1
|
Jian Y, Gong D, Wang Z, Liu L, He J, Han X, Tsuda K. How plants manage pathogen infection. EMBO Rep 2024; 25:31-44. [PMID: 38177909 PMCID: PMC10897293 DOI: 10.1038/s44319-023-00023-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/27/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
To combat microbial pathogens, plants have evolved specific immune responses that can be divided into three essential steps: microbial recognition by immune receptors, signal transduction within plant cells, and immune execution directly suppressing pathogens. During the past three decades, many plant immune receptors and signaling components and their mode of action have been revealed, markedly advancing our understanding of the first two steps. Activation of immune signaling results in physical and chemical actions that actually stop pathogen infection. Nevertheless, this third step of plant immunity is under explored. In addition to immune execution by plants, recent evidence suggests that the plant microbiota, which is considered an additional layer of the plant immune system, also plays a critical role in direct pathogen suppression. In this review, we summarize the current understanding of how plant immunity as well as microbiota control pathogen growth and behavior and highlight outstanding questions that need to be answered.
Collapse
Affiliation(s)
- Yinan Jian
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Dianming Gong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, China
| | - Zhe Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Lijun Liu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Jingjing He
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Xiaowei Han
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Kenichi Tsuda
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China.
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, 430070, Wuhan, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China.
| |
Collapse
|
2
|
Harris CJ, Amtmann A, Ton J. Epigenetic processes in plant stress priming: Open questions and new approaches. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102432. [PMID: 37523900 DOI: 10.1016/j.pbi.2023.102432] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 08/02/2023]
Abstract
Priming reflects the capacity of plants to memorise environmental stress experience and improve their response to recurring stress. Epigenetic modifications in DNA and associated histone proteins may carry short-term and long-term memory in the same plant or mediate transgenerational effects, but the evidence is still largely circumstantial. New experimental tools now enable scientists to perform targeted manipulations that either prevent or generate a particular epigenetic modification in a particular location of the genome. Such 'reverse epigenetics' approaches allow for the interrogation of causality between individual priming-induced modifications and their role for altering gene expression and plant performance under recurring stress. Furthermore, combining site-directed epigenetic manipulation with conditional and cell-type specific promoters creates novel opportunities to test and engineer spatiotemporal patterns of priming.
Collapse
Affiliation(s)
- C Jake Harris
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Anna Amtmann
- School of Molecular Biosciences, University of Glasgow, Glasgow, G128QQ, UK.
| | - Jurriaan Ton
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
3
|
Chavan SN, Tumpa FH, Khokon MAR, Kyndt T. Potential of Exogenous Treatment with Dehydroascorbate to Control Root-knot Nematode Infection in Rice. RICE (NEW YORK, N.Y.) 2023; 16:29. [PMID: 37380881 DOI: 10.1186/s12284-023-00644-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/05/2023] [Indexed: 06/30/2023]
Abstract
Induced resistance (IR) is a unique physiological state characterized by reduced plant susceptibility to (a)biotic stress. Our previous studies showed that exogenous foliar application of dehydroascorbate (DHA), the oxidized form of ascorbic acid, induces systemic resistance against root-knot nematode Meloidogyne graminicola in rice. In the present study, the potential of DHA in protecting rice plants against M. graminicola was evaluated in lab, pot, and field studies. In an experiment where the interval between foliar treatment and inoculation was varied, 20 mM DHA was found to protect rice plants from M. graminicola for at least 14 days. Pot and field studies confirmed that 10 or 20 mM DHA are highly effective in reducing gall formation and led to a significant increase in rice seed yield. A half dose of DHA (10 mM) combined with another IR-stimulus - piperonylic acid (PA) 300 µM - was at par with DHA 20 mM, leading to reductions in gall formation of more than 80%. In in vitro bioassays, DHA was found to be highly nematicidal to the second-stage juveniles of M. graminicola, with more than 90% mortality within 3 h of exposure to 10 or 20 mM concentrations. While seed treatment had no effect, root drenching or root dipping was also effective in reducing rice susceptibility to M. graminicola, next to foliar treatment. As a dual-action compound with extended protection and ease of application, DHA has great potential for effective nematode management in rice.
Collapse
Affiliation(s)
- Satish Namdeo Chavan
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Proeftuinstraat 86 N1, Ghent, 9000, Belgium
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India
| | - Farzana Haque Tumpa
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Proeftuinstraat 86 N1, Ghent, 9000, Belgium
| | - Md Atiqur Rahman Khokon
- Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Tina Kyndt
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Proeftuinstraat 86 N1, Ghent, 9000, Belgium.
| |
Collapse
|
4
|
Hönig M, Roeber VM, Schmülling T, Cortleven A. Chemical priming of plant defense responses to pathogen attacks. FRONTIERS IN PLANT SCIENCE 2023; 14:1146577. [PMID: 37223806 PMCID: PMC10200928 DOI: 10.3389/fpls.2023.1146577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/17/2023] [Indexed: 05/25/2023]
Abstract
Plants can acquire an improved resistance against pathogen attacks by exogenous application of natural or artificial compounds. In a process called chemical priming, application of these compounds causes earlier, faster and/or stronger responses to pathogen attacks. The primed defense may persist over a stress-free time (lag phase) and may be expressed also in plant organs that have not been directly treated with the compound. This review summarizes the current knowledge on the signaling pathways involved in chemical priming of plant defense responses to pathogen attacks. Chemical priming in induced systemic resistance (ISR) and systemic acquired resistance (SAR) is highlighted. The roles of the transcriptional coactivator NONEXPRESSOR OF PR1 (NPR1), a key regulator of plant immunity, induced resistance (IR) and salicylic acid signaling during chemical priming are underlined. Finally, we consider the potential usage of chemical priming to enhance plant resistance to pathogens in agriculture.
Collapse
Affiliation(s)
- Martin Hönig
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
- Department of Chemical Biology, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Venja M. Roeber
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| | - Anne Cortleven
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
5
|
Wang B, Xu Z, Zhao Y, Wu G, Li K, Hou R, Guo B, Tang B, Zhao Y, Liu F. SstF, a novel sulforaphane-sensing transcription factor of Xanthomonas campestris, is required for sulforaphane tolerance and virulence. MOLECULAR PLANT PATHOLOGY 2023; 24:452-465. [PMID: 36829260 PMCID: PMC10098062 DOI: 10.1111/mpp.13314] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 05/03/2023]
Abstract
Avoiding the host defence system is necessary for the survival of pathogens. However, the mechanisms by which pathogenic bacteria sense and resist host defence signals are still unknown. Sulforaphane (SFN) is a secondary metabolite of crucifers. It not only plays an important role in maintaining the local defence response but also directly inhibits the growth of some pathogens. In this study, we identified a key SFN tolerance-related gene, saxF, in Xanthomonas campestris pv. campestris (Xcc), the causal agent of black rot in crucifers. More interestingly, we found that the transcription of saxF was regulated by the novel transcription factor SFN-sensing transcription factor (SstF). As a LysR family transcription factor, SstF can sense SFN and regulate the expression of saxF cluster genes to increase SFN resistance by directly binding to the promoter of saxF. In addition, we found that SstF and saxF also play an important role in positively regulating the virulence of Xcc. Collectively, our results illustrate a previously unknown mechanism by which Xcc senses the host defence signal SFN and activates the expression of SFN tolerance-related genes to increase virulence. Therefore, this study provides a remarkable result; that is, during pathogen-plant co-evolution, new functions of existing scaffolds are activated, thus improving the proficiency of the pathogenic mechanism.
