1
|
Etesami H, Santoyo G. Boosting Rhizobium-legume symbiosis: The role of nodule non-rhizobial bacteria in hormonal and nutritional regulation under stress. Microbiol Res 2025; 297:128192. [PMID: 40279725 DOI: 10.1016/j.micres.2025.128192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/19/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Legumes are vital for sustainable agriculture due to their unique ability to fix atmospheric nitrogen through symbiosis with rhizobia. Recent research has highlighted the significant role of non-rhizobial bacteria (NRB) within root nodules in enhancing this symbiotic relationship, particularly under stress conditions. These NRB exhibit plant growth-promoting (PGP) metabolites by modulating phytohormones and enhancing nutrient availability, thereby improving nodule development and function. Bacteria produce essential hormones, such as auxin (indole-3-acetic acid), cytokinins, gibberellic acids abscisic acid, jasmonic acid, and salicylic acid, and enzymes like 1-aminocyclopropane-1-carboxylate deaminase, which mitigate ethylene's inhibitory effects on nodulation. Furthermore, NRB contribute to nutrient cycling by solubilizing minerals like phosphate, potassium, silicate, zinc, and iron, essential for effective nitrogen fixation. The co-inoculation of legumes with both rhizobia and NRB with multiple PGP metabolites has shown synergistic effects on plant growth, yield, and resilience against environmental stresses. This review emphasizes the need to further explore the diversity and functional roles of nodule-associated non-rhizobial endophytes, aiming to optimize legume productivity through improved nutrient and hormonal management. Understanding these interactions is crucial for developing sustainable agricultural practices that enhance the efficiency of legume-rhizobia symbiosis, ultimately contributing to food security and ecosystem health.
Collapse
Affiliation(s)
- Hassan Etesami
- Department of Soil Science, University of Tehran, Tehran, Iran.
| | - Gustavo Santoyo
- Institute of Chemical and Biological Research, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58095, Mexico
| |
Collapse
|
2
|
Zhao X, Mai C, Xia L, Jia G, Li X, Lu Y, Li Z, Yang H, Wang L. Molecular Insights into the Positive Role of Soybean Nodulation by GmWRKY17. Int J Mol Sci 2025; 26:2965. [PMID: 40243584 PMCID: PMC11988455 DOI: 10.3390/ijms26072965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/19/2025] [Accepted: 03/22/2025] [Indexed: 04/18/2025] Open
Abstract
Soybean is an important economic oilseed crop, being rich in protein and plant oil, it is widely cultivated around the world. Soybeans have been shown to establish a symbiotic nitrogen fixation (SNF) with their compatible rhizobia, resulting in the formation of nodules. Previous studies have demonstrated the critical roles of phytohormones, such as abscisic acid and cytokinin, in the process of legume nodulation. The present study investigated the role of GmWRKY17, a homolog of Rosa hybrida (Rh)WRKY13 in regulating plant immunity through cytokinin content and abscisic acid signaling in soybean nodulation. Utilizing real-time PCR and histochemical staining, we demonstrated that GmWRKY17 is predominantly expressed in soybean root nodules. Subsequently, we analyzed the function of GmWRKY17-overexpression, RNA interference (RNAi), and the CRISPR/Cas9 system. Overexpression of GmWRKY17 significantly increases soybean nodule number, while RNAi or CRISPR/Cas9-mediated knockout of GmWRKY17 resulted in a dramatic repression of nodule formation in soybeans. These results highlight that GmWRKY17 functions as a positive regulator involved in soybean nodulation. Furthermore, manipulation of GmWRKY17 expression impacts the expression of genes associated with the nod factor (NF) signaling pathway, thereby influencing soybean nodulation. This study demonstrated that WRKY-type transcription factors are involved in the regulation of legume nodulation, offering new light on the molecular basis of the symbiotic interaction between legumes and rhizobia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lixiang Wang
- Houji Laboratory in Shanxi Province, College of Agriculture, Shanxi Agricultural University, Taiyuan 030031, China; (X.Z.); (C.M.); (L.X.); (G.J.); (X.L.); (Y.L.); (Z.L.); (H.Y.)
| |
Collapse
|
3
|
Yu M, Ma C, Tai B, Fu X, Liu Q, Zhang G, Zhou X, Du L, Jin Y, Han Y, Zheng H, Huang L. Unveiling the regulatory mechanisms of nodules development and quality formation in Panax notoginseng using multi-omics and MALDI-MSI. J Adv Res 2025; 69:463-475. [PMID: 38588849 PMCID: PMC11954826 DOI: 10.1016/j.jare.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024] Open
Abstract
INTRODUCTION Renowned for its role in traditional Chinese medicine, Panax notoginseng exhibits healing properties including bidirectional regulatory effects on hematological system diseases. However, the presence of nodular structures near the top of the main root, known as nail heads, may impact the quality of the plant's valuable roots. OBJECTIVES In this paper, we aim to systematically analyze nail heads to identify their potential correlation with P. notoginseng quality. Additionally, we will investigate the molecular mechanisms behind nail head development. METHODS Morphological characteristics and anatomical features were analyzed to determine the biological properties of nail heads. Active component analysis and MALDI mass spectrometry imaging (MALDI-MSI) were performed to determine the correlation between nail heads and P. notoginseng quality. Phytohormone quantitation, MALDI-MSI, RNA-seq, and Arabidopsis transformation were conducted to elucidate the mechanisms of nail head formation. Finally, protein-nucleic acid and protein-protein interactions were investigated to construct a transcriptional regulatory network of nodule development and quality formation. RESULTS Our analyses have revealed that nail heads originate from an undeveloped lateral root. The content of ginsenosides was found to be positively associated with the amount of nail heads. Ginsenoside Rb1 specifically accumulated in the cortex of nail heads, while IAA, tZR and JAs also showed highest accumulation in the nodule. RNA-seq analysis identified PnIAA14 and PnCYP735A1 as inhibitors of lateral root development. PnMYB31 and PnMYB78 were found to form binary complexes with PnbHLH31 to synergistically regulate the expression of PnIAA14, PnCYP735A1, PnSS, and PnFPS. CONCLUSION Our study details the major biological properties of nodular structures in P. notoginseng and outlines their impact on the quality of the herb. It was also determined that PnMYB31- and PnMYB78-PnbHLH31 regulate phytohormones and ginsenosides accumulation, further affecting plant development and quality. This research provides insights for quality evaluation and clinical applications of P. notoginseng.
Collapse
Affiliation(s)
- Muyao Yu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Chunxia Ma
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Badalahu Tai
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Mongolian Medical College, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Xueqing Fu
- School of Design, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qi Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guanhua Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xiuteng Zhou
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liyuan Du
- Create (Beijing) Technology Co., Limited, Beijing 102200, China
| | - Yan Jin
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yang Han
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Han Zheng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
4
|
Salgado MG, Maity PJ, Lundin D, Pawlowski K. The auxin phenylacetic acid induces NIN expression in the actinorhizal plant Datisca glomerata, whereas cytokinin acts antagonistically. PLoS One 2025; 20:e0315798. [PMID: 39899489 PMCID: PMC11790169 DOI: 10.1371/journal.pone.0315798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 11/30/2024] [Indexed: 02/05/2025] Open
Abstract
All nitrogen-fixing root nodule symbioses of angiosperms-legume and actinorhizal symbioses-possess a common ancestor. Molecular processes for the induction of root nodules are modulated by phytohormones, as is the case of the first nodulation-related transcription factor NODULE INCEPTION (NIN), whose expression can be induced by exogenous cytokinin in legumes. The process of actinorhizal nodule organogenesis is less well understood. To study the changes exerted by phytohormones on the expression of the orthologs of CYCLOPS, NIN, and NF-YA1 in the actinorhizal host Datisca glomerata, an axenic hydroponic system was established and used to examine the transcriptional responses (RT-qPCR) in roots treated with the synthetic cytokinin 6-Benzylaminopurine (BAP), the natural auxin Phenylacetic acid (PAA), and the synthetic auxin 1-Naphthaleneacetic acid (NAA). The model legume Lotus japonicus was used as positive control. Molecular readouts for auxins and cytokinin were established: DgSAUR1 for PAA, DgGH3.1. for NAA, and DgARR9 for BAP. L. japonicus NIN was induced by BAP, PAA, and NAA in a dosage- and time-dependent manner. While expression of D. glomerata NIN2 could not be induced in roots, D. glomerata NIN1 was induced by PAA; this induction was abolished in the presence of exogenous BAP. Furthermore, the induction of DgNIN1 expression by PAA required ethylene and gibberellic acid. This study suggests that while cytokinin signaling is central for cortex-induced nodules of L. japonicus, it acts antagonistically to the induction of nodule primordia of D. glomerata by PAA in the root pericycle.
Collapse
Affiliation(s)
- Marco Guedes Salgado
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Pooja Jha Maity
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Daniel Lundin
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
5
|
Cao J, Zhou Y, Tian T, Ji J, Deng Y, Guan Y, Qi Y, Wang L, Wang L, Huang Y, Fan Q, Duanmu D. Type-B response regulator RRB12 regulates nodule formation in Lotus japonicus. BMC Biol 2024; 22:293. [PMID: 39695619 DOI: 10.1186/s12915-024-02088-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND The mutualistic beneficial relationship between legume plants and rhizobia enables the growth of plants in nitrogen-limiting conditions. Rhizobia infect legumes through root hairs and trigger nodule organogenesis in the cortex. The plant hormone cytokinin plays a pivotal role in regulating both rhizobial infection and the initiation of nodule development. However, the mechanism used by the cytokinin output module to control symbiosis remains poorly documented. RESULTS In this study, we identified a cytokinin signaling output component encoded by the Type-B RESPONSE REGULATOR (RRB) gene, LjRRB12, which is expressed in Lotus japonicus nodule primordia and young nodules. Disruption of LjRRB12 leads to a reduction in nodulation and to an increase in the number of infection threads. Overexpression of LjRRB12D76E, an active form of the LjRRB12 protein, induces nodule-like structures in wild type and hit1 (hyperinfected 1/lotus histidine kinase 1) mutants but not in nin2 (nodule inception 2) mutants. Additionally, we utilized nCUT&Tag and EMSA to demonstrate that LjRRB12 can bind a CE (cytokinin response element) from the LjNIN promoter. CONCLUSIONS Our results provide a deeper understanding of nodule organogenesis by establishing a link between the cytokinin signal and the transcriptional regulation of LjNIN.
Collapse
Affiliation(s)
- Jingjing Cao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu Zhou
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui, 234000, China
| | - Tao Tian
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Ji
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yan Deng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuhao Guan
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongmei Qi
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Longxiang Wang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Longlong Wang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Yibo Huang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiuling Fan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Deqiang Duanmu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China.
| |
Collapse
|
6
|
Meng Y, Wang N, Wang X, Qiu Z, Kuang H, Guan Y. GmbZIP4a/b Positively Regulate Nodule Number by Affecting Cytokinin Biosynthesis in Glycine max. Int J Mol Sci 2024; 25:13311. [PMID: 39769075 PMCID: PMC11678618 DOI: 10.3390/ijms252413311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Legumes have the capability to form nodules that facilitate symbiotic nitrogen fixation (SNF) with rhizobia. Given the substantial energy consumption during the process of SNF, legumes need to optimize nodule number in response to everchanging environmental scenarios. The TGACG BINDING FACTOR1/4 (TGA1/4) are key players in the basal immune response of plants. In this study, both β-glucuronidase staining and quantitative reverse transcription PCR (qRT-PCR) demonstrated that both GmbZIP4a and GmbZIP4b are inducible upon rhizobial inoculation. To investigate their roles further, we constructed gmbzip4a/b double mutants using CRISPR/Cas9 system. Nodulation assessments revealed that these double mutants displayed a reduction in the number of infection threads, which subsequently resulted in a decreased nodule number. However, the processes associated with nodule development including nodule fresh weight, structural characteristics, and nitrogenase activity, remained unaffected in the double mutants. Subsequent transcriptome analyses revealed that zeatin biosynthesis was downregulated in gmbzip4a/b mutants post rhizobial inoculation. Supporting these findings, genes associated with cytokinin (CTK) signaling pathway were upregulated in Williams 82 (Wm82), but this upregulation was not observed in the double mutants after rhizobial treatment. These results suggest that GmbZIP4a/b positively influences nodule formation by promoting the activation of the CTK signaling pathway during the early stages of nodule formation.
