1
|
Wang Y, Di B, Sun Z, Sonali, Donovan-Mak M, Chen ZH, Wang MQ. Multi-Omics and Physiological Analysis Reveal Crosstalk Between Aphid Resistance and Nitrogen Fertilization in Wheat. PLANT, CELL & ENVIRONMENT 2025; 48:2024-2039. [PMID: 39545337 DOI: 10.1111/pce.15282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024]
Abstract
The availability of nitrogen (N) can dramatically influence crops resistance to herbivorous insects. However, the interaction between N fertilization and crop resistance to insects is not well understood. In this study, the effects of N fertilization on the grain aphid (Sitobion miscanthi) were investigated using three wheat (Triticum aestivum) cultivars with different aphid resistances. We measured aphid life cycle parameters, fecundity, survival rate, weight and feeding behavior, in conjunction with wheat metabolomics, transcriptomics and alien introgression analysis. Our results demonstrated that higher N application benefits aphid feeding across all three wheat cultivars. We also reveal that the highly resistant cultivar (ZM9) can only exert its resistance-advantage under low N fertilization, losing its advantage compared to moderately resistant cultivar YN19 and susceptible cultivar YN23 under higher N fertilization. The effects of N fertilization on wheat-aphid interactions were due to changes in the regulation of carbon and nitrogen metabolism. Integration of multi-omics highlighted specific aphid-induced differentially expressed genes (DEGs, e.g., TUB6, Tubulin 6; ENODL20, Early nodulin-like protein 20; ACT7 Actin 7; Prx47, Peroxidase 47) and significantly different metabolites (SDMs, e.g., crotonoside, guanine, 2'-O-methyladenosine, ferulic acid) in ZM9. Additionally, we report the unique SDMs-DEGs interactions, associated with introgression during wheat domestication, may help infer aphid resistance. In summary, this study provides new insights into the relationships between N fertilization practices, defense responses and integrated pest management for sustainable wheat production.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- School of Science, Western Sydney University, Penrith, New South Wales, Australia
| | - Bin Di
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ze Sun
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Sonali
- School of Science, Western Sydney University, Penrith, New South Wales, Australia
| | - Michelle Donovan-Mak
- School of Science, Western Sydney University, Penrith, New South Wales, Australia
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, New South Wales, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Man-Qun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
2
|
Kumaraswamy S, Huang Y. Molecular Interactions Between Plants and Aphids: Recent Advances and Future Perspectives. INSECTS 2024; 15:935. [PMID: 39769537 PMCID: PMC11677212 DOI: 10.3390/insects15120935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/08/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025]
Abstract
Aphids are small, notorious insect pests that negatively impact plant health and agricultural productivity through direct damage, such as sap-sucking, and indirectly as vectors of plant viruses. Plants respond to aphid feeding with a variety of molecular mechanisms to mitigate damage. These responses are diverse and highly dynamic, functioning either independently or in combination. Understanding plant-aphid interactions is crucial for revealing the full range of plant defenses against aphids. When aphids infest, plants detect the damage via specific receptor proteins, initiating a signaling cascade that activates defense mechanisms. These defenses include a complex interaction of phytohormones that trigger defense pathways, secondary metabolites that deter aphid feeding and reproduction, lectins and protease inhibitors that disrupt aphid physiology, and elicitors that activate further defense responses. Meanwhile, aphids counteract plant defenses with salivary effectors and proteins that suppress plant defenses, aiding in their successful colonization. This review offers a detailed overview of the molecular mechanisms involved in plant-aphid interactions, emphasizing both established and emerging plant defense strategies. Its uniqueness lies in synthesizing the recent progress made in plant defense responses to aphids, along with aphids' countermeasures to evade such defenses. By consolidating current knowledge, this review provides key insights for developing sustainable strategies to achieve crop protection and minimize dependence on chemical pesticides.