Collapse
Affiliation(s)
- Bo Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjingChina
| | - Zhizhou Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjingChina
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Yangyang Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjingChina
| | - Guichun Wu
- School of Life ScienceAnhui Agricultural UniversityHefeiChina
| | - Kaihuai Li
- College of AgricultureGuizhou UniversityGuiyangChina
| | - Rongxian Hou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjingChina
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Baodian Guo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjingChina
| | - Bao Tang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjingChina
| | - Yancun Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjingChina
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjingChina
| |
Collapse
|
6
|
Hoffmann K, Schilling JV, Wandrey G, Welters T, Mahr S, Conrath U, Büchs J. Spotting priming-active compounds using parsley cell cultures in microtiter plates. BMC PLANT BIOLOGY 2023; 23:72. [PMID: 36726070 PMCID: PMC9893529 DOI: 10.1186/s12870-023-04043-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Conventional crop protection has major drawbacks, such as developing pest and pathogen insensitivity to pesticides and low environmental compatibility. Therefore, alternative crop protection strategies are needed. One promising approach treats crops with chemical compounds that induce the primed state of enhanced defense. However, identifying priming compounds is often tedious as it requires offline sampling and analysis. High throughput screening methods for the analysis of priming-active compounds have great potential to simplify the search for such compounds. One established method to identify priming makes use of parsley cell cultures. This method relies on measurement of fluorescence of furanocoumarins in the final sample. This study demonstrates for the first time the online measurement of furanocoumarins in microtiter plates. As not all plants produce fluorescence molecules as immune response, a signal, which is not restricted to a specific plant is required, to extend online screening methods to other plant cell cultures. It was shown that the breathing activity of primed parsley cell cultures increases, compared to unprimed parsley cell cultures. The breathing activity can by monitored online. Therefore, online identification of priming-inducing compounds by recording breathing activity represents a promising, straight-forward and highly informative approach. However, so far breathing has been recorded in shake flasks which suffer from low throughput. For industrial application we here report a high-throughput, online identification method for identifying priming-inducing chemistry. RESULTS This study describes the development of a high-throughput screening system that enables identifying and analyzing the impact of defense priming-inducing compounds in microtiter plates. This screening system relies on the breathing activity of parsley cell cultures. The validity of measuring the breathing activity in microtiter plates to drawing conclusions regarding priming-inducing activity was demonstrated. Furthermore, for the first time, the fluorescence of the priming-active reference compound salicylic acid and of furanocoumarins were simultaneously monitored online. Dose and time studies with salicylic acid-treated parsley cell suspensions revealed a wide range of possible addition times and concentrations that cause priming. The online fluorescence measuring method was further confirmed with three additional compounds with known priming-causing activity. CONCLUSIONS Determining the OTR, fluorescence of the priming-active chemical compound SA and of furanocoumarins in parsley suspension cultures in MTPs by online measurement is a powerful and high-throughput tool to study possible priming compounds. It allows an in-depth screening for priming compounds and a better understanding of the priming process induced by a given substance. Evaluation of priming phenomena via OTR should also be applicable to cell suspensions of other plant species and varieties and allow screening for priming-inducing chemical compounds in intact plants. These online fluorescence methods to measure the breathing activity, furanocoumarin and SA have the potential to accelerate the search for new priming compounds and promote priming as a promising, eco-friendly crop protection strategy.
Collapse
Affiliation(s)
- Kyra Hoffmann
- AVT – Biochemical Engineering, RWTH Aachen University, 51 Forckenbeckstr, 52074 Aachen, Germany
| | - Jana Viola Schilling
- AVT – Biochemical Engineering, RWTH Aachen University, 51 Forckenbeckstr, 52074 Aachen, Germany
| | - Georg Wandrey
- AVT – Biochemical Engineering, RWTH Aachen University, 51 Forckenbeckstr, 52074 Aachen, Germany
| | - Tim Welters
- AVT – Biochemical Engineering, RWTH Aachen University, 51 Forckenbeckstr, 52074 Aachen, Germany
| | - Stefan Mahr
- AVT – Biochemical Engineering, RWTH Aachen University, 51 Forckenbeckstr, 52074 Aachen, Germany
| | - Uwe Conrath
- Department of Plant Physiology, RWTH Aachen University, 1 Worringer Weg, 52074 Aachen, Germany
| | - Jochen Büchs
- AVT – Biochemical Engineering, RWTH Aachen University, 51 Forckenbeckstr, 52074 Aachen, Germany
| |
Collapse
|
7
|
Maryška L, Jindřichová B, Siegel J, Záruba K, Burketová L. Impact of palladium nanoparticles on plant and its fungal pathogen. A case study: Brassica napus-Plenodomus lingam. AOB PLANTS 2023; 15:plad004. [PMID: 36970187 PMCID: PMC10037078 DOI: 10.1093/aobpla/plad004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
The technological exploitation of palladium or palladium nanoparticles (PdNPs) is increasing, and their wider usage relates to an unwanted release of pollutants into the environment, raising public health concerns about the infiltration of palladium into the consumption chain. This study focuses on the effect of spherical gold-cored PdNPs of 50 ± 10 nm diameter stabilized by sodium citrate on the interaction between an oilseed rape (Brassica napus) and the fungal pathogen Plenodomus lingam. Pretreatment of B. napus cotyledons with PdNPs suspension 24 h before but not 24 h after inoculation with P. lingam resulted in a decrease in the extent of disease symptoms; however, this effect was caused by Pd2+ ions (35 mg l-1 or 70 mg l-1). Tests to determine any direct antifungal activity on P. lingam in vitro demonstrated that the residual Pd2+ ions present in the PdNP suspension were responsible for the antifungal activity and that PdNPs themselves do not contribute to this effect. Brassica napus plants did not show any symptoms of palladium toxicity in any form. PdNPs/Pd2+ slightly increased the chlorophyll content and the transcription of pathogenesis-related gene 1 (PR1), indicating the activation of the plant defence system. We conclude that the only toxic effect of the PdNP suspension was on P. lingam via ions and that PdNPs/Pd2+ did not have any deleterious effect on the B. napus plants.
Collapse
Affiliation(s)
- Lukáš Maryška
- Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojová 313, 165 02, Prague 6 – Lysolaje, Czech Republic
- University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6 – Dejvice, Czech Republic
| | - Barbora Jindřichová
- Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojová 313, 165 02, Prague 6 – Lysolaje, Czech Republic
| | - Jakub Siegel
- University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6 – Dejvice, Czech Republic
| | - Kamil Záruba
- University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6 – Dejvice, Czech Republic
| | | |
Collapse
|
8
|
Kou M, Wei Z, Li Z, Xu B. Copper-Catalyzed Sulfinyl Cross-Coupling Reaction of Sulfinamides. Org Lett 2022; 24:8514-8519. [DOI: 10.1021/acs.orglett.2c03414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Mengting Kou
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Ziqiang Wei
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Zhen Li
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Bin Xu
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai 200444, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
9
|
Pilathottathil F, Unnikrishnan S, Kaliyamoorthy A. Heteroarylation of Sulfenate Ions In Situ Generated from β-Sulfinyl Esters under Transition-Metal-Free Conditions. J Org Chem 2022; 87:14980-14990. [PMID: 36268936 DOI: 10.1021/acs.joc.2c02153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Heteroaryl sulfoxides are an integral part of several bioactive molecules and pharmaceuticals. We have described a transition-metal-free route for the direct sulfinylation of 2-halobenzothiazoles and 2-halobenzimidazoles using β-sulfinyl esters as the source of the sulfenate ion in the presence of a Brønsted base such as LiOtBu, and the corresponding heteroaryl sulfoxides were isolated in yields of 30 to 94%. Moreover, we hypothesized a plausible concerted nucleophilic aromatic substitution (cSNAr) pathway for the direct incorporation of sulfinyl functionality into the 2-haloheteroarenes.
Collapse
Affiliation(s)
- Fathima Pilathottathil
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Kerala 695551, India
| | - Sreelakshmi Unnikrishnan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Kerala 695551, India
| | - Alagiri Kaliyamoorthy
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Kerala 695551, India
| |
Collapse
|
10
|
Lopez-Gomollon S, Baulcombe DC. Roles of RNA silencing in viral and non-viral plant immunity and in the crosstalk between disease resistance systems. Nat Rev Mol Cell Biol 2022; 23:645-662. [PMID: 35710830 DOI: 10.1038/s41580-022-00496-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2022] [Indexed: 11/08/2022]
Abstract
RNA silencing is a well-established antiviral immunity system in plants, in which small RNAs guide Argonaute proteins to targets in viral RNA or DNA, resulting in virus repression. Virus-encoded suppressors of silencing counteract this defence system. In this Review, we discuss recent findings about antiviral RNA silencing, including the movement of RNA through plasmodesmata and the differentiation between plant self and viral RNAs. We also discuss the emerging role of RNA silencing in plant immunity against non-viral pathogens. This immunity is mediated by transkingdom movement of RNA into and out of the infected plant cells in vesicles or as extracellular nucleoproteins and, like antiviral immunity, is influenced by the silencing suppressors encoded in the pathogens' genomes. Another effect of RNA silencing on general immunity involves host-encoded small RNAs, including microRNAs, that regulate NOD-like receptors and defence signalling pathways in the innate immunity system of plants. These RNA silencing pathways form a network of processes with both positive and negative effects on the immune systems of plants.
