1
|
Cheng Y, Su J, Jiao Q, Jia T, Hu X. Recent advance on the physiological functions of proteases in chloroplast. Biochem Biophys Res Commun 2025; 765:151813. [PMID: 40262467 DOI: 10.1016/j.bbrc.2025.151813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/01/2025] [Accepted: 04/11/2025] [Indexed: 04/24/2025]
Abstract
Chloroplast proteases play an essential role in orchestrating chloroplast biogenesis and maintaining the homeostasis of diverse metabolic pathways within these organelles, including photosynthesis, amino acid biosynthesis, and stress response regulation. Recent advances in chloroplast proteostasis research have systematically elucidated the physiological functions of key protease families (e.g., FtsH, Deg, and CLP complexes) within chloroplast. This review systematically integrates cutting-edge advances in the physiological functions of chloroplast proteolytic systems, including protein maturation, protein quantity control, protein quality control, and amino acid recovery, and provide a fresh perspective to understand proteases in chloroplasts. According to the latest research progress, the key remaining problems and future research directions in this field are highlighted.
Collapse
Affiliation(s)
- Yuting Cheng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Jinling Su
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Qingsong Jiao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Ting Jia
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China.
| | - Xueyun Hu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
2
|
Lin S, Zheng T, Mo Y, Zhang G, Chen G. Site-2 protease Sll0528 interacts with RbcR to regulate carbon/nitrogen homeostasis in the cyanobacterium Synechocystis sp. PCC 6803. Front Microbiol 2025; 16:1556583. [PMID: 40270807 PMCID: PMC12014562 DOI: 10.3389/fmicb.2025.1556583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/19/2025] [Indexed: 04/25/2025] Open
Abstract
Cyanobacteria play pivotal roles in global biogeochemical cycles through oxygenic photosynthesis. To maintain cellular homeostasis, these organisms utilize sophisticated acclimation mechanisms to adapt to environmental fluctuations, particularly concerning nitrogen availability. While nitrogen deprivation induces dormancy, excess ammonium can have toxic effects on cyanobacteria and other photosynthetic organisms-a phenomenon for which the acclimation mechanisms remain poorly understood. Through the physiological characterization of knockout and overexpression mutants in Synechocystis sp. PCC 6803, we identified the site-2 protease Sll0528 as a critical regulator of ammonium stress acclimation. TurboID-based proximity labeling, coupled with quantitative proteomics, revealed a robust set of putative Sll0528-interacting proteins, some of which were subsequently validated through bacterial two-hybrid assays and transcriptomic profiling. Notably, we confirmed the physical interaction between Sll0528 and RbcR, a low-carbon-responsive transcriptional regulator. Transcriptomic analysis showed that the knockout of sll0528 led to a significant downregulation of the RbcR regulon, including the ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) operon rbcLXS. Further analysis suggests that this downregulation might result from improper post-transcriptional regulation of RbcR, which depends on its interaction with Sll0528. Our findings reveal novel regulatory crosstalk between a cyanobacterial S2P protease and the carbon-responsive transcriptional machinery, providing new mechanistic insights into the control of cyanobacterial carbon-nitrogen homeostasis during nitrogen fluctuations. This study offers insights into the functional characterization of other S2P proteases in photosynthetic organisms and may facilitate the cyanobacteria-based bioremediation of ammonium-rich wastewater.
Collapse
|
3
|
Li S, Wang H, Li Y, Jing F, Xu Y, Deng S, Wang N, Zhang Z, Chai S. Mapping and functional characterization of the golden fruit 1 (gf1) in melon (Cucumis melo L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:59. [PMID: 40009196 DOI: 10.1007/s00122-025-04849-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 02/07/2025] [Indexed: 02/27/2025]
Abstract
KEY MESSAGE A missense mutation that causes premature termination of the CmEGY1 protein leads to golden fruit in melon. Melon (Cucumis melo L.) is an economically important fruit crop that has been cultivated for thousands of years. Fruit color, a crucial trait influencing the appearance quality and economic value of melons, is primarily determined mainly by the type and concentration of pigments such as chlorophyll, carotenoids, and flavonoids. Identifying the genetic loci that govern melon fruit color contributes to breeding efforts aimed at enhancing melon rind coloration. This study reports an EMS-induced mutant, designated as gf1 (golden fruit 1), which produces fruit with both golden peel and flesh. Through MutMap and map-based cloning, we localized the gf1 locus to an 862 kb region containing 42 SNPs. Of these, a single SNP in the coding region caused a stop-gained mutation in the gene Cme13C08g017690, which exhibits the highest sequence similarity to Arabidopsis ETHYLENE-DEPENDENT GRAVITROPISM-DEFICIENT AND YELLOW-GREEN 1 (EGY1). Genome editing of CsEGY1, the cucumber homolog, confirmed its role in golden-fruit formation. Transcriptome and metabolome analyses revealed reduced flavonoid and carotenoid contents, accompanied by the downregulation of related biosynthetic genes. The identification and characterization of egy1 provide novel genetic insights and a valuable resource for improving melon appearance through breeding.