Collapse
Affiliation(s)
- Sunil Kumaraswamy
- Department of Plant Biology, Ecology and Evolution, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Yinghua Huang
- Department of Plant Biology, Ecology and Evolution, Oklahoma State University, Stillwater, OK 74078, USA;
- Plant Science Research Laboratory, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), 1301 N. Western Road, Stillwater, OK 74075, USA
| |
Collapse
|
3
|
Kumar R, Iswanto ABB, Kumar D, Shuwei W, Oh K, Moon J, Son GH, Oh ES, Vu MH, Lee J, Lee KW, Oh MH, Kwon C, Chung WS, Kim JY, Kim SH. C-Type LECTIN receptor-like kinase 1 and ACTIN DEPOLYMERIZING FACTOR 3 are key components of plasmodesmata callose modulation. PLANT, CELL & ENVIRONMENT 2024; 47:3749-3765. [PMID: 38780063 DOI: 10.1111/pce.14957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 04/02/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Plasmodesmata (PDs) are intercellular organelles carrying multiple membranous nanochannels that allow the trafficking of cellular signalling molecules. The channel regulation of PDs occurs dynamically and is required in various developmental and physiological processes. It is well known that callose is a critical component in regulating PD permeability or symplasmic connectivity, but the understanding of the signalling pathways and mechanisms of its regulation is limited. Here, we used the reverse genetic approach to investigate the role of C-type lectin receptor-like kinase 1 (CLRLK1) in the aspect of PD callose-modulated symplasmic continuity. Here, we found that loss-of-function mutations in CLRLK1 resulted in excessive PD callose deposits and reduced symplasmic continuity, resulting in an accelerated gravitropic response. The protein interactome study also found that CLRLK1 interacted with actin depolymerizing factor 3 (ADF3) in vitro and in plants. Moreover, mutations in ADF3 result in elevated PD callose deposits and faster gravitropic response. Our results indicate that CLRLK1 and ADF3 negatively regulate PD callose accumulation, contributing to fine-tuning symplasmic opening apertures. Overall, our studies identified two key components involved in the deposits of PD callose and provided new insights into how symplasmic connectivity is maintained by the control of PD callose homoeostasis.
Collapse
Affiliation(s)
- Ritesh Kumar
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Arya B B Iswanto
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Dhinesh Kumar
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Wu Shuwei
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Kyujin Oh
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Jiyun Moon
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Geon H Son
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Eun-Seok Oh
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Minh H Vu
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Jinsu Lee
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Keun W Lee
- Division of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Man-Ho Oh
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Chian Kwon
- Department of Molecular Biology, Dankook University, Cheonan, Korea
| | - Woo S Chung
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
- Division of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
- Division of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Sang H Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
- Division of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
4
|
Balakrishnan D, Bateman N, Kariyat RR. Rice physical defenses and their role against insect herbivores. PLANTA 2024; 259:110. [PMID: 38565704 PMCID: PMC10987372 DOI: 10.1007/s00425-024-04381-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024]
Abstract
MAIN CONCLUSION Understanding surface defenses, a relatively unexplored area in rice can provide valuable insight into constitutive and induced defenses against herbivores. Plants have evolved a multi-layered defense system against the wide range of pests that constantly attack them. Physical defenses comprised of trichomes, wax, silica, callose, and lignin, and are considered as the first line of defense against herbivory that can directly affect herbivores by restricting or deterring them. Most studies on physical defenses against insect herbivores have been focused on dicots compared to monocots, although monocots include one of the most important crops, rice, which half of the global population is dependent on as their staple food. In rice, Silica is an important element stimulating plant growth, although Silica has also been found to impart resistance against herbivores. However, other physical defenses in rice including wax, trichomes, callose, and lignin are less explored. A detailed exploration of the morphological structures and functional consequences of physical defense structures in rice can assist in incorporating these resistance traits in plant breeding and genetic improvement programs, and thereby potentially reduce the use of chemicals in the field. This mini review addresses these points with a closer look at current literature and prospects on rice physical defenses.
