1
|
Mehra HS, Wang X, Russell BP, Kulkarni N, Ferrari N, Larson B, Vinyard DJ. Assembly and Repair of Photosystem II in Chlamydomonas reinhardtii. PLANTS (BASEL, SWITZERLAND) 2024; 13:811. [PMID: 38592843 PMCID: PMC10975043 DOI: 10.3390/plants13060811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/11/2024]
Abstract
Oxygenic photosynthetic organisms use Photosystem II (PSII) to oxidize water and reduce plastoquinone. Here, we review the mechanisms by which PSII is assembled and turned over in the model green alga Chlamydomonas reinhardtii. This species has been used to make key discoveries in PSII research due to its metabolic flexibility and amenability to genetic approaches. PSII subunits originate from both nuclear and chloroplastic gene products in Chlamydomonas. Nuclear-encoded PSII subunits are transported into the chloroplast and chloroplast-encoded PSII subunits are translated by a coordinated mechanism. Active PSII dimers are built from discrete reaction center complexes in a process facilitated by assembly factors. The phosphorylation of core subunits affects supercomplex formation and localization within the thylakoid network. Proteolysis primarily targets the D1 subunit, which when replaced, allows PSII to be reactivated and completes a repair cycle. While PSII has been extensively studied using Chlamydomonas as a model species, important questions remain about its assembly and repair which are presented here.
Collapse
Affiliation(s)
| | | | | | | | | | | | - David J. Vinyard
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; (H.S.M.); (X.W.); (B.P.R.); (N.K.); (N.F.); (B.L.)
| |
Collapse
|
2
|
Li Y, Feng H, Xian S, Wang J, Zheng X, Song X. Phytotoxic effects of polyethylene microplastics combined with cadmium on the photosynthetic performance of maize (Zea mays L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108065. [PMID: 37797385 DOI: 10.1016/j.plaphy.2023.108065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
Microplastics (MPs) and cadmium (Cd) has attracted increasing attention due to their combined toxicity to terrestrial vegetation. Photosynthesis which utilizes light energy to synthesize organic substances is crucial for crop production. However, the plant photosynthetic response to the joint toxicity of MPs and Cd is still unknown. Here, we studied the effects of polyethylene (PE) MPs on the photosynthetic performance of two maize cultivars Xianyu 335 (XY) and Zhengdan 958 (ZD) grown in a Cd contaminated soil. Results showed that the leaf Cd concentration in XY and ZD reached 26.1 and 31.9 μg g-1, respectively. PE-MPs did not influence the leaf Cd content, but posed direct and negative effects on photosynthesis by increasing the malondialdehyde content, reducing the chlorophyll content, inhibiting photosynthetic capacity, disrupting the PSII donor side, blocking electron transfer in different photosystems, and suppressing the oxidation and reduction states of PSI. Transcriptomic analysis revealed that the inhibitory effect of combined PE-MPs and Cd on maize photosynthesis was attributed to suppressed expression of the genes encoding PSII, PSI, F-type ATPase, cytochrome b6/f complex, and electron transport between PSII and PSI. Using WGCNA, we identified a MEturquoise module highly correlated with photosynthetic traits. Hub genes bridging carbohydrate metabolism, amino acid metabolism, lipid metabolism, and translation provided the molecular mechanisms of PE-MPs and Cd tolerance in maize plants. The comprehensive information on the phytotoxicity mechanisms of Cd stress in the presence or absence of PE-MPs on the photosynthesis of maize is helpful for cloning Cd and PE-MP resistance genes in the future.
Collapse
Affiliation(s)
- Yan Li
- College of Life Sciences, Dezhou University, De'zhou, 253023, China
| | - Hongyu Feng
- College of Life Sciences, Dezhou University, De'zhou, 253023, China
| | - Shutong Xian
- College of Life Sciences, Dezhou University, De'zhou, 253023, China
| | - Jiawei Wang
- College of Life Sciences, Dezhou University, De'zhou, 253023, China
| | - Xuebo Zheng
- Institute of Tobacco Research of CAAS, Qingdao, 266101, China.
| | - Xiliang Song
- College of Life Sciences, Dezhou University, De'zhou, 253023, China.