Collapse
Affiliation(s)
- Shuai Li
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huihui Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yang Li
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Feng Jing
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuanchao Xu
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shijun Deng
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Naonao Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhonghua Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Sen Chai
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
4
|
Sanjaya A, Nishijima R, Fujii Y, Asano M, Ishii K, Kazama Y, Abe T, Fujiwara MT. Rare occurrence of cryptic 5' splice sites by downstream 3' splice site/exon boundary mutations in a heavy-ion-induced egy1-4 allele of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2024; 15:1388040. [PMID: 39319001 PMCID: PMC11420051 DOI: 10.3389/fpls.2024.1388040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/20/2024] [Indexed: 09/26/2024]
Abstract
Pre-mRNA splicing is a fundamental process in eukaryotic gene expression, and the mechanism of intron definition, involving the recognition of the canonical GU (5'-splice site) and AG (3'-splice site) dinucleotides by splicing factors, has been postulated for most cases of splicing initiation in plants. Splice site mutations have played crucial roles in unraveling the mechanism of pre-mRNA splicing in planta. Typically, splice site mutations abolish splicing events or activate one or more cryptic splice sites surrounding the mutated region. In this report, we investigated the splicing pattern of the EGY1 gene in an Ar-ion-induced egy1-4 allele of Arabidopsis thaliana. egy1-4 has an AG-to-AC mutation in the 3'-end of intron 3, along with 4-bp substitutions and a 5-bp deletion in adjacent exon 4. RT-PCR, cDNA cloning, and amplicon sequencing analyses of EGY1 revealed that while most wild-type EGY1 mRNAs had a single splicing pattern, egy1-4 mRNAs had multiple splicing defects. Almost half of EGY1 transcripts showed 'intron retention' at intron 3, while the other half exhibited activation of 3' cryptic splice sites either upstream or downstream of the original 3'-splice site. Unexpectedly, around 8% of EGY1 transcripts in egy1-4 exhibited activation of cryptic 5'-splice sites positioned upstream of the authentic 5'-splice site of intron 3. Whole genome resequencing of egy1-4 indicated that it has no other known impactful mutations. These results may provide a rare, but real case of activation of cryptic 5'-splice sites by downstream 3'-splice site/exon mutations in planta.
Collapse
Affiliation(s)
- Alvin Sanjaya
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji, Fukui, Japan
- Graduate School of Science and Technology, Sophia University, Chiyoda, Tokyo, Japan
| | - Ryo Nishijima
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji, Fukui, Japan
| | - Yuki Fujii
- Graduate School of Science and Technology, Sophia University, Chiyoda, Tokyo, Japan
| | - Makoto Asano
- Graduate School of Science and Technology, Sophia University, Chiyoda, Tokyo, Japan
| | - Kotaro Ishii
- Ion Beam Breeding Group, RIKEN Nishina Center, Wako, Saitama, Japan
| | - Yusuke Kazama
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji, Fukui, Japan
- Ion Beam Breeding Group, RIKEN Nishina Center, Wako, Saitama, Japan
| | - Tomoko Abe
- Ion Beam Breeding Group, RIKEN Nishina Center, Wako, Saitama, Japan
| | - Makoto T. Fujiwara
- Graduate School of Science and Technology, Sophia University, Chiyoda, Tokyo, Japan
- Ion Beam Breeding Group, RIKEN Nishina Center, Wako, Saitama, Japan
| |
Collapse
|
5
|
Ciesielska M, Adamiec M, Luciński R. S2P2-the chloroplast-located intramembrane protease and its impact on the stoichiometry and functioning of the photosynthetic apparatus of A. thaliana. FRONTIERS IN PLANT SCIENCE 2024; 15:1372318. [PMID: 38559762 PMCID: PMC10978774 DOI: 10.3389/fpls.2024.1372318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024]
Abstract
S2P2 is a nuclear-encoded protease, potentially located in chloroplasts, which belongs to the zinc-containing, intramembrane, site-2 protease (S2P) family. In A. thaliana cells, most of the S2P proteases are located within the chloroplasts, where they play an important role in the development of chloroplasts, maintaining proper stoichiometric relations between polypeptides building photosynthetic complexes and influencing the sensitivity of plants to photoinhibitory conditions. Among the known chloroplast S2P proteases, S2P2 protease is one of the least known. Its exact location within the chloroplast is not known, nor is anything known about its possible physiological functions. Therefore, we decided to investigate an intra-chloroplast localization and the possible physiological role of S2P2. To study the intra-chloroplast localization of S2P2, we used specific anti-S2P2 antibodies and highly purified chloroplast fractions containing envelope, stroma, and thylakoid proteins. To study the physiological role of the protease, we used two lines of insertion mutants lacking the S2P2 protease protein. Here, we present results demonstrating the thylakoid localization of S2P2. Moreover, we present experimental evidence indicating that the lack of S2P2 in A. thaliana chloroplasts leads to a significant decrease in the level of photosystem I and photosystem II core proteins: PsaB, PsbA, PsbD, and PsbC, as well as polypeptides building both the main light-harvesting antenna (LHC II), Lhcb1 and Lhcb2, as well as Lhcb4 and Lhcb5 polypeptides, constituting elements of the minor, peripheral antenna system. These changes are associated with a decrease in the number of PS II-LHC II supercomplexes. The consequence of these disorders is a greater sensitivity of s2p2 mutants to photoinhibition. The obtained results clearly indicate that the S2P2 protease is another thylakoid protein that plays an important role in the proper functioning of A. thaliana chloroplasts, especially in high-light-intensity conditions.
