1
|
Noctor G, Cohen M, Trémulot L, Châtel-Innocenti G, Van Breusegem F, Mhamdi A. Glutathione: a key modulator of plant defence and metabolism through multiple mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4549-4572. [PMID: 38676714 DOI: 10.1093/jxb/erae194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/25/2024] [Indexed: 04/29/2024]
Abstract
Redox reactions are fundamental to energy conversion in living cells, and also determine and tune responses to the environment. Within this context, the tripeptide glutathione plays numerous roles. As an important antioxidant, glutathione confers redox stability on the cell and also acts as an interface between signalling pathways and metabolic reactions that fuel growth and development. It also contributes to the assembly of cell components, biosynthesis of sulfur-containing metabolites, inactivation of potentially deleterious compounds, and control of hormonal signalling intensity. The multiplicity of these roles probably explains why glutathione status has been implicated in influencing plant responses to many different conditions. In particular, there is now a considerable body of evidence showing that glutathione is a crucial player in governing the outcome of biotic stresses. This review provides an overview of glutathione synthesis, transport, degradation, and redox turnover in plants. It examines the expression of genes associated with these processes during pathogen challenge and related conditions, and considers the diversity of mechanisms by which glutathione can influence protein function and gene expression.
Collapse
Affiliation(s)
- Graham Noctor
- Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France
- Institut Universitaire de France (IUF), France
| | - Mathias Cohen
- Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Lug Trémulot
- Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France
| | - Gilles Châtel-Innocenti
- Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France
| | - Frank Van Breusegem
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Amna Mhamdi
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
2
|
Wang H, Guo L, Zha R, Gao Z, Yu F, Wei Q. Histological, metabolomic and transcriptomic analyses reveal mechanisms of cold acclimation of the Moso bamboo (Phyllostachys edulis) leaf. TREE PHYSIOLOGY 2022; 42:2336-2352. [PMID: 35723499 DOI: 10.1093/treephys/tpac064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
The Moso bamboo (Phyllostachys edulis) leaf copes well with cold winters in southeastern China. However, until now, there has been almost no research on its adaptation mechanisms to cold weather. Herein, we found that the Moso bamboo leaf has evolved several anatomical structures that may play a role in enhancing its cold tolerance. These structures include fewer fusiform cells, smaller bulliform cells, lower stomata density and many more trichomes, as well as lower relative water content than in the leaf of a cold-sensitive bamboo species, Bambusa ventricosa. Untargeted metabolomic analysis revealed that the winter leaf of Moso bamboo had 10- to 1000-fold higher stress-resistant metabolites such as glutathione, trehalose and ascorbic acid than the leaf of B. ventricosa on both warm and cold days. In contrast to the leaves that grew on a warm day, some metabolites such as glutathione and trehalose increased dramatically in the leaves of Moso bamboo that grew on a cold day. However, they unexpectedly decreased in the leaf of B. ventricosa growing at cold temperatures. Transcriptome analysis revealed a cold stress response network that includes trehalose, glutathione, flavonoid metabolism, DNA repair, reactive oxygen species degradation, stress-associated genes and abiotic stress-related plant hormones such as jasmonic acid, abscisic acid and ethylene. The potential mediator transcription factors, such as EREBP, HSF, MYB, NAC and WRYK, were also significantly upregulated in Moso bamboo leaves growing at cold temperatures. Interestingly, many newly identified genes were involved in the transcriptome of the winter leaf of the Moso bamboo. Most of these new genes have not even been annotated yet. The above results indicate that the Moso bamboo leaf has evolved special histological structures, metabolic pathways and a cold stress-tolerant transcriptome to adapt to the cold weather in its distribution areas.
Collapse
Affiliation(s)
- Haiyue Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu 210037, China
- International Education College, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu 210037, China
| | - Lin Guo
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu 210037, China
- Bamboo Research Institute, Nanjing Forestry University, 159 Longpan Road Nanjing, Jiangsu 210037, China
- Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu 210037, China
| | - Ruofei Zha
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu 210037, China
- Bamboo Research Institute, Nanjing Forestry University, 159 Longpan Road Nanjing, Jiangsu 210037, China
- Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu 210037, China
| | - Zhipeng Gao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu 210037, China
- Bamboo Research Institute, Nanjing Forestry University, 159 Longpan Road Nanjing, Jiangsu 210037, China
- Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu 210037, China
| | - Fen Yu
- Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Jiangxi Agriculture University, College of Forestry, 1101 Zhimin Road, Nanchang, Jiangxi 330045, China
| | - Qiang Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu 210037, China
- Bamboo Research Institute, Nanjing Forestry University, 159 Longpan Road Nanjing, Jiangsu 210037, China
- Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu 210037, China
- Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Jiangxi Agriculture University, College of Forestry, 1101 Zhimin Road, Nanchang, Jiangxi 330045, China
| |
Collapse
|
3
|
Lancíková V, Tomka M, Žiarovská J, Gažo J, Hricová A. Morphological Responses and Gene Expression of Grain Amaranth ( Amaranthus spp.) Growing under Cd. PLANTS 2020; 9:plants9050572. [PMID: 32365842 PMCID: PMC7285102 DOI: 10.3390/plants9050572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/14/2020] [Accepted: 04/28/2020] [Indexed: 11/28/2022]
Abstract
Phytoremediation efficiency depends on the ability of plants to accumulate, translocate and resist high levels of metals without symptoms of toxicity. This study was conducted to evaluate the potential of grain amaranth for remediation of soils contaminated with Cd. Three grain amaranth varieties, “Pribina” (A. cruentus), “Zobor” (A. hypochondriacus x A. hybridus) and Plainsman (A. hypochondriacus x A. hybridus) were tested under different level of Cd (0, 5, 10 and 15 mg/L) in a hydroponic experimental treatment. All could be classified as Cd excluders or Cd-hypertolerant varieties able to grow and accumulate significant amounts of Cd from the hydroponic solution, preferentially in the roots. Under the highest level of Cd exposure, qRT-PCR expression analysis of five stress-related genes was examined in above- and below-ground biomass. The results show that the Cd concentration significantly increased the mRNA level of chitinase 5 (Chit 5) in amaranth roots as the primary site of metal stress. The involvement of phytochelatin synthase (PCS1) in Cd detoxification is suggested. Based on our findings, we can conclude that variety “Pribina” is the most Cd-tolerant among three tested and can be expected to be used in the phytomanagement of Cd loaded soils as an effective phytostabiliser.