Collapse
Affiliation(s)
- Yongjie Meng
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (Y.M.); (X.W.)
| | - Nan Wang
- School of Life Sciences, Inner Mongolia University, Hohhot 010021, China;
| | - Xin Wang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (Y.M.); (X.W.)
| | - Zhimin Qiu
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, 334 Xueshan Road, Wenzhou 325005, China
| | - Huaqin Kuang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (Y.M.); (X.W.)
| | - Yuefeng Guan
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (Y.M.); (X.W.)
| |
Collapse
|
7
|
Drapek C, Rizza A, Mohd-Radzman NA, Schiessl K, Dos Santos Barbosa F, Wen J, Oldroyd GED, Jones AM. Gibberellin dynamics governing nodulation revealed using GIBBERELLIN PERCEPTION SENSOR 2 in Medicago truncatula lateral organs. THE PLANT CELL 2024; 36:4442-4456. [PMID: 39012965 PMCID: PMC11449112 DOI: 10.1093/plcell/koae201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 04/24/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024]
Abstract
During nutrient scarcity, plants can adapt their developmental strategy to maximize their chance of survival. Such plasticity in development is underpinned by hormonal regulation, which mediates the relationship between environmental cues and developmental outputs. In legumes, endosymbiosis with nitrogen-fixing bacteria (rhizobia) is a key adaptation for supplying the plant with nitrogen in the form of ammonium. Rhizobia are housed in lateral root-derived organs termed nodules that maintain an environment conducive to Nitrogenase in these bacteria. Several phytohormones are important for regulating the formation of nodules, with both positive and negative roles proposed for gibberellin (GA). In this study, we determine the cellular location and function of bioactive GA during nodule organogenesis using a genetically encoded second-generation GA biosensor, GIBBERELLIN PERCEPTION SENSOR 2 in Medicago truncatula. We find endogenous bioactive GA accumulates locally at the site of nodule primordia, increasing dramatically in the cortical cell layers, persisting through cell divisions, and maintaining accumulation in the mature nodule meristem. We show, through misexpression of GA-catabolic enzymes that suppress GA accumulation, that GA acts as a positive regulator of nodule growth and development. Furthermore, increasing or decreasing GA through perturbation of biosynthesis gene expression can increase or decrease the size of nodules, respectively. This is unique from lateral root formation, a developmental program that shares common organogenesis regulators. We link GA to a wider gene regulatory program by showing that nodule-identity genes induce and sustain GA accumulation necessary for proper nodule formation.
Collapse
Affiliation(s)
- Colleen Drapek
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Annalisa Rizza
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | | | | | | | - Jiangqi Wen
- Institute for Agricultural Biosciences, Oklahoma State University, Stillwater, OK 73401, USA
| | - Giles E D Oldroyd
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
- Department of Plant Sciences, The Crop Science Centre, University of Cambridge, Cambridge CB3 0LE, UK
| | - Alexander M Jones
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| |
Collapse
|
8
|
Zhang D, Di Q, Gui J, Li Q, Mysore KS, Wen J, Luo L, Yu L. Tyrosylprotein Sulfotransferase Positively Regulates Symbiotic Nodulation and Root Growth. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39286964 DOI: 10.1111/pce.15154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024]
Abstract
Posttranslational tyrosine sulfation of peptides and proteins is catalysed by tyrosylprotein sulfotransferases (TPSTs). In Arabidopsis, tyrosine sulfation is essential for the activities of peptide hormones, such as phytosulfokine (PSK) and root meristem growth factor (RGF). Here, we identified a TPST-encoding gene, MtTPST, from model legume Medicago truncatula. MtTPST expression was detected in all organs, with the highest level in root nodules. A promoter:GUS assay revealed that MtTPST was highly expressed in the root apical meristem, nodule primordium and nodule apical meristem. The loss-of-function mutant mttpst exhibited a stunted phenotype with short roots and reduced nodule number and size. Application of both of the sulfated peptides PSK and RGF3 partially restored the defective root length of mttpst. The reduction in symbiotic nodulation in mttpst was partially recovered by treatment with sulfated PSK peptide. MtTPST-PSK module functions downstream of the Nod factor signalling to promote nodule initiation via regulating accumulation and/or signalling of cytokinin and auxin. Additionally, the small-nodule phenotype of mttpst, which resulted from decreased apical meristematic activity, was partially complemented by sulfated RGF3 treatment. Together, these results demonstrate that MtTPST, through its substrates PSK, RGF3 and other sulfated peptide(s), positively regulates nodule development and root growth.
Collapse
Affiliation(s)
- Danping Zhang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Qi Di
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jinshan Gui
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Qiong Li
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Kirankumar S Mysore
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma, USA
| | - Jiangqi Wen
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma, USA
| | - Li Luo
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Liangliang Yu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Soyano T, Akamatsu A, Takeda N, Watahiki MK, Goh T, Okuma N, Suganuma N, Kojima M, Takebayashi Y, Sakakibara H, Nakajima K, Kawaguchi M. Periodic cytokinin responses in Lotus japonicus rhizobium infection and nodule development. Science 2024; 385:288-294. [PMID: 39024445 DOI: 10.1126/science.adk5589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 04/26/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024]
Abstract
Host plants benefit from legume root nodule symbiosis with nitrogen-fixing bacteria under nitrogen-limiting conditions. In this interaction, the hosts must regulate nodule numbers and distribution patterns to control the degree of symbiosis and maintain root growth functions. The host response to symbiotic bacteria occurs discontinuously but repeatedly at the region behind the tip of the growing roots. Here, live-imaging and transcriptome analyses revealed oscillating host gene expression with approximately 6-hour intervals upon bacterial inoculation. Cytokinin response also exhibited a similar oscillation pattern. Cytokinin signaling is crucial to maintaining the periodicity, as observed in cytokinin receptor mutants displaying altered infection foci distribution. This periodic regulation influences the size of the root region responsive to bacteria, as well as the nodulation process progression.
Collapse
Affiliation(s)
- Takashi Soyano
- Division of Symbiotic Systems, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Basic Biology Program, Graduate University for Advanced Studies, SOKENDAI, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Akira Akamatsu
- Graduate School of Biological and Environmental Sciences, Kwansei Gakuin University, Gakuen Uegahara 1, Sanda, Hyogo 669-1330, Japan
| | - Naoya Takeda
- Graduate School of Biological and Environmental Sciences, Kwansei Gakuin University, Gakuen Uegahara 1, Sanda, Hyogo 669-1330, Japan
| | - Masaaki K Watahiki
- Faculty of Science, Division of Biological Sciences, Hokkaido University, Kitaku Kita 10, Nishi 8, Sapporo 060-0810, Japan
| | - Tatsuaki Goh
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Division of Biological Science, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Nao Okuma
- Division of Symbiotic Systems, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Norio Suganuma
- Department of Life Science, Aichi University of Education, Kariya, Aichi 448-8542, Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Yumiko Takebayashi
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Keiji Nakajima
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Division of Biological Science, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Masayoshi Kawaguchi
- Division of Symbiotic Systems, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Basic Biology Program, Graduate University for Advanced Studies, SOKENDAI, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
10
|
Velandia K, Correa-Lozano A, McGuiness PM, Reid JB, Foo E. Cell-layer specific roles for gibberellins in nodulation and root development. THE NEW PHYTOLOGIST 2024; 242:626-640. [PMID: 38396236 DOI: 10.1111/nph.19623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/01/2024] [Indexed: 02/25/2024]
Abstract
Gibberellins (GA) have a profound influence on the formation of lateral root organs. However, the precise role this hormone plays in the cell-specific events during lateral root formation, rhizobial infection and nodule organogenesis, including interactions with auxin and cytokinin (CK), is not clear. We performed epidermal- and endodermal-specific complementation of the severely GA-deficient na pea (Pisum sativum) mutant with Agrobacterium rhizogenes. Gibberellin mutants were used to examine the spatial expression pattern of CK (TCSn)- and auxin (DR5)-responsive promoters and hormone levels. We found that GA produced in the endodermis promote lateral root and nodule organogenesis and can induce a mobile signal(s) that suppresses rhizobial infection. By contrast, epidermal-derived GA suppress infection but have little influence on root or nodule development. GA suppress the CK-responsive TCSn promoter in the cortex and are required for normal auxin activation during nodule primordia formation. Our findings indicate that GA regulate the checkpoints between infection thread (IT) penetration of the cortex and invasion of nodule primordial cells and promote the subsequent progression of nodule development. It appears that GA limit the progression and branching of IT in the cortex by restricting CK response and activate auxin response to promote nodule primordia development.
Collapse
Affiliation(s)
- Karen Velandia
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Alejandro Correa-Lozano
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Peter M McGuiness
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - James B Reid
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Eloise Foo
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| |
Collapse
|
11
|
Cui S, Inaba S, Suzaki T, Yoshida S. Developing for nutrient uptake: Induced organogenesis in parasitic plants and root nodule symbiosis. CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102473. [PMID: 37826989 DOI: 10.1016/j.pbi.2023.102473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/26/2023] [Accepted: 09/09/2023] [Indexed: 10/14/2023]
Abstract
Plants have evolved diverse strategies to meet their nutritional needs. Parasitic plants employ haustoria, specialized structures that facilitate invasion of host plants and nutrient acquisition. Legumes have adapted to nitrogen-limited conditions by developing nodules that accommodate nitrogen-fixing rhizobia. The formation of both haustoria and nodules is induced by signals originating from the interacting organisms, namely host plants and rhizobial bacteria, respectively. Emerging studies showed that both organogenesis crucially involves plant hormones such as auxin, cytokinins, and ethylene and also integrate nutrient availability, particularly nitrogen. In this review, we discuss recent advances on hormonal and environmental control of haustoria and nodules development with side-by-side comparison. These underscore the remarkable plasticity of plant organogenesis.
Collapse
Affiliation(s)
- Songkui Cui
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Shoko Inaba
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Ikoma, Nara, Japan
| | - Takuya Suzaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan; Tsukuba Plant-Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | - Satoko Yoshida
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Ikoma, Nara, Japan.
| |
Collapse
|
12
|
Luo Z, Liu H, Xie F. Cellular and molecular basis of symbiotic nodule development. CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102478. [PMID: 37857037 DOI: 10.1016/j.pbi.2023.102478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/18/2023] [Accepted: 09/24/2023] [Indexed: 10/21/2023]
Abstract
Root nodule development plays a vital role in establishing the mutualistic relationship between legumes and nitrogen-fixing rhizobia. Two primary processes are involved in nodule development: formative cell divisions in the root cortex and the subsequent differentiation of nodule cells. The first process involves the mitotic reactivation of differentiated root cortex cells to form nodule primordium after perceiving symbiotic signals. The second process enables the nascent nodule primordium cells to develop into various cell types, leading to the creation of a functional nodule capable of supporting nitrogen fixation. Thus, both division and differentiation of nodule cells are crucial for root nodule development. This review provides an overview of the most recent advancements in comprehending the cellular and molecular mechanisms underlying symbiotic nodule development in legumes.
Collapse
Affiliation(s)
- Zhenpeng Luo
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Haiyue Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Fang Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
13
|
Fan K, Wang Z, Sze CC, Niu Y, Wong FL, Li MW, Lam HM. MicroRNA 4407 modulates nodulation in soybean by repressing a root-specific ISOPENTENYLTRANSFERASE (GmIPT3). THE NEW PHYTOLOGIST 2023; 240:1034-1051. [PMID: 37653681 DOI: 10.1111/nph.19222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 07/28/2023] [Indexed: 09/02/2023]
Abstract
MicroRNAs (miRNAs) are important regulators of plant biological processes, including soybean nodulation. One miRNA, miR4407, was identified in soybean roots and nodules. However, the function of miR4407 in soybean is still unknown. MiR4407, unique to soybean, positively regulates lateral root emergence and root structures and represses a root-specific ISOPENTENYLTRANSFERASE (GmIPT3). By altering the expression of miR4407 and GmIPT3, we investigated the role of miR4407 in lateral root and nodule development. Both miR4407 and GmIPT3 are expressed in the inner root cortex and nodule primordia. Upon rhizobial inoculation, miR4407 was downregulated while GmIPT3 was upregulated. Overexpressing miR4407 reduced the number of nodules in transgenic soybean hairy roots while overexpressing the wild-type GmIPT3 or a miR4407-resistant GmIPT3 mutant (mGmIPT3) significantly increased the nodule number. The mechanism of miR4407 and GmIPT3 functions was also linked to autoregulation of nodulation (AON), where miR4407 overexpression repressed miR172c and activated its target, GmNNC1, turning on AON. Exogenous CK mimicked the effects of GmIPT3 overexpression on miR172c, supporting the notion that GmIPT3 regulates nodulation by enhancing root-derived CK. Overall, our data revealed a new miRNA-mediated regulatory mechanism of nodulation in soybean. MiR4407 showed a dual role in lateral root and nodule development.
Collapse
Affiliation(s)
- Kejing Fan
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Zhili Wang
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ching-Ching Sze
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yongchao Niu
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Fuk-Ling Wong
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Man-Wah Li
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hon-Ming Lam
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
14
|
Belousova DA, Shishov VV, Arzac A, Popkova MI, Babushkina EA, Huang JG, Yang B, Vaganov EA. VS-Cambium-Developer: A New Predictive Model of Cambium Functioning under the Influence of Environmental Factors. PLANTS (BASEL, SWITZERLAND) 2023; 12:3594. [PMID: 37896057 PMCID: PMC10609909 DOI: 10.3390/plants12203594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/01/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023]
Abstract
Climate changes influence seasonal tree-ring formation. The result is a specific cell structure dependent on internal processes and external environmental factors. One way to investigate and analyze these relationships is to apply diverse simulation models of tree-ring growth. Here, we have proposed a new version of the VS-Cambium-Developer model (VS-CD model), which simulates the cambial activity process in conifers. The VS-CD model does not require the manual year-to-year calibration of parameters over a long-term cell production reconstruction or forecast. Instead, it estimates cell production and simulates the dynamics of radial cell development within the growing seasons. Thus, a new software based on R programming technology, able to efficiently adapt to the VS model online platform, has been developed. The model was tested on indirect observations of the cambium functioning in Larix sibirica trees from southern Siberia, namely on the measured annual cell production from 1963 to 2011. The VS-CD model proves to simulate cell production accurately. The results highlighted the efficiency of the presented model and contributed to filling the gap in the simulations of cambial activity, which is critical to predicting the potential impacts of changing environmental conditions on tree growth.