Collapse
Affiliation(s)
| | | | - Robert Luciński
- Department of Plant Physiology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
6
|
Lü J, Yang M, Meng Q, Zhuang K, Ma N. Chloroplast metalloproteinase SlL2 reduces the thermotolerance of tomato by decreasing the content of SlCDJ1. PROTOPLASMA 2023; 260:1193-1205. [PMID: 36749384 DOI: 10.1007/s00709-023-01840-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/30/2023] [Indexed: 06/07/2023]
Abstract
Chloroplast is one of the most sensitive organelles to heat stress in plants. In chloroplasts, various proteases affect photosynthesis by degrading proteins under stress conditions. Tomato Lutescent2 (SlL2), a chloroplast zinc metalloprotease, was previously reported to alter chloroplast development and delay fruit ripening. However, its enzyme activity and roles in plant response to abiotic stress are still unclear. Here, we confirmed that the SlL2 protein which localized on thylakoid membrane was an ATP-independent hydrolase, and SlL2 gene responded to heat stress. Phenotype analysis showed that SlL2 plays a negative role in the heat-response mechanism. Under heat stress, the transgenic plants overexpressing SlL2 (OE) grew worse than the wild type (WT), as reflected by their decreased membrane stability, osmotic-regulating substance, and antioxidative enzyme activities, as well as increased reactive oxygen species (ROS) accumulation. By contrast, l2 mutant line showed the opposite phenotype and corresponding physiological indices under heat stress. In addition, overexpression of SlL2 decreased the photosynthetic activities, especially photosystem II. Moreover, SlL2 was found to interact with chloroplast-located chaperone protein SlCDJ1, decreasing its content under heat stress. These results indicate that SlL2 reduces the thermotolerance of tomato by reducing the content of SlCDJ1.
Collapse
Affiliation(s)
- Jinlian Lü
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai' an, 271018, Shandong, China
| | - Minmin Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai' an, 271018, Shandong, China
| | - Qingwei Meng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai' an, 271018, Shandong, China
| | - Kunyang Zhuang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai' an, 271018, Shandong, China.
| | - Nana Ma
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai' an, 271018, Shandong, China.
| |
Collapse
|
7
|
Huang J, Wu Q, Jing HK, Shen RF, Zhu XF. Auxin facilitates cell wall phosphorus reutilization in a nitric oxide-ethylene dependent manner in phosphorus deficient rice (Oryza sativa L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 322:111371. [PMID: 35809682 DOI: 10.1016/j.plantsci.2022.111371] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/26/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Auxin is involved in stress responses of plants, such as phosphorus (P) deficiency in rice. Studies on whether auxin participates in cell-wall inorganic phosphorous (Pi) reutilization in Pi-starved rice are scarce. This study explored the mechanisms underlying auxin-facilitated cell-wall Pi-reutilization in rice roots. Pi deficiency rapidly induced auxin accumulation in roots; exogenous auxin [α-naphthaleneacetic acid (NAA), a permeable analog of auxin] elevated soluble Pi content in roots and shoots by increasing pectin content by enhancing activity of pectin methylesterase, and upregulating the transcript level of PHOSPHORUS-TRANSPORTER-2, such that more Pi was translocated to the shoot. Irrespective of the Pi status, exogenous auxin induced nitric oxide (NO) and ethylene production, while exogenous sodium nitroprusside (an NO donor) and 1-aminocyclopropane-1-carboxylic acid (a precursor of ethylene) had no effect on auxin content, suggesting that auxin may act upstream of NO and ethylene. The beneficial effect of NAA in increasing soluble Pi content in roots and shoots disappeared when 2-(4-carboxyphenyl)- 4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (a scavenger of NO) or aminoethoxyvinylglycine (an inhibitor of ethylene) were applied, suggesting that auxin facilitates cell-wall Pi-reutilization in a NO-ethylene-dependent manner in Pi-deficient rice. Our study results suggest auxin application as an effective agronomic practice for improving plant Pi nutrition in P-deficient conditions.