Collapse
Affiliation(s)
- Devi Balakrishnan
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Nick Bateman
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Rupesh R Kariyat
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
5
|
Zhu Y, Stahl A, Rostás M, Will T. Temporal and species-specific resistance of sugar beet to green peach aphid and black bean aphid: mechanisms and implications for breeding. PEST MANAGEMENT SCIENCE 2024; 80:404-413. [PMID: 37708325 DOI: 10.1002/ps.7770] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/21/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Sugar beet (Beta vulgaris ssp. vulgaris), a key crop for sugar production, faces significant yield losses caused by the black bean aphid Aphis fabae (Scop.) and the green peach aphid Myzus persicae (Sulzer), which also transmits viruses. The restriction on neonicotinoid usage in Europe has intensified this problem, emphasizing the urgent need for breeding resistant crop varieties. This study evaluated 26 sugar beet germplasms for resistance against both aphid species by using performance and feeding behavior assays. Additionally, whole plant bioassays and semi-field experiments were carried out with Myzus persicae. RESULTS Our findings demonstrate the presence of temporal resistance against both aphid species in the primary sugar beet gene pool. Beet yellows virus (BYV) carrying aphids showed enhanced performance. Different levels of plant defense mechanisms were involved including resistance against Myzus persicae before reaching the phloem, particularly in sugar beet line G3. In contrast, resistance against Aphis fabae turned out to be predominately phloem-located. Furthermore, a high incidence of black inclusion bodies inside the stomach of Myzus persicae was observed for approximately 85% of the plant genotypes tested, indicating a general and strong incompatibility between sugar beet and Myzus persicae in an initial phase of interaction. CONCLUSION Sugar beet resistance against aphids involved different mechanisms and is species-specific. The identification of these mechanisms and interactions represents a crucial milestone in advancing the breeding of sugar beet varieties with improved resistance. © 2023 Julius Kühn-Institut and The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Yunsheng Zhu
- Julius Kühn Institute (JKI) - Federal Research Center for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| | - Andreas Stahl
- Julius Kühn Institute (JKI) - Federal Research Center for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| | - Michael Rostás
- Agricultural Entomology, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
| | - Torsten Will
- Julius Kühn Institute (JKI) - Federal Research Center for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| |
Collapse
|
6
|
Sun Y, Shi M, Wang D, Gong Y, Sha Q, Lv P, Yang J, Chu P, Guo S. Research progress on the roles of actin-depolymerizing factor in plant stress responses. FRONTIERS IN PLANT SCIENCE 2023; 14:1278311. [PMID: 38034575 PMCID: PMC10687421 DOI: 10.3389/fpls.2023.1278311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023]
Abstract
Actin-depolymerizing factors (ADFs) are highly conserved small-molecule actin-binding proteins found throughout eukaryotic cells. In land plants, ADFs form a small gene family that displays functional redundancy despite variations among its individual members. ADF can bind to actin monomers or polymerized microfilaments and regulate dynamic changes in the cytoskeletal framework through specialized biochemical activities, such as severing, depolymerizing, and bundling. The involvement of ADFs in modulating the microfilaments' dynamic changes has significant implications for various physiological processes, including plant growth, development, and stress response. The current body of research has greatly advanced our comprehension of the involvement of ADFs in the regulation of plant responses to both biotic and abiotic stresses, particularly with respect to the molecular regulatory mechanisms that govern ADF activity during the transmission of stress signals. Stress has the capacity to directly modify the transcription levels of ADF genes, as well as indirectly regulate their expression through transcription factors such as MYB, C-repeat binding factors, ABF, and 14-3-3 proteins. Furthermore, apart from their role in regulating actin dynamics, ADFs possess the ability to modulate the stress response by influencing downstream genes associated with pathogen resistance and abiotic stress response. This paper provides a comprehensive overview of the current advancements in plant ADF gene research and suggests that the identification of plant ADF family genes across a broader spectrum, thorough analysis of ADF gene regulation in stress resistance of plants, and manipulation of ADF genes through genome-editing techniques to enhance plant stress resistance are crucial avenues for future investigation in this field.
Collapse
|
7
|
Matsumoto T, Higaki T, Takatsuka H, Kutsuna N, Ogata Y, Hasezawa S, Umeda M, Inada N. Arabidopsis thaliana Subclass I ACTIN DEPOLYMERIZING FACTORs Regulate Nuclear Organization and Gene Expression. PLANT & CELL PHYSIOLOGY 2023; 64:1231-1242. [PMID: 37647615 DOI: 10.1093/pcp/pcad092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023]
Abstract
ACTIN DEPOLYMERIZING FACTOR (ADF) is a conserved protein that regulates the organization and dynamics of actin microfilaments. Eleven ADFs in the Arabidopsis thaliana genome are grouped into four subclasses, and subclass I ADFs, ADF1-4, are all expressed throughout the plant. Previously, we showed that subclass I ADFs function in the regulation of the response against powdery mildew fungus as well as in the regulation of cell size and endoreplication. Here, we report a new role of subclass I ADFs in the regulation of nuclear organization and gene expression. Through microscopic observation of epidermal cells in mature leaves, we found that the size of chromocenters in both adf4 and transgenic lines where expression of subclass I ADFs is downregulated (ADF1-4Ri) was reduced compared with that of wild-type Col-0. Arabidopsis thaliana possesses eight ACTIN (ACT) genes, among which ACT2, -7 and -8 are expressed in vegetative organs. The chromocenter size in act7, but not in the act2/8 double mutant, was enlarged compared with that in Col-0. Microarray analysis revealed that 1,818 genes were differentially expressed in adf4 and ADF1-4Ri. In particular, expression of 22 nucleotide-binding leucine-rich repeat genes, which are involved in effector-triggered plant immunity, was reduced in adf4 and ADF1-4Ri. qRT-PCR confirmed the altered expressions shown with microarray analysis. Overall, these results suggest that ADF regulates various aspects of plant physiology through its role in regulation of nuclear organization and gene expression. The mechanism how ADF and ACT regulate nuclear organization and gene expression is discussed.