Collapse
Affiliation(s)
- Daria A. Belousova
- Research Department, Siberian Federal University, 660041 Krasnoyarsk, Russia;
| | - Vladimir V. Shishov
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia;
| | - Alberto Arzac
- Institute of Ecology and Geography, Siberian Federal University, 660041 Krasnoyarsk, Russia; (A.A.); (E.A.V.)
| | | | - Elena A. Babushkina
- Khakass Technical Institute, Siberian Federal University, 655017 Abakan, Russia;
| | - Jian-Guo Huang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Bao Yang
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China;
| | - Eugene A. Vaganov
- Institute of Ecology and Geography, Siberian Federal University, 660041 Krasnoyarsk, Russia; (A.A.); (E.A.V.)
| |
Collapse
|
15
|
Kantsurova (Rudaya) ES, Ivanova AN, Kozyulina PY, Dolgikh EA. Exogenously Applied Cytokinin Altered the Bacterial Release and Subsequent Stages of Nodule Development in Pea Ipd3/Cyclops Mutant. PLANTS (BASEL, SWITZERLAND) 2023; 12:657. [PMID: 36771742 PMCID: PMC9921755 DOI: 10.3390/plants12030657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/25/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Regulation of plant hormonal status is one of the major targets of symbiotic signaling during nodule formation in legume plants. However, the genetic and hormonal networks that regulate transition to differentiation of nodules are not well-characterized in legume plants. Analysis of plant mutants forming nodules impaired in rhizobial infection allowed us to identify some regulators involved in the control of the later stages of nodule development. In the current work, we extend our earlier studies on the influence of exogenously applied cytokinin on the later stages of nodule morphogenesis using pea sym33 (ipd3/cyclops) mutants impaired in the gene encoding IPD3/CYCLOPS transcription factor. One of the noticeable effects of the influence of exogenously applied cytokinin on nodules in the sym33-3 mutant was an increasing size of these structures. Cytokinin treatment was shown to stimulate bacterial release and increase the percentage of infected cells in nodules. To explore the role of possible regulators of nodule differentiation, we performed searching in pea transcriptome. The transcriptome study in pea P. sativum revealed the importance of the CCS52 regulator, EFD transcription factor, SYMREM regulator, RSD, the MADS-domain/AGL, and SHORT INTERNODE/STYLISH gene families encoding transcription factors in the control of nodule differentiation. Analysis of the expression patterns was verified by real-time PCR in response to exogenously applied cytokinin treatment.
Collapse
Affiliation(s)
| | - Alexandra N. Ivanova
- Komarov Botanical Institute RAS, Prof. Popov St., 2, 197376 St. Petersburg, Russia
- Research Park, St. Petersburg State University, Universitetskaya Emb. 7-9, 199034 St. Petersburg, Russia
| | - Polina Y. Kozyulina
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chausse 3, Pushkin, 196608 St. Petersburg, Russia
| | - Elena A. Dolgikh
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chausse 3, Pushkin, 196608 St. Petersburg, Russia
| |
Collapse
|
16
|
Liu M, Kameoka H, Oda A, Maeda T, Goto T, Yano K, Soyano T, Kawaguchi M. The effects of ERN1 on gene expression during early rhizobial infection in Lotus japonicus. FRONTIERS IN PLANT SCIENCE 2023; 13:995589. [PMID: 36733592 PMCID: PMC9888413 DOI: 10.3389/fpls.2022.995589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
Legumes develop root nodules in association with compatible rhizobia to overcome nitrogen deficiency. Rhizobia enter the host legume, mainly through infection threads, and induce nodule primordium formation in the root cortex. Multiple transcription factors have been identified to be involved in the regulation of the establishment of root nodule symbiosis, including ERF Required for Nodulation1 (ERN1). ERN1 is involved in a transcription network with CYCLOPS and NODULE INCEPTION (NIN). Mutation of ERN1 often results in misshapen root hair tips, deficient infection thread formation, and immature root nodules. ERN1 directly activates the expression of ENOD11 in Medicago truncatula to assist cell wall remodeling and Epr3 in Lotus japonicus to distinguish rhizobial exopolysaccharide signals. However, aside from these two genes, it remains unclear which genes are regulated by LjERN1 or what role LjERN1 plays during root nodule symbiosis. Thus, we conducted RNA sequencing to compare the gene expression profiles of wild-type L. japonicus and Ljern1-6 mutants. In total, 234 differentially expressed genes were identified as candidate LjERN1 target genes. These genes were found to be associated with cell wall remodeling, signal transduction, phytohormone metabolism, and transcription regulation, suggesting that LjERN1 is involved in multiple processes during the early stages of the establishment of root nodule symbiosis. Many of these candidate genes including RINRK1 showed decreased expression levels in Ljnin-2 mutants based on a search of a public database, suggesting that LjERN1 and LjNIN coordinately regulate gene expression. Our data extend the current understanding of the pleiotropic role of LjERN1 in root nodule symbiosis.
Collapse
Affiliation(s)
- Meng Liu
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Hiromu Kameoka
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Akiko Oda
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Taro Maeda
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Takashi Goto
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Koji Yano
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Takashi Soyano
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Masayoshi Kawaguchi
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| |
Collapse
|
17
|
Chen J, Wang Z, Wang L, Hu Y, Yan Q, Lu J, Ren Z, Hong Y, Ji H, Wang H, Wu X, Lin Y, Su C, Ott T, Li X. The B-type response regulator GmRR11d mediates systemic inhibition of symbiotic nodulation. Nat Commun 2022; 13:7661. [PMID: 36496426 PMCID: PMC9741591 DOI: 10.1038/s41467-022-35360-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
Key to the success of legumes is the ability to form and maintain optimal symbiotic nodules that enable them to balance the trade-off between symbiosis and plant growth. Cytokinin is essential for homeostatic regulation of nodulation, but the mechanism remains incompletely understood. Here, we show that a B-type response regulator GmRR11d mediates systemic inhibition of nodulation. GmRR11d is induced by rhizobia and low level cytokinin, and GmRR11d can suppress the transcriptional activity of GmNSP1 on GmNIN1a to inhibit soybean nodulation. GmRR11d positively regulates cytokinin response and its binding on the GmNIN1a promoter is enhanced by cytokinin. Intriguingly, rhizobial induction of GmRR11d and its function are dependent upon GmNARK that is a CLV1-like receptor kinase and inhibits nodule number in shoots. Thus, GmRR11d governs a transcriptional program associated with nodulation attenuation and cytokinin response activation essential for systemic regulation of nodulation.
Collapse
Affiliation(s)
- Jiahuan Chen
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhijuan Wang
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lixiang Wang
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China ,grid.412545.30000 0004 1798 1300College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Yangyang Hu
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qiqi Yan
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jingjing Lu
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ziyin Ren
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yujie Hong
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongtao Ji
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hui Wang
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xinying Wu
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanru Lin
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chao Su
- grid.5963.9University of Freiburg, Faculty of Biology, Cell Biology, Freiburg, Germany
| | - Thomas Ott
- grid.5963.9University of Freiburg, Faculty of Biology, Cell Biology, Freiburg, Germany ,grid.5963.9CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Xia Li
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China ,grid.20561.300000 0000 9546 5767Guangdong Laboratory for Lingnan Modern Agriculture, Wushan Road, Guangzhou, Guangdong, PR China
| |
Collapse
|
18
|
Sánchez-Correa MDS, Isidra-Arellano MC, Pozas-Rodríguez EA, Reyero-Saavedra MDR, Morales-Salazar A, del Castillo SMLC, Sanchez-Flores A, Jiménez-Jacinto V, Reyes JL, Formey D, Valdés-López O. Argonaute5 and its associated small RNAs modulate the transcriptional response during the rhizobia- Phaseolus vulgaris symbiosis. FRONTIERS IN PLANT SCIENCE 2022; 13:1034419. [PMID: 36466235 PMCID: PMC9714512 DOI: 10.3389/fpls.2022.1034419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/19/2022] [Indexed: 06/17/2023]
Abstract
Both plant- and rhizobia-derived small RNAs play an essential role in regulating the root nodule symbiosis in legumes. Small RNAs, in association with Argonaute proteins, tune the expression of genes participating in nodule development and rhizobial infection. However, the role of Argonaute proteins in this symbiosis has been overlooked. In this study, we provide transcriptional evidence showing that Argonaute5 (AGO5) is a determinant genetic component in the root nodule symbiosis in Phaseolus vulgaris. A spatio-temporal transcriptional analysis revealed that the promoter of PvAGO5 is active in lateral root primordia, root hairs from rhizobia-inoculated roots, nodule primordia, and mature nodules. Transcriptional analysis by RNA sequencing revealed that gene silencing of PvAGO5 affected the expression of genes involved in the biosynthesis of the cell wall and phytohormones participating in the rhizobial infection process and nodule development. PvAGO5 immunoprecipitation coupled to small RNA sequencing revealed the small RNAs bound to PvAGO5 during the root nodule symbiosis. Identification of small RNAs associated to PvAGO5 revealed miRNAs previously known to participate in this symbiotic process, further supporting a role for AGO5 in this process. Overall, the data presented shed light on the roles that PvAGO5 plays during the root nodule symbiosis in P. vulgaris.
Collapse
Affiliation(s)
- María del Socorro Sánchez-Correa
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| | - Mariel C. Isidra-Arellano
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| | - Eithan A. Pozas-Rodríguez
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| | - María del Rocío Reyero-Saavedra
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| | - Alfredo Morales-Salazar
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| | | | - Alejandro Sanchez-Flores
- Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Verónica Jiménez-Jacinto
- Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Jose L. Reyes
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Damien Formey
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Oswaldo Valdés-López
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| |
Collapse
|
19
|
Dow L, Barrow RA, White RG, Mathesius U. Photolysis of caged cytokinin in single cells of Arabidopsis thaliana. PLANT METHODS 2022; 18:120. [PMID: 36369052 PMCID: PMC9652950 DOI: 10.1186/s13007-022-00953-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Cytokinins are a class of phytohormone that play a crucial role in the development of plants. They are involved in the regulation of nearly every aspect of plant growth, from germination to senescence. The role of cytokinins in many developmental programs is complex and varies both spatially and temporally. Current techniques used to investigate the functions of cytokinins in plant development lack this spatial and temporal resolution required to observe cell-type specific effects. RESULTS To this end, we present a method of activating a caged cytokinin in single cells. A caged benzyladenine was synthesized, along with caged adenine as a negative control. In vitro testing confirmed ultraviolet light-mediated uncaging, and subsequent root growth assays demonstrated that uncaging produced a cytokinin phenotype. This uncaging was confined to single cells using multiphoton confocal microscopy. Using an Arabidopsis thaliana cytokinin reporter line expressing TCSn::GFP, the resulting GFP expression was confined to the uncaging region, including in single cells. This study presents a novel cell-targeted method of cytokinin delivery, which has the potential to elucidate a broad range of processes in plant development. CONCLUSIONS We combined multiphoton confocal microscopy and a caged cytokinin treatment, allowing cell type-specific uncaging of a cytokinin in Arabidopsis roots.
Collapse
Affiliation(s)
- Lachlan Dow
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia.
| | - Russell A Barrow
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| | - Rosemary G White
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
- CSIRO Agriculture and Food, Canberra, ACT, 2601, Australia
| | - Ulrike Mathesius
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
20
|
Yuan P, Luo F, Gleason C, Poovaiah BW. Calcium/calmodulin-mediated microbial symbiotic interactions in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:984909. [PMID: 36330252 PMCID: PMC9623113 DOI: 10.3389/fpls.2022.984909] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Cytoplasmic calcium (Ca2+) transients and nuclear Ca2+ oscillations act as hubs during root nodulation and arbuscular mycorrhizal symbioses. Plants perceive bacterial Nod factors or fungal signals to induce the Ca2+ oscillation in the nucleus of root hair cells, and subsequently activate calmodulin (CaM) and Ca2+/CaM-dependent protein kinase (CCaMK). Ca2+ and CaM-bound CCaMK phosphorylate transcription factors then initiate down-stream signaling events. In addition, distinct Ca2+ signatures are activated at different symbiotic stages: microbial colonization and infection; nodule formation; and mycorrhizal development. Ca2+ acts as a key signal that regulates a complex interplay of downstream responses in many biological processes. This short review focuses on advances in Ca2+ signaling-regulated symbiotic events. It is meant to be an introduction to readers in and outside the field of bacterial and fungal symbioses. We summarize the molecular mechanisms underlying Ca2+/CaM-mediated signaling in fine-tuning both local and systemic symbiotic events.