Collapse
Affiliation(s)
- Jing Huang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huai Kang Jing
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Fang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Adamiec M, Dobrogojski J, Wojtyla Ł, Luciński R. Stress-related expression of the chloroplast EGY3 pseudoprotease and its possible impact on chloroplasts' proteome composition. FRONTIERS IN PLANT SCIENCE 2022; 13:965143. [PMID: 35937369 PMCID: PMC9355673 DOI: 10.3389/fpls.2022.965143] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The EGY3 is a pseudoprotease, located in the thylakoid membrane, that shares homology with the family of site-2-proteases (S2P). Although S2P proteases are present in the cells of all living organisms, the EGY3 was found only in plant cells. The sequence of the pseudoprotease is highly conserved in the plant kingdom; however, little is known about its physiological importance. Results obtained with real-time PCR indicated that the expression of the EGY3 gene is dramatically induced during the first few hours of exposure to high light and high-temperature stress. The observed increase in transcript abundance correlates with protein accumulation level, which indicates that EGY3 participates in response to both high-temperature and high light stresses. The lack of the pseudoprotease leads, in both stresses, to lower concentrations of hydrogen peroxide. However, the decrease of chloroplast copper/zinc superoxide dismutase 2 level was observed only during the high light stress. In both analyzed stressful conditions, proteins related to RubisCO folding, glycine metabolism, and photosystem I were identified as differently accumulating in egy3 mutant lines and WT plants; however, the functional status of PSII during analyzed stressful conditions remains very similar. Our results lead to a conclusion that EGY3 pseudoprotease participates in response to high light and high-temperature stress; however, its role is associated rather with photosystem I and light-independent reactions of photosynthesis.
Collapse
Affiliation(s)
- Małgorzata Adamiec
- Department of Plant Physiology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Jędrzej Dobrogojski
- Department of Biochemistry and Biotechnology, Faculty of Agronomy, Horticulture and Bioengineering, University of Life Sciences, Poznań, Poland
| | - Łukasz Wojtyla
- Department of Plant Physiology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Robert Luciński
- Department of Plant Physiology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
9
|
Ramaiah M, Jain A, Yugandhar P, Raghothama KG. ATL8, a RING E3 ligase, modulates root growth and phosphate homeostasis in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 179:90-99. [PMID: 35325659 DOI: 10.1016/j.plaphy.2022.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 05/17/2023]
Abstract
Ubiquitination-mediated post-translational modification of proteins is a pivotal regulatory mechanism involved in the growth and development of the plant. The Arabidopsis Tóxicos en Levadura (ATL) family is a group of RING-type ubiquitin ligases (E3) and ATL8 is a membrane-localized protein. Here, a reverse genetics approach was used to elucidate the role of ATL8 in phosphate (Pi) homeostasis. Deficiencies of Pi and sucrose (Suc) enhanced the relative expression level of ATL8 in different tissues of the wild-type (Wt). The relative expression level of ATL8 was attenuated and augmented in the mutant (atl8) and overexpression lines (Oe1 and Oe2), respectively. There were significant reductions in different root traits, root hairs, root to shoot ratio, and total Pi content in atl8 compared with the Wt under different Pi regimes. On the contrary, Oe1 and Oe2 lines exhibited enhancement in some of these traits. Noticeably, anthocyanin content was significantly reduced in Oe1 and Oe2 compared with the Wt and atl8 under P- condition. Abscisic acid (ABA) treatment led to an increase in the primary root length of atl8 compared with the Wt, suggesting a cross-talk between ABA and ATL8 on root growth. Furthermore, the relative expression levels of the genes involved in the maintenance of Pi homeostasis (WRKY75, RNS1, E3L, and ACP5) were differentially modulated in atl8, Oe1, and Oe2 compared with the Wt under different Pi regimes. The results revealed the pivotal role of ATL8 in mediating morphophysiological and molecular adaptive responses to Pi deficiency.
Collapse
Affiliation(s)
- Madhuvanthi Ramaiah
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA.
| | - Ajay Jain
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India.
| | - Poli Yugandhar
- ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India.
| | - Kashchandra G Raghothama
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
10
|
Wang Q, Du W, Yu W, Zhang W, Huang F, Cheng H, Yu D. Genome-wide association analysis discovered new loci and candidate genes associated with low-phosphorus tolerance based on shoot mineral elements concentrations in soybean. Mol Genet Genomics 2022; 297:843-858. [PMID: 35441900 DOI: 10.1007/s00438-022-01895-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/31/2022] [Indexed: 10/18/2022]
Abstract
Phosphorus (P) deficiency is one of the major limitations for soybean production. Moreover, it has been well reported P and other mineral elements function interdependently or antagonistically to control nutrients homeostasis in plants. Thus, it is urgently needed to understand the genetic mechanism of the accumulation of mineral elements in response to low-P stress. In this study, to identify single nucleotide polymorphisms (SNPs) and candidate genes controlling the accumulation of mineral elements suffering low-P stress in seedling stage of soybean plants, we measured concentrations of mineral elements, including P, Zn, Fe, Mn, Mg and Ca, in shoots of 211 soybean accessions under normal phosphorus (+P) and low phosphorus (-P) conditions in two hydroponic experiments. And genome-wide association study (GWAS) using high density NJAU 355K SoySNP array and concentrations of five of these mineral elements except P was performed. A total of 36 SNPs distributed on 13 chromosomes were identified to be significantly associated with low-P tolerance, and nine SNPs on chromosome 10 formed a SNP cluster. Meanwhile, the candidate gene GmFeB1 was found to serve as a negative regulator element involved in soybean P metabolism and the haplotype1 (Hap1) of GmFeB1 showed significantly higher shoot Fe concentration under -P condition than that of Hap2. In summary, we uncover 36 SNPs significantly associated with shoot mineral elements concentrations under different P conditions and a soybean low-P related gene GmFeB1, which will provide additional genetic information for soybean low-P tolerance and new gene resources for P-efficient soybean varieties breeding.