Collapse
Affiliation(s)
- Tomoko Matsumoto
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531 Japan
| | - Takumi Higaki
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuou-ku, Kumamoto, 860-8555 Japan
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, 2-39-1 Kurokami, Chuou-ku, Kumamoto, 860-8555 Japan
| | | | | | - Yoshiyuki Ogata
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531 Japan
| | - Seiichiro Hasezawa
- Graduate School of Science and Engineering, Hosei University, Kajino-cho 3-7-2 Koganei, Tokyo, 184-8584 Japan
| | - Masaaki Umeda
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama-cho 8916-5 Ikoma, Nara, 630-0192 Japan
| | - Noriko Inada
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531 Japan
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama-cho 8916-5 Ikoma, Nara, 630-0192 Japan
| |
Collapse
|
8
|
Yang J, Zhang H, Chen H, Sun Z, Ke H, Wang G, Meng C, Wu L, Zhang Y, Wang X, Ma Z. Genome-wide association study reveals novel SNPs and genes in Gossypium hirsutum underlying Aphis gossypii resistance. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:171. [PMID: 37420143 DOI: 10.1007/s00122-023-04415-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/23/2023] [Indexed: 07/09/2023]
Abstract
A. gossypii resistance showed great variability in G. hirsutum varieties. One hundred and seventy-six SNPs associated with A. gossypii resistance were identified using GWAS. Four candidate resistance genes were functionally validated. Aphis gossypii is an economically important sap-feeding pest and is widely distributed in the world's cotton-producing regions. Identification of cotton genotypes and developing cultivars with improved A. gossypii resistance (AGR) is essential and desirable for sustainable agriculture. In the present study, A. gossypii was offered no choice but to propagate on 200 Gossypium hirsutum accessions. A relative aphid reproduction index (RARI) was used to evaluate the AGR, which showed large variability in cotton accessions and was classified into 6 grades. A significantly positive correlation was found between AGR and Verticillium wilt resistance. A total of 176 SNPs significantly associated with the RARI were identified using GWAS. Of these, 21 SNPs could be repeatedly detected in three replicates. Cleaved amplified polymorphic sequence, a restriction digestion-based genotyping assay, was developed using SNP1 with the highest observed -log10(P-value). Four genes within the 650 kb region of SNP1 were further identified, including GhRem (remorin-like), GhLAF1 (long after far-red light 1), GhCFIm25 (pre-mRNA cleavage factor Im 25 kDa subunit) and GhPMEI (plant invertase/pectin methylesterase inhibitor superfamily protein). The aphid infection could induce their expression and showed a significant difference between resistant and susceptible cotton varieties. Silencing of GhRem, GhLAF1 or GhCFIm25 could significantly increase aphid reproduction on cotton seedlings. Silencing of GhRem significantly reduced callose deposition, which is reasonably believed to be the cause for the higher AGR. Our results provide insights into understanding the genetic regulation of AGR in cotton and suggest candidate germplasms, SNPs and genes for developing cultivars with improved AGR.
Collapse
Affiliation(s)
- Jun Yang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Huimin Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Haonan Chen
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Zhengwen Sun
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Huifeng Ke
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Guoning Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Chengsheng Meng
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Liqiang Wu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Yan Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Xingfen Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Zhiying Ma
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| |
Collapse
|
9
|
Cardona JB, Grover S, Bowman MJ, Busta L, Kundu P, Koch KG, Sarath G, Sattler SE, Louis J. Sugars and cuticular waxes impact sugarcane aphid (Melanaphis sacchari) colonization on different developmental stages of sorghum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111646. [PMID: 36806611 DOI: 10.1016/j.plantsci.2023.111646] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/10/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Sugarcane aphid (SCA; Melanaphis sacchari) is a devastating pest of sorghum (Sorghum bicolor) that colonizes sorghum plants at different growth stages. Leaf surface characteristics and sugars often influence aphid settling and feeding on host plants. However, how changes in cuticular waxes and sugar levels affect SCA establishment and feeding at different development stages of sorghum have not been explored. In this study, two- and six-week-old BTx623 plants, a reference line of sorghum, was used to evaluate plant-aphid interactions. Monitoring aphid feeding behavior using Electrical Penetration Graph (EPG) technique revealed that aphids spent more time in the sieve element phase of six-week-old plants compared to two-week-old plants. Significant differences were found in the time spent to reach the first sieve element and pathway phases between the two- and six-week-old plants. However, no-choice aphid bioassays displayed that SCA population numbers were higher in two-week-old plants compared to six-week-old plants. Differences in the abundance of wax and sugar contents were analyzed to determine how these plant components influenced aphid feeding and proliferation. Among the cuticular wax compounds analyzed, α-amyrin and isoarborinone increased after 10 days of aphid infestation only in six-week-old plants. Trehalose content was significantly increased by SCA feeding on two- and six-week-old plants. Furthermore, SCA feeding depressed sucrose content and increased levels of glucose and fructose in two-week-old but not in six-week-old plants. Overall, our study indicates that plant age is a determinant for SCA feeding, and subtle changes in triterpenoids and available sugars influence SCA establishment on sorghum plants.