Collapse
Affiliation(s)
- Peiguo Yuan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| | - Feixiong Luo
- Department of Pomology, Hunan Agricultural University, Changsha, China
| | - Cynthia Gleason
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - B. W. Poovaiah
- Department of Horticulture, Washington State University, Pullman, WA, United States
| |
Collapse
|
21
|
Velandia K, Reid JB, Foo E. Right time, right place: The dynamic role of hormones in rhizobial infection and nodulation of legumes. PLANT COMMUNICATIONS 2022; 3:100327. [PMID: 35605199 PMCID: PMC9482984 DOI: 10.1016/j.xplc.2022.100327] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/24/2022] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Many legume plants form beneficial associations with rhizobial bacteria that are hosted in new plant root organs, nodules, in which atmospheric nitrogen is fixed. This association requires the precise coordination of two separate programs, infection in the epidermis and nodule organogenesis in the cortex. There is extensive literature indicating key roles for plant hormones during nodulation, but a detailed analysis of the spatial and temporal roles of plant hormones during the different stages of nodulation is required. This review analyses the current literature on hormone regulation of infection and organogenesis to reveal the differential roles and interactions of auxin, cytokinin, brassinosteroids, ethylene, and gibberellins during epidermal infection and cortical nodule initiation, development, and function. With the exception of auxin, all of these hormones suppress infection events. By contrast, there is evidence that all of these hormones promote nodule organogenesis, except ethylene, which suppresses nodule initiation. This differential role for many of the hormones between the epidermal and cortical programs is striking. Future work is required to fully examine hormone interactions and create a robust model that integrates this knowledge into our understanding of nodulation pathways.
Collapse
Affiliation(s)
- Karen Velandia
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - James B Reid
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Eloise Foo
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia.
| |
Collapse
|
22
|
Visualization of the Crossroads between a Nascent Infection Thread and the First Cell Division Event in Phaseolus vulgaris Nodulation. Int J Mol Sci 2022; 23:ijms23095267. [PMID: 35563659 PMCID: PMC9105610 DOI: 10.3390/ijms23095267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022] Open
Abstract
The development of a symbiotic nitrogen-fixing nodule in legumes involves infection and organogenesis. Infection begins when rhizobia enter a root hair through an inward structure, the infection thread (IT), which guides the bacteria towards the cortical tissue. Concurrently, organogenesis takes place by inducing cortical cell division (CCD) at the infection site. Genetic analysis showed that both events are well-coordinated; however, the dynamics connecting them remain to be elucidated. To visualize the crossroads between IT and CCD, we benefited from the fact that, in Phaseolus vulgaris nodulation, where the first division occurs in subepidermal cortical cells located underneath the infection site, we traced a Rhizobium etli strain expressing DsRed, the plant cytokinesis marker YFP-PvKNOLLE, a nuclear stain and cell wall auto-fluorescence. We found that the IT exits the root hair to penetrate an underlying subepidermal cortical (S-E) cell when it is concluding cytokinesis.
Collapse
|
23
|
Chen L, Jameson GB, Guo Y, Song J, Jameson PE. The LONELY GUY gene family: from mosses to wheat, the key to the formation of active cytokinins in plants. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:625-645. [PMID: 35108444 PMCID: PMC8989509 DOI: 10.1111/pbi.13783] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/06/2022] [Accepted: 01/13/2022] [Indexed: 05/19/2023]
Abstract
LONELY GUY (LOG) was first identified in a screen of rice mutants with defects in meristem maintenance. In plants, LOG codes for cytokinin riboside 5'-monophosphate phosphoribohydrolase, which converts inactive cytokinin nucleotides directly to the active free bases. Many enzymes with the PGGxGTxxE motif have been misannotated as lysine decarboxylases; conversely not all enzymes containing this motif are cytokinin-specific LOGs. As LOG mutants clearly impact yield in rice, we investigated the LOG gene family in bread wheat. By interrogating the wheat (Triticum aestivum) genome database, we show that wheat has multiple LOGs. The close alignment of TaLOG1, TaLOG2 and TaLOG6 with the X-ray structures of two functional Arabidopsis thaliana LOGs allows us to infer that the wheat LOGs 1-11 are functional LOGs. Using RNA-seq data sets, we assessed TaLOG expression across 70 tissue types, their responses to various stressors, the pattern of cis-regulatory elements (CREs) and intron/exon patterns. TaLOG gene family members are expressed variously across tissue types. When the TaLOG CREs are compared with those of the cytokinin dehydrogenases (CKX) and glucosyltransferases (CGT), there is close alignment of CREs between TaLOGs and TaCKXs reflecting the key role of CKX in maintaining cytokinin homeostasis. However, we suggest that the main homeostatic mechanism controlling cytokinin levels in response to biotic and abiotic challenge resides in the CGTs, rather than LOG or CKX. However, LOG transgenics and identified mutants in rice variously impact yield, providing interesting avenues for investigation in wheat.
Collapse
Affiliation(s)
- Lei Chen
- School of Life SciencesYantai UniversityYantaiChina
| | | | - Yichu Guo
- School of Life SciencesYantai UniversityYantaiChina
| | - Jiancheng Song
- School of Life SciencesYantai UniversityYantaiChina
- Yantai Jien Biological Science & Technology LtdYEDAYantaiChina
| | - Paula E. Jameson
- School of Life SciencesYantai UniversityYantaiChina
- School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
| |
Collapse
|
24
|
Triozzi PM, Irving TB, Schmidt HW, Keyser ZP, Chakraborty S, Balmant K, Pereira WJ, Dervinis C, Mysore KS, Wen J, Ané JM, Kirst M, Conde D. Spatiotemporal cytokinin response imaging and ISOPENTENYLTRANSFERASE 3 function in Medicago nodule development. PLANT PHYSIOLOGY 2022; 188:560-575. [PMID: 34599592 PMCID: PMC8774767 DOI: 10.1093/plphys/kiab447] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Most legumes can establish a symbiotic association with soil rhizobia that trigger the development of root nodules. These nodules host the rhizobia and allow them to fix nitrogen efficiently. The perception of bacterial lipo-chitooligosaccharides (LCOs) in the epidermis initiates a signaling cascade that allows rhizobial intracellular infection in the root and de-differentiation and activation of cell division that gives rise to the nodule. Thus, nodule organogenesis and rhizobial infection need to be coupled in space and time for successful nodulation. The plant hormone cytokinin (CK) contributes to the coordination of this process, acting as an essential positive regulator of nodule organogenesis. However, the temporal regulation of tissue-specific CK signaling and biosynthesis in response to LCOs or Sinorhizobium meliloti inoculation in Medicago truncatula remains poorly understood. In this study, using a fluorescence-based CK sensor (pTCSn::nls:tGFP), we performed a high-resolution tissue-specific temporal characterization of the sequential activation of CK response during root infection and nodule development in M. truncatula after inoculation with S. meliloti. Loss-of-function mutants of the CK-biosynthetic gene ISOPENTENYLTRANSFERASE 3 (IPT3) showed impairment of nodulation, suggesting that IPT3 is required for nodule development in M. truncatula. Simultaneous live imaging of pIPT3::nls:tdTOMATO and the CK sensor showed that IPT3 induction in the pericycle at the base of nodule primordium contributes to CK biosynthesis, which in turn promotes expression of positive regulators of nodule organogenesis in M. truncatula.
Collapse
Affiliation(s)
- Paolo M Triozzi
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, Florida 32611, USA
| | - Thomas B Irving
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Henry W Schmidt
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, Florida 32611, USA
| | - Zachary P Keyser
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Sanhita Chakraborty
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Kelly Balmant
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, Florida 32611, USA
| | - Wendell J Pereira
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, Florida 32611, USA
| | - Christopher Dervinis
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, Florida 32611, USA
| | | | - Jiangqi Wen
- Noble Research Institute, Ardmore, Oklahoma 73401, USA
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Department of Agronomy, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Matias Kirst
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, Florida 32611, USA
- Genetics Institute, University of Florida, Gainesville, Florida 32611, USA
| | - Daniel Conde
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
25
|
Rudaya ES, Kozyulina PY, Pavlova OA, Dolgikh AV, Ivanova AN, Dolgikh EA. Regulation of the Later Stages of Nodulation Stimulated by IPD3/CYCLOPS Transcription Factor and Cytokinin in Pea Pisum sativum L. PLANTS (BASEL, SWITZERLAND) 2021; 11:56. [PMID: 35009060 PMCID: PMC8747635 DOI: 10.3390/plants11010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022]
Abstract
The IPD3/CYCLOPS transcription factor was shown to be involved in the regulation of nodule primordia development and subsequent stages of nodule differentiation. In contrast to early stages, the stages related to nodule differentiation remain less studied. Recently, we have shown that the accumulation of cytokinin at later stages may significantly impact nodule development. This conclusion was based on a comparative analysis of cytokinin localization between pea wild type and ipd3/cyclops mutants. However, the role of cytokinin at these later stages of nodulation is still far from understood. To determine a set of genes involved in the regulation of later stages of nodule development connected with infection progress, intracellular accommodation, as well as plant tissue and bacteroid differentiation, the RNA-seq analysis of pea mutant SGEFix--2 (sym33) nodules impaired in these processes compared to wild type SGE nodules was performed. To verify cytokinin's influence on late nodule development stages, the comparative RNA-seq analysis of SGEFix--2 (sym33) mutant plants treated with cytokinin was also conducted. Findings suggest a significant role of cytokinin in the regulation of later stages of nodule development.
Collapse
Affiliation(s)
- Elizaveta S. Rudaya
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky chausse 3, Pushkin, 196608 St. Petersburg, Russia; (E.S.R.); (P.Y.K.); (O.A.P.); (A.V.D.)
| | - Polina Yu. Kozyulina
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky chausse 3, Pushkin, 196608 St. Petersburg, Russia; (E.S.R.); (P.Y.K.); (O.A.P.); (A.V.D.)
| | - Olga A. Pavlova
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky chausse 3, Pushkin, 196608 St. Petersburg, Russia; (E.S.R.); (P.Y.K.); (O.A.P.); (A.V.D.)
| | - Alexandra V. Dolgikh
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky chausse 3, Pushkin, 196608 St. Petersburg, Russia; (E.S.R.); (P.Y.K.); (O.A.P.); (A.V.D.)
| | - Alexandra N. Ivanova
- Komarov Botanical Institute RAS, Prof. Popov St., 2, 197376 St. Petersburg, Russia;
- Faculty of Biology, St. Petersburg State University, Universitetskaya Emb. 7-9, 199034 St. Petersburg, Russia
| | - Elena A. Dolgikh
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky chausse 3, Pushkin, 196608 St. Petersburg, Russia; (E.S.R.); (P.Y.K.); (O.A.P.); (A.V.D.)
| |
Collapse
|
26
|
Banasiak J, Jamruszka T, Murray JD, Jasiński M. A roadmap of plant membrane transporters in arbuscular mycorrhizal and legume-rhizobium symbioses. PLANT PHYSIOLOGY 2021; 187:2071-2091. [PMID: 34618047 PMCID: PMC8644718 DOI: 10.1093/plphys/kiab280] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/24/2021] [Indexed: 05/20/2023]
Abstract
Most land plants live in close contact with beneficial soil microbes: the majority of land plant species establish symbiosis with arbuscular mycorrhizal fungi, while most legumes, the third largest plant family, can form a symbiosis with nitrogen-fixing rhizobia. These microbes contribute to plant nutrition via endosymbiotic processes that require modulating the expression and function of plant transporter systems. The efficient contribution of these symbionts involves precisely controlled integration of transport, which is enabled by the adaptability and plasticity of their transporters. Advances in our understanding of these systems, driven by functional genomics research, are rapidly filling the gap in knowledge about plant membrane transport involved in these plant-microbe interactions. In this review, we synthesize recent findings associated with different stages of these symbioses, from the pre-symbiotic stage to nutrient exchange, and describe the role of host transport systems in both mycorrhizal and legume-rhizobia symbioses.
Collapse
Affiliation(s)
- Joanna Banasiak
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań 61-704, Poland
| | - Tomasz Jamruszka
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań 61-704, Poland
| | - Jeremy D Murray
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
- National Key Laboratory of Plant Molecular Genetics, CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), CAS Center for Excellence in Molecular and Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Michał Jasiński
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań 61-704, Poland
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Poznań 60-632, Poland
| |
Collapse
|
27
|
Lebedeva M, Azarakhsh M, Sadikova D, Lutova L. At the Root of Nodule Organogenesis: Conserved Regulatory Pathways Recruited by Rhizobia. PLANTS (BASEL, SWITZERLAND) 2021; 10:2654. [PMID: 34961125 PMCID: PMC8705049 DOI: 10.3390/plants10122654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 05/13/2023]
Abstract
The interaction between legume plants and soil bacteria rhizobia results in the formation of new organs on the plant roots, symbiotic nodules, where rhizobia fix atmospheric nitrogen. Symbiotic nodules represent a perfect model to trace how the pre-existing regulatory pathways have been recruited and modified to control the development of evolutionary "new" organs. In particular, genes involved in the early stages of lateral root development have been co-opted to regulate nodule development. Other regulatory pathways, including the players of the KNOX-cytokinin module, the homologues of the miR172-AP2 module, and the players of the systemic response to nutrient availability, have also been recruited to a unique regulatory program effectively governing symbiotic nodule development. The role of the NIN transcription factor in the recruitment of such regulatory modules to nodulation is discussed in more details.
Collapse
Affiliation(s)
- Maria Lebedeva
- Department of Genetics and Biotechnology, Saint Petersburg State University, Universitetskaya emb.7/9, 199034 Saint Petersburg, Russia; (D.S.); (L.L.)
- Center for Genetic Technologies, N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190000 Saint Petersburg, Russia
| | - Mahboobeh Azarakhsh
- Cell and Molecular Biology Department, Kosar University of Bojnord, 9415615458 Bojnord, Iran;
| | - Darina Sadikova
- Department of Genetics and Biotechnology, Saint Petersburg State University, Universitetskaya emb.7/9, 199034 Saint Petersburg, Russia; (D.S.); (L.L.)