| |
Collapse
|
3
|
Neusius D, Kleinknecht L, Teh JT, Ostermeier M, Kelterborn S, Eirich J, Hegemann P, Finkemeier I, Bohne AV, Nickelsen J. Lysine acetylation regulates moonlighting activity of the E2 subunit of the chloroplast pyruvate dehydrogenase complex in Chlamydomonas. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1780-1800. [PMID: 35899410 DOI: 10.1111/tpj.15924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/08/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
The dihydrolipoamide acetyltransferase subunit DLA2 of the chloroplast pyruvate dehydrogenase complex (cpPDC) in the green alga Chlamydomonas reinhardtii has previously been shown to possess moonlighting activity in chloroplast gene expression. Under mixotrophic growth conditions, DLA2 forms part of a ribonucleoprotein particle (RNP) with the psbA mRNA that encodes the D1 protein of the photosystem II (PSII) reaction center. Here, we report on the characterization of the molecular switch that regulates shuttling of DLA2 between its functions in carbon metabolism and D1 synthesis. Determination of RNA-binding affinities by microscale thermophoresis demonstrated that the E3-binding domain (E3BD) of DLA2 mediates psbA-specific RNA recognition. Analyses of cpPDC formation and activity, as well as RNP complex formation, showed that acetylation of a single lysine residue (K197) in E3BD induces the release of DLA2 from the cpPDC, and its functional shift towards RNA binding. Moreover, Förster resonance energy transfer microscopy revealed that psbA mRNA/DLA2 complexes localize around the chloroplast's pyrenoid. Pulse labeling and D1 re-accumulation after induced PSII degradation strongly suggest that DLA2 is important for D1 synthesis during de novo PSII biogenesis.
Collapse
Affiliation(s)
- Daniel Neusius
- Molecular Plant Sciences, Faculty of Biology, LMU Munich, Großhaderner Str. 2-4, 82152 Planegg-, Martinsried, Germany
| | - Laura Kleinknecht
- Molecular Plant Sciences, Faculty of Biology, LMU Munich, Großhaderner Str. 2-4, 82152 Planegg-, Martinsried, Germany
| | - Jing Tsong Teh
- Molecular Plant Sciences, Faculty of Biology, LMU Munich, Großhaderner Str. 2-4, 82152 Planegg-, Martinsried, Germany
| | - Matthias Ostermeier
- Molecular Plant Sciences, Faculty of Biology, LMU Munich, Großhaderner Str. 2-4, 82152 Planegg-, Martinsried, Germany
| | - Simon Kelterborn
- Experimental Biophysics, Institute of Biology, Humboldt University of Berlin, Invalidenstr. 42, 10115, Berlin, Germany
| | - Jürgen Eirich
- Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 7, 48149, Münster, Germany
| | - Peter Hegemann
- Experimental Biophysics, Institute of Biology, Humboldt University of Berlin, Invalidenstr. 42, 10115, Berlin, Germany
| | - Iris Finkemeier
- Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 7, 48149, Münster, Germany
| | - Alexandra-Viola Bohne
- Molecular Plant Sciences, Faculty of Biology, LMU Munich, Großhaderner Str. 2-4, 82152 Planegg-, Martinsried, Germany
| | - Jörg Nickelsen
- Molecular Plant Sciences, Faculty of Biology, LMU Munich, Großhaderner Str. 2-4, 82152 Planegg-, Martinsried, Germany
| |
Collapse
|
4
|
Spaniol B, Lang J, Venn B, Schake L, Sommer F, Mustas M, Geimer S, Wollman FA, Choquet Y, Mühlhaus T, Schroda M. Complexome profiling on the Chlamydomonas lpa2 mutant reveals insights into PSII biogenesis and new PSII associated proteins. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:245-262. [PMID: 34436580 PMCID: PMC8730698 DOI: 10.1093/jxb/erab390] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/24/2021] [Indexed: 05/27/2023]
Abstract
While the composition and function of the major thylakoid membrane complexes are well understood, comparatively little is known about their biogenesis. The goal of this work was to shed more light on the role of auxiliary factors in the biogenesis of photosystem II (PSII). Here we have identified the homolog of LOW PSII ACCUMULATION 2 (LPA2) in Chlamydomonas. A Chlamydomonas reinhardtii lpa2 mutant grew slower in low light, was hypersensitive to high light, and exhibited aberrant structures in thylakoid membrane stacks. Chlorophyll fluorescence (Fv/Fm) was reduced by 38%. Synthesis and stability of newly made PSII core subunits D1, D2, CP43, and CP47 