Collapse
Affiliation(s)
| | - David C Baulcombe
- Department of Plant Sciences, University of Cambridge, Cambridge, UK.
| |
Collapse
|
11
|
Wang B, Li K, Wu G, Xu Z, Hou R, Guo B, Zhao Y, Liu F. Sulforaphane, a secondary metabolite in crucifers, inhibits the oxidative stress adaptation and virulence of Xanthomonas by directly targeting OxyR. MOLECULAR PLANT PATHOLOGY 2022; 23:1508-1523. [PMID: 35942507 PMCID: PMC9452769 DOI: 10.1111/mpp.13245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 05/19/2023]
Abstract
Plant secondary metabolites perform numerous functions in the interactions between plants and pathogens. However, little is known about the precise mechanisms underlying their contribution to the direct inhibition of pathogen growth and virulence in planta. Here, we show that the secondary metabolite sulforaphane (SFN) in crucifers inhibits the growth, virulence, and ability of Xanthomonas species to adapt to oxidative stress, which is essential for the successful infection of host plants by phytopathogens. The transcription of oxidative stress detoxification-related genes (catalase [katA and katG] and alkylhydroperoxide-NADPH oxidoreductase subunit C [ahpC]) was substantially inhibited by SFN in Xanthomonas campestris pv. campestris (Xcc), and this phenomenon was most obvious in sax gene mutants sensitive to SFN. By performing microscale thermophoresis (MST) and electrophoretic mobility shift assay (EMSA), we observed that SFN directly bound to the virulence-related redox-sensing transcription factor OxyR and weakened the ability of OxyR to bind to the promoters of oxidative stress detoxification-related genes. Collectively, these results illustrate that SFN directly targets OxyR to inhibit the bacterial adaptation to oxidative stress, thereby decreasing bacterial virulence. Interestingly, this phenomenon occurs in multiple Xanthomonas species. This study provides novel insights into the molecular mechanisms by which SFN limits Xanthomonas adaptation to oxidative stress and virulence, and the findings will facilitate future studies on the use of SFN as a biopesticide to control Xanthomonas.
Collapse
Affiliation(s)
- Bo Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and SafetyState Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjingChina
| | - Kaihuai Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and SafetyState Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjingChina
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Guichun Wu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and SafetyState Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjingChina
| | - Zhizhou Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and SafetyState Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjingChina
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Rongxian Hou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and SafetyState Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjingChina
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Baodian Guo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and SafetyState Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjingChina
| | - Yancun Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and SafetyState Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjingChina
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and SafetyState Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjingChina
| |
Collapse
|
12
|
Arruebarrena Di Palma A, Perk EA, Carboni ME, García‐Mata C, Budak H, Tör M, Laxalt AM. The isothiocyanate sulforaphane induces respiratory burst oxidase homologue D-dependent reactive oxygen species production and regulates expression of stress response genes. PLANT DIRECT 2022; 6:e437. [PMID: 36091879 PMCID: PMC9448665 DOI: 10.1002/pld3.437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/15/2022] [Accepted: 07/31/2022] [Indexed: 05/28/2023]
Abstract
Sulforaphane (SFN) is an isothiocyanate-type phytomolecule present in crucifers, which is mainly synthesized in response to biotic stress. In animals, SFN incorporated in the diet has anticancer properties among others. The mechanism of action and signaling are well described in animals; however, little is known in plants. The goal in the present study is to elucidate components of the SFN signaling pathway, particularly the production of reactive oxygen species (ROS), and its effect on the transcriptome. Our results showed that in Arabidopsis, SFN causes ROS production exclusively through the action of the NADPH oxidase RBOH isoform D that requires calcium as a signaling component for the ROS production. To add to this, we also analyzed the effect of SFN on the transcriptome by RNAseq. We observed the highest expression increase for heat shock proteins (HSP) genes and also for genes associated with the response to oxidative stress. The upregulation of several genes linked to the biotic stress response confirms the interplay between SFN and this stress. In addition, SFN increases the levels of transcripts related to the response to abiotic stress, as well as phytohormones. Taken together, these results indicate that SFN induces an oxidative burst leading to signaling events. This oxidative burst may cause the increase of the expression of genes such as heat shock proteins to restore cellular homeostasis and genes that codify possible components of the signaling pathway and putative effectors.
Collapse
Affiliation(s)
| | - Enzo A. Perk
- Instituto de Investigaciones BiológicasCONICET ‐ Universidad Nacional de Mar del PlataMar del PlataArgentina
| | - Martín E. Carboni
- Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”–CONICETBuenos AiresArgentina
| | - Carlos García‐Mata
- Instituto de Investigaciones BiológicasCONICET ‐ Universidad Nacional de Mar del PlataMar del PlataArgentina
| | | | - Mahmut Tör
- Department of Biology, School of Science and the EnvironmentUniversity of WorcesterWorcesterUK
| | - Ana M. Laxalt
- Instituto de Investigaciones BiológicasCONICET ‐ Universidad Nacional de Mar del PlataMar del PlataArgentina
| |
Collapse
|
13
|
Kramer P. Mitochondria-Microbiota Interaction in Neurodegeneration. Front Aging Neurosci 2022; 13:776936. [PMID: 35002678 PMCID: PMC8733591 DOI: 10.3389/fnagi.2021.776936] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s and Parkinson’s are the two best-known neurodegenerative diseases. Each is associated with the excessive aggregation in the brain and elsewhere of its own characteristic amyloid proteins. Yet the two afflictions have much in common and often the same amyloids play a role in both. These amyloids need not be toxic and can help regulate bile secretion, synaptic plasticity, and immune defense. Moreover, when they do form toxic aggregates, amyloids typically harm not just patients but their pathogens too. A major port of entry for pathogens is the gut. Keeping the gut’s microbe community (microbiota) healthy and under control requires that our cells’ main energy producers (mitochondria) support the gut-blood barrier and immune system. As we age, these mitochondria eventually succumb to the corrosive byproducts they themselves release, our defenses break down, pathogens or their toxins break through, and the side effects of inflammation and amyloid aggregation become problematic. Although it gets most of the attention, local amyloid aggregation in the brain merely points to a bigger problem: the systemic breakdown of the entire human superorganism, exemplified by an interaction turning bad between mitochondria and microbiota.
Collapse
Affiliation(s)
- Peter Kramer
- Department of General Psychology, University of Padua, Padua, Italy
| |
Collapse
|
14
|
Schmitz K, Werner L, Conrath U. High-throughput Screening for Defense Priming-inducing Compounds in Parsley Cell Cultures. Bio Protoc 2021; 11:e4200. [PMID: 34761072 DOI: 10.21769/bioprotoc.4200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 11/02/2022] Open
Abstract
Defense priming describes the enhanced potency of cells to activate defense responses. Priming accompanies local and systemic immune responses and can be triggered by microbial infection or upon treatment with certain chemicals. Thus, chemically activating defense priming is promising for biomedicine and agriculture. However, test systems for spotting priming-inducing chemicals are rare. Here, we describe a high-throughput screen for compounds that prime microbial pattern-spurred secretion of antimicrobial furanocoumarins in parsley culture cells. For the best possible throughput, we perform the assay with 1-ml aliquots of cell culture in 24-well microtiter plates. The advantages of the non-invasive test over competitive assays are its simplicity, remarkable reliability, and high sensitivity, which is based on furanocoumarin fluorescence in UV light.
