1
|
Zwyrzykowska-Wodzińska A, Jarosz B, Okińczyc P, Szperlik J, Bąbelewski P, Zadák Z, Jankowska-Mąkosa A, Knecht D. GC-MS and PCA Analysis of Fatty Acid Profile in Various Ilex Species. Molecules 2024; 29:4833. [PMID: 39459202 PMCID: PMC11510334 DOI: 10.3390/molecules29204833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/06/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Natural compounds are important source of desired biological activity which helps to improve nutritional status and brings many health benefits. Ilex paraguariensis St. Hill. which belongs to the family Aquifoliaceae is a plant rich in bioactive substances (polyphenols, saponins, alkaloids) with therapeutic potential including hepatic and digestive disorders, arthritis, rheumatism, and other inflammatory diseases, obesity, hypertension, hypercholesterolemia. In terms of phytochemical research I. paraguariensis has been the subject of most intensive investigations among Ilex species. Therefore, we concentrated on other available Ilex varieties and focused on the content of fatty acids of these shrubs. The fatty acid compounds present in Ilex sp. samples were analyzed by GC-MS. 27 different fatty acids were identified in the extracts. The results showed that many constituents with significant commercial or medicinal importance were present in high concentrations. The primary component in all samples was α linolenic acid(18:3 Δ9,12,15). Differences of this component concentration were observed between cultivars and extensively analyzed by PCA, one- way ANOVA and Kruskal-Wallis ANOVA. Significant correlations between compound concentrations were reported.
Collapse
Affiliation(s)
- Anna Zwyrzykowska-Wodzińska
- Institute of Animal Breeding, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 38c, 51-630 Wrocław, Poland; (A.J.-M.); (D.K.)
| | - Bogdan Jarosz
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland;
| | - Piotr Okińczyc
- Department of Pharmacognosy and Herbal Medicines, Wrocław Medical University, Borowska 211A, 50-556 Wrocław, Poland;
| | - Jakub Szperlik
- Laboratory of Tissue Culture, Botanical Garden, Faculty of Biological Sciences, University of Wrocław, 50-234 Wrocław, Poland;
| | - Przemysław Bąbelewski
- Department of Horticulture, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 24A, 50-363 Wrocław, Poland
| | - Zdeněk Zadák
- Department of Clinical Biochemistry and Diagnostics, Faculty of Medicine and University Hospital, Charles University, Sokolska Str. 581, 500 05 Hradec Kralove, Czech Republic;
| | - Anna Jankowska-Mąkosa
- Institute of Animal Breeding, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 38c, 51-630 Wrocław, Poland; (A.J.-M.); (D.K.)
| | - Damian Knecht
- Institute of Animal Breeding, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 38c, 51-630 Wrocław, Poland; (A.J.-M.); (D.K.)
| |
Collapse
|
2
|
Lakhssassi N, El Baze A, Knizia D, Salhi Y, Embaby MG, Anil E, Mallory C, Lakhssassi A, Meksem J, Shi H, Vuong TD, Meksem K, Kassem MA, AbuGhazaleh A, Nguyen HT, Bellaloui N, Boualem A, Meksem K. A sucrose-binding protein and β-conglycinins regulate soybean seed protein content and control multiple seed traits. PLANT PHYSIOLOGY 2024; 196:1298-1321. [PMID: 39056548 DOI: 10.1093/plphys/kiae380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 05/14/2024] [Accepted: 06/10/2024] [Indexed: 07/28/2024]
Abstract
Expanded agriculture production is required to support the world's population but can impose substantial environmental and climate change costs, particularly with intensifying animal production and protein demand. Shifting from an animal- to a plant-based protein diet has numerous health benefits. Soybean (Glycine max [L.] Merr.) is a major source of protein for human food and animal feed; improved soybean protein content and amino acid composition could provide high-quality soymeal for animal feed, healthier human foods, and a reduced carbon footprint. Nonetheless, during the soybean genome evolution, a balance was established between the amount of seed protein, oil, and carbohydrate content, burdening the development of soybean cultivars with high proteins (HPs). We isolated 2 high-seed protein soybean mutants, HP1 and HP2, with improved seed amino acid composition and stachyose content, pointing to their involvement in controlling seed rebalancing phenomenon. HP1 encodes β-conglycinin (GmCG-1) and HP2 encodes sucrose-binding protein (GmSBP-1), which are both highly expressed in soybean seeds. Mutations in GmSBP-1, GmCG-1, and the paralog GmCG-2 resulted in increased protein levels, confirming their role as general regulators of seed protein content, amino acid seed composition, and seed vigor. Biodiversity analysis of GmCG and GmSBP across 108 soybean accessions revealed haplotypes correlated with protein and seed carbohydrate content. Furthermore, our data revealed an unprecedented role of GmCG and GmSBP proteins in improving seed vigor, crude protein, and amino acid digestibility. Since GmSBP and GmCG are present in most seed plants analyzed, these genes could be targeted to improve multiple seed traits.
Collapse
Affiliation(s)
- Naoufal Lakhssassi
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA
| | - Abdelhalim El Baze
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA
| | - Dounya Knizia
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA
| | - Yasser Salhi
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA
| | - Mohamed G Embaby
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA
| | - Erdem Anil
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA
| | - Cullen Mallory
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA
| | - Aicha Lakhssassi
- Intelligent Automation & BioMedGenomics Laboratory, Faculty of Sciences and Technologies, University Abdelmalek Essaâdi, Tangier 90000, Morocco
| | - Jonas Meksem
- Trinity College of Arts and Sciences, Duke University, Durham, NC 27708, USA
| | - Haiying Shi
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Tri D Vuong
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Kenza Meksem
- Towson High School, Baltimore County Public School District, Towson, MD 21286, USA
| | - My Abdelmajid Kassem
- Plant Genomics and Biotechnology Laboratory, Department of Biological Sciences, Fayetteville State University, Fayetteville, NC 28301, USA
| | - Amer AbuGhazaleh
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA
| | - Henry T Nguyen
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Nacer Bellaloui
- Crop Genetics Research Unit, USDA-ARS, Stoneville, MS 38776, USA
| | - Adnane Boualem
- Department of Plant Breeding and Genetics, French National Institute for Agriculture, Food, and Environment (INRAE), Paris, 75007, France
| | - Khalid Meksem
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA
| |
Collapse
|
3
|
Si X, Lyu S, Hussain Q, Ye H, Huang C, Li Y, Huang J, Chen J, Wang K. Analysis of Delta(9) fatty acid desaturase gene family and their role in oleic acid accumulation in Carya cathayensis kernel. FRONTIERS IN PLANT SCIENCE 2023; 14:1193063. [PMID: 37771493 PMCID: PMC10523321 DOI: 10.3389/fpls.2023.1193063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/14/2023] [Indexed: 09/30/2023]
Abstract
Carya cathayensis, commonly referred to as Chinese hickory, produces nuts that contain high-quality edible oils, particularly oleic acid (18:1). It is known that stearoyl-ACP desaturase (SAD) is the first key step converting stearic acid (C18:0, SA) to oleic acid (C18:1, OA) in the aminolevulinic acid (ALA) biosynthetic pathway and play an important role in OA accumulation. Thus far, there is little information about SAD gene family in C. cathayensis and the role of individual members in OA accumulation. This study searched the Chinese Hickory Genome Database and identified five members of SAD genes, designated as CcSADs, at the whole genome level through the comparison with the homologous genes from Arabidopsis. RNA-Seq analysis showed that CcSSI2-1, CcSSI2-2, and CcSAD6 were highly expressed in kernels. The expression pattern of CcSADs was significantly correlated with fatty acid accumulation during the kernel development. In addition, five full-length cDNAs encoding SADs were isolated from the developing kernel of C. cathayensis. CcSADs-green fluorescent protein (GFP) fusion construct was infiltrated into tobacco epidermal cells, and results indicated their chloroplast localization. The catalytic function of these CcSADs was further analyzed by heterologous expression in Saccharomyces cerevisiae, Nicotiana benthamiana, and walnut. Functional analysis demonstrated that all CcSADs had fatty acid desaturase activity to catalyze oleic acid biosynthesis. Some members of CcSADs also have strong substrate specificity for 16:0-ACP to synthesize palmitoleic acid (C16:1, PA). Our study documented SAD gene family in C. cathayensis and the role of CcSSI2-1, CcSSI2-2, and CcSAD6 in OA accumulation, which could be important for future improvement of OA content in this species via genetic manipulation.
