1
|
Du X, Xu Z, Lu J, Chen Y, Gao X, Zhang J, He C, Huang L, Guo W, Cui Y, Wang X, Ai J, Li L, Cui Y, Liu Y, Fu J, Gu R, Wang J, Wang G. A LTR retrotransposon insertion leads to leafy phenotype in maize by elevating ZmOM66 expression. Nat Commun 2025; 16:3152. [PMID: 40175370 PMCID: PMC11965440 DOI: 10.1038/s41467-025-57811-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/04/2025] [Indexed: 04/04/2025] Open
Abstract
Leafy (Lfy1) is a classical dominant mutant showing more leaf number above primary ear and later flowering time in maize, but the causal gene together with its underlying genetic mechanism are unknown. Here, we report the cloning of Lfy1 mutant, and find that a retrotransposon insertion leads to leafy phenotype by elevating expression of its neighboring gene ZmOM66. ZmOM66 encodes an AAA+ ATPase that locate in mitochondria and interacts with itself. ZmOM66 overexpression affects the starch degradation, as well as contents of glucose, pyruvic acid, trehalose-6-phosphate, and TCA cycle related amino acids, and influences expression patterns of circadian clock genes. Moreover, expressions of floral related genes, including photoperiod regulated gene ZmPHYB1, integrator genes ZCN7, ZNC8 and ZCN12, and floral meristem identity genes ZMM4, ZMM15, and MASD67, are also significantly decreased by ZmOM66 overexpression. These results deepen our understanding of the regulatory mechanism of floral transition and leaf number in plant.
Collapse
Affiliation(s)
- Xuemei Du
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Maize Bio-Breeding, Frontiers Science Center for Molecular Design Breeding, Beijing Innovation Center for Crop Seed Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Zhuoyi Xu
- State Key Laboratory of Maize Bio-Breeding, Frontiers Science Center for Molecular Design Breeding, Beijing Innovation Center for Crop Seed Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jiawen Lu
- State Key Laboratory of Maize Bio-Breeding, Frontiers Science Center for Molecular Design Breeding, Beijing Innovation Center for Crop Seed Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yan Chen
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinpeng Gao
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Zhang
- State Key Laboratory of Maize Bio-Breeding, Frontiers Science Center for Molecular Design Breeding, Beijing Innovation Center for Crop Seed Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Cheng He
- State Key Laboratory of Maize Bio-Breeding, Frontiers Science Center for Molecular Design Breeding, Beijing Innovation Center for Crop Seed Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Liying Huang
- State Key Laboratory of Maize Bio-Breeding, Frontiers Science Center for Molecular Design Breeding, Beijing Innovation Center for Crop Seed Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Wei Guo
- State Key Laboratory of Maize Bio-Breeding, Frontiers Science Center for Molecular Design Breeding, Beijing Innovation Center for Crop Seed Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yangbo Cui
- State Key Laboratory of Maize Bio-Breeding, Frontiers Science Center for Molecular Design Breeding, Beijing Innovation Center for Crop Seed Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xiaoli Wang
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junmin Ai
- State Key Laboratory of Maize Bio-Breeding, Frontiers Science Center for Molecular Design Breeding, Beijing Innovation Center for Crop Seed Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Li Li
- State Key Laboratory of Maize Bio-Breeding, Frontiers Science Center for Molecular Design Breeding, Beijing Innovation Center for Crop Seed Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yu Cui
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunjun Liu
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junjie Fu
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Riliang Gu
- State Key Laboratory of Maize Bio-Breeding, Frontiers Science Center for Molecular Design Breeding, Beijing Innovation Center for Crop Seed Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
| | - Jianhua Wang
- State Key Laboratory of Maize Bio-Breeding, Frontiers Science Center for Molecular Design Breeding, Beijing Innovation Center for Crop Seed Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
| | - Guoying Wang
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
2
|
Zhao Y, Lu J, Hu B, Jiao P, Gao B, Jiang Z, Liu S, Guan S, Ma Y. Cloning and functional analysis of ZmMADS42 gene in maize. GM CROPS & FOOD 2024; 15:105-117. [PMID: 38466176 PMCID: PMC10936638 DOI: 10.1080/21645698.2024.2328384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
Maize (Zea mays L.) is the most important cereal crop in the world. Flowering period and photoperiod play important roles in the reproductive development of maize. This study, investigated ZmMADS42, a gene that is highly expressed in the shoot apical meristem. Agrobacterium infection was used to successfully obtain overexpressed ZmMADS42 plants. Fluorescence quantitative PCR revealed that the expression of the ZmMADS42 gene in the shoot apical meristem of transgenic plants was 2.8 times higher than that of the wild-type(WT). In addition, the expression of the ZmMADS42 gene in the endosperm was 2.4 times higher than that in the wild-type. The seed width of the T2 generation increased by 5.35%, whereas the seed length decreased by 7.78% compared with that of the wild-type. Dissection of the shoot tips of transgenic and wild-type plants from the 7-leaf stage to the 9-leaf stage revealed that the transgenic plants entered the differentiation stage earlier and exhibited more tassel meristems during their vegetative growth period. The mature transgenic plants were approximately 20 cm shorter in height and had a lower panicle position than the wild-type plants. Comparing the flowering period, the tasseling, powdering, and silking stages of the transgenic plants occurred 10 days earlier than those of the wild-type plants. The results showed that the ZmMADS42 gene played a significant role in regulating the flowering period and plant height of maize.
Collapse
Affiliation(s)
- Yang Zhao
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Jianyu Lu
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Bo Hu
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Peng Jiao
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Bai Gao
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Zhenzhong Jiang
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Siyan Liu
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Shuyan Guan
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Yiyong Ma
- College of Agronomy, Jilin Agricultural University, Changchun, China
| |
Collapse
|
3
|
Li Y, Wang J, Zhong S, Huo Q, Wang Q, Shi Y, Liu H, Liu J, Song Y, Fang X, Lin Z. MADS-box encoding gene Tunicate1 positively controls maize yield by increasing leaf number above the ear. Nat Commun 2024; 15:9799. [PMID: 39532880 PMCID: PMC11557842 DOI: 10.1038/s41467-024-54148-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
The leaves above the ear serve as a major source of carbohydrates for grain filling in maize. However, increasing the number of leaves above the ear to strengthen the source and improve maize yield remains challenging in modern maize breeding. Here, we clone the causative gene of the quantitative trait locus (QTL) associated with the number of leaves above the ear. The causative gene is the previously reported MADS-box domain-encoding gene Tunicate1 (Tu1), which is responsible for the phenotype of pod corn or Tunicate maize. We show that Tu1 can substantially increase the leaf number above the ear while maintaining the source‒sink balance. A distal upstream 5-base pair (bp) insertion of Tu1 originating from a popcorn landrace enhances its transcription, coregulates its plastochron activators and repressors, and increases the number of leaves above the ear. Field tests demonstrate that the 5-bp insertion of Tu1 can increase grain yields by 11.4% and 9.5% under regular and dense planting conditions, respectively. The discovery of this favorable Tu1 allele from landraces suggests that landraces represent a valuable resource for high-yield breeding of maize.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Maize Bio-Breeding; National Maize Improvement Center; Department of Crop Genetics and Breeding; China Agricultural University, 100193, Beijing, China
| | - Jian Wang
- State Key Laboratory of Maize Bio-Breeding; National Maize Improvement Center; Department of Crop Genetics and Breeding; China Agricultural University, 100193, Beijing, China
| | - Shuyang Zhong
- State Key Laboratory of Maize Bio-Breeding; National Maize Improvement Center; Department of Crop Genetics and Breeding; China Agricultural University, 100193, Beijing, China
| | - Qiang Huo
- State Key Laboratory of Maize Bio-Breeding; National Maize Improvement Center; Department of Crop Genetics and Breeding; China Agricultural University, 100193, Beijing, China
| | - Qun Wang
- State Key Laboratory of Maize Bio-Breeding; National Maize Improvement Center; Department of Crop Genetics and Breeding; China Agricultural University, 100193, Beijing, China
| | - Yunlu Shi
- Center for Crop Functional Genomics and Molecular Breeding; China Agricultural University, 100193, Beijing, China
| | - Hangqin Liu
- State Key Laboratory of Maize Bio-Breeding; National Maize Improvement Center; Department of Crop Genetics and Breeding; China Agricultural University, 100193, Beijing, China
| | - Jiacheng Liu
- State Key Laboratory of Maize Bio-Breeding; National Maize Improvement Center; Department of Crop Genetics and Breeding; China Agricultural University, 100193, Beijing, China
| | - Yang Song
- State Key Laboratory of Maize Bio-Breeding; National Maize Improvement Center; Department of Crop Genetics and Breeding; China Agricultural University, 100193, Beijing, China
| | - Xiaojian Fang
- State Key Laboratory of Maize Bio-Breeding; National Maize Improvement Center; Department of Crop Genetics and Breeding; China Agricultural University, 100193, Beijing, China
| | - Zhongwei Lin
- State Key Laboratory of Maize Bio-Breeding; National Maize Improvement Center; Department of Crop Genetics and Breeding; China Agricultural University, 100193, Beijing, China.
- Sanya Institute of China Agricultural University, Sanya, 572025, China.
| |
Collapse
|
4
|
Torres-Rodríguez JV, Li D, Turkus J, Newton L, Davis J, Lopez-Corona L, Ali W, Sun G, Mural RV, Grzybowski MW, Zamft BM, Thompson AM, Schnable JC. Population-level gene expression can repeatedly link genes to functions in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:844-860. [PMID: 38812347 DOI: 10.1111/tpj.16801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/31/2024]
Abstract
Transcriptome-wide association studies (TWAS) can provide single gene resolution for candidate genes in plants, complementing genome-wide association studies (GWAS) but efforts in plants have been met with, at best, mixed success. We generated expression data from 693 maize genotypes, measured in a common field experiment, sampled over a 2-h period to minimize diurnal and environmental effects, using full-length RNA-seq to maximize the accurate estimation of transcript abundance. TWAS could identify roughly 10 times as many genes likely to play a role in flowering time regulation as GWAS conducted data from the same experiment. TWAS using mature leaf tissue identified known true-positive flowering time genes known to act in the shoot apical meristem, and trait data from a new environment enabled the identification of additional flowering time genes without the need for new expression data. eQTL analysis of TWAS-tagged genes identified at least one additional known maize flowering time gene through trans-eQTL interactions. Collectively these results suggest the gene expression resource described here can link genes to functions across different plant phenotypes expressed in a range of tissues and scored in different experiments.
Collapse
Affiliation(s)
- J Vladimir Torres-Rodríguez
- Quantitative Life Sciences Initiative, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Delin Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Crop Gene Resource and Germplasm Enhancement, Key Laboratory of Soybean Biology (Beijing), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jonathan Turkus
- Quantitative Life Sciences Initiative, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Linsey Newton
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Jensina Davis
- Quantitative Life Sciences Initiative, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Lina Lopez-Corona
- Quantitative Life Sciences Initiative, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Waqar Ali
- Quantitative Life Sciences Initiative, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Guangchao Sun
- Quantitative Life Sciences Initiative, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
- Advanced Diagnostic Laboratory, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Ravi V Mural
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, South Dakota, 57007, USA
| | - Marcin W Grzybowski
- Quantitative Life Sciences Initiative, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
- Department of Plant Molecular Ecophysiology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Bradley M Zamft
- X, The Moonshot Factory, Mountain View, California, 94043, USA
| | - Addie M Thompson
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan, 48824, USA
| | - James C Schnable
- Quantitative Life Sciences Initiative, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| |
Collapse
|
5
|
Song GQ, Liu Z, Zhong GY. Regulatory frameworks involved in the floral induction, formation and developmental programming of woody horticultural plants: a case study on blueberries. FRONTIERS IN PLANT SCIENCE 2024; 15:1336892. [PMID: 38410737 PMCID: PMC10894941 DOI: 10.3389/fpls.2024.1336892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/26/2024] [Indexed: 02/28/2024]
Abstract
Flowering represents a crucial stage in the life cycles of plants. Ensuring strong and consistent flowering is vital for maintaining crop production amidst the challenges presented by climate change. In this review, we summarized key recent efforts aimed at unraveling the complexities of plant flowering through genetic, genomic, physiological, and biochemical studies in woody species, with a special focus on the genetic control of floral initiation and activation in woody horticultural species. Key topics covered in the review include major flowering pathway genes in deciduous woody plants, regulation of the phase transition from juvenile to adult stage, the roles of CONSTANS (CO) and CO-like gene and FLOWERING LOCUS T genes in flower induction, the floral regulatory role of GA-DELLA pathway, and the multifunctional roles of MADS-box genes in flowering and dormancy release triggered by chilling. Based on our own research work in blueberries, we highlighted the central roles played by two key flowering pathway genes, FLOWERING LOCUS T and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1, which regulate floral initiation and activation (dormancy release), respectively. Collectively, our survey shows both the conserved and diverse aspects of the flowering pathway in annual and woody plants, providing insights into the potential molecular mechanisms governing woody plants. This paves the way for enhancing the resilience and productivity of fruit-bearing crops in the face of changing climatic conditions, all through the perspective of genetic interventions.