Collapse
Affiliation(s)
- Kathrin Schmitz
- Plant Biochemistry & Molecular Biology Group, Department of Plant Physiology, RWTH Aachen University, Aachen 52074, Germany
| | - Linda Werner
- Plant Biochemistry & Molecular Biology Group, Department of Plant Physiology, RWTH Aachen University, Aachen 52074, Germany
| | - Uwe Conrath
- Plant Biochemistry & Molecular Biology Group, Department of Plant Physiology, RWTH Aachen University, Aachen 52074, Germany
| |
Collapse
|
15
|
González-Bosch C, Boorman E, Zunszain PA, Mann GE. Short-chain fatty acids as modulators of redox signaling in health and disease. Redox Biol 2021; 47:102165. [PMID: 34662811 PMCID: PMC8577496 DOI: 10.1016/j.redox.2021.102165] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/26/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
Short-chain fatty acids (SCFAs), produced by colonic bacteria and obtained from the diet, have been linked to beneficial effects on human health associated with their metabolic and signaling properties. Their physiological functions are related to their aliphatic tail length and dependent on the activation of specific membrane receptors. In this review, we focus on the mechanisms underlying SCFAs mediated protection against oxidative and mitochondrial stress and their role in regulating metabolic pathways in specific tissues. We critically evaluate the evidence for their cytoprotective roles in suppressing inflammation and carcinogenesis and the consequences of aging. The ability of these natural compounds to induce signaling pathways, involving nuclear erythroid 2-related factor 2 (Nrf2), contributes to the maintenance of redox homeostasis under physiological conditions. SCFAs may thus serve as nutritional and therapeutic agents in healthy aging and in vascular and other diseases such as diabetes, neuropathologies and cancer. SCFAs are a link between the microbiota, redox signaling and host metabolism. SCFAs modulate Nrf2 redox signaling through specific free fatty acid receptors. Butyrate induces epigenetic regulation and/or Nrf2 nuclear translocation. Butyrate and propionate protect the blood-brain barrier by facilitating docosahexaenoic acid transport. Regulation of redox homeostasis by SCFAs supports their potential as therapeutic nutrients in health and disease.
Collapse
Affiliation(s)
- Carmen González-Bosch
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK; Departamento de Bioquímica y Biología Molecular, Universitat de València, Instituto de Agroquímica y Tecnología de Alimentos (IATA/CSIC), Avenida Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| | - Emily Boorman
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK; Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK.
| | - Patricia A Zunszain
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK.
| | - Giovanni E Mann
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
16
|
Yassin M, Ton J, Rolfe SA, Valentine TA, Cromey M, Holden N, Newton AC. The rise, fall and resurrection of chemical-induced resistance agents. PEST MANAGEMENT SCIENCE 2021; 77:3900-3909. [PMID: 33729685 DOI: 10.1002/ps.6370] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 05/23/2023]
Abstract
Since the discovery that the plant immune system could be augmented for improved deployment against biotic stressors through the exogenous application of chemicals that lead to induced resistance (IR), many such IR-eliciting agents have been identified. Initially it was hoped that these chemical IR agents would be a benign alternative to traditional chemical biocides. However, owing to low efficacy and/or a realization that their benefits sometimes come at the cost of growth and yield penalties, chemical IR agents fell out of favour and were seldom used as crop protection products. Despite the lack of interest in agricultural use, researchers have continued to explore the efficacy and mechanisms of chemical IR. Moreover, as we move away from the approach of 'zero tolerance' toward plant pests and pathogens toward integrated pest management, chemical IR agents could have a place in the plant protection product list. In this review, we chart the rise and fall of chemical IR agents, and then explore a variety of strategies used to improve their efficacy and remediate their negative adverse effects. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Mustafa Yassin
- Plant Production and Protection Institute and Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, UK
- James Hutton Institute, Dundee, UK
| | - Jurriaan Ton
- Plant Production and Protection Institute and Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, UK
| | - Stephen A Rolfe
- Plant Production and Protection Institute and Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, UK
| | | | - Matthew Cromey
- Department of Plant Health, Royal Horticultural Society, Woking, UK
| | - Nicola Holden
- Scotland's Rural Colleges, Craibstone Estate, Aberdeen, UK
| | | |
Collapse
|
17
|
Loogen J, Müller A, Balzer A, Weber S, Schmitz K, Krug R, Schaffrath U, Pietruszk J, Conrath U, Büchs J. An illuminated respiratory activity monitoring system identifies priming-active compounds in plant seedlings. BMC PLANT BIOLOGY 2021; 21:324. [PMID: 34225655 PMCID: PMC8256589 DOI: 10.1186/s12870-021-03100-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Growing large crop monocultures and heavily using pesticides enhances the evolution of pesticide-insensitive pests and pathogens. To reduce pesticide use in crop cultivation, the application of priming-active compounds (PrimACs) is a welcome alternative. PrimACs strengthen the plant immune system and could thus help to protect plants with lower amounts of pesticides. PrimACs can be identified, for example, by their capacity to enhance the respiratory activity of parsley cells in culture as determined by the oxygen transfer rate (OTR) using the respiration activity monitoring system (RAMOS) or its miniaturized version, µRAMOS. The latter was designed for with suspensions of bacteria and yeast cells in microtiter plates (MTPs). So far, RAMOS or µRAMOS have not been applied to adult plants or seedlings, which would overcome the limitation of (µ)RAMOS to plant suspension cell cultures. RESULTS In this work, we introduce a modified µRAMOS for analysis of plant seedlings. The novel device allows illuminating the seedlings and records the respiratory activity in each well of a 48-well MTP. To validate the suitability of the setup for identifying novel PrimAC in Arabidopsis thaliana, seedlings were grown in MTP for seven days and treated with the known PrimAC salicylic acid (SA; positive control) and the PrimAC candidate methyl 1-(3,4-dihydroxyphenyl)-2-oxocyclopentane-1-carboxylate (Tyr020). Twenty-eight h after treatment, the seedlings were elicited with flg22, a 22-amino acid peptide of bacterial flagellin. Upon elicitation, the respiratory activity was monitored. The evaluation of the OTR course reveals Tyr020 as a likely PrimAC. The priming-inducing activity of Tyr020 was confirmed using molecular biological analyses in A. thaliana seedlings. CONCLUSION We disclose the suitability of µRAMOS for identifying PrimACs in plant seedlings. The difference in OTR during a night period between primed and unprimed plants was distinguishable after elicitation with flg22. Thus, it has been shown that the µRAMOS device can be used for a reliable screening for PrimACs in plant seedlings.
Collapse
Affiliation(s)
- Judith Loogen
- AVT.BioVT, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - André Müller
- Bioeconomy Science Center (BioSC), C/O Research Center Jülich, 52425 Jülich, Germany
- Department of Plant Physiology, RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany
| | - Arne Balzer
- Bioeconomy Science Center (BioSC), C/O Research Center Jülich, 52425 Jülich, Germany
- Department of Plant Physiology, RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany
| | - Sophie Weber
- Institute for Bio- and Geoscience, IBG-2: Plant Science, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Kathrin Schmitz
- Bioeconomy Science Center (BioSC), C/O Research Center Jülich, 52425 Jülich, Germany
- Department of Plant Physiology, RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany
| | - Roxanne Krug
- Institut Für Bioorganische Chemie (IBOC), Heinrich-Heine-Universität Düsseldorf Im Forschungszentrum Jülich, 52426 Jülich, Germany
| | - Ulrich Schaffrath
- Bioeconomy Science Center (BioSC), C/O Research Center Jülich, 52425 Jülich, Germany
- Department of Plant Physiology, RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany
| | - Jörg Pietruszk
- Bioeconomy Science Center (BioSC), C/O Research Center Jülich, 52425 Jülich, Germany
- Institut Für Bioorganische Chemie (IBOC), Heinrich-Heine-Universität Düsseldorf Im Forschungszentrum Jülich, 52426 Jülich, Germany
- Institut Für Bio- Und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Uwe Conrath
- Bioeconomy Science Center (BioSC), C/O Research Center Jülich, 52425 Jülich, Germany
- Department of Plant Physiology, RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany
| | - Jochen Büchs
- AVT.BioVT, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
- Bioeconomy Science Center (BioSC), C/O Research Center Jülich, 52425 Jülich, Germany
| |
Collapse
|
18
|
Mitreiter S, Gigolashvili T. Regulation of glucosinolate biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:70-91. [PMID: 33313802 DOI: 10.1093/jxb/eraa479] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 05/18/2023]
Abstract
Glucosinolates are secondary defense metabolites produced by plants of the order Brassicales, which includes the model species Arabidopsis and many crop species. In the past 13 years, the regulation of glucosinolate synthesis in plants has been intensively studied, with recent research revealing complex molecular mechanisms that connect glucosinolate production with responses to other central pathways. In this review, we discuss how the regulation of glucosinolate biosynthesis is ecologically relevant for plants, how it is controlled by transcription factors, and how this transcriptional machinery interacts with hormonal, environmental, and epigenetic mechanisms. We present the central players in glucosinolate regulation, MYB and basic helix-loop-helix transcription factors, as well as the plant hormone jasmonate, which together with other hormones and environmental signals allow the coordinated and rapid regulation of glucosinolate genes. Furthermore, we highlight the regulatory connections between glucosinolates, auxin, and sulfur metabolism and discuss emerging insights and open questions on the regulation of glucosinolate biosynthesis.