Collapse
Affiliation(s)
- Xiaolin Si
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Zhejiang, China
| | - Shiheng Lyu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Zhejiang, China
| | - Quaid Hussain
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Hongyu Ye
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Zhejiang, China
| | - Chunying Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Zhejiang, China
| | - Yan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Zhejiang, China
| | - Jianqin Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Zhejiang, China
| | - Jianjun Chen
- Mid-Florida Research and Education Center, Environmental Horticulture Department, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL, United States
| | - Ketao Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Zhejiang, China
| |
Collapse
|
4
|
Piya S, Pantalone V, Zadegan SB, Shipp S, Lakhssassi N, Knizia D, Krishnan HB, Meksem K, Hewezi T. Soybean gene co-expression network analysis identifies two co-regulated gene modules associated with nodule formation and development. MOLECULAR PLANT PATHOLOGY 2023; 24:628-636. [PMID: 36975024 DOI: 10.1111/mpp.13327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 05/18/2023]
Abstract
Gene co-expression network analysis is an efficient systems biology approach for the discovery of novel gene functions and trait-associated gene modules. To identify clusters of functionally related genes involved in soybean nodule formation and development, we performed a weighted gene co-expression network analysis. Two nodule-specific modules (NSM-1 and NSM-2, containing 304 and 203 genes, respectively) were identified. The NSM-1 gene promoters were significantly enriched in cis-binding elements for ERF, MYB, and C2H2-type zinc transcription factors, whereas NSM-2 gene promoters were enriched in cis-binding elements for TCP, bZIP, and bHLH transcription factors, suggesting a role of these regulatory factors in the transcriptional activation of nodule co-expressed genes. The co-expressed gene modules included genes with potential novel roles in nodulation, including those involved in xylem development, transmembrane transport, the ethylene signalling pathway, cytoskeleton organization, cytokinesis and regulation of the cell cycle, regulation of meristem initiation and growth, transcriptional regulation, DNA methylation, and histone modifications. Functional analysis of two co-expressed genes using TILLING mutants provided novel insight into the involvement of unsaturated fatty acid biosynthesis and folate metabolism in nodule formation and development. The identified gene co-expression modules provide valuable resources for further functional genomics studies to dissect the genetic basis of nodule formation and development in soybean.
Collapse
Affiliation(s)
- Sarbottam Piya
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Vince Pantalone
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | | | - Sarah Shipp
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Naoufal Lakhssassi
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, Illinois, 62901, USA
| | - Dounya Knizia
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, Illinois, 62901, USA
| | - Hari B Krishnan
- Plant Science Division, University of Missouri, Columbia, Missouri, USA
- Plant Genetics Research, USDA Agricultural Research Service, Columbia, Missouri, USA
| | - Khalid Meksem
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, Illinois, 62901, USA
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee, 37996, USA
| |
Collapse
|
5
|
Shaheen N, Khan UM, Farooq A, Zafar UB, Khan SH, Ahmad S, Azhar MT, Atif RM, Rana IA, Seo H. Comparative transcriptomic and evolutionary analysis of FAD-like genes of Brassica species revealed their role in fatty acid biosynthesis and stress tolerance. BMC PLANT BIOLOGY 2023; 23:250. [PMID: 37173631 PMCID: PMC10176799 DOI: 10.1186/s12870-023-04232-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/17/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Fatty acid desaturases (FADs) are involved in regulating plant fatty acid composition by adding double bonds to growing hydrocarbon chain. Apart from regulating fatty acid composition FADs are of great importance, and are involved in stress responsiveness, plant development, and defense mechanisms. FADs have been extensively studied in crop plants, and are broadly classed into soluble and non-soluble fatty acids. However, FADs have not yet been characterized in Brassica carinata and its progenitors. RESULTS Here we have performed comparative genome-wide identification of FADs and have identified 131 soluble and 28 non-soluble FADs in allotetraploid B. carinata and its diploid parents. Most soluble FAD proteins are predicted to be resided in endomembrane system, whereas FAB proteins were found to be localized in chloroplast. Phylogenetic analysis classed the soluble and non-soluble FAD proteins into seven and four clusters, respectively. Positive type of selection seemed to be dominant in both FADs suggesting the impact of evolution on these gene families. Upstream regions of both FADs were enriched in stress related cis-regulatory elements and among them ABRE type of elements were in abundance. Comparative transcriptomic data analysis output highlighted that FADs expression reduced gradually in mature seed and embryonic tissues. Moreover, under heat stress during seed and embryo development seven genes remained up-regulated regardless of external stress. Three FADs were only induced under elevated temperature whereas five genes were upregulated under Xanthomonas campestris stress suggesting their involvement in abiotic and biotic stress response. CONCLUSIONS The current study provides insights into the evolution of FADs and their role in B. carinata under stress conditions. Moreover, the functional characterization of stress-related genes would exploit their utilization in future breeding programs of B. carinata and its progenitors.
Collapse
Affiliation(s)
- Nabeel Shaheen
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, 38000, Pakistan
- Center for Advanced Studies in Agriculture and Food security, University of Agriculture, Faisalabad, 38000, Pakistan
- Seed Center and Plant Genetic Resources Bank, Ministry of Environment, Water & Agriculture, Riyadh, 14712, Saudi Arabia
| | - Uzair Muhammad Khan
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, 38000, Pakistan
- Center for Advanced Studies in Agriculture and Food security, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Ayesha Farooq
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, 38000, Pakistan
- Center for Advanced Studies in Agriculture and Food security, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Ummul Buneen Zafar
- Center for Advanced Studies in Agriculture and Food security, University of Agriculture, Faisalabad, 38000, Pakistan
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Sultan Habibullah Khan
- Center for Advanced Studies in Agriculture and Food security, University of Agriculture, Faisalabad, 38000, Pakistan
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Shakeel Ahmad
- Seed Center and Plant Genetic Resources Bank, Ministry of Environment, Water & Agriculture, Riyadh, 14712, Saudi Arabia
| | - Muhammad Tehseen Azhar
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, 38000, Pakistan
- School of Agriculture Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Rana Muhammad Atif
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, 38000, Pakistan
- Center for Advanced Studies in Agriculture and Food security, University of Agriculture, Faisalabad, 38000, Pakistan
- Precision Agriculture and Analytics Lab, National Center in Big Data and Cloud Computing (NCBC), University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Iqrar Ahmad Rana
- Center for Advanced Studies in Agriculture and Food security, University of Agriculture, Faisalabad, 38000, Pakistan.
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan.
| | - Hyojin Seo
- Korea Soybean Research Institute, Jinju, 52840, Korea.
| |
Collapse
|
6
|
Bioengineering of Soybean Oil and Its Impact on Agronomic Traits. Int J Mol Sci 2023; 24:ijms24032256. [PMID: 36768578 PMCID: PMC9916542 DOI: 10.3390/ijms24032256] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Soybean is a major oil crop and is also a dominant source of nutritional protein. The 20% seed oil content (SOC) of soybean is much lower than that in most oil crops and the fatty acid composition of its native oil cannot meet the specifications for some applications in the food and industrial sectors. Considerable effort has been expended on soybean bioengineering to tailor fatty acid profiles and improve SOC. Although significant advancements have been made, such as the creation of high-oleic acid soybean oil and high-SOC soybean, those genetic modifications have some negative impacts on soybean production, for instance, impaired germination or low protein content. In this review, we focus on recent advances in the bioengineering of soybean oil and its effects on agronomic traits.
Collapse
|
7
|
Zhou J, Feng M, Zhang W, Kuang R, Zou Q, Su J, Yuan G. Oral administration of hepcidin and chitosan benefits growth, immunity, and gut microbiota in grass carp ( Ctenopharyngodon idella). Front Immunol 2022; 13:1075128. [PMID: 36591242 PMCID: PMC9798086 DOI: 10.3389/fimmu.2022.1075128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Intensive high-density culture patterns are causing an increasing number of bacterial diseases in fish. Hepcidin links iron metabolism with innate immunity in the process of resisting bacterial infection. In this study, the antibacterial effect of the combination of hepcidin (Cihep) and chitosan (CS) against Flavobacterium columnare was investigated. The dosing regimen was also optimized by adopting a feeding schedule of every three days and every seven days. After 56 days of feeding experiment, grass carp growth, immunity, and gut microbiota were tested. In vitro experiments, Cihep and CS can regulate iron metabolism and antibacterial activity, and that the combination of Cihep and CS had the best protective effect. In vivo experiments, Cihep and CS can improve the growth index of grass carp. After challenge with Flavobacterium columnare, the highest survival rate was observed in the Cihep+CS-3d group. By serum biochemical indicators assay and Prussian blue staining, Cihep and CS can increase iron accumulation and decrease serum iron levels. The contents of lysozyme and superoxide dismutase in Cihep+CS-3d group increased significantly. Meanwhile, Cihep and CS can significantly reduce the pathological damage of gill tissue. The 16S rRNA sequencing results showed that Cihep and CS can significantly increase the abundance and diversity of grass carp gut microbiota. These results indicated that the protective effect of consecutive 3-day feeding followed by a 3-day interval was better than that of consecutive 7-day feeding followed by a 7-day interval, and that the protective effect of Cihep in combination with chitosan was better than that of Cihep alone. Our findings optimize the feeding pattern for better oral administration of Cihep in aquaculture.