were not impaired. However, complexome profiling revealed that in the mutant CP43 was reduced to ~23% and D1, D2, and CP47 to ~30% of wild type levels. Levels of PSI and the cytochrome b6f complex were unchanged, while levels of the ATP synthase were increased by ~29%. PSII supercomplexes, dimers, and monomers were reduced to ~7%, ~26%, and ~60% of wild type levels, while RC47 was increased ~6-fold and LHCII by ~27%. We propose that LPA2 catalyses a step during PSII assembly without which PSII monomers and further assemblies become unstable and prone to degradation. The LHCI antenna was more disconnected from PSI in the lpa2 mutant, presumably as an adaptive response to reduce excitation of PSI. From the co-migration profiles of 1734 membrane-associated proteins, we identified three novel putative PSII associated proteins with potential roles in regulating PSII complex dynamics, assembly, and chlorophyll breakdown.
Collapse
Affiliation(s)
- Benjamin Spaniol
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Paul-Ehrlich Straße 23, D-67663 Kaiserslautern, Germany
| | - Julia Lang
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Paul-Ehrlich Straße 23, D-67663 Kaiserslautern, Germany
| | - Benedikt Venn
- Computational Systems Biology, TU Kaiserslautern, Paul-Ehrlich Straße 23, D-67663 Kaiserslautern, Germany
| | - Lara Schake
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Paul-Ehrlich Straße 23, D-67663 Kaiserslautern, Germany
| | - Frederik Sommer
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Paul-Ehrlich Straße 23, D-67663 Kaiserslautern, Germany
| | - Matthieu Mustas
- Biologie du Chloroplaste et Perception de la Lumière chez les Microalgues, Institut de Biologie Physico-Chimique, UMR CNRS/UPMC 7141, Paris, France
| | - Stefan Geimer
- Zellbiologie/Elektronenmikroskopie, Universität Bayreuth, 95440 Bayreuth, Germany
| | - Francis-André Wollman
- Biologie du Chloroplaste et Perception de la Lumière chez les Microalgues, Institut de Biologie Physico-Chimique, UMR CNRS/UPMC 7141, Paris, France
| | - Yves Choquet
- Biologie du Chloroplaste et Perception de la Lumière chez les Microalgues, Institut de Biologie Physico-Chimique, UMR CNRS/UPMC 7141, Paris, France
| | - Timo Mühlhaus
- Computational Systems Biology, TU Kaiserslautern, Paul-Ehrlich Straße 23, D-67663 Kaiserslautern, Germany
| | - Michael Schroda
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Paul-Ehrlich Straße 23, D-67663 Kaiserslautern, Germany
| |
Collapse
|
5
|
Rredhi A, Petersen J, Schubert M, Li W, Oldemeyer S, Li W, Westermann M, Wagner V, Kottke T, Mittag M. DASH cryptochrome 1, a UV-A receptor, balances the photosynthetic machinery of Chlamydomonas reinhardtii. THE NEW PHYTOLOGIST 2021; 232:610-624. [PMID: 34235760 DOI: 10.1111/nph.17603] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Drosophila, Arabidopsis, Synechocystis, Homo (DASH) cryptochromes belong to the cryptochrome/photolyase family and can act as DNA repair enzymes. In bacteria and fungi, they also can play regulatory roles, but in plants their biological functions remain elusive. Here, we characterize CRY-DASH1 from the green alga Chlamydomonas reinhardtii. We perform biochemical and in vitro photochemical analysis. For functional characterization, a knock-out mutant of cry-dash1 is used. CRY-DASH1 protein is localized in the chloroplast and accumulates at midday. Although the photoautotrophic growth of the mutant is significantly reduced compared to the wild-type (WT), the mutant has increased levels of photosynthetic pigments and a higher maximum photochemical efficiency of photosystem II (PS II). Hyper-stacking of thylakoid membranes occurs together with an increase in proteins of the PS II reaction center, D1 and its antenna CP43, but not of their transcripts. CRY-DASH1 binds fully reduced flavin adenine dinucleotide and the antenna 5,10-methenyltetrahydrofolate, leading to an absorption peak in the UV-A range. Supplementation of white light with UV-A increases photoautotrophic growth of the WT but not of the cry-dash1 mutant. These results suggest a balancing function of CRY-DASH1 in the photosynthetic machinery and point to its role as a photoreceptor for the UV-A range separated from the absorption of photosynthetic pigments.