Collapse
Affiliation(s)
- Simon Mitreiter
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Tamara Gigolashvili
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| |
Collapse
|
19
|
Ando S, Jaskiewicz M, Mochizuki S, Koseki S, Miyashita S, Takahashi H, Conrath U. Priming for enhanced ARGONAUTE2 activation accompanies induced resistance to cucumber mosaic virus in Arabidopsis thaliana. MOLECULAR PLANT PATHOLOGY 2021; 22:19-30. [PMID: 33073913 PMCID: PMC7749747 DOI: 10.1111/mpp.13005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 05/29/2023]
Abstract
Systemic acquired resistance (SAR) is a broad-spectrum disease resistance response that can be induced upon infection from pathogens or by chemical treatment, such as with benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH). SAR involves priming for more robust activation of defence genes upon pathogen attack. Whether priming for SAR would involve components of RNA silencing remained unknown. Here, we show that upon leaf infiltration of water, BTH-primed Arabidopsis thaliana plants accumulate higher amounts of mRNA of ARGONAUTE (AGO)2 and AGO3, key components of RNA silencing. The enhanced AGO2 expression is associated with prior-to-activation trimethylation of lysine 4 in histone H3 and acetylation of histone H3 in the AGO2 promoter and with induced resistance to the yellow strain of cucumber mosaic virus (CMV[Y]). The results suggest that priming A. thaliana for enhanced defence involves modification of histones in the AGO2 promoter that condition AGO2 for enhanced activation, associated with resistance to CMV(Y). Consistently, the fold-reduction in CMV(Y) coat protein accumulation by BTH pretreatment was lower in ago2 than in wild type, pointing to reduced capacity of ago2 to activate BTH-induced CMV(Y) resistance. A role of AGO2 in pathogen-induced SAR is suggested by the enhanced activation of AGO2 after infiltrating systemic leaves of plants expressing a localized hypersensitive response upon CMV(Y) infection. In addition, local inoculation of SAR-inducing Pseudomonas syringae pv. maculicola causes systemic priming for enhanced AGO2 expression. Together our results indicate that defence priming targets the AGO2 component of RNA silencing whose enhanced expression is likely to contribute to SAR.
Collapse
Affiliation(s)
- Sugihiro Ando
- Graduate School of Agricultural ScienceTohoku UniversitySendaiJapan
- Department of Plant PhysiologyAachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Michal Jaskiewicz
- Department of Plant PhysiologyAachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Sei Mochizuki
- Graduate School of Agricultural ScienceTohoku UniversitySendaiJapan
| | - Saeko Koseki
- Graduate School of Agricultural ScienceTohoku UniversitySendaiJapan
| | - Shuhei Miyashita
- Graduate School of Agricultural ScienceTohoku UniversitySendaiJapan
| | - Hideki Takahashi
- Graduate School of Agricultural ScienceTohoku UniversitySendaiJapan
| | - Uwe Conrath
- Department of Plant PhysiologyAachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| |
Collapse
|
20
|
Wang W, Yang J, Zhang J, Liu YX, Tian C, Qu B, Gao C, Xin P, Cheng S, Zhang W, Miao P, Li L, Zhang X, Chu J, Zuo J, Li J, Bai Y, Lei X, Zhou JM. An Arabidopsis Secondary Metabolite Directly Targets Expression of the Bacterial Type III Secretion System to Inhibit Bacterial Virulence. Cell Host Microbe 2020; 27:601-613.e7. [PMID: 32272078 DOI: 10.1016/j.chom.2020.03.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/19/2019] [Accepted: 02/17/2020] [Indexed: 10/24/2022]
Abstract
Plants deploy a variety of secondary metabolites to fend off pathogen attack. Although defense compounds are generally considered toxic to microbes, the exact mechanisms are often unknown. Here, we show that the Arabidopsis defense compound sulforaphane (SFN) functions primarily by inhibiting Pseudomonas syringae type III secretion system (TTSS) genes, which are essential for pathogenesis. Plants lacking the aliphatic glucosinolate pathway, which do not accumulate SFN, were unable to attenuate TTSS gene expression and exhibited increased susceptibility to P. syringae strains that cannot detoxify SFN. Chemoproteomics analyses showed that SFN covalently modified the cysteine at position 209 of HrpS, a key transcription factor controlling TTSS gene expression. Site-directed mutagenesis and functional analyses further confirmed that Cys209 was responsible for bacterial sensitivity to SFN in vitro and sensitivity to plant defenses conferred by the aliphatic glucosinolate pathway. Collectively, these results illustrate a previously unknown mechanism by which plants disarm a pathogenic bacterium.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jian Zhang
- Department of Chemical Biology, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Synthetic and Functional Biomolecules Center and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yong-Xin Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Caiping Tian
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Baoyuan Qu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Chulei Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peiyong Xin
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shujing Cheng
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjing Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pei Miao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Li
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Xiaojuan Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianru Zuo
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Bai
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Xiaoguang Lei
- Department of Chemical Biology, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Synthetic and Functional Biomolecules Center and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
21
|
Mageroy MH, Wilkinson SW, Tengs T, Cross H, Almvik M, Pétriacq P, Vivian-Smith A, Zhao T, Fossdal CG, Krokene P. Molecular underpinnings of methyl jasmonate-induced resistance in Norway spruce. PLANT, CELL & ENVIRONMENT 2020; 43:1827-1843. [PMID: 32323322 DOI: 10.1111/pce.13774] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/15/2020] [Indexed: 05/13/2023]
Abstract
In response to various stimuli, plants acquire resistance against pests and/or pathogens. Such acquired or induced resistance allows plants to rapidly adapt to their environment. Spraying the bark of mature Norway spruce (Picea abies) trees with the phytohormone methyl jasmonate (MeJA) enhances resistance to tree-killing bark beetles and their associated phytopathogenic fungi. Analysis of spruce chemical defenses and beetle colonization success suggests that MeJA treatment both directly induces immune responses and primes inducible defenses for a faster and stronger response to subsequent beetle attack. We used metabolite and transcriptome profiling to explore the mechanisms underlying MeJA-induced resistance in Norway spruce. We demonstrated that MeJA treatment caused substantial changes in the bark transcriptional response to a triggering stress (mechanical wounding). Profiling of mRNA expression showed a suite of spruce inducible defenses are primed following MeJA treatment. Although monoterpenes and diterpene resin acids increased more rapidly after wounding in MeJA-treated than control bark, expression of their biosynthesis genes did not. We suggest that priming of inducible defenses is part of a complex mixture of defense responses that underpins the increased resistance against bark beetle colonization observed in Norway spruce. This study provides the most detailed insights yet into the mechanisms underlying induced resistance in a long-lived gymnosperm.