Collapse
Affiliation(s)
- Jiancheng Zhou
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China,Wuhan DaBeiNong (DBN) Aquaculture Technology Co. LTD, Wuhan, Hubei, China
| | - Mengzhen Feng
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Weixiang Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Rui Kuang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qi Zou
- Wuhan DaBeiNong (DBN) Aquaculture Technology Co. LTD, Wuhan, Hubei, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Gailing Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China,*Correspondence: Gailing Yuan,
| |
Collapse
|
8
|
Qu C, Li W, Yang Q, Xia Y, Lu P, Hu M. Metabolic mechanism of nitrogen modified atmosphere storage on delaying quality deterioration of rice grains. Food Chem X 2022; 16:100519. [DOI: 10.1016/j.fochx.2022.100519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022] Open
|
9
|
Lu L, Chen H, Wang X, Zhao Y, Yao X, Xiong B, Deng Y, Zhao D. Genome-level diversification of eight ancient tea populations in the Guizhou and Yunnan regions identifies candidate genes for core agronomic traits. HORTICULTURE RESEARCH 2021; 8:190. [PMID: 34376642 PMCID: PMC8355299 DOI: 10.1038/s41438-021-00617-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 05/18/2023]
Abstract
The ancient tea plant, as a precious natural resource and source of tea plant genetic diversity, is of great value for studying the evolutionary mechanism, diversification, and domestication of plants. The overall genetic diversity among ancient tea plants and the genetic changes that occurred during natural selection remain poorly understood. Here, we report the genome resequencing of eight different groups consisting of 120 ancient tea plants: six groups from Guizhou Province and two groups from Yunnan Province. Based on the 8,082,370 identified high-quality SNPs, we constructed phylogenetic relationships, assessed population structure, and performed genome-wide association studies (GWAS). Our phylogenetic analysis showed that the 120 ancient tea plants were mainly clustered into three groups and five single branches, which is consistent with the results of principal component analysis (PCA). Ancient tea plants were further divided into seven subpopulations based on genetic structure analysis. Moreover, it was found that the variation in ancient tea plants was not reduced by pressure from the external natural environment or artificial breeding (nonsynonymous/synonymous = 1.05). By integrating GWAS, selection signals, and gene function prediction, four candidate genes were significantly associated with three leaf traits, and two candidate genes were significantly associated with plant type. These candidate genes can be used for further functional characterization and genetic improvement of tea plants.
Collapse
Affiliation(s)
- Litang Lu
- College of Tea Science, Guizhou University, Guiyang, 550025, People's Republic of China
- College of Life Sciences and The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Hufang Chen
- College of Tea Science, Guizhou University, Guiyang, 550025, People's Republic of China
- College of Life Sciences and The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Xiaojing Wang
- College of Tea Science, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Yichen Zhao
- College of Tea Science, Guizhou University, Guiyang, 550025, People's Republic of China
- College of Life Sciences and The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Xinzhuan Yao
- College of Tea Science, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Biao Xiong
- College of Tea Science, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Yanli Deng
- College of Tea Science, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Degang Zhao
- College of Life Sciences and The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, People's Republic of China.
- Guizhou Academy of Agricultural Sciences, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
10
|
Usovsky M, Lakhssassi N, Patil GB, Vuong TD, Piya S, Hewezi T, Robbins RT, Stupar RM, Meksem K, Nguyen HT. Dissecting nematode resistance regions in soybean revealed pleiotropic effect of soybean cyst and reniform nematode resistance genes. THE PLANT GENOME 2021; 14:e20083. [PMID: 33724721 DOI: 10.1002/tpg2.20083] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Reniform nematode (RN, Rotylenchulus reniformis Linford & Oliveira) has emerged as one of the most important plant parasitic nematodes of soybean [Glycine max (L.) Merr.]. Planting resistant varieties is the most effective strategy for nematode management. The objective of this study was to identify quantitative trait loci (QTL) for RN resistance in an exotic soybean line, PI 438489B, using two linkage maps constructed from the Universal Soybean Linkage Panel (USLP 1.0) and next-generation whole-genome resequencing (WGRS) technology. Two QTL controlling RN resistance were identified-the soybean cyst nematode (SCN, Heterodera glycines) resistance gene GmSNAP18 at the rhg1 locus and its paralog GmSNAP11. Strong association between resistant phenotype and haplotypes of the GmSNAP11 and GmSNAP18 was observed. The results indicated that GmSNAP11 possibly could have epistatic effect on GmSNAP18, or vice versa, with the presence of a significant correlation in RN resistance of rhg1-a GmSNAP18 vs. rhg1-b GmSNAP18. Most importantly, our preliminary data suggested that GmSNAP18 and GmSNAP11 proteins physically interact in planta, suggesting that they belong to the same pathway for resistance. Unlike GmSNAP18, no indication of GmSNAP11 copy number variation was found. Moreover, gene-based single nucleotide polymorphism (SNP) markers were developed for rapid detection of RN or SCN resistance at these loci. Our analysis substantiates synergic interaction between GmSNAP11 and GmSNAP18 genes and confirms their roles in RN as well as SCN resistance. These results could contribute to a better understanding of evolution and subfunctionalization of genes conferring resistance to multiple nematode species and provide a framework for further investigations.
Collapse
Affiliation(s)
- Mariola Usovsky
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA
| | - Naoufal Lakhssassi
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL, USA
| | - Gunvant B Patil
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, USA
| | - Tri D Vuong
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA
| | - Sarbottam Piya
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Robert T Robbins
- Department of Plant Pathology, University of Arkansas, Fayetteville, AR, USA
| | - Robert M Stupar
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA
| | - Khalid Meksem
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL, USA
| | - Henry T Nguyen
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
11
|
Lakhssassi N, Lopes-Caitar VS, Knizia D, Cullen MA, Badad O, El Baze A, Zhou Z, Embaby MG, Meksem J, Lakhssassi A, Chen P, AbuGhazaleh A, Vuong TD, Nguyen HT, Hewezi T, Meksem K. TILLING-by-Sequencing + Reveals the Role of Novel Fatty Acid Desaturases (GmFAD2-2s) in Increasing Soybean Seed Oleic Acid Content. Cells 2021; 10:1245. [PMID: 34069320 PMCID: PMC8158723 DOI: 10.3390/cells10051245] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/15/2021] [Accepted: 05/16/2021] [Indexed: 11/17/2022] Open
Abstract
Soybean is the second largest source of oil worldwide. Developing soybean varieties with high levels of oleic acid is a primary goal of the soybean breeders and industry. Edible oils containing high level of oleic acid and low level of linoleic acid are considered with higher oxidative stability and can be used as a natural antioxidant in food stability. All developed high oleic acid soybeans carry two alleles; GmFAD2-1A and GmFAD2-1B. However, when planted in cold soil, a possible reduction in seed germination was reported when high seed oleic acid derived from GmFAD2-1 alleles were used. Besides the soybean fatty acid desaturase (GmFAD2-1) subfamily, the GmFAD2-2 subfamily is composed of five members, including GmFAD2-2A, GmFAD2-2B, GmFAD2-2C, GmFAD2-2D, and GmFAD2-2E. Segmental duplication of GmFAD2-1A/GmFAD2-1B, GmFAD2-2A/GmFAD2-2C, GmFAD2-2A/GmFAD2-2D, and GmFAD2-2D/GmFAD2-2C have occurred about 10.65, 27.04, 100.81, and 106.55 Mya, respectively. Using TILLING-by-Sequencing+ technology, we successfully identified 12, 8, 10, 9, and 19 EMS mutants at the GmFAD2-2A, GmFAD2-2B, GmFAD2-2C, GmFAD2-2D, and GmFAD2-2E genes, respectively. Functional analyses of newly identified mutants revealed unprecedented role of the five GmFAD2-2A, GmFAD2-2B, GmFAD2-2C, GmFAD2-2D, and GmFAD2-2E members in controlling the seed oleic acid content. Most importantly, unlike GmFAD2-1 members, subcellular localization revealed that members of the GmFAD2-2 subfamily showed a cytoplasmic localization, which may suggest the presence of an alternative fatty acid desaturase pathway in soybean for converting oleic acid content without substantially altering the traditional plastidial/ER fatty acid production.
Collapse
Affiliation(s)
- Naoufal Lakhssassi
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (D.K.); (M.A.C.); (O.B.); (A.E.B.); (Z.Z.)
| | | | - Dounya Knizia
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (D.K.); (M.A.C.); (O.B.); (A.E.B.); (Z.Z.)
| | - Mallory A. Cullen
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (D.K.); (M.A.C.); (O.B.); (A.E.B.); (Z.Z.)
| | - Oussama Badad
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (D.K.); (M.A.C.); (O.B.); (A.E.B.); (Z.Z.)
| | - Abdelhalim El Baze
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (D.K.); (M.A.C.); (O.B.); (A.E.B.); (Z.Z.)
| | - Zhou Zhou
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (D.K.); (M.A.C.); (O.B.); (A.E.B.); (Z.Z.)
| | - Mohamed G. Embaby
- Department of Animal Science, Food, and Nutrition, Southern Illinois University, Carbondale, IL 62901, USA; (M.G.E.); (A.A.)
| | - Jonas Meksem
- Trinity College of Arts and Sciences, Duke University, Durham, NC 27708, USA;
| | - Aicha Lakhssassi
- Faculty of Sciences and Technologies, University of Lorraine, 54506 Nancy, France;
| | - Pengyin Chen
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA; (P.C.); (T.D.V.); (H.T.N.)
| | - Amer AbuGhazaleh
- Department of Animal Science, Food, and Nutrition, Southern Illinois University, Carbondale, IL 62901, USA; (M.G.E.); (A.A.)
| | - Tri D. Vuong
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA; (P.C.); (T.D.V.); (H.T.N.)
| | - Henry T. Nguyen
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA; (P.C.); (T.D.V.); (H.T.N.)