Collapse
Affiliation(s)
- Anxhela Rredhi
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena, 07743, Germany
| | - Jan Petersen
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena, 07743, Germany
| | - Melvin Schubert
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena, 07743, Germany
| | - Wei Li
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena, 07743, Germany
| | - Sabine Oldemeyer
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, Bielefeld, 33615, Germany
| | - Wenshuang Li
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena, 07743, Germany
| | - Martin Westermann
- Electron Microscopy Center, Jena University Hospital, Jena, 07743, Germany
| | - Volker Wagner
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena, 07743, Germany
| | - Tilman Kottke
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, Bielefeld, 33615, Germany
- Medical School OWL, Bielefeld University, Bielefeld, 33615, Germany
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena, 07743, Germany
| |
Collapse
|
6
|
Li L, Yi H. Photosynthetic responses of Arabidopsis to SO 2 were related to photosynthetic pigments, photosynthesis gene expression and redox regulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:111019. [PMID: 32888606 DOI: 10.1016/j.ecoenv.2020.111019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
Sulfur dioxide (SO2) is one of the most common and harmful air pollutants. High concentrations of SO2 can induce a series of defensive responses in Arabidopsis plants. However, the role of photosynthesis in the plant response to SO2 stress is not clear. Here, we report the photosynthetic responses of Arabidopsis plants to SO2 stress. Exposure to 30 mg/m3 SO2 decreased stomatal conductance (Gs) and transpiration rate (Tr) but increased photosynthetic pigments and net photosynthetic rate (Pn). The contents of carbohydrates and sucrose were not altered. The transcript levels of most genes related to photosystem II (PSII), cytochrome b6/f (Cytb6f), photosystem I (PSI) and carbon fixation were upregulated, revealing one important regulatory circuit for the maintenance of chloroplast homeostasis under SO2 stress. Exposure to SO2 triggered reactive oxygen species (ROS) generation, accompanied by increases in superoxide dismutase (SOD) activity and the contents of cysteine (Cys), glutathione (GSH) and non-protein thiol (NPT), which maintained cellular redox homeostasis. Together, our results indicated that chloroplast photosynthesis was involved in the plant response to SO2 stress. The photosynthetic responses were related to photosynthetic pigments, photosynthesis gene expression and redox regulation.
Collapse
Affiliation(s)
- Lijuan Li
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi Province, China
| | - Huilan Yi
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi Province, China.
| |
Collapse
|
7
|
Theis J, Niemeyer J, Schmollinger S, Ries F, Rütgers M, Gupta TK, Sommer F, Muranaka LS, Venn B, Schulz-Raffelt M, Willmund F, Engel BD, Schroda M. VIPP2 interacts with VIPP1 and HSP22E/F at chloroplast membranes and modulates a retrograde signal for HSP22E/F gene expression. PLANT, CELL & ENVIRONMENT 2020; 43:1212-1229. [PMID: 31994740 DOI: 10.1111/pce.13732] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
VIPP proteins aid thylakoid biogenesis and membrane maintenance in cyanobacteria, algae, and plants. Some members of the Chlorophyceae contain two VIPP paralogs termed VIPP1 and VIPP2, which originate from an early gene duplication event during the evolution of green algae. VIPP2 is barely expressed under nonstress conditions but accumulates in cells exposed to high light intensities or H2 O2 , during recovery from heat stress, and in mutants with defective integration (alb3.1) or translocation (secA) of thylakoid membrane proteins. Recombinant VIPP2 forms rod-like structures in vitro and shows a strong affinity for phosphatidylinositol phosphate. Under stress conditions, >70% of VIPP2 is present in membrane fractions and localizes to chloroplast membranes. A vipp2 knock-out mutant displays no growth phenotypes and no defects in the biogenesis or repair of photosystem II. However, after exposure to high light intensities, the vipp2 mutant accumulates less HSP22E/F and more LHCSR3 protein and transcript. This suggests that VIPP2 modulates a retrograde signal for the expression of nuclear genes HSP22E/F and LHCSR3. Immunoprecipitation of VIPP2 from solubilized cells and membrane-enriched fractions revealed major interactions with VIPP1 and minor interactions with HSP22E/F. Our data support a distinct role of VIPP2 in sensing and coping with chloroplast membrane stress.