- Center for Genetic Technologies, N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190000 Saint Petersburg, Russia
| | - Lyudmila Lutova
- Department of Genetics and Biotechnology, Saint Petersburg State University, Universitetskaya emb.7/9, 199034 Saint Petersburg, Russia; (D.S.); (L.L.)
- Center for Genetic Technologies, N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190000 Saint Petersburg, Russia
| |
Collapse
|
28
|
Nitrate restricts nodule organogenesis through inhibition of cytokinin biosynthesis in Lotus japonicus. Nat Commun 2021; 12:6544. [PMID: 34764268 PMCID: PMC8585978 DOI: 10.1038/s41467-021-26820-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 10/25/2021] [Indexed: 12/20/2022] Open
Abstract
Legumes balance nitrogen acquisition from soil nitrate with symbiotic nitrogen fixation. Nitrogen fixation requires establishment of a new organ, which is a cytokinin dependent developmental process in the root. We found cytokinin biosynthesis is a central integrator, balancing nitrate signalling with symbiotic acquired nitrogen. Low nitrate conditions provide a permissive state for induction of cytokinin by symbiotic signalling and thus nodule development. In contrast, high nitrate is inhibitory to cytokinin accumulation and nodule establishment in the root zone susceptible to nodule formation. This reduction of symbiotic cytokinin accumulation was further exacerbated in cytokinin biosynthesis mutants, which display hypersensitivity to nitrate inhibition of nodule development, maturation and nitrogen fixation. Consistent with this, cytokinin application rescues nodulation and nitrogen fixation of biosynthesis mutants in a concentration dependent manner. These inhibitory impacts of nitrate on symbiosis occur in a Nlp1 and Nlp4 dependent manner and contrast with the positive influence of nitrate on cytokinin biosynthesis that occurs in species that do not form symbiotic root nodules. Altogether this shows that legumes, as exemplified by Lotus japonicus, have evolved a different cytokinin response to nitrate compared to non-legumes.
Collapse
|
29
|
Tran LH, Urbanowicz A, Jasiński M, Jaskolski M, Ruszkowski M. 3D Domain Swapping Dimerization of the Receiver Domain of Cytokinin Receptor CRE1 From Arabidopsis thaliana and Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2021; 12:756341. [PMID: 34630499 PMCID: PMC8498639 DOI: 10.3389/fpls.2021.756341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Cytokinins are phytohormones regulating many biological processes that are vital to plants. CYTOKININ RESPONSE1 (CRE1), the main cytokinin receptor, has a modular architecture composed of a cytokinin-binding CHASE (Cyclases/Histidine kinases Associated Sensory Extracellular) domain, followed by a transmembrane fragment, an intracellular histidine kinase (HK) domain, and a receiver domain (REC). Perception of cytokinin signaling involves (i) a hormone molecule binding to the CHASE domain, (ii) CRE1 autophosphorylation at a conserved His residue in the HK domain, followed by a phosphorelay to (iii) a conserved Asp residue in the REC domain, (iv) a histidine-containing phosphotransfer protein (HPt), and (v) a response regulator (RR). This work focuses on the crystal structures of the REC domain of CRE1 from the model plant Arabidopsis thaliana and from the model legume Medicago truncatula. Both REC domains form tight 3D-domain-swapped dimers. Dimerization of the REC domain agrees with the quaternary assembly of the entire CRE1 but is incompatible with a model of its complex with HPt, suggesting that a considerable conformational change should occur to enable the signal transduction. Indeed, phosphorylation of the REC domain can change the HPt-binding properties of CRE1, as shown by functional studies.
Collapse
Affiliation(s)
- Linh H. Tran
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Anna Urbanowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Michał Jasiński
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Poznań, Poland
| | - Mariusz Jaskolski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznań, Poland
| | - Milosz Ruszkowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
30
|
Gao Z, Chen Z, Cui Y, Ke M, Xu H, Xu Q, Chen J, Li Y, Huang L, Zhao H, Huang D, Mai S, Xu T, Liu X, Li S, Guan Y, Yang W, Friml J, Petrášek J, Zhang J, Chen X. GmPIN-dependent polar auxin transport is involved in soybean nodule development. THE PLANT CELL 2021; 33:2981-3003. [PMID: 34240197 PMCID: PMC8462816 DOI: 10.1093/plcell/koab183] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 07/01/2021] [Indexed: 05/27/2023]
Abstract
To overcome nitrogen deficiency, legume roots establish symbiotic interactions with nitrogen-fixing rhizobia that are fostered in specialized organs (nodules). Similar to other organs, nodule formation is determined by a local maximum of the phytohormone auxin at the primordium site. However, how auxin regulates nodule development remains poorly understood. Here, we found that in soybean, (Glycine max), dynamic auxin transport driven by PIN-FORMED (PIN) transporter GmPIN1 is involved in nodule primordium formation. GmPIN1 was specifically expressed in nodule primordium cells and GmPIN1 was polarly localized in these cells. Two nodulation regulators, (iso)flavonoids trigger expanded distribution of GmPIN1b to root cortical cells, and cytokinin rearranges GmPIN1b polarity. Gmpin1abc triple mutants generated with CRISPR-Cas9 showed the impaired establishment of auxin maxima in nodule meristems and aberrant divisions in the nodule primordium cells. Moreover, overexpression of GmPIN1 suppressed nodule primordium initiation. GmPIN9d, an ortholog of Arabidopsis thaliana PIN2, acts together with GmPIN1 later in nodule development to acropetally transport auxin in vascular bundles, fine-tuning the auxin supply for nodule enlargement. Our findings reveal how PIN-dependent auxin transport modulates different aspects of soybean nodule development and suggest that the establishment of auxin gradient is a prerequisite for the proper interaction between legumes and rhizobia.
Collapse
Affiliation(s)
- Zhen Gao
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zhiwei Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yuanyuan Cui
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Meiyu Ke
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Huifang Xu
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Qinzhen Xu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaomei Chen
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Laimei Huang
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Hong Zhao
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Dingquan Huang
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Siyuan Mai
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Tao Xu
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiao Liu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shujia Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuefeng Guan
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Wenqiang Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Jan Petrášek
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 43 Prague 2, Czech Republic
- The Czech Academy of Sciences, Institute of Experimental Botany, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Jing Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xu Chen
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
31
|
Nguyen HN, Nguyen TQ, Kisiala AB, Emery RJN. Beyond transport: cytokinin ribosides are translocated and active in regulating the development and environmental responses of plants. PLANTA 2021; 254:45. [PMID: 34365553 DOI: 10.1007/s00425-021-03693-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Riboside type cytokinins are key components in cytokinin metabolism, transport, and sensitivity, making them important functional signals in plant growth and development and environmental stress responses. Cytokinin (CKs) are phytohormones that regulate multiple processes in plants and are critical for agronomy, as they are involved in seed filling and plant responses to biotic and abiotic stress. Among the over 30 identified CKs, there is uncertainty about the roles of many of the individual CK structural forms. Cytokinin free bases (CKFBs), have been studied in great detail, but, by comparison, roles of riboside-type CKs (CKRs) in CK metabolism and associated signaling pathways and their distal impacts on plant physiology remain largely unknown. Here, recent findings on CKR abundance, transport and localization, are summarized, and their importance in planta is discussed. The history of CKR analyses is reviewed, in the context of the determination of CK metabolic pathways, and research on CKR affinity for CK receptors, all of which yield essential insights into their functions. Recent studies suggest that CKR forms are a lot more than a group of transport CKs and, beyond this, they play important roles in plant development and responses to environmental stress. In this context, this review discusses the involvement of CKRs in plant development, and highlight the less anticipated functions of CKRs in abiotic stress tolerance. Based on this, possible mechanisms for CKR modes of action are proposed and experimental approaches to further uncover their roles and future biotechnological applications are suggested.
Collapse
Affiliation(s)
- Hai Ngoc Nguyen
- Department of Biology, Trent University, Peterborough, ON, K9L 0G2, Canada.
| | - Thien Quoc Nguyen
- Department of Biology, Trent University, Peterborough, ON, K9L 0G2, Canada
| | - Anna B Kisiala
- Department of Biology, Trent University, Peterborough, ON, K9L 0G2, Canada
| | - R J Neil Emery
- Department of Biology, Trent University, Peterborough, ON, K9L 0G2, Canada
| |
Collapse
|
32
|
Chakraborty S, Driscoll HE, Abrahante JE, Zhang F, Fisher RF, Harris JM. Salt Stress Enhances Early Symbiotic Gene Expression in Medicago truncatula and Induces a Stress-Specific Set of Rhizobium-Responsive Genes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:904-921. [PMID: 33819071 PMCID: PMC8578154 DOI: 10.1094/mpmi-01-21-0019-r] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Salt stress is a major agricultural concern inhibiting not only plant growth but also the symbiotic association between legume roots and the soil bacteria rhizobia. This symbiotic association is initiated by a molecular dialogue between the two partners, leading to the activation of a signaling cascade in the legume host and, ultimately, the formation of nitrogen-fixing root nodules. Here, we show that a moderate salt stress increases the responsiveness of early symbiotic genes in Medicago truncatula to its symbiotic partner, Sinorhizobium meliloti while, conversely, inoculation with S. meliloti counteracts salt-regulated gene expression, restoring one-third to control levels. Our analysis of early nodulin 11 (ENOD11) shows that salt-induced expression is dynamic, Nod-factor dependent, and requires the ionic but not the osmotic component of salt. We demonstrate that salt stimulation of rhizobium-induced gene expression requires NSP2, which functions as a node to integrate the abiotic and biotic signals. In addition, our work reveals that inoculation with S. meliloti succinoglycan mutants also hyperinduces ENOD11 expression in the presence or absence of salt, suggesting a possible link between rhizobial exopolysaccharide and the plant response to salt stress. Finally, we identify an accessory set of genes that are induced by rhizobium only under conditions of salt stress and have not been previously identified as being nodulation-related genes. Our data suggest that interplay of core nodulation genes with different accessory sets, specific for different abiotic conditions, functions to establish the symbiosis. Together, our findings reveal a complex and dynamic interaction between plant, microbe, and environment.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Sanhita Chakraborty
- Department of Plant Biology, University of Vermont, Burlington, VT 05405, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Heather E. Driscoll
- Vermont Biomedical Research Network (VBRN), Department of Biology, Norwich University, Northfield, Vermont 05663, USA
| | - Juan E. Abrahante
- University of Minnesota Informatics Institute (UMII) (CCRB 1-210C), 2231 6th Street SE, Minneapolis, MN 55455, USA
| | - Fan Zhang
- Vermont Biomedical Research Network (VBRN), Department of Biology, University of Vermont, Burlington, Vermont 05405, USA
- Institute for Translational Research and Department of family medicine, University of North Texas Health Science Center, Fort Worth, TX, 76107
| | - Robert F. Fisher
- Stanford University, Department of Biology, 371 Serra Mall, Stanford, California 94305-5020, USA
| | - Jeanne M. Harris
- Department of Plant Biology, University of Vermont, Burlington, VT 05405, USA
- Corresponding author: Jeanne M. Harris ()
| |
Collapse
|
33
|
Björnsdotter E, Nadzieja M, Chang W, Escobar-Herrera L, Mancinotti D, Angra D, Xia X, Tacke R, Khazaei H, Crocoll C, Vandenberg A, Link W, Stoddard FL, O'Sullivan DM, Stougaard J, Schulman AH, Andersen SU, Geu-Flores F. VC1 catalyses a key step in the biosynthesis of vicine in faba bean. NATURE PLANTS 2021; 7:923-931. [PMID: 34226693 DOI: 10.1101/2020.02.26.966523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 05/24/2021] [Indexed: 05/20/2023]
Abstract
Faba bean (Vicia faba L.) is a widely adapted and high-yielding legume cultivated for its protein-rich seeds1. However, the seeds accumulate the pyrimidine glucosides vicine and convicine, which can cause haemolytic anaemia (favism) in 400 million genetically predisposed individuals2. Here, we use gene-to-metabolite correlations, gene mapping and genetic complementation to identify VC1 as a key enzyme in vicine and convicine biosynthesis. We demonstrate that VC1 has GTP cyclohydrolase II activity and that the purine GTP is a precursor of both vicine and convicine. Finally, we show that cultivars with low vicine and convicine levels carry an inactivating insertion in the coding sequence of VC1. Our results reveal an unexpected, purine rather than pyrimidine, biosynthetic origin for vicine and convicine and pave the way for the development of faba bean cultivars that are free of these anti-nutrients.