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA; (V.S.L.-C.); (T.H.)
| | - Khalid Meksem
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (D.K.); (M.A.C.); (O.B.); (A.E.B.); (Z.Z.)
| |
Collapse
|
12
|
Lakhssassi N, Zhou Z, Cullen MA, Badad O, El Baze A, Chetto O, Embaby MG, Knizia D, Liu S, Neves LG, Meksem K. TILLING-by-Sequencing + to Decipher Oil Biosynthesis Pathway in Soybeans: A New and Effective Platform for High-Throughput Gene Functional Analysis. Int J Mol Sci 2021; 22:4219. [PMID: 33921707 PMCID: PMC8073088 DOI: 10.3390/ijms22084219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 12/25/2022] Open
Abstract
Reverse genetic approaches have been widely applied to study gene function in crop species; however, these techniques, including gel-based TILLING, present low efficiency to characterize genes in soybeans due to genome complexity, gene duplication, and the presence of multiple gene family members that share high homology in their DNA sequence. Chemical mutagenesis emerges as a genetically modified-free strategy to produce large-scale soybean mutants for economically important traits improvement. The current study uses an optimized high-throughput TILLING by target capture sequencing technology, or TILLING-by-Sequencing+ (TbyS+), coupled with universal bioinformatic tools to identify population-wide mutations in soybeans. Four ethyl methanesulfonate mutagenized populations (4032 mutant families) have been screened for the presence of induced mutations in targeted genes. The mutation types and effects have been characterized for a total of 138 soybean genes involved in soybean seed composition, disease resistance, and many other quality traits. To test the efficiency of TbyS+ in complex genomes, we used soybeans as a model with a focus on three desaturase gene families, GmSACPD, GmFAD2, and GmFAD3, that are involved in the soybean fatty acid biosynthesis pathway. We successfully isolated mutants from all the six gene family members. Unsurprisingly, most of the characterized mutants showed significant changes either in their stearic, oleic, or linolenic acids. By using TbyS+, we discovered novel sources of soybean oil traits, including high saturated and monosaturated fatty acids in addition to low polyunsaturated fatty acid contents. This technology provides an unprecedented platform for highly effective screening of polyploid mutant populations and functional gene analysis. The obtained soybean mutants from this study can be used in subsequent soybean breeding programs for improved oil composition traits.
Collapse
Affiliation(s)
- Naoufal Lakhssassi
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (Z.Z.); (M.A.C.); (O.B.); (A.E.B.); (O.C.); (D.K.); (S.L.)
| | - Zhou Zhou
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (Z.Z.); (M.A.C.); (O.B.); (A.E.B.); (O.C.); (D.K.); (S.L.)
| | - Mallory A. Cullen
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (Z.Z.); (M.A.C.); (O.B.); (A.E.B.); (O.C.); (D.K.); (S.L.)
| | - Oussama Badad
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (Z.Z.); (M.A.C.); (O.B.); (A.E.B.); (O.C.); (D.K.); (S.L.)
| | - Abdelhalim El Baze
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (Z.Z.); (M.A.C.); (O.B.); (A.E.B.); (O.C.); (D.K.); (S.L.)
| | - Oumaima Chetto
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (Z.Z.); (M.A.C.); (O.B.); (A.E.B.); (O.C.); (D.K.); (S.L.)
| | - Mohamed G. Embaby
- Department of Animal Science, Food, and Nutrition, Southern Illinois University, Carbondale, IL 62901, USA;
| | - Dounya Knizia
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (Z.Z.); (M.A.C.); (O.B.); (A.E.B.); (O.C.); (D.K.); (S.L.)
| | - Shiming Liu
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (Z.Z.); (M.A.C.); (O.B.); (A.E.B.); (O.C.); (D.K.); (S.L.)
| | | | - Khalid Meksem
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (Z.Z.); (M.A.C.); (O.B.); (A.E.B.); (O.C.); (D.K.); (S.L.)
| |
Collapse
|
13
|
Lakhssassi N, Zhou Z, Liu S, Piya S, Cullen MA, El Baze A, Knizia D, Patil GB, Badad O, Embaby MG, Meksem J, Lakhssassi A, AbuGhazaleh A, Hewezi T, Meksem K. Soybean TILLING-by-Sequencing+ reveals the role of novel GmSACPD members in unsaturated fatty acid biosynthesis while maintaining healthy nodules. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6969-6987. [PMID: 32898219 DOI: 10.1093/jxb/eraa402] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/27/2020] [Indexed: 05/07/2023]
Abstract
Developing soybean lines with high levels of stearic acid is a primary goal of the soybean industry. Most high-stearic-acid soybeans carry different GmSACPD-C mutated alleles. However, due to the dual role of GmSACPD-C in seeds and nodule development, all derived deleterious GmSACPD-C mutant alleles are of extremely poor agronomic value because of defective nodulation. The soybean stearoyl-acyl carrier protein desaturase (GmSACPD) gene family is composed of five members. Comparative genomics analysis indicated that SACPD genes were duplicated and derived from a common ancestor that is still present in chlorophytic algae. Synteny analysis showed the presence of segment duplications between GmSACPD-A/GmSACPD-B, and GmSACPD-C/GmSACPD-D. GmSACPD-E was not contained in any duplicated segment and may be the result of tandem duplication. We developed a TILLING by Target Capture Sequencing (Tilling-by-Sequencing+) technology, a versatile extension of the conventional TILLING by sequencing, and successfully identified 12, 14, and 18 ethyl methanesulfonate mutants at the GmSACPD-A, GmSACPD-B, and GmSACPD-D genes, respectively. Functional analysis of all identified mutants revealed an unprecedented role of GmSACPD-A, GmSACPD-B, and GmSACPD-D in unsaturated fatty acid biosynthesis without affecting nodule development and structure. This discovery will positively impact the development of high-stearic-acid lines to enhance soybean nutritional value without potential developmental tradeoffs.
Collapse
Affiliation(s)
- Naoufal Lakhssassi
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL, USA
| | - Zhou Zhou
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL, USA
| | - Shiming Liu
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL, USA
| | - Sarbottam Piya
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Mallory A Cullen
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL, USA
| | - Abdelhalim El Baze
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL, USA
| | - Dounya Knizia
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL, USA
| | - Gunvant B Patil
- Institute for Genomics of Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, USA
| | - Oussama Badad
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL, USA
| | - Mohamed G Embaby
- Department of Animal Science, Food, and Nutrition, Southern Illinois University, Carbondale, IL, USA
| | - Jonas Meksem
- Trinity College of Arts and Sciences, Duke University, Durham, NC, USA
| | - Aicha Lakhssassi
- Faculty of Sciences and Technologies, University of Lorraine, Nancy, France
| | - Amer AbuGhazaleh
- Department of Animal Science, Food, and Nutrition, Southern Illinois University, Carbondale, IL, USA
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Khalid Meksem
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL, USA
| |
Collapse
|
14
|
Abstract
This article comments on:Lakhssassi N, Zhou Z, Liu S, Piya S, Cullen MA, El Baze A, Knizia D, Patil GB, Badad O, Embaby MG, Meksem J, Lakhssassi A, Ghazaleh A, Hewezi T, Meksem K. 2020. Soybean TILLING-by-sequencing+ reveals the role of novel GmSACPD members in unsaturated fatty acid biosynthesis while maintaining healthy nodules. Journal of Experimental Botany 71, 6969–6987.
Collapse
Affiliation(s)
- Miguel Alfonso
- Department of Plant Nutrition, EEAD-CSIC, Avda de Montañana, Zaragoza, Spain
| |
Collapse
|
15
|
Kazaz S, Barthole G, Domergue F, Ettaki H, To A, Vasselon D, De Vos D, Belcram K, Lepiniec L, Baud S. Differential Activation of Partially Redundant Δ9 Stearoyl-ACP Desaturase Genes Is Critical for Omega-9 Monounsaturated Fatty Acid Biosynthesis During Seed Development in Arabidopsis. THE PLANT CELL 2020; 32:3613-3637. [PMID: 32958563 PMCID: PMC7610281 DOI: 10.1105/tpc.20.00554] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/04/2020] [Accepted: 09/16/2020] [Indexed: 05/20/2023]
Abstract
The spatiotemporal pattern of deposition, final amount, and relative abundance of oleic acid (cis-ω-9 C18:1) and its derivatives in the different lipid fractions of the seed of Arabidopsis (Arabidopsis thaliana) indicates that omega-9 monoenes are synthesized at high rates in this organ. Accordingly, we observed that four Δ9 stearoyl-ACP desaturase (SAD)-coding genes (FATTY ACID BIOSYNTHESIS2 [FAB2], ACYL-ACYL CARRIER PROTEIN5 [AAD5], AAD1, and AAD6) are transcriptionally induced in seeds. We established that the three most highly expressed ones are directly activated by the WRINKLED1 transcription factor. We characterized a collection of 30 simple, double, triple, and quadruple mutants affected in SAD-coding genes and thereby revealed the functions of these desaturases throughout seed development. Production of oleic acid by FAB2 and AAD5 appears to be critical at the onset of embryo morphogenesis. Double homozygous plants from crossing fab2 and aad5 could never be obtained, and further investigations revealed that the double mutation results in the arrest of embryo development before the globular stage. During later stages of seed development, these two SADs, together with AAD1, participate in the elaboration of the embryonic cuticle, a barrier essential for embryo-endosperm separation during the phase of invasive embryo growth through the endosperm. This study also demonstrates that the four desaturases redundantly contribute to storage lipid production during the maturation phase.