Collapse
Affiliation(s)
- Jasmine Theis
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Kaiserslautern, Germany
| | - Justus Niemeyer
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Kaiserslautern, Germany
| | - Stefan Schmollinger
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Kaiserslautern, Germany
| | - Fabian Ries
- Molecular Genetics of Eukaryotes, TU Kaiserslautern, Kaiserslautern, Germany
| | - Mark Rütgers
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Kaiserslautern, Germany
| | - Tilak Kumar Gupta
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Frederik Sommer
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Kaiserslautern, Germany
| | | | - Benedikt Venn
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Kaiserslautern, Germany
| | - Miriam Schulz-Raffelt
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Kaiserslautern, Germany
| | - Felix Willmund
- Molecular Genetics of Eukaryotes, TU Kaiserslautern, Kaiserslautern, Germany
| | - Benjamin D Engel
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Michael Schroda
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
8
|
Ozawa SI, Cavaiuolo M, Jarrige D, Kuras R, Rutgers M, Eberhard S, Drapier D, Wollman FA, Choquet Y. The OPR Protein MTHI1 Controls the Expression of Two Different Subunits of ATP Synthase CFo in Chlamydomonas reinhardtii. THE PLANT CELL 2020; 32:1179-1203. [PMID: 31988263 PMCID: PMC7145495 DOI: 10.1105/tpc.19.00770] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/02/2020] [Accepted: 01/27/2020] [Indexed: 05/19/2023]
Abstract
In the green alga Chlamydomonas (Chlamydomonas r einhardtii), chloroplast gene expression is tightly regulated posttranscriptionally by gene-specific trans-acting protein factors. Here, we report the identification of the octotricopeptide repeat protein MTHI1, which is critical for the biogenesis of chloroplast ATP synthase oligomycin-sensitive chloroplast coupling factor. Unlike most trans-acting factors characterized so far in Chlamydomonas, which control the expression of a single gene, MTHI1 targets two distinct transcripts: it is required for the accumulation and translation of atpH mRNA, encoding a subunit of the selective proton channel, but it also enhances the translation of atpI mRNA, which encodes the other subunit of the channel. MTHI1 targets the 5' untranslated regions of both the atpH and atpI genes. Coimmunoprecipitation and small RNA sequencing revealed that MTHI1 binds specifically a sequence highly conserved among Chlorophyceae and the Ulvale clade of Ulvophyceae at the 5' end of triphosphorylated atpH mRNA. A very similar sequence, located ∼60 nucleotides upstream of the atpI initiation codon, was also found in some Chlorophyceae and Ulvale algae species and is essential for atpI mRNA translation in Chlamydomonas. Such a dual-targeted trans-acting factor provides a means to coregulate the expression of the two proton hemi-channels.