Collapse
Affiliation(s)
- Emilie Björnsdotter
- Section for Plant Biochemistry and Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Marcin Nadzieja
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Wei Chang
- Institute of Biotechnology and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | | | - Davide Mancinotti
- Section for Plant Biochemistry and Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Deepti Angra
- School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - Xinxing Xia
- Section for Plant Biochemistry and Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Rebecca Tacke
- Department of Crop Sciences, Georg-August-University, Göttingen, Germany
| | - Hamid Khazaei
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Christoph Crocoll
- DynaMo Center, Section for Molecular Plant Biology, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Albert Vandenberg
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Wolfgang Link
- Department of Crop Sciences, Georg-August-University, Göttingen, Germany
| | - Frederick L Stoddard
- Department of Agricultural Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Donal M O'Sullivan
- School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Alan H Schulman
- Institute of Biotechnology and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
- Natural Resources Institute Finland (Luke), Helsinki, Finland.
| | - Stig U Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| | - Fernando Geu-Flores
- Section for Plant Biochemistry and Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
34
|
Björnsdotter E, Nadzieja M, Chang W, Escobar-Herrera L, Mancinotti D, Angra D, Xia X, Tacke R, Khazaei H, Crocoll C, Vandenberg A, Link W, Stoddard FL, O'Sullivan DM, Stougaard J, Schulman AH, Andersen SU, Geu-Flores F. VC1 catalyses a key step in the biosynthesis of vicine in faba bean. NATURE PLANTS 2021; 7:923-931. [PMID: 34226693 PMCID: PMC7611347 DOI: 10.1038/s41477-021-00950-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 05/24/2021] [Indexed: 05/05/2023]
Abstract
Faba bean (Vicia faba L.) is a widely adapted and high-yielding legume cultivated for its protein-rich seeds1. However, the seeds accumulate the pyrimidine glucosides vicine and convicine, which can cause haemolytic anaemia (favism) in 400 million genetically predisposed individuals2. Here, we use gene-to-metabolite correlations, gene mapping and genetic complementation to identify VC1 as a key enzyme in vicine and convicine biosynthesis. We demonstrate that VC1 has GTP cyclohydrolase II activity and that the purine GTP is a precursor of both vicine and convicine. Finally, we show that cultivars with low vicine and convicine levels carry an inactivating insertion in the coding sequence of VC1. Our results reveal an unexpected, purine rather than pyrimidine, biosynthetic origin for vicine and convicine and pave the way for the development of faba bean cultivars that are free of these anti-nutrients.
Collapse
Affiliation(s)
- Emilie Björnsdotter
- Section for Plant Biochemistry and Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Marcin Nadzieja
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Wei Chang
- Institute of Biotechnology and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | | | - Davide Mancinotti
- Section for Plant Biochemistry and Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Deepti Angra
- School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - Xinxing Xia
- Section for Plant Biochemistry and Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Rebecca Tacke
- Department of Crop Sciences, Georg-August-University, Göttingen, Germany
| | - Hamid Khazaei
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Christoph Crocoll
- DynaMo Center, Section for Molecular Plant Biology, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Albert Vandenberg
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Wolfgang Link
- Department of Crop Sciences, Georg-August-University, Göttingen, Germany
| | - Frederick L Stoddard
- Department of Agricultural Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Donal M O'Sullivan
- School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Alan H Schulman
- Institute of Biotechnology and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
- Natural Resources Institute Finland (Luke), Helsinki, Finland.
| | - Stig U Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| | - Fernando Geu-Flores
- Section for Plant Biochemistry and Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
35
|
Fonseca-García C, Nava N, Lara M, Quinto C. An NADPH oxidase regulates carbon metabolism and the cell cycle during root nodule symbiosis in common bean (Phaseolus vulgaris). BMC PLANT BIOLOGY 2021; 21:274. [PMID: 34130630 PMCID: PMC8207584 DOI: 10.1186/s12870-021-03060-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/20/2021] [Indexed: 05/11/2023]
Abstract
BACKGROUND Rhizobium-legume symbiosis is a specific, coordinated interaction that results in the formation of a root nodule, where biological nitrogen fixation occurs. NADPH oxidases, or Respiratory Burst Oxidase Homologs (RBOHs) in plants, are enzymes that generate superoxide (O2 •-). Superoxide produces other reactive oxygen species (ROS); these ROS regulate different stages of mutualistic interactions. For example, changes in ROS levels are thought to induce ROS scavenging, cell wall remodeling, and changes in phytohormone homeostasis during symbiotic interactions. In common bean (Phaseolus vulgaris), PvRbohB plays a key role in the early stages of nodulation. RESULTS In this study, to explore the role of PvRbohB in root nodule symbiosis, we analyzed transcriptomic data from the roots of common bean under control conditions (transgenic roots without construction) and roots with downregulated expression of PvRbohB (by RNA interference) non-inoculated and inoculated with R. tropici. Our results suggest that ROS produced by PvRBOHB play a central role in infection thread formation and nodule organogenesis through crosstalk with flavonoids, carbon metabolism, cell cycle regulation, and the plant hormones auxin and cytokinin during the early stages of this process. CONCLUSIONS Our findings provide important insight into the multiple roles of ROS in regulating rhizobia-legume symbiosis.
Collapse
Affiliation(s)
- Citlali Fonseca-García
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, Cuernavaca, Morelos, Colonia Chamilpa Mexico
| | - Noreide Nava
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, Cuernavaca, Morelos, Colonia Chamilpa Mexico
| | - Miguel Lara
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, Cuernavaca, Morelos, Colonia Chamilpa Mexico
| | - Carmen Quinto
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, Cuernavaca, Morelos, Colonia Chamilpa Mexico
| |
Collapse
|
36
|
Aremu AO, Plačková L, Egbewale SO, Doležal K, Magadlela A. Soil nutrient status of KwaZulu-Natal savanna and grassland biomes causes variation in cytokinin functional groups and their levels in above-ground and underground parts of three legumes. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1337-1351. [PMID: 34220044 PMCID: PMC8212235 DOI: 10.1007/s12298-021-01021-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/30/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED Cytokinins (CKs) are involved in several developmental stages in the life-cycle of plants. The CK content in plants and their respective organs are susceptible to changes under different environmental conditions. In the current study, we profiled the CK content in the above and underground organs of three legumes (Lessertia frutescens, Mucuna pruriens and Pisum sativum) grown in soils collected from four locations (Ashburton, Bergville, Hluhluwe and Izingolweni) in KwaZulu-Natal province, South Africa. The quantified CK contents in the three legumes were categorized on the basis of their side chains (isoprenoid, aromatic and furfural) and modifications (e.g. free bases and glucosides). Legume and soil types as well as their interaction significantly influenced the concentrations of CKs. Lessertia frutescens, Mucuna pruriens and Pisum sativum had CK content that ranged from 124-653, 170-670 and 69-595 pmol/g DW, respectively. Substantial quantity (> 600 pmol/g DW) of CK were observed in plants grown in Bergville (above-ground part of Lessertia frutescens) and Izingolweni (underground part of Mucuna pruriens) soils. A total of 28 CK derivatives observed in the legumes comprised of isoprenoid (22), aromatic (5) and furfural (1) side-chain CKs. However, the 16 CK derivatives in Mucuna pruriens were isoprenoid-type based on the side-chain. Generally, a higher ratio of cis-zeatin (cZ) relative to the trans-zeatin (tZ) was evident in the above-ground part of Lessertia frutescens and Pisum sativum for the four soil treatments. In terms of functional and physiological importance of the CKs, the free bases (active form) and ribosides (translocation form) were the most abundant CK in Lessertia frutescens and Pisum sativum. However, N-glucoside, a deactivation/detoxicification product was the most dominant CK in Mucuna pruriens from Hluhluwe and Izingolweni soils. The total CKs in the underground parts of the legumes had a positive significant correlation with the total phosphorus and nitrogen content in the plant as well as the soil nitrogen. Overall, the CK profiles of the legumes were strongly influenced by the soil types. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01021-2.
Collapse
Affiliation(s)
- Adeyemi Oladapo Aremu
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban, 4000 South Africa
- Indigenous Knowledge Systems (IKS) Centre, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2790 South Africa
| | - Lenka Plačková
- Department of Chemical Biology, Faculty of Science, Palacký University, Slechtitelu 27, 783 71 Olomouc-Holice, Czech Republic
| | - Samson Olufemi Egbewale
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban, 4000 South Africa
| | - Karel Doležal
- Department of Chemical Biology, Faculty of Science, Palacký University, Slechtitelu 27, 783 71 Olomouc-Holice, Czech Republic
| | - Anathi Magadlela
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban, 4000 South Africa
| |
Collapse
|
37
|
Kawaharada Y, Sandal N, Gupta V, Jin H, Kawaharada M, Taniuchi M, Ruman H, Nadzieja M, Andersen KR, Schneeberger K, Stougaard J, Andersen SU. Natural variation identifies a Pxy gene controlling vascular organisation and formation of nodules and lateral roots in Lotus japonicus. THE NEW PHYTOLOGIST 2021; 230:2459-2473. [PMID: 33759450 DOI: 10.1111/nph.17356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/01/2021] [Indexed: 05/06/2023]
Abstract
Forward and reverse genetics using the model legumes Lotus japonicus and Medicago truncatula have been instrumental in identifying the essential genes governing legume-rhizobia symbiosis. However, little information is known about the effects of intraspecific variation on symbiotic signalling. Here, we use quantitative trait locus sequencing (QTL-seq) to investigate the genetic basis of the differentiated phenotypic responses shown by the Lotus accessions Gifu and MG20 to inoculation with the Mesorhizobium loti exoU mutant that produces truncated exopolysaccharides. We identified through genetic complementation the Pxy gene as a component of this differential exoU response. Lotus Pxy encodes a leucine-rich repeat receptor-like kinase similar to Arabidopsis thaliana PXY, which regulates stem vascular development. We show that Lotus pxy insertion mutants displayed defects in root and stem vascular organisation, as well as lateral root and nodule formation. Our work links Pxy to de novo organogenesis in the root, highlights the genetic overlap between regulation of lateral root and nodule formation, and demonstrates that natural variation in Pxy affects nodulation signalling.
Collapse
Affiliation(s)
- Yasuyuki Kawaharada
- Department of Plant BioSciences, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, Japan
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark
| | - Niels Sandal
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark
| | - Vikas Gupta
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark
| | - Haojie Jin
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark
| | - Maya Kawaharada
- Department of Plant BioSciences, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, Japan
| | - Makoto Taniuchi
- Department of Plant BioSciences, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, Japan
| | - Hafijur Ruman
- United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate, Japan
| | - Marcin Nadzieja
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark
| | - Kasper R Andersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark
| | - Korbinian Schneeberger
- Department for Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark
| | - Stig U Andersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark
| |
Collapse
|
38
|
Holbein J, Shen D, Andersen TG. The endodermal passage cell - just another brick in the wall? THE NEW PHYTOLOGIST 2021; 230:1321-1328. [PMID: 33438208 DOI: 10.1111/nph.17182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
The endodermis surrounds and protects the vasculature partly by depositing hydrophobic suberin in the cell walls. Yet, some cells remain unsuberised. These historically termed 'passage cells' are assumed to provide a low-resistance pathway to the xylem. Only recently have we started to gain molecular insights into these cells, which allow us to probe how roots coordinate communication with the environment across barriers with single-cell precision. Increased understanding of root physiology at a high-resolution is intriguing, as it is likely to provide us with new tools to improve overall plant health. With this in mind, we here provide a brief overview of passage cells, their presence across plant species, as well as a molecular update and future directions for passage cell-related research.
Collapse
Affiliation(s)
- Julia Holbein
- Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Defeng Shen
- Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | | |
Collapse
|
39
|
Montiel J, Reid D, Grønbæk TH, Benfeldt CM, James EK, Ott T, Ditengou FA, Nadzieja M, Kelly S, Stougaard J. Distinct signaling routes mediate intercellular and intracellular rhizobial infection in Lotus japonicus. PLANT PHYSIOLOGY 2021; 185:1131-1147. [PMID: 33793909 PMCID: PMC8133683 DOI: 10.1093/plphys/kiaa049] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 05/07/2023]
Abstract
Rhizobial infection of legume roots during the development of nitrogen-fixing root nodules can occur intracellularly, through plant-derived infection threads traversing cells, or intercellularly, via bacterial entry between epidermal plant cells. Although it is estimated that around 25% of all legume genera are intercellularly infected, the pathways and mechanisms supporting this process have remained virtually unexplored due to a lack of genetically amenable legumes that exhibit this form of infection. In this study, we report that the model legume Lotus japonicus is infected intercellularly by the IRBG74 strain, recently proposed to belong to the Agrobacterium clade of the Rhizobiaceae. We demonstrate that the resources available for L. japonicus enable insight into the genetic requirements and fine-tuning of the pathway governing intercellular infection in this species. Inoculation of L. japonicus mutants shows that Ethylene-responsive factor required for nodulation 1 (Ern1) and Leu-rich Repeat Receptor-Like Kinase (RinRK1) are dispensable for intercellular infection in contrast to intracellular infection. Other symbiotic genes, including nod factor receptor 5 (NFR5), symbiosis receptor-like kinase (SymRK), Ca2+/calmodulin dependent kinase (CCaMK), exopolysaccharide receptor 3 (Epr3), Cyclops, nodule inception (Nin), nodulation signaling pathway 1 (Nsp1), nodulation signaling pathway 2 (Nsp2), cystathionine-β-synthase (Cbs), and Vapyrin are equally important for both entry modes. Comparative RNAseq analysis of roots inoculated with IRBG74 revealed a distinctive transcriptome response compared with intracellular colonization. In particular, several cytokinin-related genes were differentially regulated. Corroborating this observation, cyp735A and ipt4 cytokinin biosynthesis mutants were significantly affected in their nodulation with IRBG74, whereas lhk1 cytokinin receptor mutants formed no nodules. These results indicate a differential requirement for cytokinin signaling during intercellular rhizobial entry and highlight distinct modalities of inter- and intracellular infection mechanisms in L. japonicus.