Collapse
Affiliation(s)
- Sami Kazaz
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Guillaume Barthole
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Frédéric Domergue
- Université de Bordeaux, Laboratoire de Biogenèse Membranaire, UMR 5200, 33882 Villenave d'Ornon, France
- CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, 33882 Villenave d'Ornon, France
| | - Hasna Ettaki
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Alexandra To
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Damien Vasselon
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Delphine De Vos
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Katia Belcram
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Loïc Lepiniec
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Sébastien Baud
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| |
Collapse
|
16
|
Lakhssassi N, Baharlouei A, Meksem J, Hamilton-Brehm SD, Lightfoot DA, Meksem K, Liang Y. EMS-Induced Mutagenesis of Clostridium carboxidivorans for Increased Atmospheric CO 2 Reduction Efficiency and Solvent Production. Microorganisms 2020; 8:microorganisms8081239. [PMID: 32824093 PMCID: PMC7464951 DOI: 10.3390/microorganisms8081239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/04/2020] [Accepted: 08/10/2020] [Indexed: 11/16/2022] Open
Abstract
Clostridium carboxidivorans (P7) is one of the most important solvent-producing bacteria capable of fermenting syngas (CO, CO2, and H2) to produce chemical commodities when grown as an autotroph. This study aimed to develop ethyl methanesulfonate (EMS)-induced P7 mutants that were capable of growing in the presence of CO2 as a unique source of carbon with increased solvent formation and atmospheric CO2 reduction to limit global warming. Phenotypic analysis including growth and end product characterization of the P7 wild type (WT) demonstrated that this strain grew better at 25 °C than 37 °C when CO2 served as the only source of carbon. In the current study, 55 mutagenized P7-EMS mutants were developed by using 100 mM and 120 mM EMS. Interestingly, using a forward genetic approach, three out of the 55 P7-EMS mutants showed a significant increase in ethanol, butyrate, and butanol production. The three P7-EMS mutants presented on average a 4.68-fold increase in concentrations of ethanol when compared to the P7-WT. Butyric acid production from 3 P7-EMS mutants contained an average of a 3.85 fold increase over the levels observed in the P7-WT cultures under the same conditions (CO2 only). In addition, one P7-EMS mutant presented butanol production (0.23 ± 0.02 g/L), which was absent from the P7-WT under CO2 conditions. Most of the P7-EMS mutants showed stability of the obtained end product traits after three transfers. Most importantly, the amount of reduced atmospheric CO2 increased up to 8.72 times (0.21 g/Abs) for ethanol production and up to 8.73 times higher (0.16 g/Abs) for butyrate than the levels contained in the P7-WT. Additionally, to produce butanol, the P7-EMSIII-J mutant presented 0.082 g/Abs of CO2 reduction. This study demonstrated the feasibility and effectiveness of employing EMS mutagenesis in generating solvent-producing anaerobic bacteria mutants with improved and novel product formation and increased atmospheric CO2 reduction efficiency.
Collapse
Affiliation(s)
- Naoufal Lakhssassi
- Department of Civil and Environmental Engineering, 1230 Lincoln Drive, Southern Illinois University Carbondale, Carbondale, IL 62901, USA; (N.L.); (A.B.)
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA;
| | - Azam Baharlouei
- Department of Civil and Environmental Engineering, 1230 Lincoln Drive, Southern Illinois University Carbondale, Carbondale, IL 62901, USA; (N.L.); (A.B.)
| | - Jonas Meksem
- Trinity College of Arts and Sciences, Duke University, Durham, NC 27708, USA;
| | | | - David A. Lightfoot
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA;
| | - Khalid Meksem
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA;
- Correspondence: (K.M.); (Y.L.)
| | - Yanna Liang
- Department of Civil and Environmental Engineering, 1230 Lincoln Drive, Southern Illinois University Carbondale, Carbondale, IL 62901, USA; (N.L.); (A.B.)
- Department of Environmental and Sustainable Engineering, 1400 Washington Ave, State University of New York at Albany, Albany, NY 12222, USA
- Correspondence: (K.M.); (Y.L.)
| |
Collapse
|
17
|
Zhang G, Ahmad MZ, Chen B, Manan S, Zhang Y, Jin H, Wang X, Zhao J. Lipidomic and transcriptomic profiling of developing nodules reveals the essential roles of active glycolysis and fatty acid and membrane lipid biosynthesis in soybean nodulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1351-1371. [PMID: 32412123 DOI: 10.1111/tpj.14805] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/16/2020] [Accepted: 04/28/2020] [Indexed: 05/11/2023]
Abstract
Symbiotic rhizobia-legume interactions are energy-demanding processes, and the carbon supply from host cells that is critically required for nodulation and nitrogen fixation is not fully understood. Investigation of the lipidomic and carbohydrate profiles with the transcriptome of developing nodules revealed highly activated glycolysis, fatty acid (FA), 2-monoacylglycerol (2-MAG), and membrane lipid biosynthesis and transport during nodule development. RNA-sequence profiling of metabolic genes in roots and developing nodules highlighted the enhanced expression of genes involved in the biosynthesis and transport of FAs, membrane lipids, and 2-MAG in rhizobia-soybean symbioses via the RAML-WRI-FatM-GPAT-STRL pathway, which is similar to that in legume-arbuscular mycorrhizal fungi symbiosis. The essential roles of the metabolic pathway during soybean nodulation were further supported by analysis of transgenic hairy roots overexpressing soybean GmWRI1b-OE and GmLEC2a-OE. GmLEC2a-OE hairy roots produced fewer nodules, in contrast to GmWRI1b-OE hairy roots. GmLEC2a-OE hairy roots displayed different or even opposite expression patterns of the genes involved in glycolysis and the synthesis of FAs, 2-MAG, TAG, and membrane lipids compared to GmWRI1b-OE hairy roots. Glycolysis, FA and membrane lipid biosynthesis were repressed in GmLEC2a-OE but increased in GmWRI1b-OE hairy roots, which may account for the reduced nodulation in GmLEC2a-OE hairy roots but increased nodulation in GmWRI1b-OE hairy roots. These data show that active FA, 2-MAG and membrane lipid biosynthesis are essential for nodulation and rhizobia-soybean symbioses. These data shed light on essential and complex lipid metabolism for soybean nodulation and nodule development, laying the foundation for the future detailed investigation of soybean nodulation.
Collapse
Affiliation(s)
- Gaoyang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Muhammad Z Ahmad
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Beibei Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sehrish Manan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuliang Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huanan Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuemin Wang
- Department of Biology, University of Missouri, St Louis, MO, 63121, USA
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
18
|
Agtuca BJ, Stopka SA, Evans S, Samarah L, Liu Y, Xu D, Stacey MG, Koppenaal DW, Paša-Tolić L, Anderton CR, Vertes A, Stacey G. Metabolomic profiling of wild-type and mutant soybean root nodules using laser-ablation electrospray ionization mass spectrometry reveals altered metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1937-1958. [PMID: 32410239 DOI: 10.1111/tpj.14815] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 04/05/2020] [Accepted: 04/17/2020] [Indexed: 05/18/2023]
Abstract
The establishment of the nitrogen-fixing symbiosis between soybean and Bradyrhizobium japonicum is a complex process. To document the changes in plant metabolism as a result of symbiosis, we utilized laser ablation electrospray ionization-mass spectrometry (LAESI-MS) for in situ metabolic profiling of wild-type nodules, nodules infected with a B. japonicum nifH mutant unable to fix nitrogen, nodules doubly infected by both strains, and nodules formed on plants mutated in the stearoyl-acyl carrier protein desaturase (sacpd-c) gene, which were previously shown to have an altered nodule ultrastructure. The results showed that the relative abundance of fatty acids, purines, and lipids was significantly changed in response to the symbiosis. The nifH mutant nodules had elevated levels of jasmonic acid, correlating with signs of nitrogen deprivation. Nodules resulting from the mixed inoculant displayed similar, overlapping metabolic distributions within the sectors of effective (fix+ ) and ineffective (nifH mutant, fix- ) endosymbionts. These data are inconsistent with the notion that plant sanctioning is cell autonomous. Nodules lacking sacpd-c displayed an elevation of soyasaponins and organic acids in the central necrotic regions. The present study demonstrates the utility of LAESI-MS for high-throughput screening of plant phenotypes. Overall, nodules disrupted in the symbiosis were elevated in metabolites related to plant defense.