Collapse
Affiliation(s)
- Shin-Ichiro Ozawa
- Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique and Sorbonne Université, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Marina Cavaiuolo
- Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique and Sorbonne Université, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Domitille Jarrige
- Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique and Sorbonne Université, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Richard Kuras
- Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique and Sorbonne Université, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Mark Rutgers
- Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique and Sorbonne Université, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Stephan Eberhard
- Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique and Sorbonne Université, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Dominique Drapier
- Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique and Sorbonne Université, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Francis-André Wollman
- Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique and Sorbonne Université, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Yves Choquet
- Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique and Sorbonne Université, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| |
Collapse
|
9
|
Theis J, Lang J, Spaniol B, Ferté S, Niemeyer J, Sommer F, Zimmer D, Venn B, Mehr SF, Mühlhaus T, Wollman FA, Schroda M. The Chlamydomonas deg1c Mutant Accumulates Proteins Involved in High Light Acclimation. PLANT PHYSIOLOGY 2019; 181:1480-1497. [PMID: 31604811 PMCID: PMC6878023 DOI: 10.1104/pp.19.01052] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 09/27/2019] [Indexed: 05/18/2023]
Abstract
Degradation of periplasmic proteins (Deg)/high temperature requirement A (HtrA) proteases are ATP-independent Ser endopeptidases that perform key aspects of protein quality control in all domains of life. Here, we characterized Chlamydomonas reinhardtii DEG1C, which together with DEG1A and DEG1B is orthologous to Arabidopsis (Arabidopsis thaliana) Deg1 in the thylakoid lumen. We show that DEG1C is localized to the stroma and the periphery of thylakoid membranes. Purified DEG1C exhibited high proteolytic activity against unfolded model substrates and its activity increased with temperature and pH. DEG1C forms monomers, trimers, and hexamers that are in dynamic equilibrium. DEG1C protein levels increased upon nitrogen, sulfur, and phosphorus starvation; under heat, oxidative, and high light stress; and when Sec-mediated protein translocation was impaired. DEG1C depletion was not associated with any obvious aberrant phenotypes under nonstress conditions, high light exposure, or heat stress. However, quantitative shotgun proteomics revealed differences in the abundance of 307 proteins between a deg1c knock-out mutant and the wild type under nonstress conditions. Among the 115 upregulated proteins are PSII biogenesis factors, FtsH proteases, and proteins normally involved in high light responses, including the carbon dioxide concentrating mechanism, photorespiration, antioxidant defense, and photoprotection. We propose that the lack of DEG1C activity leads to a physiological state of the cells resembling that induced by high light intensities and therefore triggers high light protection responses.
Collapse
Affiliation(s)
- Jasmine Theis
- Molekulare Biotechnologie & Systembiologie, Technische Universität Kaiserslautern, Paul-Ehrlich D-67663 Kaiserslautern, Germany
| | - Julia Lang
- Molekulare Biotechnologie & Systembiologie, Technische Universität Kaiserslautern, Paul-Ehrlich D-67663 Kaiserslautern, Germany
| | - Benjamin Spaniol
- Molekulare Biotechnologie & Systembiologie, Technische Universität Kaiserslautern, Paul-Ehrlich D-67663 Kaiserslautern, Germany
| | - Suzanne Ferté
- Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, UMR CNRS/UPMC 7141, Paris, France
| | - Justus Niemeyer
- Molekulare Biotechnologie & Systembiologie, Technische Universität Kaiserslautern, Paul-Ehrlich D-67663 Kaiserslautern, Germany
| | - Frederik Sommer
- Molekulare Biotechnologie & Systembiologie, Technische Universität Kaiserslautern, Paul-Ehrlich D-67663 Kaiserslautern, Germany
| | - David Zimmer
- Molekulare Biotechnologie & Systembiologie, Technische Universität Kaiserslautern, Paul-Ehrlich D-67663 Kaiserslautern, Germany
| | - Benedikt Venn
- Molekulare Biotechnologie & Systembiologie, Technische Universität Kaiserslautern, Paul-Ehrlich D-67663 Kaiserslautern, Germany
| | - Shima Farazandeh Mehr
- Molekulare Biotechnologie & Systembiologie, Technische Universität Kaiserslautern, Paul-Ehrlich D-67663 Kaiserslautern, Germany
| | - Timo Mühlhaus
- Molekulare Biotechnologie & Systembiologie, Technische Universität Kaiserslautern, Paul-Ehrlich D-67663 Kaiserslautern, Germany
| | - Francis-André Wollman
- Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, UMR CNRS/UPMC 7141, Paris, France
| | - Michael Schroda
- Molekulare Biotechnologie & Systembiologie, Technische Universität Kaiserslautern, Paul-Ehrlich D-67663 Kaiserslautern, Germany
| |
Collapse
|
10
|