Collapse
Affiliation(s)
- Guo-Qing Song
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI, United States
| | - Zongrang Liu
- USDA Agricultural Research Services, Appalachian Fruit Research Station, Kearneysville, WV, United States
| | - Gan-Yuan Zhong
- USDA Agricultural Research Services, Grape Genetics Research Unit and Plant Genetic Resources Unit, Geneva, NY, United States
| |
Collapse
|
6
|
Huang X, Lyu T, Li Z, Lyu Y. Hydrangea arborescens 'Annabelle' Flower Formation and Flowering in the Current Year. PLANTS (BASEL, SWITZERLAND) 2023; 12:4103. [PMID: 38140430 PMCID: PMC10748224 DOI: 10.3390/plants12244103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/24/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023]
Abstract
The perennial woody plant Hydrangea arborescens 'Annabelle' is of great research value due to its unique mechanism of flower development that occurs in the current year, resulting in decorative flowers that can be enjoyed for a relatively long period of time. However, the mechanisms underlying the regulation of current-year flower development in H. arborescens 'Annabelle' are still not fully understood. In this study, we conducted an associated analysis to explore the core regulating network in H. arborescens 'Annabelle' by combining phenological observations, physiological assays, and transcriptome comparisons across seven flower developmental stages. Through this analysis, we constructed a gene co-expression network (GCN) based on the highest reciprocal rank (HRR), using 509 differentially expressed genes (DEGs) identified from seven flowering-related pathways, as well as the biosynthesis of eight flowering-related phytohormones and signal transduction in the transcriptomic analysis. According to the analysis of the GCN, we identified 14 key genes with the highest functional connectivity that played critical roles in specific development stages. We confirmed that 135 transcription factors (AP2/ERF, bHLH, CO-like, GRAS, MIKC, SBP, WRKY) were highly co-expressed with the 14 key genes, indicating their close associations with the development of current-year flowers. We further proposed a hypothetical model of a gene regulatory network for the development of the whole flower. This model suggested that the photoperiod, aging, and gibberellin pathways, along with the phytohormones abscisic acid (ABA), gibberellin (GA), brassinosteroid (BR), and jasmonic acid (JA), work synergistically to promote the floral transition. Additionally, auxin, GA, JA, ABA, and salicylic acid (SA) regulated the blooming process by involving the circadian clock. Cytokinin (CTK), ethylene (ETH), and SA were key regulators that affected flower senescence. Additionally, several floral integrators (HaLFY, HaSOC1-2, HaAP1, HaFULL, HaAGL24, HaFLC, etc.) were dominant contributors to the development of H. arborescens flowers. Overall, this research provides a comprehensive understanding of the dynamic mechanism underlying the entire process of current-year flower development, thereby offering valuable insights for further studies on the flower development of H. arborescens 'Annabelle'.
Collapse
Affiliation(s)
- Xiaoxu Huang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, China National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Tong Lyu
- Beijing Flower Engineering Technology Research Center, Plant Institute, China National Botanical Garden North Garden, Beijing 100093, China
| | - Zheng Li
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, China National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Yingmin Lyu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, China National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
7
|
Shen X, Xiao B, Kaderbek T, Lin Z, Tan K, Wu Q, Yuan L, Lai J, Zhao H, Song W. Dynamic transcriptome landscape of developing maize ear. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1856-1870. [PMID: 37731154 DOI: 10.1111/tpj.16457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/19/2023] [Accepted: 08/26/2023] [Indexed: 09/22/2023]
Abstract
Seed number and harvesting ability in maize (Zea mays L.) are primarily determined by the architecture of female inflorescence, namely the ear. Therefore, ear morphogenesis contributes to grain yield and as such is one of the key target traits during maize breeding. However, the molecular networks of this highly dynamic and complex grain-bearing inflorescence remain largely unclear. As a first step toward characterizing these networks, we performed a high-spatio-temporal-resolution investigation of transcriptomes using 130 ear samples collected from developing ears with length from 0.1 mm to 19.0 cm. Comparisons of these mRNA populations indicated that these spatio-temporal transcriptomes were clearly separated into four distinct stages stages I, II, III, and IV. A total of 23 793 genes including 1513 transcription factors (TFs) were identified in the investigated developing ears. During the stage I of ear morphogenesis, 425 genes were predicted to be involved in a co-expression network established by eight hub TFs. Moreover, 9714 ear-specific genes were identified in the seven kinds of meristems. Additionally, 527 genes including 59 TFs were identified as especially expressed in ear and displayed high temporal specificity. These results provide a high-resolution atlas of gene activity during ear development and help to unravel the regulatory modules associated with the differentiation of the ear in maize.
Collapse
Affiliation(s)
- Xiaomeng Shen
- State Key Laboratory of Maize Bio-breeding, China Agricultural University, Beijing, 100193, P.R. China
- Department of Plant Genetics and Breeding, National Maize Improvement Center, China Agricultural University, Beijing, 100193, P.R. China
| | - Bing Xiao
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, P.R. China
| | - Tangnur Kaderbek
- State Key Laboratory of Maize Bio-breeding, China Agricultural University, Beijing, 100193, P.R. China
- Department of Plant Genetics and Breeding, National Maize Improvement Center, China Agricultural University, Beijing, 100193, P.R. China
| | - Zhen Lin
- State Key Laboratory of Maize Bio-breeding, China Agricultural University, Beijing, 100193, P.R. China
- Department of Plant Genetics and Breeding, National Maize Improvement Center, China Agricultural University, Beijing, 100193, P.R. China
| | - Kaiwen Tan
- State Key Laboratory of Maize Bio-breeding, China Agricultural University, Beijing, 100193, P.R. China
- Department of Plant Genetics and Breeding, National Maize Improvement Center, China Agricultural University, Beijing, 100193, P.R. China
| | - Qingyu Wu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Lixing Yuan
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, P.R. China
| | - Jinsheng Lai
- State Key Laboratory of Maize Bio-breeding, China Agricultural University, Beijing, 100193, P.R. China
- Department of Plant Genetics and Breeding, National Maize Improvement Center, China Agricultural University, Beijing, 100193, P.R. China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, P.R. China
| | - Haiming Zhao
- State Key Laboratory of Maize Bio-breeding, China Agricultural University, Beijing, 100193, P.R. China
- Department of Plant Genetics and Breeding, National Maize Improvement Center, China Agricultural University, Beijing, 100193, P.R. China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, P.R. China
| | - Weibin Song
- State Key Laboratory of Maize Bio-breeding, China Agricultural University, Beijing, 100193, P.R. China
- Department of Plant Genetics and Breeding, National Maize Improvement Center, China Agricultural University, Beijing, 100193, P.R. China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, P.R. China
| |
Collapse
|
8
|
Karnatam KS, Mythri B, Un Nisa W, Sharma H, Meena TK, Rana P, Vikal Y, Gowda M, Dhillon BS, Sandhu S. Silage maize as a potent candidate for sustainable animal husbandry development-perspectives and strategies for genetic enhancement. Front Genet 2023; 14:1150132. [PMID: 37303948 PMCID: PMC10250641 DOI: 10.3389/fgene.2023.1150132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Maize is recognized as the queen of cereals, with an ability to adapt to diverse agroecologies (from 58oN to 55oS latitude) and the highest genetic yield potential among cereals. Under contemporary conditions of global climate change, C4 maize crops offer resilience and sustainability to ensure food, nutritional security, and farmer livelihood. In the northwestern plains of India, maize is an important alternative to paddy for crop diversification in the wake of depleting water resources, reduced farm diversity, nutrient mining, and environmental pollution due to paddy straw burning. Owing to its quick growth, high biomass, good palatability, and absence of anti-nutritional components, maize is also one of the most nutritious non-legume green fodders. It is a high-energy, low-protein forage commonly used for dairy animals like cows and buffalos, often in combination with a complementary high-protein forage such as alfalfa. Maize is also preferred for silage over other fodders due to its softness, high starch content, and sufficient soluble sugars required for proper ensiling. With a rapid population increase in developing countries like China and India, there is an upsurge in meat consumption and, hence, the requirement for animal feed, which entails high usage of maize. The global maize silage market is projected to grow at a compound annual growth rate of 7.84% from 2021 to 2030. Factors such as increasing demand for sustainable and environment-friendly food sources coupled with rising health awareness are fueling this growth. With the dairy sector growing at about 4%-5% and the increasing shortage faced for fodder, demand for silage maize is expected to increase worldwide. The progress in improved mechanization for the provision of silage maize, reduced labor demand, lack of moisture-related marketing issues as associated with grain maize, early vacancy of farms for next crops, and easy and economical form of feed to sustain household dairy sector make maize silage a profitable venture. However, sustaining the profitability of this enterprise requires the development of hybrids specific for silage production. Little attention has yet been paid to breeding for a plant ideotype for silage with specific consideration of traits such as dry matter yield, nutrient yield, energy in organic matter, genetic architecture of cell wall components determining their digestibility, stalk standability, maturity span, and losses during ensiling. This review explores the available information on the underlying genetic mechanisms and gene/gene families impacting silage yield and quality. The trade-offs between yield and nutritive value in relation to crop duration are also discussed. Based on available genetic information on inheritance and molecular aspects, breeding strategies are proposed to develop maize ideotypes for silage for the development of sustainable animal husbandry.
Collapse
Affiliation(s)
- Krishna Sai Karnatam
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Bikkasani Mythri
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Wajhat Un Nisa
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Heena Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Tarun Kumar Meena
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Prabhat Rana
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Yogesh Vikal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - M. Gowda
- International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| | - Baldev Singh Dhillon
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Surinder Sandhu
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| |
Collapse
|
9
|
Kong D, Li C, Xue W, Wei H, Ding H, Hu G, Zhang X, Zhang G, Zou T, Xian Y, Wang B, Zhao Y, Liu Y, Xie Y, Xu M, Wu H, Liu Q, Wang H. UB2/UB3/TSH4-anchored transcriptional networks regulate early maize inflorescence development in response to simulated shade. THE PLANT CELL 2023; 35:717-737. [PMID: 36472157 PMCID: PMC9940873 DOI: 10.1093/plcell/koac352] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/11/2022] [Accepted: 12/05/2022] [Indexed: 05/12/2023]
Abstract
Increasing planting density has been adopted as an effective means to increase maize (Zea mays) yield. Competition for light from neighbors can trigger plant shade avoidance syndrome, which includes accelerated flowering. However, the regulatory networks of maize inflorescence development in response to high-density planting remain poorly understood. In this study, we showed that shade-mimicking treatments cause precocious development of the tassels and ears. Comparative transcriptome profiling analyses revealed the enrichment of phytohormone-related genes and transcriptional regulators among the genes co-regulated by developmental progression and simulated shade. Network analysis showed that three homologous Squamosa promoter binding protein (SBP)-like (SPL) transcription factors, Unbranched2 (UB2), Unbranched3 (UB3), and Tasselsheath4 (TSH4), individually exhibited connectivity to over 2,400 genes across the V3-to-V9 stages of tassel development. In addition, we showed that the ub2 ub3 double mutant and tsh4 single mutant were almost insensitive to simulated shade treatments. Moreover, we demonstrated that UB2/UB3/TSH4 could directly regulate the expression of Barren inflorescence2 (BIF2) and Zea mays teosinte branched1/cycloidea/proliferating cell factor30 (ZmTCP30). Furthermore, we functionally verified a role of ZmTCP30 in regulating tassel branching and ear development. Our results reveal a UB2/UB3/TSH4-anchored transcriptional regulatory network of maize inflorescence development and provide valuable targets for breeding shade-tolerant maize cultivars.
Collapse
Affiliation(s)
- Dexin Kong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Changyu Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weicong Xue
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Hongbin Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Hui Ding
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Guizhen Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoming Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Guisen Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Ting Zou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Yuting Xian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Baobao Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongping Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuting Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Yurong Xie
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Miaoyun Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hong Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Qing Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Haiyang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
10
|
Yang Z, Qin F. The battle of crops against drought: Genetic dissection and improvement. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:496-525. [PMID: 36639908 DOI: 10.1111/jipb.13451] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
With ongoing global climate change, water scarcity-induced drought stress remains a major threat to agricultural productivity. Plants undergo a series of physiological and morphological changes to cope with drought stress, including stomatal closure to reduce transpiration and changes in root architecture to optimize water uptake. Combined phenotypic and multi-omics studies have recently identified a number of drought-related genetic resources in different crop species. The functional dissection of these genes using molecular techniques has enriched our understanding of drought responses in crops and has provided genetic targets for enhancing resistance to drought. Here, we review recent advances in the cloning and functional analysis of drought resistance genes and the development of technologies to mitigate the threat of drought to crop production.
Collapse
Affiliation(s)
- Zhirui Yang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Feng Qin
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
11
|
Lebedeva M, Komakhin R, Konovalova L, Ivanova L, Taranov V, Monakhova Y, Babakov A, Klepikova A, Zlobin N. Development of potato (Solanum tuberosum L.) plants with StLEAFY knockout. PLANTA 2022; 256:116. [PMID: 36374358 DOI: 10.1007/s00425-022-04032-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
StLFY-knockout potato plants were developed using CRISPR/Cas9 system. Inflorescences of edited plants transited to flowering, but inflorescence structures lacked flowers and were indeterminate, producing multiple shoot meristems. The tetraploid potato (Solanum tuberosum L.) is an important agricultural crop worldwide. In this study, we used CRISPR/Cas9 to inactivate the potato homolog (StLFY) of the LEAFY gene-a key regulator of the transition to flowering and floral meristem identity-in a tetraploid potato cultivar. We achieved high rates of all-allelic knockouts. Frameshift indels led to phenotypic alterations, including indeterminate inflorescence development and the replacement of flowers with the leafy-like structures.