Collapse
Affiliation(s)
- Beverly J Agtuca
- Divisions of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Sylwia A Stopka
- Department of Chemistry, The George Washington University, Washington, DC, 20052, USA
| | - Sterling Evans
- Divisions of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Laith Samarah
- Department of Chemistry, The George Washington University, Washington, DC, 20052, USA
| | - Yang Liu
- Department of Electrical Engineering and Computer Science, Informatics Institute and Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Dong Xu
- Department of Electrical Engineering and Computer Science, Informatics Institute and Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Minviluz G Stacey
- Divisions of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - David W Koppenaal
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Christopher R Anderton
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Akos Vertes
- Department of Chemistry, The George Washington University, Washington, DC, 20052, USA
| | - Gary Stacey
- Divisions of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
19
|
Lakhssassi N, Piya S, Knizia D, El Baze A, Cullen MA, Meksem J, Lakhssassi A, Hewezi T, Meksem K. Mutations at the Serine Hydroxymethyltransferase Impact its Interaction with a Soluble NSF Attachment Protein and a Pathogenesis-Related Protein in Soybean. Vaccines (Basel) 2020; 8:vaccines8030349. [PMID: 32629961 PMCID: PMC7563484 DOI: 10.3390/vaccines8030349] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 01/01/2023] Open
Abstract
Resistance to soybean cyst nematodes (SCN) in “Peking-type” resistance is bigenic, requiring Rhg4-a and rhg1-a. Rhg4-a encodes a serine hydroxymethyltransferase (GmSHMT08) and rhg1-a encodes a soluble NSF attachment protein (GmSNAP18). Recently, it has been shown that a pathogenesis-related protein, GmPR08-Bet VI, potentiates the interaction between GmSHMT08 and GmSNAP18. Mutational analysis using spontaneously occurring and ethyl methanesulfonate (EMS)-induced mutations was carried out to increase our knowledge of the interacting GmSHMT08/GmSNAP18/GmPR08-Bet VI multi-protein complex. Mutations affecting the GmSHMT08 protein structure (dimerization and tetramerization) and interaction sites with GmSNAP18 and GmPR08-Bet VI proteins were found to impact the multi-protein complex. Interestingly, mutations affecting the PLP/THF substrate binding and catalysis did not affect the multi-protein complex, although they resulted in increased susceptibility to SCN. Most importantly, GmSHMT08 and GmSNAP18 from PI88788 were shown to interact within the cell, being potentiated in the presence of GmPR08-Bet VI. In addition, we have shown the presence of incompatibility between the GmSNAP18 (rhg1-b) of PI88788 and GmSHMT08 (Rhg4-a) from Peking. Components of the reactive oxygen species (ROS) pathway were shown to be induced in the SCN incompatible reaction and were mapped to QTLs for resistance to SCN using different mapping populations.
Collapse
Affiliation(s)
- Naoufal Lakhssassi
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (D.K.); (A.E.B.); (M.A.C.)
| | - Sarbottam Piya
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA; (S.P.); (T.H.)
| | - Dounya Knizia
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (D.K.); (A.E.B.); (M.A.C.)
| | - Abdelhalim El Baze
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (D.K.); (A.E.B.); (M.A.C.)
| | - Mallory A. Cullen
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (D.K.); (A.E.B.); (M.A.C.)
| | - Jonas Meksem
- Trinity College of Arts and Sciences, Duke University, Durham, NC 27708, USA;
| | - Aicha Lakhssassi
- Faculty of Sciences and Technologies, University of Lorraine, 54000 Nancy, France;
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA; (S.P.); (T.H.)
| | - Khalid Meksem
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (D.K.); (A.E.B.); (M.A.C.)
- Correspondence: ; Tel.: +1-618-453-3103
| |
Collapse
|
20
|
Chen B, Zhang G, Li P, Yang J, Guo L, Benning C, Wang X, Zhao J. Multiple GmWRI1s are redundantly involved in seed filling and nodulation by regulating plastidic glycolysis, lipid biosynthesis and hormone signalling in soybean (Glycine max). PLANT BIOTECHNOLOGY JOURNAL 2020; 18:155-171. [PMID: 31161718 PMCID: PMC6920143 DOI: 10.1111/pbi.13183] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/04/2019] [Accepted: 05/21/2019] [Indexed: 05/09/2023]
Abstract
It has been reported that lipid biosynthesis in plant host root cells plays critical roles in legume-fungal or -rhizobial symbioses, but little is known about its regulatory mechanism in legume-rhizobia interaction. Soybean WRINKLED1 (WRI1) a and b, with their alternative splicing (AS) products a' and b', are highly expressed in developing seeds and nodules, but their functions in soybean nodulation are not known. GmWRI1a and b differently promoted triacylglycerol (TAG) accumulation in both Arabidopsis wild-type and wri1 mutant seeds and when they ectopically expressed in the soybean hairy roots. Transcriptome analysis revealed that 15 genes containing AW boxes in their promoters were targeted by GmWRI1s, including genes involved in glycolysis, fatty acid (FA) and TAG biosynthesis. GmWRI1a, GmWRI1b and b' differentially transactivated most targeted genes. Overexpression of GmWRI1s affected phospholipid and galactolipid synthesis, soluble sugar and starch contents and led to increased nodule numbers, whereas GmWRI1 knockdown hairy roots interfered root glycolysis and lipid biosynthesis and resulted in fewer nodules. These phenomena in GmWRI1 mutants coincided with the altered expression of nodulation genes. Thus, GmWRI1-regulated starch degradation, glycolysis and lipid biosynthesis were critical for nodulation. GmWRI1 mutants also altered auxin and other hormone-related biosynthesis and hormone-related genes, by which GmWRI1s may affect nodule development. The study expands the views for pleiotropic effects of WRI1s in regulating soybean seed filling and root nodulation.
Collapse
Affiliation(s)
- Beibei Chen
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Gaoyang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and TechnologyAnhui Agricultural UniversityHefeiChina
| | - Penghui Li
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and TechnologyAnhui Agricultural UniversityHefeiChina
| | - Jihong Yang
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and TechnologyAnhui Agricultural UniversityHefeiChina
| | - Liang Guo
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Christoph Benning
- MSU‐DOE Plant Research LaboratoryMichigan State UniversityEast LansingMIUSA
| | - Xuemin Wang
- Department of BiologyUniversity of MissouriSt. LouisMOUSA
- Donald Danforth Plant Science CenterSt. LouisMOUSA
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and TechnologyAnhui Agricultural UniversityHefeiChina
| |
Collapse
|
21
|
Zhou Z, Lakhssassi N, Cullen MA, El Baz A, Vuong TD, Nguyen HT, Meksem K. Assessment of Phenotypic Variations and Correlation among Seed Composition Traits in Mutagenized Soybean Populations. Genes (Basel) 2019; 10:E975. [PMID: 31783508 PMCID: PMC6947669 DOI: 10.3390/genes10120975] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/22/2019] [Accepted: 11/22/2019] [Indexed: 01/31/2023] Open
Abstract
Soybean [Glycine max (L.) Merr.] seed is a valuable source of protein and oil worldwide. Traditionally, the natural variations were heavily used in conventional soybean breeding programs to select desired traits. However, traditional plant breeding is encumbered with low frequencies of spontaneous mutations. In mutation breeding, genetic variations from induced mutations provide abundant sources of alterations in important soybean traits; this facilitated the development of soybean germplasm with modified seed composition traits to meet the different needs of end users. In this study, a total of 2366 'Forrest'-derived M2 families were developed for both forward and reverse genetic studies. A subset of 881 M3 families was forward genetically screened to measure the contents of protein, oil, carbohydrates, and fatty acids. A total of 14 mutants were identified to have stable seed composition phenotypes observed in both M3 and M4 generations. Correlation analyses have been conducted among ten seed composition traits and compared to a collection of 103 soybean germplasms. Mainly, ethyl methanesulfonate (EMS) mutagenesis had a strong impact on the seed-composition correlation that was observed among the 103 soybean germplasms, which offers multiple benefits for the soybean farmers and industry to breed for desired multiple seed phenotypes.
Collapse
Affiliation(s)
- Zhou Zhou
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (Z.Z.); (N.L.); (M.A.C.); (A.E.B.)
| | - Naoufal Lakhssassi
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (Z.Z.); (N.L.); (M.A.C.); (A.E.B.)
| | - Mallory A. Cullen
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (Z.Z.); (N.L.); (M.A.C.); (A.E.B.)
| | - Abdelhalim El Baz
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (Z.Z.); (N.L.); (M.A.C.); (A.E.B.)
| | - Tri D. Vuong
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA; (T.D.V.); (H.T.N.)
| | - Henry T. Nguyen
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA; (T.D.V.); (H.T.N.)
| | - Khalid Meksem
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (Z.Z.); (N.L.); (M.A.C.); (A.E.B.)