A thylakoid membrane-bound and redox-active rubredoxin (RBD1) functions in de novo assembly and repair of photosystem II. Proc Natl Acad Sci U S A 2019; 116:16631-16640. [PMID: 31358635 PMCID: PMC6697814 DOI: 10.1073/pnas.1903314116] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Photosystem II (PSII) catalyzes the light-driven oxidation of water in photosynthesis, supplying energy and oxygen to many life-forms on earth. During PSII assembly and repair, PSII intermediate complexes are prone to photooxidative damage, requiring mechanisms to minimize this damage. Here, we report the functional characterization of RBD1, a PSII assembly factor that interacts with PSII intermediate complexes to ensure their functional assembly and repair. We propose that the redox activity of RBD1 participates together with the cytochrome b559 to protect PSII from photooxidation. This work not only improves our understanding of cellular protection mechanisms for the vital PSII complex but also informs genetic engineering strategies for protection of PSII repair to increase agricultural productivity. Photosystem II (PSII) undergoes frequent photooxidative damage that, if not repaired, impairs photosynthetic activity and growth. How photosynthetic organisms protect vulnerable PSII intermediate complexes during de novo assembly and repair remains poorly understood. Here, we report the genetic and biochemical characterization of chloroplast-located rubredoxin 1 (RBD1), a PSII assembly factor containing a redox-active rubredoxin domain and a single C-terminal transmembrane α-helix (TMH) domain. RBD1 is an integral thylakoid membrane protein that is enriched in stroma lamellae fractions with the rubredoxin domain exposed on the stromal side. RBD1 also interacts with PSII intermediate complexes containing cytochrome b559. Complementation of the Chlamydomonas reinhardtii (hereafter Chlamydomonas) RBD1-deficient 2pac mutant with constructs encoding RBD1 protein truncations and site-directed mutations demonstrated that the TMH domain is essential for de novo PSII assembly, whereas the rubredoxin domain is involved in PSII repair. The rubredoxin domain exhibits a redox midpoint potential of +114 mV and is proficient in 1-electron transfers to a surrogate cytochrome c in vitro. Reduction of oxidized RBD1 is NADPH dependent and can be mediated by ferredoxin-NADP+ reductase (FNR) in vitro. We propose that RBD1 participates, together with the cytochrome b559, in the protection of PSII intermediate complexes from photooxidative damage during de novo assembly and repair. This role of RBD1 is consistent with its evolutionary conservation among photosynthetic organisms and the fact that it is essential in photosynthetic eukaryotes.
Collapse
|
11
|
Grossman A, Sanz-Luque E, Yi H, Yang W. Building the GreenCut2 suite of proteins to unmask photosynthetic function and regulation. Microbiology (Reading) 2019; 165:697-718. [DOI: 10.1099/mic.0.000788] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Arthur Grossman
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Emanuel Sanz-Luque
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Heng Yi
- Key Laboratory of Photobiology, Institute of Botany (CAS), Beijing, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Wenqiang Yang
- Key Laboratory of Photobiology, Institute of Botany (CAS), Beijing, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
12
|
Rütgers M, Muranaka LS, Mühlhaus T, Sommer F, Thoms S, Schurig J, Willmund F, Schulz-Raffelt M, Schroda M. Substrates of the chloroplast small heat shock proteins 22E/F point to thermolability as a regulative switch for heat acclimation in Chlamydomonas reinhardtii. PLANT MOLECULAR BIOLOGY 2017; 95:579-591. [PMID: 29094278 PMCID: PMC5700999 DOI: 10.1007/s11103-017-0672-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 10/16/2017] [Indexed: 05/06/2023]
Abstract
We have identified 39 proteins that interact directly or indirectly with high confidence with chloroplast HSP22E/F under heat stress thus revealing chloroplast processes affected by heat. Under conditions promoting protein unfolding, small heat shock proteins (sHsps) prevent the irreversible aggregation of unfolding proteins by integrating into forming aggregates. Aggregates containing sHsps facilitate the access of Hsp70 and ClpB/Hsp104 chaperones, which in ATP-dependent reactions disentangle individual proteins from the aggregates and assist in their refolding to the native state. Chlamydomonas reinhardtii encodes eight different sHsps (HSP22A to H). The goal of this work was to identify chloroplast-targeted sHsps in Chlamydomonas and to obtain a comprehensive list of the substrates with which they interact during heat stress in order to understand which chloroplast processes are disturbed under heat stress. We show that HSP22E and HSP22F are major chloroplast-targeted sHsps that have emerged from a recent gene duplication event resulting from the ongoing diversification of sHsps in the Volvocales. HSP22E/F strongly accumulate during heat stress and form high molecular mass complexes. Using differential immunoprecipitation, mass spectrometry and a stringent filtering algorithm we identified 39 proteins that with high-confidence interact directly or indirectly with HSP22E/F under heat stress. We propose that the apparent thermolability of several of these proteins might be a desired trait as part of a mechanism enabling Chlamydomonas chloroplasts to rapidly react to thermal stress.