Collapse
Affiliation(s)
- Qing Wang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenkai Du
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenqing Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weihao Zhang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fang Huang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hao Cheng
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Deyue Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
11
|
Zhuang Y, Wei M, Ling C, Liu Y, Amin AK, Li P, Li P, Hu X, Bao H, Huo H, Smalle J, Wang S. EGY3 mediates chloroplastic ROS homeostasis and promotes retrograde signaling in response to salt stress in Arabidopsis. Cell Rep 2021; 36:109384. [PMID: 34260941 DOI: 10.1016/j.celrep.2021.109384] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/14/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023] Open
Abstract
The chloroplast is the main organelle for stress-induced production of reactive oxygen species (ROS). However, how chloroplastic ROS homeostasis is maintained under salt stress is largely unknown. We show that EGY3, a gene encoding a chloroplast-localized protein, is induced by salt and oxidative stresses. The loss of EGY3 function causes stress hypersensitivity while EGY3 overexpression increases the tolerance to both salt and chloroplastic oxidative stresses. EGY3 interacts with chloroplastic Cu/Zn-SOD2 (CSD2) and promotes CSD2 stability under stress conditions. In egy3-1 mutant plants, the stress-induced CSD2 degradation limits H2O2 production in chloroplasts and impairs H2O2-mediated retrograde signaling, as indicated by the decreased expression of retrograde-signal-responsive genes required for stress tolerance. Both exogenous application of H2O2 (or APX inhibitor) and CSD2 overexpression can rescue the salt-stress hypersensitivity of egy3-1 mutants. Our findings reveal that EGY3 enhances the tolerance to salt stress by promoting the CSD2 stability and H2O2-mediated chloroplastic retrograde signaling.
Collapse
Affiliation(s)
- Yong Zhuang
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China; CAS Center for Excellence in Molecular Plant Sciences, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Ming Wei
- CAS Center for Excellence in Molecular Plant Sciences, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Chengcheng Ling
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Yangxuan Liu
- CAS Center for Excellence in Molecular Plant Sciences, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Abdul Karim Amin
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Penghui Li
- CAS Center for Excellence in Molecular Plant Sciences, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Pengwei Li
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Xufan Hu
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Huaxu Bao
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Heqiang Huo
- Mid-Florida Research and Education Center, University of Florida, Institute of Food and Agricultural Sciences, Apopka, FL 32703, USA
| | - Jan Smalle
- Plant Physiology, Biochemistry and Molecular Biology Program, Department of Plant and Soil Sciences, College of Agriculture, University of Kentucky, Lexington, KY 40546, USA
| | - Songhu Wang
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China; CAS Center for Excellence in Molecular Plant Sciences, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
12
|
Sanjaya A, Kazama Y, Ishii K, Muramatsu R, Kanamaru K, Ohbu S, Abe T, Fujiwara MT. An Argon-Ion-Induced Pale Green Mutant of Arabidopsis Exhibiting Rapid Disassembly of Mesophyll Chloroplast Grana. PLANTS (BASEL, SWITZERLAND) 2021; 10:848. [PMID: 33922223 PMCID: PMC8145761 DOI: 10.3390/plants10050848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 01/13/2023]
Abstract
Argon-ion beam is an effective mutagen capable of inducing a variety of mutation types. In this study, an argon ion-induced pale green mutant of Arabidopsis thaliana was isolated and characterized. The mutant, designated Ar50-33-pg1, exhibited moderate defects of growth and greening and exhibited rapid chlorosis in photosynthetic tissues. Fluorescence microscopy confirmed that mesophyll chloroplasts underwent substantial shrinkage during the chlorotic process. Genetic and whole-genome resequencing analyses revealed that Ar50-33-pg1 contained a large 940 kb deletion in chromosome V that encompassed more than 100 annotated genes, including 41 protein-coding genes such as TYRAAt1/TyrA1, EGY1, and MBD12. One of the deleted genes, EGY1, for a thylakoid membrane-localized metalloprotease, was the major contributory gene responsible for the pale mutant phenotype. Both an egy1 mutant and F1 progeny of an Ar50-33-pg1 × egy1 cross-exhibited chlorotic phenotypes similar to those of Ar50-33-pg1. Furthermore, ultrastructural analysis of mesophyll cells revealed that Ar50-33-pg1 and egy1 initially developed wild type-like chloroplasts, but these were rapidly disassembled, resulting in thylakoid disorganization and fragmentation, as well as plastoglobule accumulation, as terminal phenotypes. Together, these data support the utility of heavy-ion mutagenesis for plant genetic analysis and highlight the importance of EGY1 in the structural maintenance of grana in mesophyll chloroplasts.