| |
Collapse
|
22
|
Patil GB, Lakhssassi N, Wan J, Song L, Zhou Z, Klepadlo M, Vuong TD, Stec AO, Kahil SS, Colantonio V, Valliyodan B, Rice JH, Piya S, Hewezi T, Stupar RM, Meksem K, Nguyen HT. Whole-genome re-sequencing reveals the impact of the interaction of copy number variants of the rhg1 and Rhg4 genes on broad-based resistance to soybean cyst nematode. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1595-1611. [PMID: 30688400 PMCID: PMC6662113 DOI: 10.1111/pbi.13086] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 05/19/2023]
Abstract
Soybean cyst nematode (SCN) is the most devastating plant-parasitic nematode. Most commercial soybean varieties with SCN resistance are derived from PI88788. Resistance derived from PI88788 is breaking down due to narrow genetic background and SCN population shift. PI88788 requires mainly the rhg1-b locus, while 'Peking' requires rhg1-a and Rhg4 for SCN resistance. In the present study, whole genome re-sequencing of 106 soybean lines was used to define the Rhg haplotypes and investigate their responses to the SCN HG-Types. The analysis showed a comprehensive profile of SNPs and copy number variations (CNV) at these loci. CNV of rhg1 (GmSNAP18) only contributed towards resistance in lines derived from PI88788 and 'Cloud'. At least 5.6 copies of the PI88788-type rhg1 were required to confer SCN resistance, regardless of the Rhg4 (GmSHMT08) haplotype. However, when the GmSNAP18 copies dropped below 5.6, a 'Peking'-type GmSHMT08 haplotype was required to ensure SCN resistance. This points to a novel mechanism of epistasis between GmSNAP18 and GmSHMT08 involving minimum requirements for copy number. The presence of more Rhg4 copies confers resistance to multiple SCN races. Moreover, transcript abundance of the GmSHMT08 in root tissue correlates with more copies of the Rhg4 locus, reinforcing SCN resistance. Finally, haplotype analysis of the GmSHMT08 and GmSNAP18 promoters inferred additional levels of the resistance mechanism. This is the first report revealing the genetic basis of broad-based resistance to SCN and providing new insight into epistasis, haplotype-compatibility, CNV, promoter variation and its impact on broad-based disease resistance in plants.
Collapse
Affiliation(s)
- Gunvant B. Patil
- Division of Plant SciencesUniversity of MissouriColumbiaMOUSA
- Department Agronomy and Plant GeneticsUniversity of MinnesotaSt. PaulMNUSA
| | - Naoufal Lakhssassi
- Department of Plant, Soil and Agricultural SystemsSouthern Illinois UniversityCarbondaleILUSA
| | - Jinrong Wan
- Division of Plant SciencesUniversity of MissouriColumbiaMOUSA
| | - Li Song
- Division of Plant SciencesUniversity of MissouriColumbiaMOUSA
| | - Zhou Zhou
- Department of Plant, Soil and Agricultural SystemsSouthern Illinois UniversityCarbondaleILUSA
| | | | - Tri D. Vuong
- Division of Plant SciencesUniversity of MissouriColumbiaMOUSA
| | - Adrian O. Stec
- Department Agronomy and Plant GeneticsUniversity of MinnesotaSt. PaulMNUSA
| | - Sondus S. Kahil
- Department of Plant, Soil and Agricultural SystemsSouthern Illinois UniversityCarbondaleILUSA
| | - Vincent Colantonio
- Department of Plant, Soil and Agricultural SystemsSouthern Illinois UniversityCarbondaleILUSA
| | - Babu Valliyodan
- Division of Plant SciencesUniversity of MissouriColumbiaMOUSA
| | - J. Hollis Rice
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Sarbottam Piya
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Tarek Hewezi
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Robert M. Stupar
- Department Agronomy and Plant GeneticsUniversity of MinnesotaSt. PaulMNUSA
| | - Khalid Meksem
- Department of Plant, Soil and Agricultural SystemsSouthern Illinois UniversityCarbondaleILUSA
| | - Henry T. Nguyen
- Division of Plant SciencesUniversity of MissouriColumbiaMOUSA
| |
Collapse
|
23
|
Lakhssassi N, Patil G, Piya S, Zhou Z, Baharlouei A, Kassem MA, Lightfoot DA, Hewezi T, Barakat A, Nguyen HT, Meksem K. Genome reorganization of the GmSHMT gene family in soybean showed a lack of functional redundancy in resistance to soybean cyst nematode. Sci Rep 2019; 9:1506. [PMID: 30728404 PMCID: PMC6365578 DOI: 10.1038/s41598-018-37815-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/13/2018] [Indexed: 12/21/2022] Open
Abstract
In soybeans, eighteen members constitute the serine hydroxymethyltransferase (GmSHMT) gene family, of which the cytosolic-targeted GmSHMT08c member has been reported to mediate resistance to soybean cyst nematode (SCN). This work presents a comprehensive study of the SHMT gene family members, including synteny, phylogeny, subcellular localizations, haplotypes, protein homology modeling, mutational, and expression analyses. Phylogenetic analysis showed that SHMT genes are divided into four classes reflecting their subcellular distribution (cytosol, nucleus, mitochondrion, and chloroplast). Subcellular localization of selected GmSHMT members supports their in-silico predictions and phylogenetic distribution. Expression and functional analyses showed that GmSHMT genes display many overlapping, but some divergent responses during SCN infection. Furthermore, mutational analysis reveals that all isolated EMS mutants that lose their resistance to SCN carry missense and nonsense mutations at the GmSHMT08c, but none of the Gmshmt08c mutants carried mutations in the other GmSHMT genes. Haplotype clustering analysis using the whole genome resequencing data from a collection of 106 diverse soybean germplams (15X) was performed to identify allelic variants and haplotypes within the GmSHMT gene family. Interestingly, only the cytosolic-localized GmSHMT08c presented SNP clusters that were associated with SCN resistance, supporting our mutational analysis. Although eight GmSHMT members respond to the nematode infestation, functional and mutational analysis has shown the absence of functional redundancy in resistance to SCN. Structural analysis and protein homology modeling showed the presence of spontaneous mutations at important residues within the GmSHMT proteins, suggesting the presence of altered enzyme activities based on substrate affinities. Due to the accumulation of mutations during the evolution of the soybean genome, the other GmSHMT members have undergone neofunctionalization and subfunctionalization events.
Collapse
Affiliation(s)
- Naoufal Lakhssassi
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Gunvant Patil
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65201, USA
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Sarbottam Piya
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Zhou Zhou
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Azam Baharlouei
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL, 62901, USA
| | - My Abdelmajid Kassem
- Department of Biological Sciences, Fayetteville State University, Fayetteville, NC, 28301, USA
| | - David A Lightfoot
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Abdelali Barakat
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA
| | - Henry T Nguyen
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65201, USA
| | - Khalid Meksem
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL, 62901, USA.
| |
Collapse
|
24
|
Chiroque G, Vásquez G, Vásquez E, Vásquez E, Más D, Betancur C, Ruiz C, Botello A, Martínez Y. Growth Performance, Carcass Traits and Breast Meat Fatty Acids Profile of Helmeted Guinea Fowls (Numida meleagris) Fed Increasing Level of Linseed (Linum usitatissimum) and Pumpkin Seed (Cucurbita moschata) Meals. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2018. [DOI: 10.1590/1806-9061-2018-0760] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- G Chiroque
- Universidad Nacional Pedro Ruiz Gallo, Perú
| | - G Vásquez
- Universidad Nacional Pedro Ruiz Gallo, Perú
| | - E Vásquez
- Universidad Nacional Pedro Ruiz Gallo, Perú
| | - E Vásquez
- Universidad Nacional Pedro Ruiz Gallo, Perú
| | - D Más
- Universidad Autónoma de Querétaro, Mexico
| | | | | | - A Botello
- Universidad Técnica “Luis Vargas Torres” de Esmeraldas, Ecuador
| | | |
Collapse
|
25
|
Anderson J, Lakhssassi N, Kantartzi SK, Meksem K. Nonhypothesis Analysis of a Mutagenic Soybean ( Glycine max[L.]) Population for Protein and Fatty-Acid Composition. J AM OIL CHEM SOC 2018. [DOI: 10.1002/aocs.12063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- James Anderson
- Department of Plant Soil and Agricultural Systems; Southern Illinois University, 1205 Lincoln Drive, Mail Code 4415; Carbondale IL 62901 USA
| | - Naoufal Lakhssassi
- Department of Plant Soil and Agricultural Systems; Southern Illinois University, 1205 Lincoln Drive, Mail Code 4415; Carbondale IL 62901 USA
| | - Stella K. Kantartzi
- Department of Plant Soil and Agricultural Systems; Southern Illinois University, 1205 Lincoln Drive, Mail Code 4415; Carbondale IL 62901 USA
| | - Khalid Meksem
- Department of Plant Soil and Agricultural Systems; Southern Illinois University, 1205 Lincoln Drive, Mail Code 4415; Carbondale IL 62901 USA
| |
Collapse
|
26
|
Bilyeu K, Škrabišová M, Allen D, Rajcan I, Palmquist DE, Gillen A, Mian R, Jo H. The Interaction of the Soybean Seed High Oleic Acid Oil Trait With Other Fatty Acid Modifications. J AM OIL CHEM SOC 2018. [DOI: 10.1002/aocs.12025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Kristin Bilyeu
- USDA/ARS Plant Genetics Research Unit; University of Missouri; Columbia MO 65211 USA
| | - Mária Škrabišová
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science; Palacký University in Olomouc; Olomouc Czech Republic, 783 71
| | - Doug Allen
- USDA/ARS Plant Genetics Research Unit; Donald Danforth Plant Science Center; St Louis MO 63132 USA
| | - Istvan Rajcan
- Department of Plant Agriculture; University of Guelph; Guelph ON N1G 2W1 Canada
| | | | - Anne Gillen
- USDA/ARS Crop Genetics Research Unit; Stoneville MS 38776 USA
| | - Rouf Mian
- USDA/ARS Soybean and Nitrogen Fixation Research Unit; Raleigh NC 27607 USA
| | - Hyun Jo
- Division of Plant Sciences; University of Missouri; Columbia MO 65211 USA
| |
Collapse
|
27
|
Unver T, Wu Z, Sterck L, Turktas M, Lohaus R, Li Z, Yang M, He L, Deng T, Escalante FJ, Llorens C, Roig FJ, Parmaksiz I, Dundar E, Xie F, Zhang B, Ipek A, Uranbey S, Erayman M, Ilhan E, Badad O, Ghazal H, Lightfoot DA, Kasarla P, Colantonio V, Tombuloglu H, Hernandez P, Mete N, Cetin O, Van Montagu M, Yang H, Gao Q, Dorado G, Van de Peer Y. Genome of wild olive and the evolution of oil biosynthesis. Proc Natl Acad Sci U S A 2017; 114:E9413-E9422. [PMID: 29078332 PMCID: PMC5676908 DOI: 10.1073/pnas.1708621114] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Here we present the genome sequence and annotation of the wild olive tree (Olea europaea var. sylvestris), called oleaster, which is considered an ancestor of cultivated olive trees. More than 50,000 protein-coding genes were predicted, a majority of which could be anchored to 23 pseudochromosomes obtained through a newly constructed genetic map. The oleaster genome contains signatures of two Oleaceae lineage-specific paleopolyploidy events, dated at ∼28 and ∼59 Mya. These events contributed to the expansion and neofunctionalization of genes and gene families that play important roles in oil biosynthesis. The functional divergence of oil biosynthesis pathway genes, such as FAD2, SACPD, EAR, and ACPTE, following duplication, has been responsible for the differential accumulation of oleic and linoleic acids produced in olive compared with sesame, a closely related oil crop. Duplicated oleaster FAD2 genes are regulated by an siRNA derived from a transposable element-rich region, leading to suppressed levels of FAD2 gene expression. Additionally, neofunctionalization of members of the SACPD gene family has led to increased expression of SACPD2, 3, 5, and 7, consequently resulting in an increased desaturation of steric acid. Taken together, decreased FAD2 expression and increased SACPD expression likely explain the accumulation of exceptionally high levels of oleic acid in olive. The oleaster genome thus provides important insights into the evolution of oil biosynthesis and will be a valuable resource for oil crop genomics.