Collapse
Affiliation(s)
- Marina Lebedeva
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia.
| | - Roman Komakhin
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | - Ludmila Konovalova
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
- N.V. Tsitsin Main Botanical Garden of the RAS, Moscow, Russia
| | - Lyubov Ivanova
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | - Vasiliy Taranov
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | - Yuliya Monakhova
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | - Alexey Babakov
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | - Anna Klepikova
- Institute for Information, Transmission Problems of the RAS, Moscow, Russia
| | - Nikolay Zlobin
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| |
Collapse
|
12
|
Shi J, Wang Y, Wang C, Wang L, Zeng W, Han G, Qiu C, Wang T, Tao Z, Wang K, Huang S, Yu S, Wang W, Chen H, Chen C, He C, Wang H, Zhu P, Hu Y, Zhang X, Xie C, Lu X, Li P. Linkage mapping combined with GWAS revealed the genetic structural relationship and candidate genes of maize flowering time-related traits. BMC PLANT BIOLOGY 2022; 22:328. [PMID: 35799118 PMCID: PMC9264602 DOI: 10.1186/s12870-022-03711-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Flowering time is an important agronomic trait of crops and significantly affects plant adaptation and seed production. Flowering time varies greatly among maize (Zea mays) inbred lines, but the genetic basis of this variation is not well understood. Here, we report the comprehensive genetic architecture of six flowering time-related traits using a recombinant inbred line (RIL) population obtained from a cross between two maize genotypes, B73 and Abe2, and combined with genome-wide association studies to identify candidate genes that affect flowering time. RESULTS Our results indicate that these six traits showed extensive phenotypic variation and high heritability in the RIL population. The flowering time of this RIL population showed little correlation with the leaf number under different environmental conditions. A genetic linkage map was constructed by 10,114 polymorphic markers covering the whole maize genome, which was applied to QTL mapping for these traits, and identified a total of 82 QTLs that contain 13 flowering genes. Furthermore, a combined genome-wide association study and linkage mapping analysis revealed 17 new candidate genes associated with flowering time. CONCLUSIONS In the present study, by using genetic mapping and GWAS approaches with the RIL population, we revealed a list of genomic regions and candidate genes that were significantly associated with flowering time. This work provides an important resource for the breeding of flowering time traits in maize.
Collapse
Affiliation(s)
- Jian Shi
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yunhe Wang
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Chuanhong Wang
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Lei Wang
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Wei Zeng
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Guomin Han
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Chunhong Qiu
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Tengyue Wang
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Zhen Tao
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Kaiji Wang
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Shijie Huang
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Shuaishuai Yu
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Wanyi Wang
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Hongyi Chen
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Chen Chen
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Chen He
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Hui Wang
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Peiling Zhu
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yuanyuan Hu
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Xin Zhang
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Chuanxiao Xie
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081, China
| | - Xiaoduo Lu
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | - Peijin Li
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
13
|
Li Y, Sun W, Wang Z, Wan C, Zhang J, Qi X, Zhang J. SDG102, a H3K36-Methyltransferase-Encoding Gene, Plays Pleiotropic Roles in Growth and Development of Maize ( Zea mays L.). Int J Mol Sci 2022; 23:ijms23137458. [PMID: 35806471 PMCID: PMC9267571 DOI: 10.3390/ijms23137458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 02/01/2023] Open
Abstract
Although histone lysine methylation has been studied in thale cress (Arabidopsis thaliana (L.) Heynh.) and rice (Oryza sativa L.) in recent years, its function in maize (Zea mays L.) remains poorly characterized. To better understand the function of histone lysine methylation in maize, SDG102, a H3 lysine 36 (H3K36) methylase, was chosen for functional characterization using overexpressed and knockout transgenic plants. SDG102-deficiency in maize caused multiple phenotypes including yellow leaves in seedlings, late-flowering, and increased adult plant height, while the overexpression of SDG102 led to reduced adult plant height. The key flowering genes, ZCN8/ZCN7 and MADS4/MADA67, were downregulated in SDG102-deficient plants. Chromatin immunoprecipitation (ChIP) experiments showed that H3 lysine 36 trimethylation (H3K36me3) levels were reduced at these loci. Perturbation of SDG102 expression caused the misexpression of multiple genes. Interestingly, the overexpression or knockout of SDG102 also led to genome-wide decreases and increases in the H3K36me3 levels, respectively. Together, our results suggest that SDG102 is a methyltransferase that catalyzes the trimethylation of H3K36 of many genes across the maize genome, which are involved in multiple biological processes including those controlling flowering time.
Collapse
Affiliation(s)
- Yongjian Li
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (W.S.); (C.W.); (Z.W.); (J.Z.)
| | - Weifeng Sun
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (W.S.); (C.W.); (Z.W.); (J.Z.)
| | - Zhenhui Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (W.S.); (C.W.); (Z.W.); (J.Z.)
| | - Chang Wan
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (W.S.); (C.W.); (Z.W.); (J.Z.)
| | - Jun Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (W.S.); (C.W.); (Z.W.); (J.Z.)
| | - Xin Qi
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (W.S.); (C.W.); (Z.W.); (J.Z.)
- Correspondence: (X.Q.); (J.Z.)
| | - Jian Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (W.S.); (C.W.); (Z.W.); (J.Z.)
- Department of Biology, University of British Columbia, Okanagan, Kelowna, BC V1V 1V7, Canada
- Correspondence: (X.Q.); (J.Z.)
| |
Collapse
|
14
|
Liu Z, Abou-Elwafa SF, Xie J, Liu Y, Li S, Aljabri M, Zhang D, Gao F, Zhang L, Wang Z, Sun C, Zhu B, Bao M, Hu X, Chen Y, Ku L, Ren Z, Wei L. A Nucleoporin NUP58 modulates responses to drought and salt stress in maize (Zea mays L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 320:111296. [PMID: 35643613 DOI: 10.1016/j.plantsci.2022.111296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/09/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
Nuclear pore complex (NUP) is the main transport channel between cytoplasm and nucleoplasm, which plays an important role in stress response. The function of NUPs was widely reported in yeast and vertebrate but rarely in plants. Here, we identified a nuclear pore complex (ZmNUP58), that is tightly associated with drought and salt tolerance phenotype accompanied with phenotypic and physiological changes under drought and salt stress. The overexpression of ZmNUP58 in maize (Zea mays L.) significantly promotes both chlorophyll content and activities of antioxidant enzymes under drought- and salt-stressed conditions. RNA-Seq analysis showed that ZmNUP58 could regulate the expression of genes related to phytohormone synthesis and signaling, osmotic adjustment substances, antioxidant enzyme system, cell wall biosynthesis, glucose metabolism and aquaporin. The results provide novel insights into the regulatory role of ZmNUP58 in improving drought and salt tolerance through regulating phytohormone and other stress response genes in maize.
Collapse
Affiliation(s)
- Zhixue Liu
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | | | - Jiarong Xie
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Yajing Liu
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Siyuan Li
- Corn Breeding and Research, China Seeds International Seeds Co., Ltd, Zhengzhou, Henan, 450046, China
| | - Maha Aljabri
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah 21421, Saudi Arabia
| | - Dongling Zhang
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Fengran Gao
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Lili Zhang
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Zhiyong Wang
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Chongyu Sun
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Bingqi Zhu
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Miaomiao Bao
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Xiaomeng Hu
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Yanhui Chen
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Lixia Ku
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Zhenzhen Ren
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, 450046, China.
| | - Li Wei
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, 450046, China.
| |
Collapse
|
15
|
Kou K, Yang H, Li H, Fang C, Chen L, Yue L, Nan H, Kong L, Li X, Wang F, Wang J, Du H, Yang Z, Bi Y, Lai Y, Dong L, Cheng Q, Su T, Wang L, Li S, Hou Z, Lu S, Zhang Y, Che Z, Yu D, Zhao X, Liu B, Kong F. A functionally divergent SOC1 homolog improves soybean yield and latitudinal adaptation. Curr Biol 2022; 32:1728-1742.e6. [PMID: 35263616 DOI: 10.1016/j.cub.2022.02.046] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/22/2021] [Accepted: 02/14/2022] [Indexed: 12/30/2022]
Abstract
Soybean (Glycine max) grows in a wide range of latitudes, but it is extremely sensitive to photoperiod, which reduces its yield and ability to adapt to different environments. Therefore, understanding of the genetic basis of soybean adaptation is of great significance for breeding and improvement. Here, we characterized Tof18 (SOC1a) that conditions early flowering and growth habit under both short-day and long-day conditions. Molecular analysis confirmed that the two SOC1 homologs present in soybeans (SOC1a and SOC1b) underwent evolutionary functional divergence, with SOC1a having stronger effects on flowering time and stem node number than SOC1b due to transcriptional differences. soc1a soc1b double mutants showed stronger functional effects than either of the single mutants, perhaps due to the formation of SOC1a and SOC1b homodimers or heterodimers. Additionally, Tof18/SOC1a improves the latitudinal adaptation of cultivated soybeans, highlighting the functional importance of SOC1a. The Tof18G allele facilitates adaptation to high latitudes, whereas Tof18A facilitates adaptation to low latitudes. We demonstrated that SOC1s contribute to floral induction in both leaves and shoot apex through inter-regulation with FTs. The SOC1a-SOC1b-Dt2 complex plays essential roles in stem growth habit by directly binding to the regulatory sequence of Dt1, making the genes encoding these proteins potential targets for genome editing to improve soybean yield via molecular breeding. Since the natural Tof18A allele increases node number, introgressing this allele into modern cultivars could improve yields, which would help optimize land use for food production in the face of population growth and global warming.
Collapse
Affiliation(s)
- Kun Kou
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Hui Yang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China.
| | - Haiyang Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Fang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Liyu Chen
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Lin Yue
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Haiyang Nan
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Lingping Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Xiaoming Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Fan Wang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Jianhao Wang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Haiping Du
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Zhongyi Yang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingdong Bi
- Institute of Crops Tillage and Cultivation, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Yongcai Lai
- Institute of Crops Tillage and Cultivation, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Lidong Dong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Qun Cheng
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Tong Su
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Lingshuang Wang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Shichen Li
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Zhihong Hou
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163000, China
| | - Sijia Lu
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Yuhang Zhang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Zhijun Che
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Deyue Yu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaohui Zhao
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China.
| | - Baohui Liu
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China; The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China.
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China; The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China.
| |
Collapse
|
16
|
Michel KJ, Lima DC, Hundley H, Singan V, Yoshinaga Y, Daum C, Barry K, Broman KW, Buell CR, de Leon N, Kaeppler SM. Genetic mapping and prediction of flowering time and plant height in a maize Stiff Stalk MAGIC population. Genetics 2022; 221:6571196. [PMID: 35441688 PMCID: PMC9157087 DOI: 10.1093/genetics/iyac063] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/08/2022] [Indexed: 11/12/2022] Open
Abstract
The Stiff Stalk heterotic pool is a foundation of US maize seed parent germplasm and has been heavily utilized by both public and private maize breeders since its inception in the 1930's. Flowering time and plant height are critical characteristics for both inbred parents and their test crossed hybrid progeny. To study these traits, a six parent multiparent advanced generation intercross (MAGIC) population was developed including maize inbred lines B73, B84, PHB47 (B37 type), LH145 (B14 type), PHJ40 (novel early Stiff Stalk), and NKH8431 (B73/B14 type). A set of 779 doubled haploid lines were evaluated for flowering time and plant height in two field replicates in 2016 and 2017, and a subset of 689 and 561 doubled haploid lines were crossed to two testers, respectively, and evaluated as hybrids in two locations in 2018 and 2019 using an incomplete block design. Markers were derived from a Practical Haplotype Graph built from the founder whole genome assemblies and genotype-by-sequencing and exome capture-based sequencing of the population. Genetic mapping utilizing an update to R/qtl2 revealed differing profiles of significant loci for both traits between 635 of the DH lines and two sets of 570 and 471 derived hybrids. Genomic prediction was used to test the feasibility of predicting hybrid phenotypes based on the per se data. Predictive abilities were highest on direct models trained using the data they would predict (0.55 to 0.63), and indirect models trained using per se data to predict hybrid traits had slightly lower predictive abilities (0.49 to 0.55). Overall, this finding is consistent with the overlapping and non-overlapping significant QTL found within the per se and hybrid populations and suggests that selections for phenology traits can be made effectively on doubled haploid lines before hybrid data is available.