Collapse
Affiliation(s)
- Jesús Montiel
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Dugald Reid
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Thomas H Grønbæk
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Caroline M Benfeldt
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Euan K James
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Thomas Ott
- Cell Biology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Franck A Ditengou
- Cell Biology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Marcin Nadzieja
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Simon Kelly
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000, Aarhus C, Denmark
- Author for ommunication:
| |
Collapse
|
40
|
Biosensors: A Sneak Peek into Plant Cell's Immunity. Life (Basel) 2021; 11:life11030209. [PMID: 33800034 PMCID: PMC7999283 DOI: 10.3390/life11030209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/23/2021] [Accepted: 03/03/2021] [Indexed: 12/26/2022] Open
Abstract
Biosensors are indispensable tools to understand a plant’s immunity as its spatiotemporal dimension is key in withstanding complex plant immune signaling. The diversity of genetically encoded biosensors in plants is expanding, covering new analytes with ever higher sensitivity and robustness, but their assortment is limited in some respects, such as their use in following biotic stress response, employing more than one biosensor in the same chassis, and their implementation into crops. In this review, we focused on the available biosensors that encompass these aspects. We show that in vivo imaging of calcium and reactive oxygen species is satisfactorily covered with the available genetically encoded biosensors, while on the other hand they are still underrepresented when it comes to imaging of the main three hormonal players in the immune response: salicylic acid, ethylene and jasmonic acid. Following more than one analyte in the same chassis, upon one or more conditions, has so far been possible by using the most advanced genetically encoded biosensors in plants which allow the monitoring of calcium and the two main hormonal pathways involved in plant development, auxin and cytokinin. These kinds of biosensor are also the most evolved in crops. In the last section, we examine the challenges in the use of biosensors and demonstrate some strategies to overcome them.
Collapse
|
41
|
Soyano T, Liu M, Kawaguchi M, Hayashi M. Leguminous nodule symbiosis involves recruitment of factors contributing to lateral root development. CURRENT OPINION IN PLANT BIOLOGY 2021; 59:102000. [PMID: 33454544 DOI: 10.1016/j.pbi.2020.102000] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 05/27/2023]
Abstract
Legumes and several plant species in the monophyletic nitrogen-fixing clade produce root nodules that function as symbiotic organs and establish mutualistic relationships with nitrogen-fixing bacteria. The modes of nodule organogenesis are distinct from those of lateral root development and also differ among different types of nodules formed in legumes and actinorhizal plants. It is considered that the evolution of new organs occurs through rearrangement of molecular networks interposed by certain neo-functionalized factors. Accumulating evidence has suggested that root nodule organogenesis involves root or lateral root developmental pathways. This review describes the current knowledge about the factors/pathways acquired by the common ancestor of the nitrogen-fixing clade in order to control nodule organogenesis.
Collapse
Affiliation(s)
- Takashi Soyano
- National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, 444-8585 Aichi, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (the Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, 444-8585 Aichi, Japan.
| | - Meng Liu
- National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, 444-8585 Aichi, Japan
| | - Masayoshi Kawaguchi
- National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, 444-8585 Aichi, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (the Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, 444-8585 Aichi, Japan
| | - Makoto Hayashi
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, 230-0045 Kanagawa, Japan
| |
Collapse
|
42
|
Shrestha A, Zhong S, Therrien J, Huebert T, Sato S, Mun T, Andersen SU, Stougaard J, Lepage A, Niebel A, Ross L, Szczyglowski K. Lotus japonicus Nuclear Factor YA1, a nodule emergence stage-specific regulator of auxin signalling. THE NEW PHYTOLOGIST 2021; 229:1535-1552. [PMID: 32978812 PMCID: PMC7984406 DOI: 10.1111/nph.16950] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/05/2020] [Indexed: 05/07/2023]
Abstract
Organogenesis of legume root nodules begins with the nodulation factor-dependent stimulation of compatible root cells to initiate divisions, signifying an early nodule primordium formation event. This is followed by cellular differentiation, including cell expansion and vascular bundle formation, and we previously showed that Lotus japonicus NF-YA1 is essential for this process, presumably by regulating three members of the SHORT INTERNODES/STYLISH (STY) transcription factor gene family. In this study, we used combined genetics, genomics and cell biology approaches to characterize the role of STY genes during root nodule formation and to test a hypothesis that they mediate nodule development by stimulating auxin signalling. We show here that L. japonicus STYs are required for nodule emergence. This is attributed to the NF-YA1-dependent regulatory cascade, comprising STY genes and their downstream targets, YUCCA1 and YUCCA11, involved in a local auxin biosynthesis at the post-initial cell division stage. An analogous NF-YA1/STY regulatory module seems to operate in Medicago truncatula in association with the indeterminate nodule patterning. Our data define L. japonicus and M. truncatula NF-YA1 genes as important nodule emergence stage-specific regulators of auxin signalling while indicating that the inductive stage and subsequent formation of early nodule primordia are mediated through an independent mechanism(s).
Collapse
Affiliation(s)
- Arina Shrestha
- Agriculture and Agri‐Food CanadaLondon Research and Development CentreLondonONN5V 4T3Canada
- Department of BiologyUniversity of Western OntarioLondonONN6A 5BFCanada
| | - Sihui Zhong
- Agriculture and Agri‐Food CanadaLondon Research and Development CentreLondonONN5V 4T3Canada
| | - Jasmine Therrien
- Agriculture and Agri‐Food CanadaLondon Research and Development CentreLondonONN5V 4T3Canada
- Department of BiologyUniversity of Western OntarioLondonONN6A 5BFCanada
| | - Terry Huebert
- Agriculture and Agri‐Food CanadaLondon Research and Development CentreLondonONN5V 4T3Canada
| | - Shusei Sato
- Graduate School of Life SciencesTohoku University2‐1‐1 KatahiraSendai980‐8577Japan
| | - Terry Mun
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDK‐8000Denmark
| | - Stig U. Andersen
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDK‐8000Denmark
| | - Jens Stougaard
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDK‐8000Denmark
| | - Agnes Lepage
- Laboratoire des Interactions Plantes‐Microorganismes (LIPM)Université de Toulouse, Institut National de la Recherche pour l’Agriculturel’Alimentation et l’Environnement (INRAE)Centre National de la Recherche Scientifique (CNRS)Castanet‐Tolosan31326France
| | - Andreas Niebel
- Laboratoire des Interactions Plantes‐Microorganismes (LIPM)Université de Toulouse, Institut National de la Recherche pour l’Agriculturel’Alimentation et l’Environnement (INRAE)Centre National de la Recherche Scientifique (CNRS)Castanet‐Tolosan31326France
| | - Loretta Ross
- Agriculture and Agri‐Food CanadaLondon Research and Development CentreLondonONN5V 4T3Canada
| | - Krzysztof Szczyglowski
- Agriculture and Agri‐Food CanadaLondon Research and Development CentreLondonONN5V 4T3Canada
- Department of BiologyUniversity of Western OntarioLondonONN6A 5BFCanada
| |
Collapse
|
43
|
Ratu STN, Teulet A, Miwa H, Masuda S, Nguyen HP, Yasuda M, Sato S, Kaneko T, Hayashi M, Giraud E, Okazaki S. Rhizobia use a pathogenic-like effector to hijack leguminous nodulation signalling. Sci Rep 2021; 11:2034. [PMID: 33479414 PMCID: PMC7820406 DOI: 10.1038/s41598-021-81598-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/06/2021] [Indexed: 01/29/2023] Open
Abstract
Legume plants form a root-nodule symbiosis with rhizobia. This symbiosis establishment generally relies on rhizobium-produced Nod factors (NFs) and their perception by leguminous receptors (NFRs) that trigger nodulation. However, certain rhizobia hijack leguminous nodulation signalling via their type III secretion system, which functions in pathogenic bacteria to deliver effector proteins into host cells. Here, we report that rhizobia use pathogenic-like effectors to hijack legume nodulation signalling. The rhizobial effector Bel2-5 resembles the XopD effector of the plant pathogen Xanthomonas campestris and could induce nitrogen-fixing nodules on soybean nfr mutant. The soybean root transcriptome revealed that Bel2-5 induces expression of cytokinin-related genes, which are important for nodule organogenesis and represses ethylene- and defense-related genes that are deleterious to nodulation. Remarkably, Bel2-5 introduction into a strain unable to nodulate soybean mutant affected in NF perception conferred nodulation ability. Our findings show that rhizobia employ and have customized pathogenic effectors to promote leguminous nodulation signalling.
Collapse
Affiliation(s)
- Safirah Tasa Nerves Ratu
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-8509, Japan
| | - Albin Teulet
- Laboratoire Des Symbioses Tropicales Et Méditerranéennes, Institut de Recherche Pour Le Développement, UMR Institut de Recherche Pour Le Développement/SupAgro/Institut National de Recherche Pour L'Agriculture, L'Alimentation Et L'Environnement, Université de Montpellier/Centre de Coopération Internationale en Recherche Agronomique Pour Le Développement, 34398, Montpellier Cedex 5, France
| | - Hiroki Miwa
- Department of International Environmental and Agricultural Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-8509, Japan
| | - Sachiko Masuda
- Department of International Environmental and Agricultural Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-8509, Japan
| | - Hien P Nguyen
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-8509, Japan
| | - Michiko Yasuda
- Department of International Environmental and Agricultural Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-8509, Japan
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University, Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Takakazu Kaneko
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, 603-8555, Japan
| | - Makoto Hayashi
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Eric Giraud
- Laboratoire Des Symbioses Tropicales Et Méditerranéennes, Institut de Recherche Pour Le Développement, UMR Institut de Recherche Pour Le Développement/SupAgro/Institut National de Recherche Pour L'Agriculture, L'Alimentation Et L'Environnement, Université de Montpellier/Centre de Coopération Internationale en Recherche Agronomique Pour Le Développement, 34398, Montpellier Cedex 5, France
| | - Shin Okazaki
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-8509, Japan.
- Department of International Environmental and Agricultural Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-8509, Japan.
| |
Collapse
|
44
|
Wang B, Zhang Y, Dong N, Chen Y, Zhang Y, Hao Y, Qi J. Comparative transcriptome analyses provide novel insights into etiolated shoot development of walnut (Juglans regia L.). PLANTA 2020; 252:74. [PMID: 33025156 DOI: 10.1007/s00425-020-03455-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
In general, genes promoting IAA, CTK GA and ethylene biosynthesis were upregulated, while genes participating in ABA, chlorophyll and starch biosynthesis pathways performed opposite tendency during etiolation. Etiolation as a method for rejuvenation plays an important role in the vegetative propagation of woody plants. However, the molecular mechanism of etiolated shoot development remains unclear. In this study, we investigated changes at different etiolation stages of Juglans regia. The histology and transcriptome of J. regia were analysed using etiolated stems, which were treated in darkness for 30, 60, 90 days. The results showed that the ratios of pith (Pi) diameter/stem diameter (D), cortex (Co) width/D, and phloem (Ph) width/D increased, while the ratio of xylem (Xy) width/D decreased after etiolation, and the difference in these ratios between etiolated stems and the control was more significant at 60 days than 90 days. Differentially expressed genes (DEGs) were significantly enriched in pathways such as plant hormone biosynthesis and signal transduction, chlorophyll biosynthesis and degradation, and starch and sucrose metabolism. The difference in the contents of indole-3-acetic acid (IAA), abscisic acid (ABA), sugar and chlorophyll between etiolated stems and the control increased with increasing treatment duration; in contrast, the concentrations of gibberellin (GA), zeatin (ZT), and starch, as well as the difference between the etiolated stems and control were lowest at 60 days among the three stages. On the whole, the positive effect of etiolation on the rejuvenation of walnut stems changed as the treatment period increased. The present investigation lays a foundation for future studies on the effect of etiolation on rejuvenation and for promoting the efficiency of vegetative propagation.
Collapse
Affiliation(s)
- Beibei Wang
- Beijing Academy of Forestry and Pomology Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, China
| | - Yan Zhang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China
| | - Ningguang Dong
- Beijing Academy of Forestry and Pomology Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, China
| | - Yonghao Chen
- Beijing Academy of Forestry and Pomology Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, China
| | - Yunqi Zhang
- Beijing Academy of Forestry and Pomology Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, China
| | - Yanbin Hao
- Beijing Academy of Forestry and Pomology Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, China.
| | - Jianxun Qi
- Beijing Academy of Forestry and Pomology Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, China.
| |
Collapse
|
45
|
Lin J, Frank M, Reid D. No Home without Hormones: How Plant Hormones Control Legume Nodule Organogenesis. PLANT COMMUNICATIONS 2020; 1:100104. [PMID: 33367261 PMCID: PMC7747975 DOI: 10.1016/j.xplc.2020.100104] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 05/08/2023]
Abstract
The establishment of symbiotic nitrogen fixation requires the coordination of both nodule development and infection events. Despite the evolution of a variety of anatomical structures, nodule organs serve a common purpose in establishing a localized area that facilitates efficient nitrogen fixation. As in all plant developmental processes, the establishment of a new nodule organ is regulated by plant hormones. During nodule initiation, regulation of plant hormone signaling is one of the major targets of symbiotic signaling. We review the role of major developmental hormones in the initiation of the nodule organ and argue that the manipulation of plant hormones is a key requirement for engineering nitrogen fixation in non-legumes as the basis for improved food security and sustainability.