Collapse
Affiliation(s)
- Alvin Sanjaya
- Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda, Tokyo 102-8554, Japan; (A.S.); (R.M.)
| | - Yusuke Kazama
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (K.I.); (S.O.); (T.A.)
- Faculty of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuoka-Kenjojima, Eiheiji, Yoshida, Fukui 910-1195, Japan
| | - Kotaro Ishii
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (K.I.); (S.O.); (T.A.)
| | - Ryohsuke Muramatsu
- Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda, Tokyo 102-8554, Japan; (A.S.); (R.M.)
| | - Kengo Kanamaru
- Faculty of Agriculture, Kobe University, Nada, Kobe, Hyogo 657-8501, Japan;
| | - Sumie Ohbu
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (K.I.); (S.O.); (T.A.)
| | - Tomoko Abe
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (K.I.); (S.O.); (T.A.)
| | - Makoto T. Fujiwara
- Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda, Tokyo 102-8554, Japan; (A.S.); (R.M.)
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (K.I.); (S.O.); (T.A.)
| |
Collapse
|
13
|
Yu F, Wang S, Zhang W, Wang H, Yu L, Fei Z, Li J. An R2R3-type myeloblastosis transcription factor MYB103 is involved in phosphorus remobilization. FOOD PRODUCTION, PROCESSING AND NUTRITION 2020. [DOI: 10.1186/s43014-020-00038-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
The members of myeloblastosis transcription factor (MYB TF) family are involved in the regulation of biotic and abiotic stresses in plants. However, the role of MYB TF in phosphorus remobilization remains largely unexplored. In the present study, we show that an R2R3 type MYB transcription factor, MYB103, is involved in phosphorus (P) remobilization. MYB103 was remarkably induced by P deficiency in cabbage (Brassica oleracea var. capitata L.). As cabbage lacks the proper mutant for elucidating the mechanism of MYB103 in P deficiency, another member of the crucifer family, Arabidopsis thaliana was chosen for further study. The transcript of its homologue AtMYB103 was also elevated in response to P deficiency in A. thaliana, while disruption of AtMYB103 (myb103) exhibited increased sensitivity to P deficiency, accompanied with decreased tissue biomass and soluble P concentration. Furthermore, AtMYB103 was involved in the P reutilization from cell wall, as less P was released from the cell wall in myb103 than in wildtype, coinciding with the reduction of ethylene production. Taken together, our results uncover an important role of MYB103 in the P remobilization, presumably through ethylene signaling.
Collapse
|
14
|
Adamiec M, Misztal L, Kasprowicz-Maluśki A, Luciński R. EGY3: homologue of S2P protease located in chloroplasts. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:735-743. [PMID: 31886945 DOI: 10.1111/plb.13087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
The EGY3 protein is a homologue of site-2 proteases, which are intramembrane zinc metalloproteases. EGY3 itself lacks proteolytic activity due to the absence of a zinc-binding motif. Plentiful evidence indicates that such intramembrane 'pseudoproteases' play significant roles in many diverse processes occurring within the cell. However, the physiological functions of EGY3, as well as its subcellular localization, remain unknown. The subcellular localization of EGY3 protein was investigated using Arabidopsis thaliana protoplasts transformed with EGY3-GFP fusion protein, and immunoblot experiments using the total leaf protein extract, as well as highly purified chloroplasts and fractions of stroma, envelope and thylakoid membrane proteins. The physiological role of EGY3 was studied using two A. thaliana mutant lines devoid of EGY3 protein. Chlorophyll a fluorescence measurement was performed and the egy3 mutant sensitivity to photoinhibition was investigated. Additionally, the abundance of thylakoid membrane complexes was established using blue native gel electrophoresis. We present experimental evidence for thylakoid membrane localization of the EGY3 protein. We show that egy3 mutants display increased value of the non-photochemical quenching parameter and significantly slower recovery rate after photoinhibitory treatment. This was associated with a decrease in the level of proteases involved in photosystem II recovery, Deg1 and FtsH2/8.