Collapse
Affiliation(s)
- Veronika Lancíková
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Nitra 95007, Slovakia;
| | - Marián Tomka
- Department of Biochemistry, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Nitra 94976, Slovakia;
| | - Jana Žiarovská
- Department of Genetics and Plant Breeding, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra 94976, Slovakia; (J.Ž.); (J.G.)
| | - Ján Gažo
- Department of Genetics and Plant Breeding, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra 94976, Slovakia; (J.Ž.); (J.G.)
| | - Andrea Hricová
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Nitra 95007, Slovakia;
- Correspondence:
| |
Collapse
|
4
|
Adams E, Miyazaki T, Watanabe S, Ohkama-Ohtsu N, Seo M, Shin R. Glutathione and Its Biosynthetic Intermediates Alleviate Cesium Stress in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:1711. [PMID: 32038683 PMCID: PMC6985154 DOI: 10.3389/fpls.2019.01711] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/05/2019] [Indexed: 05/07/2023]
Abstract
Phytoremediation is optimized when plants grow vigorously while accumulating the contaminant of interest. Here we show that sulphur supply alleviates aerial chlorosis and growth retardation caused by cesium stress without reducing cesium accumulation in Arabidopsis thaliana. This alleviation was not due to recovery of cesium-induced potassium decrease in plant tissues. Sulphur supply also alleviated sodium stress but not potassium deficiency stress. Cesium-induced root growth inhibition has previously been demonstrated as being mediated through jasmonate biosynthesis and signalling but it was found that sulphur supply did not decrease the levels of jasmonate accumulation or jasmonate-responsive transcripts. Instead, induction of a glutathione synthetase gene GSH2 and reduction of a phytochelatin synthase gene PCS1 as well as increased accumulation of glutathione and cysteine were observed in response to cesium. Exogenous application of glutathione or concomitant treatments of its biosynthetic intermediates indeed alleviated cesium stress. Interestingly, concomitant treatments of glutathione biosynthetic intermediates together with a glutathione biosynthesis inhibitor did not cancel the alleviatory effects against cesium suggesting the existence of a glutathione-independent pathway. Taken together, our findings demonstrate that plants exposed to cesium increase glutathione accumulation to alleviate the deleterious effects of cesium and that exogenous application of sulphur-containing compounds promotes this innate process.
Collapse
Affiliation(s)
- Eri Adams
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- *Correspondence: Eri Adams, ; Ryoung Shin,
| | - Takae Miyazaki
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | | | - Naoko Ohkama-Ohtsu
- Institute of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Japan
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Ryoung Shin
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- *Correspondence: Eri Adams, ; Ryoung Shin,
| |
Collapse
|
5
|
Staswick P, Rowe M, Spalding EP, Splitt BL. Jasmonoyl-L-Tryptophan Disrupts IAA Activity through the AUX1 Auxin Permease. FRONTIERS IN PLANT SCIENCE 2017; 8:736. [PMID: 28533791 PMCID: PMC5420569 DOI: 10.3389/fpls.2017.00736] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 04/20/2017] [Indexed: 05/29/2023]
Abstract
Amide-linked conjugates between tryptophan (Trp) and jasmonic (JA) or indole-3-acetic (IAA) acids interfered with gravitropism and other auxin-dependent activities in Arabidopsis, but the mechanism was unclear. To identify structural features necessary for activity several additional Trp conjugates were synthesized. The phenylacetic acid (PAA) conjugate was active, while several others were not. Common features of active conjugates is that they have ring structures that are linked to Trp through an acetic acid side chain, while longer or shorter linkages are inactive or less active. A dominant mutant, called tryptophan conjugate response1-D that is insensitive to JA-Trp, but still sensitive to other active conjugates, was identified and the defect was found to be a substitution of Asn for Asp456 in the C-terminal domain of the IAA cellular permease AUX1. Mutant seedling primary root growth in the absence of added conjugate was 15% less than WT, but otherwise plant phenotype appeared normal. These results suggest that JA-Trp disrupts AUX1 activity, but that endogenous JA-Trp has only a minor role in regulating plant growth. In contrast with IAA- and JA-Trp, which are present at <2 pmole g-1 FW, PAA-Trp was found at about 30 pmole g-1 FW. The latter, or other undiscovered Trp conjugates, may still have important endogenous roles, possibly helping to coordinate other pathways with auxin response.
Collapse
Affiliation(s)
- Paul Staswick
- Department of Agronomy and Horticulture, University of Nebraska–Lincoln, LincolnNE, USA
| | - Martha Rowe
- Department of Agronomy and Horticulture, University of Nebraska–Lincoln, LincolnNE, USA
| | - Edgar P. Spalding
- Department of Botany, University of Wisconsin–Madison, MadisonWI, USA
| | - Bessie L. Splitt
- Department of Botany, University of Wisconsin–Madison, MadisonWI, USA
| |
Collapse
|