Collapse
Affiliation(s)
- Melissa H Mageroy
- Molecular plant biology and Forest Genetics and biodiversity, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Samuel W Wilkinson
- P3 Centre for Translational Plant and Soil Biology, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Torstein Tengs
- Molecular plant biology and Forest Genetics and biodiversity, Norwegian Institute of Bioeconomy Research, Ås, Norway
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Hugh Cross
- Molecular plant biology and Forest Genetics and biodiversity, Norwegian Institute of Bioeconomy Research, Ås, Norway
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Marit Almvik
- Molecular plant biology and Forest Genetics and biodiversity, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Pierre Pétriacq
- P3 Centre for Translational Plant and Soil Biology, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
- UMR 1332 BFP, INRA, University of Bordeaux, MetaboHUB-Bordeaux, MetaboHUB, PHENOME-EMPHASIS, Villenave d'Ornon, France
| | - Adam Vivian-Smith
- Molecular plant biology and Forest Genetics and biodiversity, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Tao Zhao
- School of Science and Technology, Örebro University, Örebro, Sweden
| | - Carl Gunnar Fossdal
- Molecular plant biology and Forest Genetics and biodiversity, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Paal Krokene
- Molecular plant biology and Forest Genetics and biodiversity, Norwegian Institute of Bioeconomy Research, Ås, Norway
| |
Collapse
|
22
|
Jahan MA, Harris B, Lowery M, Infante AM, Percifield RJ, Kovinich N. Glyceollin Transcription Factor GmMYB29A2 Regulates Soybean Resistance to Phytophthora sojae. PLANT PHYSIOLOGY 2020; 183:530-546. [PMID: 32209590 PMCID: PMC7271783 DOI: 10.1104/pp.19.01293] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/14/2020] [Indexed: 05/04/2023]
Abstract
Glyceollin isomers I, II, and III are the major pathogen-elicited secondary metabolites (i.e. phytoalexins) of soybean (Glycine max) that, collectively with other 5-deoxyisoflavonoids, provide race-specific resistance to Phytophthora sojae. The NAC-family transcription factor (TF) GmNAC42-1 is an essential regulator of some but not all glyceollin biosynthesis genes, indicating other essential TF(s) of the glyceollin gene regulatory network remain to be identified. Here, we conducted comparative transcriptomics on soybean hairy roots of the variety Williams 82 and imbibing seeds of Harosoy 63 upon treatment with wall glucan elicitor from P. sojae and identified two homologous R2R3-type MYB TF genes, GmMYB29A1 and GmMYB29A2, up-regulated during the times of peak glyceollin biosynthesis. Overexpression and RNA interference silencing of GmMYB29A2 increased and decreased expression of GmNAC42-1, GmMYB29A1, and glyceollin biosynthesis genes and metabolites, respectively, in response to wall glucan elicitor. By contrast, overexpressing or silencing GmMYB29A1 decreased glyceollin I accumulation with marginal or no effects on the expressions of glyceollin synthesis genes, suggesting a preferential role in promoting glyceollin turnover and/or competing biosynthetic pathways. GmMYB29A2 interacted with the promoters of two glyceollin I biosynthesis genes in vitro and in vivo. Silencing GmMYB29A2 in Williams 82, a soybean variety that encodes the resistance gene Rps1k, rendered it compatible with race 1 P. sojae, whereas overexpressing GmMYB29A2 rendered the susceptible Williams variety incompatible. Compatibility and incompatibility coincided with reduced and enhanced accumulations of glyceollin I but not other 5-deoxyisoflavonoids. Thus, GmMYB29A2 is essential for accumulation of glyceollin I and expression of Phytophthora resistance.
Collapse
Affiliation(s)
- Md Asraful Jahan
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia 26506
| | - Brianna Harris
- Department of Biology, West Virginia University, Morgantown, West Virginia 26506
| | - Matthew Lowery
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506
| | - Aniello M Infante
- Department of Biostatistics, West Virginia University, Morgantown, West Virginia 26506
| | - Ryan J Percifield
- Department of Biology, West Virginia University, Morgantown, West Virginia 26506
| | - Nik Kovinich
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia 26506
| |
Collapse
|
23
|
Formaldehyde-assisted isolation of regulatory DNA elements from Arabidopsis leaves. Nat Protoc 2020; 15:713-733. [PMID: 32042178 DOI: 10.1038/s41596-019-0277-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 12/03/2019] [Indexed: 12/14/2022]
Abstract
Eukaryotic gene transcription is associated with the eviction of nucleosomes and the formation of open chromatin, which enables the recruitment of transcriptional coactivators and other regulatory factors. Open chromatin is thus a hallmark of functional regulatory DNA elements in genomes. In recent years, formaldehyde-assisted isolation of regulatory elements (FAIRE) has proven powerful in identifying open chromatin in the genome of various eukaryotes, particularly yeast, human, and mouse. However, it has proven challenging to adapt the FAIRE protocol for use on plant material, and the few available protocols all have their drawbacks (e.g., applicability only to specific developmental stages). In this Protocol Extension, we describe a reliable FAIRE protocol for mature Arabidopsis (Arabidopsis thaliana) leaves that adapts the original protocol for use on plants. The main differences between this protocol extension and the earlier FAIRE protocol are an increased formaldehyde concentration in the chromatin crosslinking buffer, application of a repeated vacuum to increase crosslinking efficiency, and altered composition of the DNA extraction buffer. The protocol is applicable to leaf chromatin of unstressed and stressed plants and can be completed within 1 week. Here, we also describe downstream analysis using qPCR and next-generation sequencing. However, this Protocol Extension should also be compatible with downstream hybridization to a DNA microarray. In addition, it is likely that only minor adaptations will be necessary to apply this protocol to other Arabidopsis organs or plant species.
Collapse
|
24
|
Mageroy MH, Christiansen E, Långström B, Borg-Karlson AK, Solheim H, Björklund N, Zhao T, Schmidt A, Fossdal CG, Krokene P. Priming of inducible defenses protects Norway spruce against tree-killing bark beetles. PLANT, CELL & ENVIRONMENT 2020; 43:420-430. [PMID: 31677172 DOI: 10.1111/pce.13661] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/23/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
Plants can form an immunological memory known as defense priming, whereby exposure to a priming stimulus enables quicker or stronger response to subsequent attack by pests and pathogens. Such priming of inducible defenses provides increased protection and reduces allocation costs of defense. Defense priming has been widely studied for short-lived model plants such as Arabidopsis, but little is known about this phenomenon in long-lived plants like spruce. We compared the effects of pretreatment with sublethal fungal inoculations or application of the phytohormone methyl jasmonate (MeJA) on the resistance of 48-year-old Norway spruce (Picea abies) trees to mass attack by a tree-killing bark beetle beginning 35 days later. Bark beetles heavily infested and killed untreated trees but largely avoided fungus-inoculated trees and MeJA-treated trees. Quantification of defensive terpenes at the time of bark beetle attack showed fungal inoculation induced 91-fold higher terpene concentrations compared with untreated trees, whereas application of MeJA did not significantly increase terpenes. These results indicate that resistance in fungus-inoculated trees is a result of direct induction of defenses, whereas resistance in MeJA-treated trees is due to defense priming. This work extends our knowledge of defense priming from model plants to an ecologically important tree species.
Collapse
Affiliation(s)
- Melissa H Mageroy
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, Ås, 1431, Norway
| | - Erik Christiansen
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, Ås, 1431, Norway
| | - Bo Långström
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden
| | - Anna-Karin Borg-Karlson
- Ecological Chemistry Group, Department of Chemistry, Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Halvor Solheim
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, Ås, 1431, Norway
| | - Niklas Björklund
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden
| | - Tao Zhao
- School of Science and Technology, Örebro University, Örebro, SE-701 82, Sweden
| | - Axel Schmidt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, D-07745, Germany
| | - Carl Gunnar Fossdal
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, Ås, 1431, Norway
| | - Paal Krokene
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, Ås, 1431, Norway
| |
Collapse
|
25
|
Ferber E, Gerhards J, Sauer M, Krischke M, Dittrich MT, Müller T, Berger S, Fekete A, Mueller MJ. Chemical Priming by Isothiocyanates Protects Against Intoxication by Products of the Mustard Oil Bomb. FRONTIERS IN PLANT SCIENCE 2020; 11:887. [PMID: 32676087 PMCID: PMC7333730 DOI: 10.3389/fpls.2020.00887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/29/2020] [Indexed: 05/17/2023]
Abstract
In Brassicaceae, tissue damage triggers the mustard oil bomb i.e., activates the degradation of glucosinolates by myrosinases leading to a rapid accumulation of isothiocyanates at the site of damage. Isothiocyanates are reactive electrophilic species (RES) known to covalently bind to thiols in proteins and glutathione, a process that is not only toxic to herbivores and microbes but can also cause cell death of healthy plant tissues. Previously, it has been shown that subtoxic isothiocyanate concentrations can induce transcriptional reprogramming in intact plant cells. Glutathione depletion by RES leading to breakdown of the redox potential has been proposed as a central and common RES signal transduction mechanism. Using transcriptome analyses, we show that after exposure of Arabidopsis seedlings (grown in liquid culture) to subtoxic concentrations of sulforaphane hundreds of genes were regulated without depletion of the cellular glutathione pool. Heat shock genes were among the most highly up-regulated genes and this response was found to be dependent on the canonical heat shock factors A1 (HSFA1). HSFA1-deficient plants were more sensitive to isothiocyanates than wild type plants. Moreover, pretreatment of Arabidopsis seedlings with subtoxic concentrations of isothiocyanates increased resistance against exposure to toxic levels of isothiocyanates and, hence, may reduce the autotoxicity of the mustard oil bomb by inducing cell protection mechanisms.