Collapse
Affiliation(s)
- M Adamiec
- Department of Plant Physiology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - L Misztal
- Department of Plant Physiology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - A Kasprowicz-Maluśki
- Department of Molecular and Cellular Biology, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - R Luciński
- Department of Plant Physiology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
15
|
The chloroplast metalloproteases VAR2 and EGY1 act synergistically to regulate chloroplast development in Arabidopsis. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49913-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
16
|
Qi Y, Wang X, Lei P, Li H, Yan L, Zhao J, Meng J, Shao J, An L, Yu F, Liu X. The chloroplast metalloproteases VAR2 and EGY1 act synergistically to regulate chloroplast development in Arabidopsis. J Biol Chem 2019; 295:1036-1046. [PMID: 31836664 DOI: 10.1074/jbc.ra119.011853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/09/2019] [Indexed: 12/29/2022] Open
Abstract
Chloroplast development and photosynthesis require the proper assembly and turnover of photosynthetic protein complexes. Chloroplasts harbor a repertoire of proteases to facilitate proteostasis and development. We have previously used an Arabidopsis leaf variegation mutant, yellow variegated2 (var2), defective in thylakoid FtsH protease complexes, as a tool to dissect the genetic regulation of chloroplast development. Here, we report a new genetic enhancer mutant of var2, enhancer of variegation3-1 (evr3-1). We confirm that EVR3 encodes a chloroplast metalloprotease, reported previously as ethylene-dependent gravitropism-deficient and yellow-green1 (EGY1)/ammonium overly sensitive1 (AMOS1). We observed that mutations in EVR3/EGY1/AMOS1 cause more severe leaf variegation in var2-5 and synthetic lethality in var2-4 Using a modified blue-native PAGE system, we reveal abnormal accumulations of photosystem I, photosystem II, and light-harvesting antenna complexes in EVR3/EGY1/AMOS1 mutants. Moreover, we discover distinct roles of VAR2 and EVR3/EGY1/AMOS1 in the turnover of photosystem II reaction center under high light stress. In summary, our findings indicate that two chloroplast metalloproteases, VAR2/AtFtsH2 and EVR3/EGY1/AMOS1, function coordinately to regulate chloroplast development and reveal new roles of EVR3/EGY1/AMOS1 in regulating chloroplast proteostasis in Arabidopsis.
Collapse
Affiliation(s)
- Yafei Qi
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaomin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pei Lei
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huimin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liru Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingjing Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingxia Shao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lijun An
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fei Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiayan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
17
|
Wu X, Gong D, Xia F, Dai C, Zhang X, Gao X, Wang S, Qu X, Sun Y, Liu G. A two-step mutation process in the double WS1 homologs drives the evolution of burley tobacco, a special chlorophyll-deficient mutant with abnormal chloroplast development. PLANTA 2019; 251:10. [PMID: 31776784 DOI: 10.1007/s00425-019-03312-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
MAIN CONCLUSION The functional homologs WS1A and WS1B, identified by map-based cloning, control the burley character by affecting chloroplast development in tobacco, contributing to gene isolation and genetic improvement in polyploid crops. Burley represents a special type of tobacco (Nicotiana tabacum L.) cultivar that is characterized by a white stem with a high degree of chlorophyll deficiency. Although important progress in the research of burley tobacco has been made, the molecular mechanisms underlying this character remain unclear. Here, on the basis of our previous genetic analyses and preliminary mapping results, we isolated the White Stem 1A (WS1A) and WS1B genes using a map-based cloning approach. WS1A and WS1B are functional homologs with completely identical biological functions and highly similar expression patterns that control the burley character in tobacco. WS1A and WS1B are derived from Nicotiana sylvestris and Nicotiana tomentosiformis, the diploid ancestors of Nicotiana tabacum, respectively. The two genes encode zinc metalloproteases of the M50 family that are highly homologous to the Ethylene-dependent Gravitropism-deficient and Yellow-green 1 (EGY1) protein of Arabidopsis and the Lutescent 2 (L2) protein of tomato. Transmission electron microscopic examinations indicated that WS1A and WS1B are involved in the development of chloroplasts by controlling the formation of thylakoid membranes, very similar to that observed for EGY1 and L2. The genotyping of historical tobacco varieties revealed that a two-step mutation process occurred in WS1A and WS1B during the evolution of burley tobacco. We also discussed the strategy for gene map-based cloning in polyploid plants with complex genomes. This study will facilitate the identification of agronomically important genes in tobacco and other polyploid crops and provide insights into crop improvement via molecular approaches.
Collapse
Affiliation(s)
- Xinru Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China.
| | - Daping Gong
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China
| | - Fei Xia
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China
| | - Changbo Dai
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China
| | - Xingwei Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China
| | - Xiaoming Gao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China
| | - Shaomei Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China
| | - Xu Qu
- Qingdao Tobacco Seed Co., Ltd, Qingdao, 266101, China
| | - Yuhe Sun
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China
| | - Guanshan Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China.