Collapse
Affiliation(s)
- Kathryn J Michel
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Dayane C Lima
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Hope Hundley
- U.S. Department of Energy Joint Genome Institute, Berkeley, California 94720, USA
| | - Vasanth Singan
- Ambry Genetics, 1 Enterprise, Aliso Viejo, CA-92656, USA.,U.S. Department of Energy Joint Genome Institute, Berkeley, California 94720, USA
| | - Yuko Yoshinaga
- U.S. Department of Energy Joint Genome Institute, Berkeley, California 94720, USA
| | - Chris Daum
- U.S. Department of Energy Joint Genome Institute, Berkeley, California 94720, USA
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Berkeley, California 94720, USA
| | - Karl W Broman
- Departments of Biostatistics and Medical Informatics, University of Wisconsin-Madison, WI 53706, USA
| | - C Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA.,Department of Energy Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA.,Center for Applied Genetic Technologies, Department of Crop and Soil Sciences, University of Georgia, Athens, GA 30602, USA
| | - Natalia de Leon
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI 53706, USA.,Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Shawn M Kaeppler
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI 53706, USA.,Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA.,Wisconsin Crop Innovation Center, University of Wisconsin-Madison, Middleton, WI 53562, USA
| |
Collapse
|
17
|
Genome-Wide Profiling of Alternative Splicing and Gene Fusion during Rice Black-Streaked Dwarf Virus Stress in Maize (Zea mays L.). Genes (Basel) 2022; 13:genes13030456. [PMID: 35328010 PMCID: PMC8955601 DOI: 10.3390/genes13030456] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 12/26/2022] Open
Abstract
Rice black-streaked dwarf virus (RBSDV) causes maize rough dwarf disease (MRDD), which is a viral disease that significantly affects maize yields worldwide. Plants tolerate stress through transcriptional reprogramming at the alternative splicing (AS), transcriptional, and fusion gene (FG) levels. However, it is unclear whether and how AS and FG interfere with transcriptional reprogramming in MRDD. In this study, we performed global profiling of AS and FG on maize response to RBSDV and compared it with transcriptional changes. There are approximately 1.43 to 2.25 AS events per gene in maize infected with RBSDV. GRMZM2G438622 was only detected in four AS modes (A3SS, A5SS, RI, and SE), whereas GRMZM2G059392 showed downregulated expression and four AS events. A total of 106 and 176 FGs were detected at two time points, respectively, including six differentially expressed genes and five differentially spliced genes. The gene GRMZM2G076798 was the only FG that occurred at two time points and was involved in two FG events. Among these, 104 GOs were enriched, indicating that nodulin-, disease resistance-, and chloroplastic-related genes respond to RBSDV stress in maize. These results provide new insights into the mechanisms underlying post-transcriptional and transcriptional regulation of maize response to RBSDV stress.
Collapse
|
18
|
Carvalho RF, Aguiar-Perecin MLR, Clarindo WR, Fristche-Neto R, Mondin M. A Heterochromatic Knob Reducing the Flowering Time in Maize. Front Genet 2022; 12:799681. [PMID: 35280927 PMCID: PMC8908004 DOI: 10.3389/fgene.2021.799681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Maize flowering time is an important agronomic trait, which has been associated with variations in the genome size and heterochromatic knobs content. We integrated three steps to show this association. Firstly, we selected inbred lines varying for heterochromatic knob composition at specific sites in the homozygous state. Then, we produced homozygous and heterozygous hybrids for knobs. Second, we measured the genome size and flowering time for all materials. Knob composition did not affect the genome size and flowering time. Finally, we developed an association study and identified a knob marker on chromosome 9 showing the strongest association with flowering time. Indeed, modelling allele substitution and dominance effects could offer only one heterochromatic knob locus that could affect flowering time, making it earlier rather than the knob composition.
Collapse
Affiliation(s)
- Renata Flávia Carvalho
- “Luiz de Queiroz” College of Agriculture, ESALQ, University of São Paulo, Piracicaba, Brazil
| | | | | | - Roberto Fristche-Neto
- “Luiz de Queiroz” College of Agriculture, ESALQ, University of São Paulo, Piracicaba, Brazil
- International Rice Research Institute (IRRI) - Breeding Analytics and Data, Management Unit, Laguna, Philippines
| | - Mateus Mondin
- “Luiz de Queiroz” College of Agriculture, ESALQ, University of São Paulo, Piracicaba, Brazil
| |
Collapse
|
19
|
Wang X, Liu Z, Sun S, Wu J, Li R, Wang H, Cui X. SISTER OF TM3 activates FRUITFULL1 to regulate inflorescence branching in tomato. HORTICULTURE RESEARCH 2021; 8:251. [PMID: 34848688 PMCID: PMC8633288 DOI: 10.1038/s41438-021-00677-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/19/2021] [Accepted: 08/02/2021] [Indexed: 05/19/2023]
Abstract
Selection for favorable inflorescence architecture to improve yield is one of the crucial targets in crop breeding. Different tomato varieties require distinct inflorescence-branching structures to enhance productivity. While a few important genes for tomato inflorescence-branching development have been identified, the regulatory mechanism underlying inflorescence branching is still unclear. Here, we confirmed that SISTER OF TM3 (STM3), a homolog of Arabidopsis SOC1, is a major positive regulatory factor of tomato inflorescence architecture by map-based cloning. High expression levels of STM3 underlie the highly inflorescence-branching phenotype in ST024. STM3 is expressed in both vegetative and reproductive meristematic tissues and in leaf primordia and leaves, indicative of its function in flowering time and inflorescence-branching development. Transcriptome analysis shows that several floral development-related genes are affected by STM3 mutation. Among them, FRUITFULL1 (FUL1) is downregulated in stm3cr mutants, and its promoter is bound by STM3 by ChIP-qPCR analysis. EMSA and dual-luciferase reporter assays further confirmed that STM3 could directly bind the promoter region to activate FUL1 expression. Mutation of FUL1 could partially restore inflorescence-branching phenotypes caused by high STM3 expression in ST024. Our findings provide insights into the molecular and genetic mechanisms underlying inflorescence development in tomato.
Collapse
Affiliation(s)
- Xiaotian Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhiqiang Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shuai Sun
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jianxin Wu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ren Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haijing Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xia Cui
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
20
|
Ramírez-Ramírez JA, Madrigal Y, Alzate JF, Pabón-Mora N. Evolution and expression of the MADS-box flowering transition genes AGAMOUS-like 24/SHORT VEGETATIVE PHASE with emphasis in selected Neotropical orchids. Cells Dev 2021; 168:203755. [PMID: 34758403 DOI: 10.1016/j.cdev.2021.203755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 10/24/2021] [Accepted: 10/31/2021] [Indexed: 11/18/2022]
Abstract
In angiosperms the reproductive transition results in the transformation of a vegetative apical meristem (SAM) into an inflorescence meristem (IM), capable of forming floral meristems (FM). Two key players in the flowering transition are AGAMOUS-like 24 (AGL24) and SHORT VEGETATIVE PHASE (SVP). They are eudicot MADS-box paralogs performing opposite roles, as AGL24 positively regulates flowering while SVP represses the reproductive transition in Arabidopsis. We confirm that the Arabidopsis functional reference cannot be readily extrapolated to all eudicots as there are additional duplications of AGL24 in early divergent eudicots and core eudicots with significant sequence variation. In addition, we found that in monocots, two additional independent duplication events have resulted in at least three clades of AGL24/SVP homologs, some only found in Orchidaceae. Protein sequence analyses and comparative evolutionary rates point to higher rates of relaxed negative selection in the Core Eudicot AGL24 B and the Orch SVP-like B clades, in eudicots and monocots respectively. On the other hand, expression data points to plesiomorphic pleiotropic roles of AGL24/SVP genes likely similar to SVP core eudicot genes, and the acquisition of new roles as flowering positive regulators in Core Eudicot AGL24 A genes. Our research presents evidence on the diversification and recruitment of AGL24/SVP homologs in flowering transition in orchids. Although, broad expression of most copies does not allow to determine if they act as flowering repressors or promoters, the restricted expression of some homologs in the SAM suggests putative roles in maintaining the vegetative phase. If so studying in detail the function of AGL24/SVP homologs in orchids is critical to identify putative flowering repressors in a lineage where other canonical repressors remain elusive.
Collapse
Affiliation(s)
- Jessica A Ramírez-Ramírez
- Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia.
| | - Yesenia Madrigal
- Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia.
| | - Juan F Alzate
- Centro Nacional de Secuenciación Genómica, Sede de Investigación Universitaria, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.
| | - Natalia Pabón-Mora
- Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia.
| |
Collapse
|
21
|
Jung WJ, Lee YJ, Kang CS, Seo YW. Identification of genetic loci associated with major agronomic traits of wheat (Triticum aestivum L.) based on genome-wide association analysis. BMC PLANT BIOLOGY 2021; 21:418. [PMID: 34517837 PMCID: PMC8436466 DOI: 10.1186/s12870-021-03180-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/11/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Bread wheat (Triticum aestivum L.) is one of the most widely consumed cereal crops, but its complex genome makes it difficult to investigate the genetic effect on important agronomic traits. Genome-wide association (GWA) analysis is a useful method to identify genetic loci controlling complex phenotypic traits. With the RNA-sequencing based gene expression analysis, putative candidate genes governing important agronomic trait can be suggested and also molecular markers can be developed. RESULTS We observed major quantitative agronomic traits of wheat; the winter survival rate (WSR), days to heading (DTH), days to maturity (DTM), stem length (SL), spike length (SPL), awn length (AL), liter weight (LW), thousand kernel weight (TKW), and the number of seeds per spike (SPS), of 287 wheat accessions from diverse country origins. A significant correlation was observed between the observed traits, and the wheat genotypes were divided into three subpopulations according to the population structure analysis. The best linear unbiased prediction (BLUP) values of the genotypic effect for each trait under different environments were predicted, and these were used for GWA analysis based on a mixed linear model (MLM). A total of 254 highly significant marker-trait associations (MTAs) were identified, and 28 candidate genes closely located to the significant markers were predicted by searching the wheat reference genome and RNAseq data. Further, it was shown that the phenotypic traits were significantly affected by the accumulation of favorable or unfavorable alleles. CONCLUSIONS From this study, newly identified MTA and putative agronomically useful genes will help to study molecular mechanism of each phenotypic trait. Further, the agronomically favorable alleles found in this study can be used to develop wheats with superior agronomic traits.
Collapse
Affiliation(s)
- Woo Joo Jung
- Department of Plant Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Yong Jin Lee
- Department of Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Chon-Sik Kang
- National Institute of Crop Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Yong Weon Seo
- Department of Plant Biotechnology, Korea University, Seoul, 02841, South Korea.
- Department of Biotechnology, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
22
|
Song GQ, Han X, Ryner JT, Thompson A, Wang K. Utilizing MIKC-type MADS-box protein SOC1 for yield potential enhancement in maize. PLANT CELL REPORTS 2021; 40:1679-1693. [PMID: 34091722 PMCID: PMC8376726 DOI: 10.1007/s00299-021-02722-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/25/2021] [Indexed: 05/26/2023]
Abstract
Overexpression of Zea mays SOC gene promotes flowering, reduces plant height, and leads to no reduction in grain production per plant, suggesting enhanced yield potential, at least, through increasing planting density. MIKC-type MADS-box gene SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) is an integrator conserved in the plant flowering pathway. In this study, the maize SOC1 (ZmSOC1) gene was cloned and overexpressed in transgenic maize Hi-II genotype. The T0 plants were backcrossed with nontransgenic inbred B73 to produce first generation backcross (BC1) seeds. Phenotyping of both transgenic and null segregant (NT) BC1 plants was conducted in three independent experiments. The BC1 transgenic plants showed new attributes such as increased vegetative growth, accelerated flowering time, reduced overall plant height, and increased grain weight. Second generation backcross (BC2) plants were evaluated in the field using two planting densities. Compared to BC2 NT plants, BC2 transgenic plants, were 12-18% shorter, flowered 5 days earlier, and showed no reduction in grain production per plant and an increase in fat, starch, and simple sugars in the grain. Transcriptome comparison in young leaves of 56-day-old BC1 plants revealed that the overexpressed ZmSOC1 resulted in 107 differentially expressed genes. The upregulated transcription factor DNA BINDING WITH ONE FINGER 5.4 (DOF5.4) was among the genes responsible for the reduced plant height. Modulating expression of SOC1 opens a new and effective approach to promote flowering and reduce plant height, which may have potential to enhance crop yield and improve grain quality.
Collapse
Affiliation(s)
- Guo-Qing Song
- Department of Horticulture, Plant Biotechnology Resource and Outreach Center, Michigan State University, East Lansing, MI, 48824, USA.
| | - Xue Han
- Department of Horticulture, Plant Biotechnology Resource and Outreach Center, Michigan State University, East Lansing, MI, 48824, USA
| | - John T Ryner
- Department of Horticulture, Plant Biotechnology Resource and Outreach Center, Michigan State University, East Lansing, MI, 48824, USA
| | - Addie Thompson
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Kan Wang
- Department of Agronomy, Crop Bioengineering Center, Iowa State University, Ames, IA, 50011-1051, USA
| |
Collapse
|
23
|
Dissecting the Genetic Basis of Flowering Time and Height Related-Traits Using Two Doubled Haploid Populations in Maize. PLANTS 2021; 10:plants10081585. [PMID: 34451629 PMCID: PMC8399143 DOI: 10.3390/plants10081585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022]
Abstract
In the field, maize flowering time and height traits are closely linked with yield, planting density, lodging resistance, and grain fill. To explore the genetic basis of flowering time and height traits in maize, we investigated six related traits, namely, days to anthesis (AD), days to silking (SD), the anthesis-silking interval (ASI), plant height (PH), ear height (EH), and the EH/PH ratio (ER) in two locations for two years based on two doubled haploid (DH) populations. Based on the two high-density genetic linkage maps, 12 and 22 quantitative trait loci (QTL) were identified, respectively, for flowering time and height-related traits. Of these, ten QTLs had overlapping confidence intervals between the two populations and were integrated into three consensus QTLs (qFT_YZ1a, qHT_YZ5a, and qHT_YZ7a). Of these, qFT_YZ1a, conferring flowering time, is located at 221.1-277.0 Mb on chromosome 1 and explained 10.0-12.5% of the AD and SD variation, and qHT_YZ5a, conferring height traits, is located at 147.4-217.3 Mb on chromosome 5 and explained 11.6-15.3% of the PH and EH variation. These consensus QTLs, in addition to the other repeatedly detected QTLs, provide useful information for further genetic studies and variety improvements in flowering time and height-related traits.