Collapse
Affiliation(s)
- Jieshun Lin
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Manuel Frank
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Dugald Reid
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Corresponding author
| |
Collapse
|
46
|
Dolgikh EA, Kusakin PG, Kitaeva AB, Tsyganova AV, Kirienko AN, Leppyanen IV, Dolgikh AV, Ilina EL, Demchenko KN, Tikhonovich IA, Tsyganov VE. Mutational analysis indicates that abnormalities in rhizobial infection and subsequent plant cell and bacteroid differentiation in pea (Pisum sativum) nodules coincide with abnormal cytokinin responses and localization. ANNALS OF BOTANY 2020; 125:905-923. [PMID: 32198503 PMCID: PMC7218816 DOI: 10.1093/aob/mcaa022] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 02/26/2020] [Indexed: 05/14/2023]
Abstract
BACKGROUND AND AIMS Recent findings indicate that Nod factor signalling is tightly interconnected with phytohormonal regulation that affects the development of nodules. Since the mechanisms of this interaction are still far from understood, here the distribution of cytokinin and auxin in pea (Pisum sativum) nodules was investigated. In addition, the effect of certain mutations blocking rhizobial infection and subsequent plant cell and bacteroid differentiation on cytokinin distribution in nodules was analysed. METHODS Patterns of cytokinin and auxin in pea nodules were profiled using both responsive genetic constructs and antibodies. KEY RESULTS In wild-type nodules, cytokinins were found in the meristem, infection zone and apical part of the nitrogen fixation zone, whereas auxin localization was restricted to the meristem and peripheral tissues. We found significantly altered cytokinin distribution in sym33 and sym40 pea mutants defective in IPD3/CYCLOPS and EFD transcription factors, respectively. In the sym33 mutants impaired in bacterial accommodation and subsequent nodule differentiation, cytokinin localization was mostly limited to the meristem. In addition, we found significantly decreased expression of LOG1 and A-type RR11 as well as KNOX3 and NIN genes in the sym33 mutants, which correlated with low cellular cytokinin levels. In the sym40 mutant, cytokinins were detected in the nodule infection zone but, in contrast to the wild type, they were absent in infection droplets. CONCLUSIONS In conclusion, our findings suggest that enhanced cytokinin accumulation during the late stages of symbiosis development may be associated with bacterial penetration into the plant cells and subsequent plant cell and bacteroid differentiation.
Collapse
Affiliation(s)
- Elena A Dolgikh
- All-Russia Research Institute for Agricultural Microbiology, Laboratory of Molecular and Cellular Biology, Saint Petersburg, Russia
| | - Pyotr G Kusakin
- All-Russia Research Institute for Agricultural Microbiology, Laboratory of Molecular and Cellular Biology, Saint Petersburg, Russia
| | - Anna B Kitaeva
- All-Russia Research Institute for Agricultural Microbiology, Laboratory of Molecular and Cellular Biology, Saint Petersburg, Russia
| | - Anna V Tsyganova
- All-Russia Research Institute for Agricultural Microbiology, Laboratory of Molecular and Cellular Biology, Saint Petersburg, Russia
| | - Anna N Kirienko
- All-Russia Research Institute for Agricultural Microbiology, Laboratory of Molecular and Cellular Biology, Saint Petersburg, Russia
| | - Irina V Leppyanen
- All-Russia Research Institute for Agricultural Microbiology, Laboratory of Molecular and Cellular Biology, Saint Petersburg, Russia
| | - Aleksandra V Dolgikh
- All-Russia Research Institute for Agricultural Microbiology, Laboratory of Molecular and Cellular Biology, Saint Petersburg, Russia
- Saint Petersburg State University, Department of Genetics and Biotechnology, Universitetskaya embankment 7–9, Saint Petersburg, Russia
| | - Elena L Ilina
- Komarov Botanical Institute, Russian Academy of Sciences, Laboratory of Cellular and Molecular Mechanisms of Plant Development, Saint Petersburg, Russia
| | - Kirill N Demchenko
- All-Russia Research Institute for Agricultural Microbiology, Laboratory of Molecular and Cellular Biology, Saint Petersburg, Russia
- Komarov Botanical Institute, Russian Academy of Sciences, Laboratory of Cellular and Molecular Mechanisms of Plant Development, Saint Petersburg, Russia
| | - Igor A Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology, Laboratory of Molecular and Cellular Biology, Saint Petersburg, Russia
- Saint Petersburg State University, Department of Genetics and Biotechnology, Universitetskaya embankment 7–9, Saint Petersburg, Russia
| | - Viktor E Tsyganov
- All-Russia Research Institute for Agricultural Microbiology, Laboratory of Molecular and Cellular Biology, Saint Petersburg, Russia
- Saint Petersburg Scientific Center Russian Academy of Sciences, Universitetskaya embankment 5, Saint Petersburg, Russia
| |
Collapse
|
47
|
Azarakhsh M, Rumyantsev AM, Lebedeva MA, Lutova LA. Cytokinin biosynthesis genes expressed during nodule organogenesis are directly regulated by the KNOX3 protein in Medicago truncatula. PLoS One 2020; 15:e0232352. [PMID: 32353031 PMCID: PMC7192382 DOI: 10.1371/journal.pone.0232352] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/14/2020] [Indexed: 11/20/2022] Open
Abstract
Cytokinin is an important regulator of symbiotic nodule development. Recently, KNOTTED1-LIKE HOMEOBOX 3 transcription factor (TF) was shown to regulate symbiotic nodule development possibly via the activation of cytokinin biosynthesis genes. However, the direct interaction between the KNOX3 TF and its target genes has not been investigated up to date. Here, using EMSA analysis and SPR-based assay, we found that MtKNOX3 homeodomain directly binds to the regulatory sequences of the MtLOG1, MtLOG2, and MtIPT3 genes involved in nodulation in Medicago truncatula. Moreover, we showed that MtLOG2 and MtIPT3 expression patterns partially overlap with MtKNOX3 expression in developing nodules as it was shown by promoter:GUS analysis. Our data suggest that MtKNOX3 TF may directly activate the MtLOG1, MtLOG2, and MtIPT3 genes during nodulation thereby increasing cytokinin biosynthesis in developing nodules.
Collapse
Affiliation(s)
- Mahboobeh Azarakhsh
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, Russia
- Cell and Molecular Biology Department, Kosar University of Bojnord, Bojnord, North Khorasan Province, Iran
| | - Andrey M Rumyantsev
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Maria A Lebedeva
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Lyudmila A Lutova
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
48
|
Atif MJ, Ahanger MA, Amin B, Ghani MI, Ali M, Cheng Z. Mechanism of Allium Crops Bulb Enlargement in Response to Photoperiod: A Review. Int J Mol Sci 2020; 21:E1325. [PMID: 32079095 PMCID: PMC7072895 DOI: 10.3390/ijms21041325] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/07/2020] [Accepted: 02/13/2020] [Indexed: 12/17/2022] Open
Abstract
The photoperiod marks a varied set of behaviors in plants, including bulbing. Bulbing is controlled by inner signals, which can be stimulated or subdued by the ecological environment. It had been broadly stated that phytohormones control the plant development, and they are considered to play a significant part in the bulb formation. The past decade has witnessed significant progress in understanding and advancement about the photoperiodic initiation of bulbing in plants. A noticeable query is to what degree the mechanisms discovered in bulb crops are also shared by other species and what other qualities are also dependent on photoperiod. The FLOWERING LOCUS T (FT) protein has a role in flowering; however, the FT genes were afterward reported to play further functions in other biological developments (e.g., bulbing). This is predominantly applicable in photoperiodic regulation, where the FT genes seem to have experienced significant development at the practical level and play a novel part in the switch of bulb formation in Alliums. The neofunctionalization of FT homologs in the photoperiodic environments detects these proteins as a new class of primary signaling mechanisms that control the growth and organogenesis in these agronomic-related species. In the present review, we report the underlying mechanisms regulating the photoperiodic-mediated bulb enlargement in Allium species. Therefore, the present review aims to systematically review the published literature on the bulbing mechanism of Allium crops in response to photoperiod. We also provide evidence showing that the bulbing transitions are controlled by phytohormones signaling and FT-like paralogues that respond to independent environmental cues (photoperiod), and we also show that an autorelay mechanism involving FT modulates the expression of the bulbing-control gene. Although a large number of studies have been conducted, several limitations and research gaps have been identified that need to be addressed in future studies.
Collapse
Affiliation(s)
- Muhammad Jawaad Atif
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, Yangling 712100, China; (M.J.A.); (B.A.); (M.I.G.); (M.A.)
- Vegetable Crops Program, National Agricultural Research Centre, Islamabad 44000, Pakistan
| | | | - Bakht Amin
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, Yangling 712100, China; (M.J.A.); (B.A.); (M.I.G.); (M.A.)
| | - Muhammad Imran Ghani
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, Yangling 712100, China; (M.J.A.); (B.A.); (M.I.G.); (M.A.)
- College of Natural Resource and Environment, Northwest A&F University, Yangling 712100, China
| | - Muhammad Ali
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, Yangling 712100, China; (M.J.A.); (B.A.); (M.I.G.); (M.A.)
| | - Zhihui Cheng
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, Yangling 712100, China; (M.J.A.); (B.A.); (M.I.G.); (M.A.)
| |
Collapse
|
49
|
Huisman R, Geurts R. A Roadmap toward Engineered Nitrogen-Fixing Nodule Symbiosis. PLANT COMMUNICATIONS 2020; 1:100019. [PMID: 33404552 PMCID: PMC7748023 DOI: 10.1016/j.xplc.2019.100019] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/06/2019] [Accepted: 12/27/2019] [Indexed: 05/26/2023]
Abstract
In the late 19th century, it was discovered that legumes can establish a root nodule endosymbiosis with nitrogen-fixing rhizobia. Soon after, the question was raised whether it is possible to transfer this trait to non-leguminous crops. In the past century, an ever-increasing amount of knowledge provided unique insights into the cellular, molecular, and genetic processes controlling this endosymbiosis. In addition, recent phylogenomic studies uncovered several genes that evolved to function specifically to control nodule formation and bacterial infection. However, despite this massive body of knowledge, the long-standing objective to engineer the nitrogen-fixing nodulation trait on non-leguminous crop plants has not been achieved yet. In this review, the unsolved questions and engineering strategies toward nitrogen-fixing nodulation in non-legume plants are discussed and highlighted.
Collapse
Affiliation(s)
- Rik Huisman
- Wageningen University, Department of Plant Sciences, Laboratory of Molecular Biology, Droevendaalsesteeg 1, Wageningen 6708PB, The Netherlands
| | - Rene Geurts
- Wageningen University, Department of Plant Sciences, Laboratory of Molecular Biology, Droevendaalsesteeg 1, Wageningen 6708PB, The Netherlands
| |
Collapse
|
50
|
Fonseca-García C, Zayas AE, Montiel J, Nava N, Sánchez F, Quinto C. Transcriptome analysis of the differential effect of the NADPH oxidase gene RbohB in Phaseolus vulgaris roots following Rhizobium tropici and Rhizophagus irregularis inoculation. BMC Genomics 2019; 20:800. [PMID: 31684871 PMCID: PMC6827182 DOI: 10.1186/s12864-019-6162-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 10/09/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Reactive oxygen species (ROS) are generated by NADPH oxidases known as respiratory burst oxidase homologs (RBOHs) in plants. ROS regulate various cellular processes, including the mutualistic interactions between legumes and nitrogen-fixing bacteria or arbuscular mycorrhizal (AM) fungi. Rboh is a multigene family comprising nine members (RbohA-I) in common bean (Phaseolus vulgaris). The RNA interference-mediated silencing of RbohB (PvRbohB-RNAi) in this species diminished its ROS production and greatly impaired nodulation. By contrast, the PvRbohB-RNAi transgenic roots showed early hyphal root colonization with enlarged fungal hypopodia; therefore, we proposed that PvRbohB positively regulates rhizobial infection (Rhizobium tropici) and inhibits AM colonization by Rhizophagus irregularis in P. vulgaris. RESULTS To corroborate this hypothesis, an RNA-Seq transcriptomic analysis was performed to identify the differentially expressed genes in the PvRbohB-RNAi roots inoculated with Rhizobium tropici or Rhizophagus irregularis. We found that, in the early stages, root nodule symbioses generated larger changes of the transcriptome than did AM symbioses in P. vulgaris. Genes related to ROS homeostasis and cell wall flexibility were markedly upregulated in the early stages of rhizobial colonization, but not during AM colonization. Compared with AM colonization, the rhizobia induced the expression of a greater number of genes encoding enzymes involved in the metabolism of auxins, cytokinins, and ethylene, which were typically repressed in the PvRbohB-RNAi roots. CONCLUSIONS Our research provides substantial insights into the genetic interaction networks in the early stages of rhizobia and AM symbioses with P. vulgaris, as well as the differential roles that RbohB plays in processes related to ROS scavenging, cell wall remodeling, and phytohormone homeostasis during nodulation and mycorrhization in this legume.
Collapse
Affiliation(s)
- Citlali Fonseca-García
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Alejandra E Zayas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Jesús Montiel
- Department of Molecular Biology and Genetics, Aarhus University, C 8000, Aarhus, Denmark
| | - Noreide Nava
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Federico Sánchez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Carmen Quinto
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| |
Collapse
|