Collapse
Affiliation(s)
- Turgay Unver
- İzmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 İzmir, Turkey;
| | | | - Lieven Sterck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Mine Turktas
- Department of Biology, Faculty of Science, Cankiri Karatekin University, 18100 Cankiri, Turkey
| | - Rolf Lohaus
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Ming Yang
- BGI Shenzhen, 518038 Shenzhen, China
| | - Lijuan He
- BGI Shenzhen, 518038 Shenzhen, China
| | | | | | | | | | - Iskender Parmaksiz
- Department of Molecular Biology and Genetics, Faculty of Science, Gaziosmanpasa University, 60250 Tokat, Turkey
| | - Ekrem Dundar
- Department of Molecular Biology and Genetics, Faculty of Science, Balikesir University, 10145 Balikesir, Turkey
| | - Fuliang Xie
- Department of Biology, East Carolina University, Greenville, NC 27858
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858
| | - Arif Ipek
- Department of Biology, Faculty of Science, Cankiri Karatekin University, 18100 Cankiri, Turkey
| | - Serkan Uranbey
- Department of Field Crops, Faculty of Agriculture, Ankara University, 06120 Ankara, Turkey
| | - Mustafa Erayman
- Department of Biology, Faculty of Arts and Science, Mustafa Kemal University, 31060 Hatay, Turkey
| | - Emre Ilhan
- Department of Biology, Faculty of Arts and Science, Mustafa Kemal University, 31060 Hatay, Turkey
| | - Oussama Badad
- Laboratory of Plant Physiology, University Mohamed V, 10102 Rabat, Morocco
| | - Hassan Ghazal
- Polydisciplinary Faculty of Nador, University Mohamed Premier, 62700 Nador, Morocco
| | - David A Lightfoot
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901
| | - Pavan Kasarla
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901
| | - Vincent Colantonio
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901
| | - Huseyin Tombuloglu
- Institute for Research and Medical Consultation, University of Dammam, 34212 Dammam, Saudi Arabia
| | - Pilar Hernandez
- Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas, 14004 Córdoba, Spain
| | - Nurengin Mete
- Olive Research Institute of Bornova, 35100 Izmir, Turkey
| | - Oznur Cetin
- Olive Research Institute of Bornova, 35100 Izmir, Turkey
| | - Marc Van Montagu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | | | - Qiang Gao
- BGI Shenzhen, 518038 Shenzhen, China
| | - Gabriel Dorado
- Departamento Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Genetics, Genomics Research Institute, University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
28
|
Altemimi A, Lakhssassi N, Baharlouei A, Watson DG, Lightfoot DA. Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts. PLANTS 2017; 6:plants6040042. [PMID: 28937585 PMCID: PMC5750618 DOI: 10.3390/plants6040042] [Citation(s) in RCA: 602] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/17/2017] [Accepted: 09/19/2017] [Indexed: 11/16/2022]
Abstract
There are concerns about using synthetic phenolic antioxidants such as butylated hydroxytoluene (BHT) and butylated hydroxyanisole (BHA) as food additives because of the reported negative effects on human health. Thus, a replacement of these synthetics by antioxidant extractions from various foods has been proposed. More than 8000 different phenolic compounds have been characterized; fruits and vegetables are the prime sources of natural antioxidants. In order to extract, measure, and identify bioactive compounds from a wide variety of fruits and vegetables, researchers use multiple techniques and methods. This review includes a brief description of a wide range of different assays. The antioxidant, antimicrobial, and anticancer properties of phenolic natural products from fruits and vegetables are also discussed.
Collapse
Affiliation(s)
- Ammar Altemimi
- Department of Food Science, College of Agriculture, University of Al-Basrah, Basrah 61004, Iraq.
| | - Naoufal Lakhssassi
- Department of Plant, Soil and Agricultural Systems, Plant Biotechnology and Genome Core-Facility, Southern Illinois University at Carbondale, Carbondale, IL 62901, USA.
| | - Azam Baharlouei
- Department of Plant, Soil and Agricultural Systems, Plant Biotechnology and Genome Core-Facility, Southern Illinois University at Carbondale, Carbondale, IL 62901, USA.
| | - Dennis G Watson
- Department of Plant, Soil and Agricultural Systems, Plant Biotechnology and Genome Core-Facility, Southern Illinois University at Carbondale, Carbondale, IL 62901, USA.
| | - David A Lightfoot
- Department of Plant, Soil and Agricultural Systems, Plant Biotechnology and Genome Core-Facility, Southern Illinois University at Carbondale, Carbondale, IL 62901, USA.
| |
Collapse
|
29
|
Altemimi A, Lakhssassi N, Abu-Ghazaleh A, Lightfoot DA. Evaluation of the antimicrobial activities of ultrasonicated spinach leaf extracts using RAPD markers and electron microscopy. Arch Microbiol 2017; 199:1417-1429. [PMID: 28766036 DOI: 10.1007/s00203-017-1418-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/20/2017] [Accepted: 07/27/2017] [Indexed: 10/19/2022]
Abstract
Spinach (Spinacia oleracea L.) leaves represent an important dietary source of nutrients, antioxidants and antimicrobials. As such, spinach leaves play an important role in health and have been used in the treatment of human diseases since ancient times. Here, the aims were to optimize the extraction methods for recovering antimicrobial substances of spinach leaves, determine the minimum inhibitory concentrations (MICs) of the antimicrobial substances against Escherichia coli and Staphylococcus aureus and, finally, evaluate the effects of spinach leaves' antimicrobials on bacterial DNA using central composite face-centered methods. The effect of the extracts on both Gram-positive and Gram-negative bacterial models was examined by scanning electron microscopy (SEM) and random amplification of polymorphic (bacterial) DNA (RAPD). The optimal extraction conditions were at 45 °C, ultrasound power of 44% and an extraction time of 23 min. The spinach extracts exhibited antimicrobial activities against both bacteria with MICs in the 60-100 mg/ml range. Interestingly, SEM showed that the treated bacterial cells appear damaged with a reduction in cell number. RAPD analysis of genomic DNA showed that the number and sizes of amplicons were decreased by treatments. Based on these results, it was inferred that spinach leaf extracts exert bactericidal activities by both inducing mutations in DNA and causing cell wall disruptions.
Collapse
Affiliation(s)
- Ammar Altemimi
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL, 62901, USA.,Department of Food Science, College of Agriculture, University of Basrah, Al-Basrah, 61004, Iraq
| | - Naoufal Lakhssassi
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL, 62901, USA.
| | - Amer Abu-Ghazaleh
- Department of Animal Science Food and Nutrition, Southern Illinois University, Carbondale, IL, 62901, USA
| | - David A Lightfoot
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL, 62901, USA
| |
Collapse
|