| |
Collapse
|
18
|
Zhu XF, Zhang XL, Dong XY, Shen RF. Carbon Dioxide Improves Phosphorus Nutrition by Facilitating the Remobilization of Phosphorus From the Shoot Cell Wall in Rice ( Oryza sativa). FRONTIERS IN PLANT SCIENCE 2019; 10:665. [PMID: 31191579 PMCID: PMC6541036 DOI: 10.3389/fpls.2019.00665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/02/2019] [Indexed: 05/26/2023]
Abstract
Phosphorus (P) starvation leads to increased reutilization of cell wall P in rice (Oryza sativa). Carbon dioxide (CO2) is involved not only in plant growth and development but also in the response to abiotic stresses. However, it remains unclear whether CO2 affects the reutilization of cell wall P in rice when subjected to P deficiency. In the present study, elevated CO2 (600 μl·L-1) significantly increased the soluble P content in shoots when compared with ambient CO2 (400 μl·L-1). This positive effect was accompanied by an increase of pectin content, as well as an increase of pectin methylesterase (PME) activity, which results in P release from the shoot cell wall, making it available for plant growth. P deficiency significantly induced the expression of phosphate transporter genes (OsPT2, OsPT6, and OsPT8) and decreased the P content in the xylem sap, but elevated CO2 had no further effect, indicating that the increased soluble P content observed in shoots under elevated CO2 is attributable to the reutilization of shoot cell wall P. Elevated CO2 further increased the P deficiency-induced ethylene production in the shoots, and the addition of the ethylene precursor 1-amino-cyclopropane-1-carboxylic acid (ACC) mimicked this effect, while the addition of the ethylene inhibitor aminoethoxyvinylglycine (AVG) abolished this effect. These results further support the role of ethylene in the alleviation of P deficiency under elevated CO2. Taken together, our results indicate that the improvement of P nutrition in rice by elevated CO2 is mediated by increasing the shoot cell wall pectin content and PME activity, possibly via the ethylene signaling pathway.
Collapse
Affiliation(s)
- Xiao Fang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Xiao Long Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao Ying Dong
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Fang Zhu X, Sheng Zhao X, Wu Q, Fang Shen R. Abscisic acid is involved in root cell wall phosphorus remobilization independent of nitric oxide and ethylene in rice (Oryza sativa). ANNALS OF BOTANY 2018; 121:1361-1368. [PMID: 29562313 PMCID: PMC6007365 DOI: 10.1093/aob/mcy034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/22/2018] [Indexed: 05/15/2023]
Abstract
BACKGROUND Abscisic acid (ABA) is a well-studied phytohormone demonstrated to be involved in sub-sets of stress responses in plants, such as iron (Fe) deficiency and phosphorus (P) deficiency in Arabidopsis. However, whether ABA is involved in P deficiency in rice has not been frequently studied. The present study was undertaken to investigate the mechanism underlying ABA-aggravated P deficiency in rice (Oryza sativa). RESULTS P deficiency decreased ABA accumulation rapidly (within 1 h) in the roots. Exogenous ABA negatively regulated root and shoot soluble P contents by decreasing pectin content, inhibiting P deficiency-induced increases in pectin methylesterase activity and expression of the phosphate transporter gene-OsPT6, thereby decreasing the re-utilization of P from the cell wall and its translocation to the shoot. Moreover, neither the nitric oxide (NO) donor sodium nitroprusside nor ethylene precursor 1-aminocyclopropane-1-carboxylic acid had any effect on ABA accumulation, and application of ABA or the ABA inhibitor fluridone also had no effect on NO production and ethylene emission. CONCLUSIONS Under P deficiency, NO levels increase as quickly as ABA levels decrease, to inhibit both the ABA-induced reduction of pectin contents for the re-utilization of cell wall P and the ABA-induced down-regulation of OsPT6 for the translocation of P from roots to shoots. Overall, our results provide novel information indicating that the reduction of ABA under P deficiency is a very important pathway in the re-utilization of cell wall P in rice under P-deficient conditions, which should be a very effective mechanism for plant survival under P deficiency stress for common agronomic practice.
Collapse
Affiliation(s)
- Xiao Fang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing, China
| | - Xu Sheng Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qi Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
- For correspondence. E-mail
| |
Collapse
|
20
|
Zhang S, Zhi H, Li W, Shan J, Tang C, Jia G, Tang S, Diao X. SiYGL2 Is Involved in the Regulation of Leaf Senescence and Photosystem II Efficiency in Setaria italica (L.) P. Beauv. FRONTIERS IN PLANT SCIENCE 2018; 9:1308. [PMID: 30233633 PMCID: PMC6131628 DOI: 10.3389/fpls.2018.01308] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 08/20/2018] [Indexed: 05/20/2023]
Abstract
A yellow-green leaf mutant was isolated from EMS-mutagenized lines of Setaria italica variety Yugu1. Map-based cloning revealed the mutant gene is a homolog of Arabidopsis thaliana AtEGY1. EGY1 (ethylene-dependent gravitropism-deficient and yellow-green 1) is an ATP-independent metalloprotease (MP) that is required for chloroplast development, photosystem protein accumulation, hypocotyl gravitropism, leaf senescence, and ABA signal response in A. thaliana. However, the function of EGY1 in monocotyledonous C4 plants has not yet been described. The siygl2 mutant is phenotypically characterized by chlorotic organs, premature senescence, and damaged PS II function. Sequence comparisons of the AtEGY1 and SiYGL2 proteins reveals the potential for SiYGL2 to encode a partially functional protein. Phenotypic characterization and gene expression analysis suggested that SiYGL2 participates in the regulation of chlorophyll content, leaf senescence progression, and PS II function. Additionally, our research will contribute to further characterization of the mechanisms regulating leaf senescence and photosynthesis in S. italica, and in C4 plants in general.
Collapse
|