composition around the processing peptidase cleavage site. The most distinctive difference is the overrepresentation of phenylalanine in the N-terminal 1-10 amino acids of cyanelle transit peptides. A quantitative proteome analysis with periplasm-free cyanelles identified 42 out of 262 proteins without the N-terminal phenylalanine, suggesting that the requirement for phenylalanine in the N-terminal region is not absolute. Proteins in this set are on average of low abundance, suggesting that either alternative import pathways are operating specifically for low abundance proteins or that the gene model annotation is incorrect for proteins with fewer EST sequences. We discuss these two possibilities and provide examples for both interpretations.
Collapse
Affiliation(s)
- Daniel Köhler
- Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, BiozentrumHalle (Saale), Germany
| | - Dirk Dobritzsch
- Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, BiozentrumHalle (Saale), Germany
| | | | - Stefan Helm
- Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, BiozentrumHalle (Saale), Germany
| | - Jürgen M. Steiner
- Plant Physiology, Institute of Biology, Martin-Luther-University Halle-WittenbergHalle (Saale), Germany
| | - Sacha Baginsky
- Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, BiozentrumHalle (Saale), Germany
- *Correspondence: Sacha Baginsky, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Weinbergweg 22, 06120 Halle (Saale), Germany
| |
Collapse
|