Collapse
|
24
|
Xu J, Misra G, Sreenivasulu N, Henry A. What happens at night? Physiological mechanisms related to maintaining grain yield under high night temperature in rice. PLANT, CELL & ENVIRONMENT 2021; 44:2245-2261. [PMID: 33715176 DOI: 10.1111/pce.14046] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 03/01/2021] [Accepted: 03/08/2021] [Indexed: 05/25/2023]
Abstract
High night temperature (HNT) causes substantial yield loss in rice (Oryza sativa L.). In this study, the physiological processes related to flag leaf dark respiration (Rn) and grain filling under HNT were explored in a multi-parent advanced generation intercross population developed for heat tolerance (MAGICheat ) along with selected high temperature tolerant breeding lines developed with heat-tolerant parents. Within a subset of lines, flag leaf Rn under HNT treatment was related to lower spikelet number per panicle and thus reduced yield. HNT enhanced the nighttime reduction of non-structural carbohydrates (NSC) in stem tissue, but not in leaves, and stem nighttime NSC reduction was negatively correlated with yield. Between heading and harvest, the major difference in NSC concentration was found for starch, but not for soluble sugar. HNT weakened the relationship between NSC remobilization and harvest index at both the phenotypic and genetic level. By using genome-wide association studies, an invertase inhibitor, MADS box transcription factors and a UDP-glycosyltransferase that were identified as candidate genes orchestrating stem NSC remobilization in the control treatment were lost under HNT. With the identification of physiological and genetic components related to rice HNT response, this study offers promising prebreeding materials and trait targets to sustain yield stability under climate change.
Collapse
Affiliation(s)
- Jiemeng Xu
- Strategic Innovation Platform, International Rice Research Institute, Los Baños, Philippines
| | - Gopal Misra
- Strategic Innovation Platform, International Rice Research Institute, Los Baños, Philippines
| | - Nese Sreenivasulu
- Strategic Innovation Platform, International Rice Research Institute, Los Baños, Philippines
| | - Amelia Henry
- Strategic Innovation Platform, International Rice Research Institute, Los Baños, Philippines
| |
Collapse
|
25
|
Han X, Wang D, Song GQ. Expression of a maize SOC1 gene enhances soybean yield potential through modulating plant growth and flowering. Sci Rep 2021; 11:12758. [PMID: 34140602 PMCID: PMC8211702 DOI: 10.1038/s41598-021-92215-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/07/2021] [Indexed: 11/08/2022] Open
Abstract
Yield enhancement is a top priority for soybean (Glycine max Merr.) breeding. SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) is a major integrator in flowering pathway, and it is anticipated to be capable of regulating soybean reproductive stages through its interactions with other MADS-box genes. Thus, we produced transgenic soybean for a constitutive expression of a maize SOC1 (ZmSOC1). T1 transgenic plants, in comparison with the nontransgenic plants, showed early flowering, reduced height of mature plants, and no significant impact on grain quality. The transgenic plants also had a 13.5-23.2% of higher grain weight per plant than the nontransgenic plants in two experiments. Transcriptome analysis in the leaves of 34-day old plants revealed 58 differentially expressed genes (DEGs) responding to the expression of the ZmSOC1, of which the upregulated FRUITFULL MADS-box gene, as well as the transcription factor VASCULAR PLANT ONE-ZINC FINGER1, contributed to the promoted flowering. The downregulated gibberellin receptor GID1B could play a major role in reducing the plant height. The remaining DEGs suggested broader effects on the other unmeasured traits (e.g., photosynthesis efficiency and abiotic tolerance), which could contribute to yield increase. Overall, modulating expression of SOC1 in soybean provides a novel and promising approach to regulate plant growth and reproductive development and thus has a potential either to enhance grain yield or to change plant adaptability.
Collapse
Affiliation(s)
- Xue Han
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Dechun Wang
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Guo-Qing Song
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
26
|
Natural variation and artificial selection of photoperiodic flowering genes and their applications in crop adaptation. ABIOTECH 2021; 2:156-169. [PMID: 36304754 PMCID: PMC9590489 DOI: 10.1007/s42994-021-00039-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
Flowering links vegetative growth and reproductive growth and involves the coordination of local environmental cues and plant genetic information. Appropriate timing of floral initiation and maturation in both wild and cultivated plants is important to their fitness and productivity in a given growth environment. The domestication of plants into crops, and later crop expansion and improvement, has often involved selection for early flowering. In this review, we analyze the basic rules for photoperiodic adaptation in several economically important and/or well-researched crop species. The ancestors of rice (Oryza sativa), maize (Zea mays), soybean (Glycine max), and tomato (Solanum lycopersicum) are short-day plants whose photosensitivity was reduced or lost during domestication and expansion to high-latitude areas. Wheat (Triticum aestivum) and barley (Hordeum vulgare) are long-day crops whose photosensitivity is influenced by both latitude and vernalization type. Here, we summarize recent studies about where these crops were domesticated, how they adapted to photoperiodic conditions as their growing area expanded from domestication locations to modern cultivating regions, and how allelic variants of photoperiodic flowering genes were selected during this process. A deeper understanding of photoperiodic flowering in each crop will enable better molecular design and breeding of high-yielding cultivars suited to particular local environments. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-021-00039-0.
Collapse
|
27
|
Song GQ, Han X. K-Domain Technology: Constitutive Expression of a Blueberry Keratin-Like Domain Mimics Expression of Multiple MADS-Box Genes in Enhancing Maize Grain Yield. FRONTIERS IN PLANT SCIENCE 2021; 12:664983. [PMID: 34025703 PMCID: PMC8137907 DOI: 10.3389/fpls.2021.664983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/15/2021] [Indexed: 06/02/2023]
Abstract
MADS-box genes are considered as the foundation of all agronomic traits because they play essential roles in almost every aspect of plant reproductive development. Keratin-like (K) domain is a conserved protein domain of tens of MIKC-type MADS-box genes in plants. K-domain technology constitutively expresses a K-domain to mimic expression of the K-domains of other MADS-box genes simultaneously and thus to generate new opportunities for yield enhancement, because the increased K-domains can likely prevent MADS-domain proteins from binding to target DNA. In this study, we evaluated utilizing the K-domain technology to increase maize yield. The K-domain of a blueberry's SUPPRESSOR of CONSTITUTIVE EXPRESSION OF CONSTANS 1 (VcSOC1K) has similarities to five MADS-box genes in maize. Transgenic maize plants expressing the VcSOC1K showed 13-100% of more grain per plant than the nontransgenic plants in all five experiments conducted under different experimental conditions. Transcriptome comparisons revealed 982 differentially expressed genes (DEGs) in the leaves from 83-day old plants, supporting that the K-domain technology were powerful and multiple functional. The results demonstrated that constitutive expression of the VcSOC1K was very effective to enhance maize grain production. With the potential of mimicking the K-domains of multiple MADS-box genes, the K-domain technology opens a new approach to increase crop yield.
Collapse
|
28
|
Abolghasemi R, Haghighi M, Etemadi N, Wang S, Soorni A. Transcriptome architecture reveals genetic networks of bolting regulation in spinach. BMC PLANT BIOLOGY 2021; 21:179. [PMID: 33853527 PMCID: PMC8045288 DOI: 10.1186/s12870-021-02956-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/31/2021] [Indexed: 05/09/2023]
Abstract
BACKGROUND Bolting refers to the early flowering stem production on agricultural and horticultural crops before harvesting. Indeed, bolting is an event induced by the coordinated effects of various environmental factors and endogenous genetic components, which cause a large reduction in the quality and productivity of vegetable crops like spinach. However, little is known about the signaling pathways and molecular functions involved in bolting mechanisms in spinach. The genetic information regarding the transition from vegetative growth to the reproductive stage in spinach would represent an advantage to regulate bolting time and improvement of resistant cultivars to minimize performance loss. RESULTS To investigate the key genes and their genetic networks controlling spinach bolting, we performed RNA-seq analysis on early bolting accession Kashan and late-bolting accession Viroflay at both vegetative and reproductive stages and found a significant number of differentially expressed genes (DEGs) ranging from 195 to 1230 in different comparisons. These genes were mainly associated with the signaling pathways of vernalization, photoperiod/circadian clock, gibberellin, autonomous, and aging pathways. Gene ontology analysis uncovered terms associated with carbohydrate metabolism, and detailed analysis of expression patterns for genes of Fructose-1, 6-bisphosphate aldolase, TREHALOSE-6-PHOSPHATE SYNTHASE 1, FLOWERING PROMOTING FACTOR 1, EARLY FLOWERING, GIGANTEA, and MADS-box proteins revealed their potential roles in the initiating or delaying of bolting. CONCLUSION This study is the first report on identifying bolting and flowering-related genes based on transcriptome sequencing in spinach, which provides insight into bolting control and can be useful for molecular breeding programs and further study in the regulation of the genetic mechanisms related to bolting in other vegetable crops.
Collapse
Affiliation(s)
- Reza Abolghasemi
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Maryam Haghighi
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Nematollah Etemadi
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Shui Wang
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Aboozar Soorni
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran.
| |
Collapse
|
29
|
Yang Y, Sang Z, Du Q, Guo Z, Li Z, Kong X, Xu Y, Zou C. Flowering time regulation model revisited by pooled sequencing of mass selection populations. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 304:110797. [PMID: 33568296 DOI: 10.1016/j.plantsci.2020.110797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/13/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Maize is one of the most broadly cultivated crops throughout the world, and flowering time is a major adaptive trait for its diffusion. The biggest challenge in understanding maize flowering genetic architecture is that the trait is confounded with population structure. To eliminate the effect, we revisited the flower time genetic network by using a tropical maize population Pop32, which was under mass selection for adaptation to early flowering time in China for six generations from tropical to temperate regions. The days to anthesis (DTA) of the initial (Pop32C0), intermedia (Pop32C3), and final population (Pop32C5) was 90.77, 84.63, and 79.72 days on average, respectively. To examine the genetic mechanism and identify the genetic loci underlying this rapid change in flowering time of Pop32, we bulked 30 individuals from C0, C3, and C5 to conduct the whole genome sequencing. And we finally identified 4,973,810 high-quality single nucleotide polymorphisms (SNPs) and 6,517 genes with allele frequency significantly changed during the artificial improvement process. We speculate that these genes might participate in the adaptive improvement process and control flowering time. To identify the candidate genes for flowering time from the gene set with allele frequency changed, we carried out weighted gene co-expression network analysis (WGCNA), and identified four co-expression modules that highly associated with the flowering time development, as well as constructed the co-expression network of key flowering time genes. Gene Ontology (GO) enrichment analysis revealed that the GO terms photosynthesis/light reaction, carbohydrate binding, auxin mediated signaling pathway, response to temperature stimulus that are closely connected with flowering time. Furthermore, targeted GWAS revealed the genes are significantly connected with the flowering time. qRT-PCR of four candidate genes GRMZM2G019879, GRMZM2G055905, GRMZM2G058158, and GRMZM2G171365 showed that their expression level is similar to the flowering time genes, which playing a key role in maize flowering time transition. This study revealed that the changes of flowering time in mass selection process may be strongly associated with the variations of allele frequency changes, and we identified some important candidate genes for flowering time, which will provide a new insight for the rapid improvement of maize important agronomic traits and promote the gene cloning of maize flowering time.
Collapse
Affiliation(s)
- Yuxin Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Zhiqin Sang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, China.
| | - Qingguo Du
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Zifeng Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Zhiwei Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xiuying Kong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Yunbi Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; International Maize and Wheat Improvement Center (CIMMYT), El Batán 56130, Texcoco, Mexico.
| | - Cheng Zou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
30
|
Cruz DF, De Meyer S, Ampe J, Sprenger H, Herman D, Van Hautegem T, De Block J, Inzé D, Nelissen H, Maere S. Using single-plant-omics in the field to link maize genes to functions and phenotypes. Mol Syst Biol 2020; 16:e9667. [PMID: 33346944 PMCID: PMC7751767 DOI: 10.15252/msb.20209667] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/29/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Most of our current knowledge on plant molecular biology is based on experiments in controlled laboratory environments. However, translating this knowledge from the laboratory to the field is often not straightforward, in part because field growth conditions are very different from laboratory conditions. Here, we test a new experimental design to unravel the molecular wiring of plants and study gene-phenotype relationships directly in the field. We molecularly profiled a set of individual maize plants of the same inbred background grown in the same field and used the resulting data to predict the phenotypes of individual plants and the function of maize genes. We show that the field transcriptomes of individual plants contain as much information on maize gene function as traditional laboratory-generated transcriptomes of pooled plant samples subject to controlled perturbations. Moreover, we show that field-generated transcriptome and metabolome data can be used to quantitatively predict individual plant phenotypes. Our results show that profiling individual plants in the field is a promising experimental design that could help narrow the lab-field gap.