Collapse
Affiliation(s)
- Elena Ferber
- Julius-von-Sachs-Institute of Biosciences, Biocenter, Pharmaceutical Biology, University of Würzburg, Würzburg, Germany
| | - Julian Gerhards
- Julius-von-Sachs-Institute of Biosciences, Biocenter, Pharmaceutical Biology, University of Würzburg, Würzburg, Germany
| | - Miriam Sauer
- Julius-von-Sachs-Institute of Biosciences, Biocenter, Pharmaceutical Biology, University of Würzburg, Würzburg, Germany
| | - Markus Krischke
- Julius-von-Sachs-Institute of Biosciences, Biocenter, Pharmaceutical Biology, University of Würzburg, Würzburg, Germany
| | - Marcus T. Dittrich
- Department of Boinformatics, Biocenter, University of Würzburg, Würzburg, Germany
- Institute of Clinical Biochemistry, University of Würzburg, Würzburg, Germany
| | - Tobias Müller
- Department of Boinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Susanne Berger
- Julius-von-Sachs-Institute of Biosciences, Biocenter, Pharmaceutical Biology, University of Würzburg, Würzburg, Germany
| | - Agnes Fekete
- Julius-von-Sachs-Institute of Biosciences, Biocenter, Pharmaceutical Biology, University of Würzburg, Würzburg, Germany
| | - Martin J. Mueller
- Julius-von-Sachs-Institute of Biosciences, Biocenter, Pharmaceutical Biology, University of Würzburg, Würzburg, Germany
- *Correspondence: Martin J. Mueller,
| |
Collapse
|
26
|
Baum S, Reimer-Michalski EM, Bolger A, Mantai AJ, Benes V, Usadel B, Conrath U. Isolation of Open Chromatin Identifies Regulators of Systemic Acquired Resistance. PLANT PHYSIOLOGY 2019; 181:817-833. [PMID: 31337712 PMCID: PMC6776868 DOI: 10.1104/pp.19.00673] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/17/2019] [Indexed: 05/11/2023]
Abstract
Upon local infection, plants activate a systemic immune response called systemic acquired resistance (SAR). During SAR, systemic leaves become primed for the superinduction of defense genes upon reinfection. We used formaldehyde-assisted isolation of regulatory DNA elements coupled to next-generation sequencing to identify SAR regulators. Our bioinformatic analysis produced 10,129 priming-associated open chromatin sites in the 5' region of 3,025 genes in the systemic leaves of Arabidopsis (Arabidopsis thaliana) plants locally infected with Pseudomonas syringae pv. maculicola Whole transcriptome shotgun sequencing analysis of the systemic leaves after challenge enabled the identification of genes with priming-linked open chromatin before (contained in the formaldehyde-assisted isolation of regulatory DNA elements sequencing dataset) and enhanced expression after (included in the whole transcriptome shotgun sequencing dataset) the systemic challenge. Among them, Arabidopsis MILDEW RESISTANCE LOCUS O3 (MLO3) was identified as a previously unidentified positive regulator of SAR. Further in silico analysis disclosed two yet unknown cis-regulatory DNA elements in the 5' region of genes. The P-box was mainly associated with priming-responsive genes, whereas the C-box was mostly linked to challenge. We found that the P- or W-box, the latter recruiting WRKY transcription factors, or combinations of these boxes, characterize the 5' region of most primed genes. Therefore, this study provides a genome-wide record of genes with open and accessible chromatin during SAR and identifies MLO3 and two previously unidentified DNA boxes as likely regulators of this immune response.
Collapse
Affiliation(s)
- Stephani Baum
- Department of Plant Physiology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen 52056, Germany
| | - Eva-Maria Reimer-Michalski
- Department of Plant Physiology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen 52056, Germany
| | - Anthony Bolger
- Department of Botany, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen 52056, Germany
| | - Andrea J Mantai
- Department of Plant Physiology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen 52056, Germany
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Björn Usadel
- Department of Botany, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen 52056, Germany
| | - Uwe Conrath
- Department of Plant Physiology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen 52056, Germany
| |
Collapse
|
27
|
Wilkinson SW, Magerøy MH, López Sánchez A, Smith LM, Furci L, Cotton TEA, Krokene P, Ton J. Surviving in a Hostile World: Plant Strategies to Resist Pests and Diseases. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:505-529. [PMID: 31470772 DOI: 10.1146/annurev-phyto-082718-095959] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
As primary producers, plants are under constant pressure to defend themselves against potentially deadly pathogens and herbivores. In this review, we describe short- and long-term strategies that enable plants to cope with these stresses. Apart from internal immunological strategies that involve physiological and (epi)genetic modifications at the cellular level, plants also employ external strategies that rely on recruitment of beneficial organisms. We discuss these strategies along a gradient of increasing timescales, ranging from rapid immune responses that are initiated within seconds to (epi)genetic adaptations that occur over multiple plant generations. We cover the latest insights into the mechanistic and evolutionary underpinnings of these strategies and present explanatory models. Finally, we discuss how knowledge from short-lived model species can be translated to economically and ecologically important perennials to exploit adaptive plant strategies and mitigate future impacts of pests and diseases in an increasingly interconnected and changing world.
Collapse
Affiliation(s)
- Samuel W Wilkinson
- Plant Production and Protection Institute and Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom;
- Department of Molecular Plant Biology, Division for Biotechnology and Plant Health, Norwegian Institute for Bioeconomy Research, 1431 Ås, Norway
| | - Melissa H Magerøy
- Department of Molecular Plant Biology, Division for Biotechnology and Plant Health, Norwegian Institute for Bioeconomy Research, 1431 Ås, Norway
| | - Ana López Sánchez
- Plant Production and Protection Institute and Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom;
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Lisa M Smith
- Plant Production and Protection Institute and Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom;
| | - Leonardo Furci
- Plant Production and Protection Institute and Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom;
| | - T E Anne Cotton
- Plant Production and Protection Institute and Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom;
| | - Paal Krokene
- Department of Molecular Plant Biology, Division for Biotechnology and Plant Health, Norwegian Institute for Bioeconomy Research, 1431 Ås, Norway
| | - Jurriaan Ton
- Plant Production and Protection Institute and Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom;
| |
Collapse
|
28
|
Melrose J. The Glucosinolates: A Sulphur Glucoside Family of Mustard Anti-Tumour and Antimicrobial Phytochemicals of Potential Therapeutic Application. Biomedicines 2019; 7:biomedicines7030062. [PMID: 31430999 PMCID: PMC6784281 DOI: 10.3390/biomedicines7030062] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/15/2019] [Accepted: 08/17/2019] [Indexed: 12/13/2022] Open
Abstract
This study reviewed aspects of the biology of two members of the glucosinolate family, namely sinigrin and glucoraphanin and their anti-tumour and antimicrobial properties. Sinigrin and glucoraphanin are converted by the β-sulphoglucosidase myrosinase or the gut microbiota into their bioactive forms, allyl isothiocyanate (AITC) and sulphoraphanin (SFN) which constitute part of a sophisticated defence system plants developed over several hundred million years of evolution to protect them from parasitic attack from aphids, ticks, bacteria or nematodes. Delivery of these components from consumption of cruciferous vegetables rich in the glucosinolates also delivers many other members of the glucosinolate family so the dietary AITCs and SFN do not act in isolation. In vitro experiments with purified AITC and SFN have demonstrated their therapeutic utility as antimicrobials against a range of clinically important bacteria and fungi. AITC and SFN are as potent as Vancomycin in the treatment of bacteria listed by the World Health Organisation as antibiotic-resistant “priority pathogens” and also act as anti-cancer agents through the induction of phase II antioxidant enzymes which inactivate potential carcinogens. Glucosinolates may be useful in the treatment of biofilms formed on medical implants and catheters by problematic pathogenic bacteria such as Pseudomonas aeruginosa and Staphylococcus aureus and are potent antimicrobials against a range of clinically important bacteria and fungi. The glucosinolates have also been applied in the prevention of bacterial and fungal spoilage of food products in advanced atmospheric packaging technology which improves the shelf-life of these products.