Collapse
Affiliation(s)
- Mark Rütgers
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Paul-Ehrlich Straße 23, 67663, Kaiserslautern, Germany
| | - Ligia Segatto Muranaka
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Paul-Ehrlich Straße 23, 67663, Kaiserslautern, Germany
| | - Timo Mühlhaus
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Paul-Ehrlich Straße 23, 67663, Kaiserslautern, Germany
| | - Frederik Sommer
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Paul-Ehrlich Straße 23, 67663, Kaiserslautern, Germany
| | - Sylvia Thoms
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Paul-Ehrlich Straße 23, 67663, Kaiserslautern, Germany
| | - Juliane Schurig
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Paul-Ehrlich Straße 23, 67663, Kaiserslautern, Germany
| | - Felix Willmund
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Paul-Ehrlich Straße 23, 67663, Kaiserslautern, Germany
| | - Miriam Schulz-Raffelt
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Paul-Ehrlich Straße 23, 67663, Kaiserslautern, Germany
| | - Michael Schroda
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Paul-Ehrlich Straße 23, 67663, Kaiserslautern, Germany.
| |
Collapse
|
13
|
Abstract
Photosynthesis is central to all life on earth, providing not only oxygen but also organic compounds that are synthesized from atmospheric CO 2 and water using light energy as the driving force. The still-increasing world population poses a serious challenge to further enhance biomass production of crop plants. Crop yield is determined by various parameters, inter alia by the light energy conversion efficiency of the photosynthetic machinery. Photosynthesis can be looked at from different perspectives: (i) light reactions and carbon assimilation, (ii) leaves and canopy structure, and (ii) source-sink relationships. In this review, we discuss opportunities and prospects to increase photosynthetic performance at the different layers, taking into account the recent progress made in the respective fields.
Collapse
Affiliation(s)
- Ulf-Ingo Flügge
- Cologne Biocenter, Botanical Institute II and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Peter Westhoff
- Department of Biology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine University, Düsseldorf, Germany
| | - Dario Leister
- Plant Molecular Biology, Department of Biology I, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
14
|
Theis J, Schroda M. Revisiting the photosystem II repair cycle. PLANT SIGNALING & BEHAVIOR 2016; 11:e1218587. [PMID: 27494214 PMCID: PMC5058467 DOI: 10.1080/15592324.2016.1218587] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/23/2016] [Accepted: 07/25/2016] [Indexed: 05/18/2023]
Abstract
The ability of photosystem (PS) II to catalyze the light-driven oxidation of water comes along with its vulnerability to oxidative damage, in particular of the D1 core subunit. Photodamaged PSII undergoes repair in a multi-step process involving (i) reversible phosphorylation of PSII core subunits; (ii) monomerization and lateral migration of the PSII core from grana to stroma thylakoids; (iii) partial disassembly of PSII; (iv) proteolytic degradation of damaged D1; (v) replacement of damaged D1 protein with a new copy; (vi) reassembly of PSII monomers and migration back to grana thylakoids for dimerization and supercomplex assembly. Here we review the current knowledge on the PSII repair cycle.
Collapse
Affiliation(s)
- Jasmine Theis
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Kaiserslautern, Germany
| | - Michael Schroda
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Kaiserslautern, Germany
- CONTACT Michael Schroda Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Paul-Ehrlich-Str. 70, 67663 Kaiserslautern, Germany
| |
Collapse
|