Collapse
Affiliation(s)
- Daniel Felipe Cruz
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Sam De Meyer
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Joke Ampe
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Heike Sprenger
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Dorota Herman
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Tom Van Hautegem
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Jolien De Block
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Dirk Inzé
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Hilde Nelissen
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Steven Maere
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| |
Collapse
|
31
|
Sun H, Wang C, Chen X, Liu H, Huang Y, Li S, Dong Z, Zhao X, Tian F, Jin W. dlf1 promotes floral transition by directly activating ZmMADS4 and ZmMADS67 in the maize shoot apex. THE NEW PHYTOLOGIST 2020; 228:1386-1400. [PMID: 32579713 DOI: 10.1111/nph.16772] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
The floral transition of the maize (Zea mays ssp. mays) shoot apical meristem determines leaf number and flowering time, which are key traits influencing local adaptation and yield potential. dlf1 (delayed flowering1) encodes a basic leucine zipper protein that interacts with the florigen ZCN8 to mediate floral induction in the shoot apex. However, the mechanism of how dlf1 promotes floral transition remains largely unknown. We demonstrate that dlf1 underlies qLB7-1, a quantitative trait locus controlling leaf number and flowering time that was identified in a BC2 S3 population derived from a cross between maize and its wild ancestor, teosinte (Zea mays ssp. parviglumis). Transcriptome sequencing and chromatin immunoprecipitation sequencing demonstrated that DLF1 binds the core promoter of two AP1/FUL subfamily MADS-box genes, ZmMADS4 and ZmMADS67, to activate their expression. Knocking out ZmMADS4 and ZmMADS67 both increased leaf number and delayed flowering, indicating that they promote the floral transition. Nucleotide diversity analysis revealed that dlf1 and ZmMADS67 were targeted by selection, suggesting that they may have played important roles in maize flowering time adaptation. We show that dlf1 promotes maize floral transition by directly activating ZmMADS4 and ZmMADS67 in the shoot apex, providing novel insights into the mechanism of maize floral transition.
Collapse
Affiliation(s)
- Huayue Sun
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Chenglong Wang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Xiaoyang Chen
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Hongbing Liu
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yumin Huang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Suxing Li
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Zhaobin Dong
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Xiaoming Zhao
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Feng Tian
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Weiwei Jin
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
32
|
Tu X, Mejía-Guerra MK, Valdes Franco JA, Tzeng D, Chu PY, Shen W, Wei Y, Dai X, Li P, Buckler ES, Zhong S. Reconstructing the maize leaf regulatory network using ChIP-seq data of 104 transcription factors. Nat Commun 2020; 11:5089. [PMID: 33037196 PMCID: PMC7547689 DOI: 10.1038/s41467-020-18832-8] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 09/17/2020] [Indexed: 11/29/2022] Open
Abstract
The transcription regulatory network inside a eukaryotic cell is defined by the combinatorial actions of transcription factors (TFs). However, TF binding studies in plants are too few in number to produce a general picture of this complex network. In this study, we use large-scale ChIP-seq to reconstruct it in the maize leaf, and train machine-learning models to predict TF binding and co-localization. The resulting network covers 77% of the expressed genes, and shows a scale-free topology and functional modularity like a real-world network. TF binding sequence preferences are conserved within family, while co-binding could be key for their binding specificity. Cross-species comparison shows that core network nodes at the top of the transmission of information being more conserved than those at the bottom. This study reveals the complex and redundant nature of the plant transcription regulatory network, and sheds light on its architecture, organizing principle and evolutionary trajectory.
Collapse
Affiliation(s)
- Xiaoyu Tu
- The State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Shandong, China
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | - David Tzeng
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Po-Yu Chu
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei Shen
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yingying Wei
- Department of Statistics, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiuru Dai
- The State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Shandong, China
| | - Pinghua Li
- The State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Shandong, China.
| | - Edward S Buckler
- Institute for Genomic Diversity, Cornell University, Ithaca, NY, USA
- School of Integrative Plant Sciences, Section of Plant Breeding and Genetics, Cornell University, Ithaca, NY, USA
- Agricultural Research Service, United States Department of Agriculture, Ithaca, NY, USA
| | - Silin Zhong
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
33
|
Maize adaptation across temperate climates was obtained via expression of two florigen genes. PLoS Genet 2020; 16:e1008882. [PMID: 32673315 DOI: 10.1371/journal.pgen.1008882] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 07/28/2020] [Accepted: 05/22/2020] [Indexed: 11/19/2022] Open
Abstract
Expansion of the maize growing area was central for food security in temperate regions. In addition to the suppression of the short-day requirement for floral induction, it required breeding for a large range of flowering time that compensates the effect of South-North gradients of temperatures. Here we show the role of a novel florigen gene, ZCN12, in the latter adaptation in cooperation with ZCN8. Strong eQTLs of ZCN8 and ZCN12, measured in 327 maize lines, accounted for most of the genetic variance of flowering time in platform and field experiments. ZCN12 had a strong effect on flowering time of transgenic Arabidopsis thaliana plants; a path analysis showed that it directly affected maize flowering time together with ZCN8. The allelic composition at ZCN QTLs showed clear signs of selection by breeders. This suggests that florigens played a central role in ensuring a large range of flowering time, necessary for adaptation to temperate areas.
Collapse
|
34
|
Meng N, Wei Y, Gao Y, Yu K, Cheng J, Li XY, Duan CQ, Pan QH. Characterization of Transcriptional Expression and Regulation of Carotenoid Cleavage Dioxygenase 4b in Grapes. FRONTIERS IN PLANT SCIENCE 2020; 11:483. [PMID: 32457771 PMCID: PMC7227400 DOI: 10.3389/fpls.2020.00483] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/31/2020] [Indexed: 05/23/2023]
Abstract
Norisoprenoids are important aromatic volatiles contributing to the pleasant floral/fruity odor in grapes and wine. They are produced from carotenoids through the cleavage of carotenoid cleavage dioxygenases (CCDs). However, the underlying mechanisms regulating VvCCD expression remain poorly understood. In this study, we showed that VvCCD4b expression was positively correlated with the accumulation of β-damascenone, β-ionone, 6-methyl-5-hepten-2-one, geranylacetone, dihydroedulan I, and total norisoprenoids in developing grapes in two vintages from two regions. VvCCD4b was found to be principally expressed in flowers, mature leaves, and berries. Abscisic acid strongly induced the expression of this gene. Additionally, the present study preliminarily indicated that the activity of the VvCCD4b promoter was dropped under 37°C treatment and also responded to the illumination change. VvCCD4b was expressed in parallel with VvMADS4 in developing grape berries. The latter is a MADS family transcription factor and nucleus-localized protein that was captured by yeast one-hybrid. A dual-luciferase reporter assay in tobacco leaves revealed that VvMADS4 downregulated the activity of the VvCCD4b promoter. VvMADS4 overexpression in grape calli and Vitis quinquangularis Rehd. leaves repressed the VvCCD4b expression. In summary, this work demonstrates that VvCCD4b expression is positively correlated with the accumulation of norisoprenoids, and VvMADS4 is a potential negative regulator of VvCCD4b. Our results provide a new perspective for understanding the regulation of VvCCD4b expression and norisoprenoid accumulation in grapes.
Collapse
Affiliation(s)
- Nan Meng
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing, China
| | - Yi Wei
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing, China
| | - Yuan Gao
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing, China
| | - Keji Yu
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing, China
| | - Jing Cheng
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing, China
| | - Xiang-Yi Li
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing, China
| | - Chang-Qing Duan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing, China
| | - Qiu-Hong Pan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing, China
| |
Collapse
|
35
|
Interaction Between Induced and Natural Variation at oil yellow1 Delays Reproductive Maturity in Maize. G3-GENES GENOMES GENETICS 2020; 10:797-810. [PMID: 31822516 PMCID: PMC7003087 DOI: 10.1534/g3.119.400838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We previously demonstrated that maize (Zea mays) locus very oil yellow1 (vey1) encodes a putative cis-regulatory expression polymorphism at the magnesium chelatase subunit I gene (aka oil yellow1) that strongly modifies the chlorophyll content of the semi-dominant Oy1-N1989 mutants. The vey1 allele of Mo17 inbred line reduces chlorophyll content in the mutants leading to reduced photosynthetic output. Oy1-N1989 mutants in B73 reached reproductive maturity four days later than wild-type siblings. Enhancement of Oy1-N1989 by the Mo17 allele at the vey1 QTL delayed maturity further, resulting in detection of a flowering time QTL in two bi-parental mapping populations crossed to Oy1-N1989. The near isogenic lines of B73 harboring the vey1 allele from Mo17 delayed flowering of Oy1-N1989 mutants by twelve days. Just as previously observed for chlorophyll content, vey1 had no effect on reproductive maturity in the absence of the Oy1-N1989 allele. Loss of chlorophyll biosynthesis in Oy1-N1989 mutants and enhancement by vey1 reduced CO2 assimilation. We attempted to separate the effects of photosynthesis on the induction of flowering from a possible impact of chlorophyll metabolites and retrograde signaling by manually reducing leaf area. Removal of leaves, independent of the Oy1-N1989 mutant, delayed flowering but surprisingly reduced chlorophyll contents of emerging leaves. Thus, defoliation did not completely separate the identity of the signal(s) that regulates flowering time from changes in chlorophyll content in the foliage. These findings illustrate the necessity to explore the linkage between metabolism and the mechanisms that connect it to flowering time regulation.
Collapse
|
36
|
Azodi CB, Pardo J, VanBuren R, de Los Campos G, Shiu SH. Transcriptome-Based Prediction of Complex Traits in Maize. THE PLANT CELL 2020; 32:139-151. [PMID: 31641024 PMCID: PMC6961623 DOI: 10.1105/tpc.19.00332] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/24/2019] [Accepted: 10/21/2019] [Indexed: 05/11/2023]
Abstract
The ability to predict traits from genome-wide sequence information (i.e., genomic prediction) has improved our understanding of the genetic basis of complex traits and transformed breeding practices. Transcriptome data may also be useful for genomic prediction. However, it remains unclear how well transcript levels can predict traits, particularly when traits are scored at different development stages. Using maize (Zea mays) genetic markers and transcript levels from seedlings to predict mature plant traits, we found that transcript and genetic marker models have similar performance. When the transcripts and genetic markers with the greatest weights (i.e., the most important) in those models were used in one joint model, performance increased. Furthermore, genetic markers important for predictions were not close to or identified as regulatory variants for important transcripts. These findings demonstrate that transcript levels are useful for predicting traits and that their predictive power is not simply due to genetic variation in the transcribed genomic regions. Finally, genetic marker models identified only 1 of 14 benchmark flowering-time genes, while transcript models identified 5. These data highlight that, in addition to being useful for genomic prediction, transcriptome data can provide a link between traits and variation that cannot be readily captured at the sequence level.
Collapse
Affiliation(s)
- Christina B Azodi
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
- The DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, 48824
| | - Jeremy Pardo
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan 48824
| | - Robert VanBuren
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan 48824
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824
| | - Gustavo de Los Campos
- Epidemiology and Biostatistics and Statistics and Probability Departments, Michigan State University, East Lansing, Michigan 48824
| | - Shin-Han Shiu
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
- The DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, 48824
- Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
37
|
Forestan C, Farinati S, Zambelli F, Pavesi G, Rossi V, Varotto S. Epigenetic signatures of stress adaptation and flowering regulation in response to extended drought and recovery in Zea mays. PLANT, CELL & ENVIRONMENT 2020; 43:55-75. [PMID: 31677283 DOI: 10.1111/pce.13660] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/03/2019] [Accepted: 09/23/2019] [Indexed: 05/22/2023]
Abstract
During their lifespan, plants respond to a multitude of stressful factors. Dynamic changes in chromatin and concomitant transcriptional variations control stress response and adaptation, with epigenetic memory mechanisms integrating environmental conditions and appropriate developmental programs over the time. Here we analyzed transcriptome and genome-wide histone modifications of maize plants subjected to a mild and prolonged drought stress just before the flowering transition. Stress was followed by a complete recovery period to evaluate drought memory mechanisms. Three categories of stress-memory genes were identified: i) "transcriptional memory" genes, with stable transcriptional changes persisting after the recovery; ii) "epigenetic memory candidate" genes in which stress-induced chromatin changes persist longer than the stimulus, in absence of transcriptional changes; iii) "delayed memory" genes, not immediately affected by the stress, but perceiving and storing stress signal for a delayed response. This last memory mechanism is described for the first time in drought response. In addition, applied drought stress altered floral patterning, possibly by affecting expression and chromatin of flowering regulatory genes. Altogether, we provided a genome-wide map of the coordination between genes and chromatin marks utilized by plants to adapt to a stressful environment, describing how this serves as a backbone for setting stress memory.