Collapse
Affiliation(s)
- James Melrose
- Honorary Senior Research Associate, Raymond Purves Bone and Joint Research Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital, Faculty of Medicine and Health, The University of Sydney, St. Leonards, NSW 2065, Australia.
- Adjunct Professor, Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
- Sydney Medical School, Northern, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia.
| |
Collapse
|
29
|
Beyer SF, Beesley A, Rohmann PF, Schultheiss H, Conrath U, Langenbach CJ. The Arabidopsis non-host defence-associated coumarin scopoletin protects soybean from Asian soybean rust. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:397-413. [PMID: 31148306 PMCID: PMC6852345 DOI: 10.1111/tpj.14426] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/13/2019] [Accepted: 05/20/2019] [Indexed: 05/10/2023]
Abstract
The fungus Phakopsora pachyrhizi (Pp) causes Asian soybean rust (SBR) disease which provokes tremendous losses in global soybean production. Pp is mainly controlled with synthetic fungicides to which the fungus swiftly develops fungicide resistance. To substitute or complement synthetic fungicides in Asian soybean rust control, we aimed to identify antifungal metabolites in Arabidopsis which is not a host for Pp. Comparative transcriptional and metabolic profiling of the Pp-inoculated Arabidopsis non-host and the soybean host revealed induction of phenylpropanoid metabolism-associated genes in both species but activation of scopoletin biosynthesis only in the resistant non-host. Scopoletin is a coumarin and an antioxidant. In vitro experiments disclosed fungistatic activity of scopoletin against Pp, associated with reduced accumulation of reactive oxygen species (ROS) in fungal pre-infection structures. Non-antioxidant and antioxidant molecules including coumarins with a similar structure to scopoletin were inactive or much less effective at inhibiting fungal accumulation of ROS and germination of Pp spores. When sprayed onto Arabidopsis leaves, scopoletin also suppressed the formation of Pp pre-infection structures and penetration of the plant. However, scopoletin neither directly activated defence nor did it prime Arabidopsis for enhanced defence, therefore emphasizing fungistatic activity as the exclusive mode of action of scopoletin against Pp. Because scopletin also protected soybean from Pp infection, the coumarin may serve as a natural fungicide or as a lead for the development of near-to-nature fungicides against Asian soybean rust.
Collapse
Affiliation(s)
| | - Alexander Beesley
- Department of Plant PhysiologyRWTH Aachen UniversityAachen52074Germany
| | | | - Holger Schultheiss
- Agricultural CenterBASF Plant Science Company GmbHLimburgerhof67117Germany
| | - Uwe Conrath
- Department of Plant PhysiologyRWTH Aachen UniversityAachen52074Germany
| | | |
Collapse
|
30
|
Chen D, Shao M, Sun S, Liu T, Zhang H, Qin N, Zeng R, Song Y. Enhancement of Jasmonate-Mediated Antiherbivore Defense Responses in Tomato by Acetic Acid, a Potent Inducer for Plant Protection. FRONTIERS IN PLANT SCIENCE 2019; 10:764. [PMID: 31231416 PMCID: PMC6566139 DOI: 10.3389/fpls.2019.00764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 05/24/2019] [Indexed: 05/13/2023]
Abstract
Acetic acid (AA) has been proved as a chemical that could prime the jasmonic acid (JA) signaling pathway for plant drought tolerance. In this study, the capability of AA for priming of tomato defense against a chewing caterpillar Spodoptera litura and its underlying molecular mechanism were evaluated. AA pretreatment significantly increased tomato resistance against S. litura larvae. Upon larval attack, tomato plants pretreated with AA exhibited increased transcript levels of defense-related genes and elevated activities of polyphenol oxidase (PPO) and peroxidase (POD), and accumulation of protease inhibitor. Moreover, AA pretreatment resulted in upregulated transcription of JA biosynthesis genes and elevated JA accumulation in tomato seedlings upon insect attack. Furthermore, an apparent loss of AA-induced resistance was observed in a JA pathway-impaired mutant suppressor of prosystemin-mediated responses8 (spr8). These results indicate that AA enhances jasmonate-mediated antiherbivore defense responses in tomato. This raises the possibility of use of AA, a basic and simple biochemical compound, as a promising inducer for management of agricultural pests.
Collapse
Affiliation(s)
- Daoqian Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Crop Resistance and Chemical Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Min Shao
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaozhi Sun
- Institute of Crop Resistance and Chemical Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tingting Liu
- Institute of Crop Resistance and Chemical Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hao Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ningning Qin
- Institute of Crop Resistance and Chemical Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Crop Resistance and Chemical Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Crop Resistance and Chemical Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Yuanyuan Song,
| |
Collapse
|
31
|
Shen Q, Liu L, Wang L, Wang Q. Indole primes plant defense against necrotrophic fungal pathogen infection. PLoS One 2018; 13:e0207607. [PMID: 30444911 PMCID: PMC6239302 DOI: 10.1371/journal.pone.0207607] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 11/02/2018] [Indexed: 12/20/2022] Open
Abstract
Indole is a volatile compound and emitted from plants challenged by insect infestation or mechanic wounding. It has been shown to prime defense against herbivory. Here we identified that indole induced defense either directly or as a priming agent against necrotrophic pathogens Fusarium graminearum and F. moniliforme in maize and Magnaporthe oryzae in rice. With indole pretreatment, smaller lesions were developed in infected leaves, as well as less fungal growth. Indole induced H2O2 burst in the priming stage like other priming substances did. Such priming relied on mitogen-activated protein kinase (MAPK) cascade, which potentially activated downstream defense signaling. In addition, indole priming resulted in earlier and stronger defensive gene expression upon pathogen infection, including genes of jasmonate and phytoalexin biosynthesis, pathogenesis-related proteins (PRs) and anti-oxidant enzymes, which enhanced plant resistance. Meanwhile, H2O2 was also identified as the priming agent to induce plant defense. Taken together, indole exhibited priming function not only against herbivory but also necrotrophic pathogens. The common emission of indole in plants suggests that it plays important roles as the universal and endogenous priming substance in plant defense.
Collapse
Affiliation(s)
- Qinqin Shen
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Lijun Liu
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Liping Wang
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Qiang Wang
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
- * E-mail:
| |
Collapse
|
32
|
Yu H, Li Z, Bolm C. Transition-Metal-Free Arylations of In-Situ Generated Sulfenates with Diaryliodonium Salts. Org Lett 2018; 20:7104-7106. [DOI: 10.1021/acs.orglett.8b03046] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hao Yu
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1, 52074 Aachen, Germany
| | - Zhen Li
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1, 52074 Aachen, Germany
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
33
|
Abstract
A copper-catalyzed sulfoxidation of benzylic C-H bonds by nondirected oxidative C(sp3)-H activation was developed. The process proceeds via sulfenate anions, which are generated by base-triggered elimination of β-sulfinyl esters and benzyl radicals. The functional group tolerance is high, and the product yields are good.
Collapse
Affiliation(s)
- Hao Yu
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 , 52074 Aachen , Germany
| | - Zhen Li
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 , 52074 Aachen , Germany
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 , 52074 Aachen , Germany
| |
Collapse
|