Collapse
Affiliation(s)
- Cristian Forestan
- Department of Agronomy Animals Food Natural Resources and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020, Legnaro, Italy
| | - Silvia Farinati
- Department of Agronomy Animals Food Natural Resources and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020, Legnaro, Italy
| | - Federico Zambelli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Giulio Pavesi
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Vincenzo Rossi
- CREA - Centro di Cerealicoltura e Colture Industriali (CREA-CI), Via Stezzano 24, 24126, Bergamo, Italy
| | - Serena Varotto
- Department of Agronomy Animals Food Natural Resources and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020, Legnaro, Italy
| |
Collapse
|
38
|
A genetic characterization of Korean waxy maize (Zea mays L.) landraces having flowering time variation by RNA sequencing. Sci Rep 2019; 9:20023. [PMID: 31882845 PMCID: PMC6934685 DOI: 10.1038/s41598-019-56645-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 12/16/2019] [Indexed: 11/08/2022] Open
Abstract
Maize is the second-most produced crop in the Korean peninsula and has been continuously cultivated since the middle of the 16th century, when it was originally introduced from China. Even with this extensive cultivation history, the diversity and properties of Korean landraces have not been investigated at the nucleotide sequence level. We collected 12 landraces with various flowering times and performed RNA-seq in the early vegetative stage. The transcriptomes of 12 Korean landraces have been analyzed for their genetic variations in coding sequence and genetic relationships to other maize germplasm. The Korean landraces showed specific genetic characteristics and were closely related to a Chinese inbred line. Flowering-time related gene profiles pointed to multiple causes for the variation of flowering time within Korean landraces; the profiles revealed significant positive and negative correlations among genes, allowing us to infer possible mechanisms for flowering time variation in maize. Our results demonstrate the value of transcriptome-based genetic and gene expression profiles for information on possible breeding resources, which is particularly needed in Korean waxy landraces.
Collapse
|
39
|
Liu Z, Wu X, Cheng M, Xie Z, Xiong C, Zhang S, Wu J, Wang P. Identification and functional characterization of SOC1-like genes in Pyrus bretschneideri. Genomics 2019; 112:1622-1632. [PMID: 31533070 DOI: 10.1016/j.ygeno.2019.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/11/2019] [Accepted: 09/13/2019] [Indexed: 12/11/2022]
Abstract
Flowering is a prerequisite for pear fruit production. Therefore, the development of flower buds and the control of flowering time are important for pear trees. However, the molecular mechanism of pear flowering is unclear. SOC1, a member of MADS-box family, is known as a flowering signal integrator in Arabidopsis. We identified eight SOC1-like genes in Pyrus bretschneideri and analyzed their basic information and expression patterns. Some pear SOC1-like genes were regulated by photoperiod in leaves. Moreover, the expression patterns were diverse during the development of pear flower buds. Two members of the pear SOC1-like genes, PbSOC1d and PbSOC1g, could lead to early flowering phenotype when overexpressed in Arabidopsis. PbSOC1d and PbSOC1g were identified as activators of the floral meristem identity genes AtAP1 and AtLFY and promote flowering time. These results suggest that PbSOC1d and PbSOC1g are promoters of flowering time and may be involved in flower bud development in pear.
Collapse
Affiliation(s)
- Zhe Liu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoping Wu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengyu Cheng
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihua Xie
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Changlong Xiong
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoling Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Juyou Wu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Peng Wang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
40
|
Liang Y, Liu Q, Wang X, Huang C, Xu G, Hey S, Lin HY, Li C, Xu D, Wu L, Wang C, Wu W, Xia J, Han X, Lu S, Lai J, Song W, Schnable PS, Tian F. ZmMADS69 functions as a flowering activator through the ZmRap2.7-ZCN8 regulatory module and contributes to maize flowering time adaptation. THE NEW PHYTOLOGIST 2019; 221:2335-2347. [PMID: 30288760 DOI: 10.1111/nph.15512] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/14/2018] [Indexed: 05/26/2023]
Abstract
Flowering time is a major determinant of the local adaptation of plants. Although numerous loci affecting flowering time have been mapped in maize, their underlying molecular mechanisms and roles in adaptation remain largely unknown. Here, we report the identification and characterization of MADS-box transcription factor ZmMADS69 that functions as a flowering activator through the ZmRap2.7-ZCN8 regulatory module and contributes to adaptation. We show that ZmMADS69 underlies a quantitative trait locus controlling the difference in flowering time between maize and its wild ancestor, teosinte. Maize ZmMADS69 allele is expressed at a higher level at floral transition and confers earlier flowering than the teosinte allele under long days and short days. Overexpression of ZmMADS69 causes early flowering, while a transposon insertion mutant of ZmMADS69 exhibits delayed flowering. ZmMADS69 shows pleiotropic effects for multiple traits of agronomic importance. ZmMADS69 functions upstream of the flowering repressor ZmRap2.7 to downregulate its expression, thereby relieving the repression of the florigen gene ZCN8 and causing early flowering. Population genetic analyses showed that ZmMADS69 was a target of selection and may have played an important role as maize spread from the tropics to temperate zones. Our findings provide important insights into the regulation and adaptation of flowering time.
Collapse
Affiliation(s)
- Yameng Liang
- National Maize Improvement Center of China, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qiang Liu
- Department of Agronomy, Iowa State University, Ames, IA, 50010-3650, USA
| | - Xufeng Wang
- National Maize Improvement Center of China, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Cheng Huang
- National Maize Improvement Center of China, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Guanghui Xu
- National Maize Improvement Center of China, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Stefan Hey
- Department of Agronomy, Iowa State University, Ames, IA, 50010-3650, USA
| | - Hung-Ying Lin
- Department of Agronomy, Iowa State University, Ames, IA, 50010-3650, USA
| | - Cong Li
- National Maize Improvement Center of China, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Dingyi Xu
- National Maize Improvement Center of China, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Lishuan Wu
- National Maize Improvement Center of China, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Chenglong Wang
- National Maize Improvement Center of China, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Weihao Wu
- National Maize Improvement Center of China, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jinliang Xia
- National Maize Improvement Center of China, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Xu Han
- National Maize Improvement Center of China, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Sijia Lu
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Jinsheng Lai
- National Maize Improvement Center of China, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Weibin Song
- National Maize Improvement Center of China, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Patrick S Schnable
- Department of Agronomy, Iowa State University, Ames, IA, 50010-3650, USA
- Department of Plant Genetics & Breeding, China Agricultural University, Beijing, 100193, China
| | - Feng Tian
- National Maize Improvement Center of China, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
41
|
Stephenson E, Estrada S, Meng X, Ourada J, Muszynski MG, Habben JE, Danilevskaya ON. Over-expression of the photoperiod response regulator ZmCCT10 modifies plant architecture, flowering time and inflorescence morphology in maize. PLoS One 2019; 14:e0203728. [PMID: 30726207 PMCID: PMC6364868 DOI: 10.1371/journal.pone.0203728] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/11/2019] [Indexed: 11/19/2022] Open
Abstract
Maize originated as a tropical plant that required short days to transition from vegetative to reproductive development. ZmCCT10 [CO, CONSTANS, CO-LIKE and TIMING OF CAB1 (CCT) transcription factor family] is a regulator of photoperiod response and was identified as a major QTL controlling photoperiod sensitivity in maize. We modulated expression of ZmCCT10 in transgenic maize using two constitutive promoters with different expression levels. Transgenic plants over expressing ZmCCT10 with either promoter were delayed in their transition from vegetative to reproductive development but were not affected in their switch from juvenile-to-adult vegetative growth. Strikingly, transgenic plants containing the stronger expressing construct had a prolonged period of vegetative growth accompanied with dramatic modifications to plant architecture that impacted both vegetative and reproductive traits. These plants did not produce ears, but tassels were heavily branched. In more than half of the transgenic plants, tassels were converted into a branched leafy structure resembling phyllody, often composed of vegetative plantlets. Analysis of expression modules controlling the floral transition and meristem identity linked these networks to photoperiod dependent regulation, whereas phase change modules appeared to be photoperiod independent. Results from this study clarified the influence of the photoperiod pathway on vegetative and reproductive development and allowed for the fine-tuning of the maize flowering time model.
Collapse
Affiliation(s)
- Elizabeth Stephenson
- CORTEVA Agrisciences, Agriculture Division of DowDuPont; Johnston, Iowa, United States of America
| | - Stacey Estrada
- CORTEVA Agrisciences, Agriculture Division of DowDuPont; Johnston, Iowa, United States of America
| | - Xin Meng
- CORTEVA Agrisciences, Agriculture Division of DowDuPont; Johnston, Iowa, United States of America
| | - Jesse Ourada
- CORTEVA Agrisciences, Agriculture Division of DowDuPont; Johnston, Iowa, United States of America
| | - Michael G. Muszynski
- University of Hawaii at Manoa, Tropical Plant and Soil Sciences, Honolulu, Hawaii; United States of America
| | - Jeffrey E. Habben
- CORTEVA Agrisciences, Agriculture Division of DowDuPont; Johnston, Iowa, United States of America
| | - Olga N. Danilevskaya
- CORTEVA Agrisciences, Agriculture Division of DowDuPont; Johnston, Iowa, United States of America
- * E-mail:
| |
Collapse
|
42
|
Liu X, Galli M, Camehl I, Gallavotti A. RAMOSA1 ENHANCER LOCUS2-Mediated Transcriptional Repression Regulates Vegetative and Reproductive Architecture. PLANT PHYSIOLOGY 2019; 179:348-363. [PMID: 30348817 PMCID: PMC6324236 DOI: 10.1104/pp.18.00913] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/11/2018] [Indexed: 05/17/2023]
Abstract
Transcriptional repression in multicellular organisms orchestrates dynamic and precise gene expression changes that enable complex developmental patterns. Here, we present phenotypic and molecular characterization of the maize (Zea mays) transcriptional corepressor RAMOSA1 ENHANCER LOCUS2 (REL2), a unique member of the highly conserved TOPLESS (TPL) family. Analysis of single recessive mutations in rel2 revealed an array of vegetative and reproductive phenotypes, many related to defects in meristem initiation and maintenance. To better understand how REL2-mediated transcriptional complexes relate to rel2 phenotypes, we performed protein interaction assays and transcriptional profiling of mutant inflorescences, leading to the identification of different maize transcription factors and regulatory pathways that employ REL2 repression to control traits directly impacting maize yields. In addition, we used our REL2 interaction data to catalog conserved repression motifs present on REL2 interactors and showed that two of these, RLFGV- and DLN-type motifs, interact with the C-terminal WD40 domain of REL2 rather than the N terminus, which is known to bind LxLxL EAR motifs. These findings establish that the WD40 domain of TPL family proteins is an independent protein interaction surface that may work together with the N-terminal domain to allow the formation of large macromolecular complexes of functionally related transcription factors.
Collapse
Affiliation(s)
- Xue Liu
- Waksman Institute of Microbiology, Rutgers University, Piscataway, New Jersey 08854-8020
| | - Mary Galli
- Waksman Institute of Microbiology, Rutgers University, Piscataway, New Jersey 08854-8020
| | - Iris Camehl
- Waksman Institute of Microbiology, Rutgers University, Piscataway, New Jersey 08854-8020
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, New Jersey 08854-8020
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey USA 08901
| |
Collapse
|
43
|
Guo L, Wang X, Zhao M, Huang C, Li C, Li D, Yang CJ, York AM, Xue W, Xu G, Liang Y, Chen Q, Doebley JF, Tian F. Stepwise cis-Regulatory Changes in ZCN8 Contribute to Maize Flowering-Time Adaptation. Curr Biol 2018; 28:3005-3015.e4. [PMID: 30220503 PMCID: PMC6537595 DOI: 10.1016/j.cub.2018.07.029] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/24/2018] [Accepted: 07/09/2018] [Indexed: 12/28/2022]
Abstract
Maize (Zea mays ssp. mays) was domesticated in southwestern Mexico ∼9,000 years ago from its wild ancestor, teosinte (Zea mays ssp. parviglumis) [1]. From its center of origin, maize experienced a rapid range expansion and spread over 90° of latitude in the Americas [2-4], which required a novel flowering-time adaptation. ZEA CENTRORADIALIS 8 (ZCN8) is the maize florigen gene and has a central role in mediating flowering [5, 6]. Here, we show that ZCN8 underlies a major quantitative trait locus (QTL) (qDTA8) for flowering time that was consistently detected in multiple maize-teosinte experimental populations. Through association analysis in a large diverse panel of maize inbred lines, we identified a SNP (SNP-1245) in the ZCN8 promoter that showed the strongest association with flowering time. SNP-1245 co-segregated with qDTA8 in maize-teosinte mapping populations. We demonstrate that SNP-1245 is associated with differential binding by the flowering activator ZmMADS1. SNP-1245 was a target of selection during early domestication, which drove the pre-existing early flowering allele to near fixation in maize. Interestingly, we detected an independent association block upstream of SNP-1245, wherein the early flowering allele that most likely originated from Zea mays ssp. mexicana introgressed into the early flowering haplotype of SNP-1245 and contributed to maize adaptation to northern high latitudes. Our study demonstrates how independent cis-regulatory variants at a gene can be selected at different evolutionary times for local adaptation, highlighting how complex cis-regulatory control mechanisms evolve. Finally, we propose a polygenic map for the pre-Columbian spread of maize throughout the Americas.
Collapse
Affiliation(s)
- Li Guo
- National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Xuehan Wang
- National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Min Zhao
- National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Cheng Huang
- National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Cong Li
- National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Dan Li
- National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Chin Jian Yang
- Department of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - Alessandra M York
- Department of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - Wei Xue
- Department of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - Guanghui Xu
- National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yameng Liang
- National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Qiuyue Chen
- National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China; Department of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - John F Doebley
- Department of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - Feng Tian
- National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
44
|
Jaudal M, Zhang L, Che C, Li G, Tang Y, Wen J, Mysore KS, Putterill J. A SOC1-like gene MtSOC1a promotes flowering and primary stem elongation in Medicago. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4867-4880. [PMID: 30295903 PMCID: PMC6137972 DOI: 10.1093/jxb/ery284] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/10/2018] [Indexed: 05/19/2023]
Abstract
Medicago flowering, like that of Arabidopsis, is promoted by vernalization and long days, but alternative mechanisms are predicted because Medicago lacks the key regulators CO and FLC. Three Medicago SOC1-like genes, including MtSOC1a, were previously implicated in flowering control, but no legume soc1 mutants with altered flowering were reported. Here, reverse transciption-quantitative PCR (RT-qPCR) indicated that the timing and magnitude of MtSOC1a expression was regulated by the flowering promoter FTa1, while in situ hybridization indicated that MtSOC1a expression increased in the shoot apical meristem during the floral transition. A Mtsoc1a mutant showed delayed flowering and short primary stems. Overexpression of MtSOC1a partially rescued the flowering of Mtsoc1a, but caused a dramatic increase in primary stem height, well before the transition to flowering. Internode cell length correlated with stem height, indicating that MtSOC1a promotes cell elongation in the primary stem. However, application of gibberellin (GA3) caused stem elongation in both the wild type and Mtsoc1a, indicating that the mutant was not defective in gibberellin responsiveness. These results indicate that MtSOC1a may function as a floral integrator gene and promotes primary stem elongation. Overall, this study suggests that apart from some conservation with the Arabidopsis flowering network, MtSOC1a has a novel role in regulating aspects of shoot architecture.
Collapse
Affiliation(s)
- Mauren Jaudal
- Flowering Lab, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Lulu Zhang
- Flowering Lab, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Chong Che
- Flowering Lab, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Guifen Li
- Noble Research Institute, LLC, Ardmore, OK, USA
| | - Yuhong Tang
- Noble Research Institute, LLC, Ardmore, OK, USA
| | - Jiangqi Wen
- Noble Research Institute, LLC, Ardmore, OK, USA
| | | | - Joanna Putterill
- Flowering Lab, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
45
|
Minow MAA, Ávila LM, Turner K, Ponzoni E, Mascheretti I, Dussault FM, Lukens L, Rossi V, Colasanti J. Distinct gene networks modulate floral induction of autonomous maize and photoperiod-dependent teosinte. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2937-2952. [PMID: 29688423 PMCID: PMC5972621 DOI: 10.1093/jxb/ery110] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/16/2018] [Indexed: 05/25/2023]
Abstract
Temperate maize was domesticated from its tropical ancestor, teosinte. Whereas temperate maize is an autonomous day-neutral plant, teosinte is an obligate short-day plant that requires uninterrupted long nights to induce flowering. Leaf-derived florigenic signals trigger reproductive growth in both teosinte and temperate maize. To study the genetic mechanisms underlying floral inductive pathways in maize and teosinte, mRNA and small RNA genome-wide expression analyses were conducted on leaf tissue from plants that were induced or not induced to flower. Transcriptome profiles reveal common differentially expressed genes during floral induction, but a comparison of candidate flowering time genes indicates that photoperiod and autonomous pathways act independently. Expression differences in teosinte are consistent with the current paradigm for photoperiod-induced flowering, where changes in circadian clock output trigger florigen production. Conversely, differentially expressed genes in temperate maize link carbon partitioning and flowering, but also show altered expression of circadian clock genes that are distinct from those altered upon photoperiodic induction in teosinte. Altered miRNA399 levels in both teosinte and maize suggest a novel common connection between flowering and phosphorus perception. These findings provide insights into the molecular mechanisms underlying a strengthened autonomous pathway that enabled maize growth throughout temperate regions.
Collapse
Affiliation(s)
- Mark A A Minow
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Luis M Ávila
- Plant Agriculture Department, University of Guelph, Guelph, Ontario, Canada
| | - Katie Turner
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Elena Ponzoni
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, Bergamo, Italy
| | - Iride Mascheretti
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, Bergamo, Italy
| | - Forest M Dussault
- Research and Development, Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - Lewis Lukens
- Plant Agriculture Department, University of Guelph, Guelph, Ontario, Canada
| | - Vincenzo Rossi
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, Bergamo, Italy
| | - Joseph Colasanti
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
46
|
Zhang J, Li D, Shi X, Zhang D, Qiu S, Wei J, Zhang J, Zhou J, Zhu K, Xia Y. Mining and expression analysis of candidate genes involved in regulating the chilling requirement fulfillment of Paeonia lactiflora 'Hang Baishao'. BMC PLANT BIOLOGY 2017; 17:262. [PMID: 29273002 PMCID: PMC5741883 DOI: 10.1186/s12870-017-1205-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/06/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND The artificial enlargement of the planting area and ecological amplitude of ornamentals for horticultural and landscape applications are significant. Herbaceous peony (Paeonia lactiflora Pall.) is a world-famous ornamental with attractive and fragrant flowers and is mainly planted in temperate and cool areas. Comparatively higher winter temperatures in the subtropical and tropical Northern Hemisphere result in a deficit of chilling accumulation for bud dormancy release, which severely hinders "The southward plantation of herbaceous peony". Studies on the dormancy, chilling requirement (CR) and relevant molecular mechanisms of peony are needed to enhance our ability to extend the range of this valuable horticultural species. RESULTS Based on natural and artificial chilling experiments, and chilling hour (CH) and chilling unit (CU) evaluation systems, the lowest CR of 'Hang Baishao' was between 504.00 and 672.00 CHs and the optimal CR was 672.00 CHs and 856.08 CUs for achieving strong sprouting, growth and flowering performance. Transcriptome sequencing and gene identification by RNA-Seq were performed on 'Hang Baishao' buds during the dormancy and sprouting periods. Six gene libraries were constructed, and 66 temperature- and photoperiod-associated unigenes were identified as the potential candidate genes that may regulate or possibly determine CR characteristics. The difference in the expression patterns of SUPPRESSPOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) between the winters of 2012-2013 and 2015-2016, and the difference of CR fulfillment periods also between these two winters represented the interesting congruent relationships. This correlation was also observed for WRKY DNA-BINDING PROTEIN 33 (WRKY 33). CONCLUSIONS Combined with the results acquired from all of experiments, 'Hang Baishao' was confirmed to be a superb peony resource that have significantly low CR characteristics. The two genes of SOC1 and WRKY33 are likely involved in determining the CR amount and fulfillment period of 'Hang Baishao'. HEAT SHOCK PROTEIN, OSMOTIN and TIMING OF CAB EXPRESSION 1 also deserve attention for the CR research. This study could contribute to the knowledge of the deep factors and mechanisms that regulate CR characteristics, and may be beneficial for breeding new germplasms that have low CRs for landscape or horticulture applications in subtropical regions.
Collapse
Affiliation(s)
- Jiaping Zhang
- Institute of Landscape Architecture, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Danqing Li
- Institute of Landscape Architecture, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Xiaohua Shi
- Research & Development Centre of Flower, Zhejiang Academy of Agricultural Sciences, Hangzhou, 311202 China
| | - Dong Zhang
- Institute of Landscape Architecture, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Shuai Qiu
- Research & Development Center, Hangzhou Landscaping Incorporated, Hangzhou, 310020 China
| | - Jianfen Wei
- Research & Development Center, Hangzhou Landscaping Incorporated, Hangzhou, 310020 China
| | - Jiao Zhang
- Institute of Landscape Architecture, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Jianghua Zhou
- Research & Development Centre of Flower, Zhejiang Academy of Agricultural Sciences, Hangzhou, 311202 China
| | - Kaiyuan Zhu
- Research & Development Centre of Flower, Zhejiang Academy of Agricultural Sciences, Hangzhou, 311202 China
| | - Yiping Xia
- Institute of Landscape Architecture, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
47
|
Lorant A, Pedersen S, Holst I, Hufford MB, Winter K, Piperno D, Ross-Ibarra J. The potential role of genetic assimilation during maize domestication. PLoS One 2017; 12:e0184202. [PMID: 28886108 PMCID: PMC5590903 DOI: 10.1371/journal.pone.0184202] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 08/18/2017] [Indexed: 11/25/2022] Open
Abstract
Domestication research has largely focused on identification of morphological and genetic differences between extant populations of crops and their wild relatives. Little attention has been paid to the potential effects of environment despite substantial known changes in climate from the time of domestication to modern day. In recent research, the exposure of teosinte (i.e., wild maize) to environments similar to the time of domestication, resulted in a plastic induction of domesticated phenotypes in teosinte. These results suggest that early agriculturalists may have selected for genetic mechanisms that cemented domestication phenotypes initially induced by a plastic response of teosinte to environment, a process known as genetic assimilation. To better understand this phenomenon and the potential role of environment in maize domestication, we examined differential gene expression in maize (Zea mays ssp. mays) and teosinte (Zea mays ssp. parviglumis) between past and present conditions. We identified a gene set of over 2000 loci showing a change in expression across environmental conditions in teosinte and invariance in maize. In fact, overall we observed both greater plasticity in gene expression and more substantial changes in co-expressionnal networks in teosinte across environments when compared to maize. While these results suggest genetic assimilation played at least some role in domestication, genes showing expression patterns consistent with assimilation are not significantly enriched for previously identified domestication candidates, indicating assimilation did not have a genome-wide effect.
Collapse
Affiliation(s)
- Anne Lorant
- Dept. of Plant Sciences, University of California Davis, Davis, CA, United States of America
| | - Sarah Pedersen
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, United States of America
| | - Irene Holst
- Smithsonian Tropical Research Institute, Panama, Republic of Panama
| | - Matthew B. Hufford
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, United States of America
| | - Klaus Winter
- Smithsonian Tropical Research Institute, Panama, Republic of Panama
| | - Dolores Piperno
- Smithsonian Tropical Research Institute, Panama, Republic of Panama
- Department of Anthropology, Smithsonian National Museum of Natural History, Washington, DC, United States of America
| | - Jeffrey Ross-Ibarra
- Dept. of Plant Sciences, University of California Davis, Davis, CA, United States of America
- Genome Center and Center for Population Biology, University of California Davis, Davis, CA, United States of America
- * E-mail:
| |
Collapse
|
48
|
Hill CB, Li C. Genetic Architecture of Flowering Phenology in Cereals and Opportunities for Crop Improvement. FRONTIERS IN PLANT SCIENCE 2016; 7:1906. [PMID: 28066466 PMCID: PMC5165254 DOI: 10.3389/fpls.2016.01906] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/01/2016] [Indexed: 05/21/2023]
Abstract
Cereal crop species including bread wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), rice (Oryza sativa L.), and maize (Zea mays L.) provide the bulk of human nutrition and agricultural products for industrial use. These four cereals are central to meet future demands of food supply for an increasing world population under a changing climate. A prerequisite for cereal crop production is the transition from vegetative to reproductive and grain-filling phases starting with flower initiation, a key developmental switch tightly regulated in all flowering plants. Although studies in the dicotyledonous model plant Arabidopsis thaliana build the foundations of our current understanding of plant phenology genes and regulation, the availability of genome assemblies with high-confidence sequences for rice, maize, and more recently bread wheat and barley, now allow the identification of phenology-associated gene orthologs in monocots. Together with recent advances in next-generation sequencing technologies, QTL analysis, mutagenesis, complementation analysis, and RNA interference, many phenology genes have been functionally characterized in cereal crops and conserved as well as functionally divergent genes involved in flowering were found. Epigenetic and other molecular regulatory mechanisms that respond to environmental and endogenous triggers create an enormous plasticity in flowering behavior among cereal crops to ensure flowering is only induced under optimal conditions. In this review, we provide a summary of recent discoveries of flowering time regulators with an emphasis on four cereal crop species (bread wheat, barley, rice, and maize), in particular, crop-specific regulatory mechanisms and genes. In addition, pleiotropic effects on agronomically important traits such as grain yield, impact on adaptation to new growing environments and conditions, genetic sequence-based selection and targeted manipulation of phenology genes, as well as crop growth simulation models for predictive crop breeding, are discussed.
Collapse
Affiliation(s)
- Camilla B. Hill
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, PerthWA, Australia
- *Correspondence: Chengdao Li, Camilla B. Hill,
| | - Chengdao Li
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, PerthWA, Australia
- Department of Agriculture and Food Western Australia, South PerthWA, Australia
- *Correspondence: Chengdao Li, Camilla B. Hill,
| |
Collapse
|