Collapse
Affiliation(s)
| | - Sajjan Grover
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Michael J Bowman
- United States Department of Agriculture-Agricultural Research Service, National Center for Agricultural Utilization Research, Bioenergy Research Unit, Peoria, IL 61604, USA
| | - Lucas Busta
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN 55812, USA
| | - Pritha Kundu
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Kyle G Koch
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Gautam Sarath
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Wheat, Sorghum, and Forage Research Unit, US Department of Agriculture-Agricultural Research Service, Lincoln, NE 68583, USA
| | - Scott E Sattler
- Wheat, Sorghum, and Forage Research Unit, US Department of Agriculture-Agricultural Research Service, Lincoln, NE 68583, USA
| | - Joe Louis
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| |
Collapse
|
10
|
Mallick M, Mondal HA. Vascular dodecanoic acid of Arabidopsis mediates an insect resistance against Myzus persicae. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 112:e21986. [PMID: 36453553 DOI: 10.1002/arch.21986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/22/2022] [Accepted: 07/21/2022] [Indexed: 06/17/2023]
Abstract
The present study explores the compatible interaction between Arabidopsis thaliana and Myzus persicae to reduce host resistance from the previous aphid herbivore-mediated priming. The resumption of host resistance from the "reduced host resistance" was also recorded in due time when aphid herbivore was removed from leaf foliage. The vascular sap, isolated from the midpoint timing from the "reduced host resistance" to the "resumed host resistance" phase resolved in gas chromatography-mass spectrometry (GC-MS) analysis that identified an enrichment of dodecanoic acid (DA), an antibacterial metabolite and a saturated medium-chain fatty acid with a 12-carbon backbone. DA infiltration into leaf foliage revealed a significant reduction of aphid clonal proliferation on leaf foliage with concomitant reduction of the vascular microbiota titer as well as aphid body. The "resumed host resistance" from "reduced host resistance" also showed a comparable microbiota titer in comparison to control but the "reduced host resistance" evidenced a significant higher microbiota titer which was correlated with an enhanced aphid clonal proliferation on the leaf foliage. The DA infiltrated leaf foliage had no effect on total vascular sap ingestion by the aphid herbivore but induced RNA level of GUS expression under the control of promoter of pad-4, mpl-1, and sag-13. A similar pattern of gus expression was recorded from aphid herbivore. Thus, DA mediates aphid resistance toward aphid clonal proliferation in the host plant by manipulating vascular and aphid body microbiota titer.
Collapse
Affiliation(s)
- Moumita Mallick
- Genetics and Plant Breeding, Uttar Banga Krishi Viswavidyalaya, Cooch Behar, West Bengal, India
| | - Hossain A Mondal
- Genetics and Plant Breeding, Uttar Banga Krishi Viswavidyalaya, Cooch Behar, West Bengal, India
- School of Crop Improvement, College of Post Graduate Studies in Agricultural Sciences, Meghalaya, India
| |
Collapse
|
11
|
Mechanism of [CO 2] Enrichment Alleviated Drought Stress in the Roots of Cucumber Seedlings Revealed via Proteomic and Biochemical Analysis. Int J Mol Sci 2022; 23:ijms232314911. [PMID: 36499239 PMCID: PMC9737773 DOI: 10.3390/ijms232314911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
Cucumber is one of the most widely cultivated greenhouse vegetables, and its quality and yield are threatened by drought stress. Studies have shown that carbon dioxide concentration ([CO2]) enrichment can alleviate drought stress in cucumber seedlings; however the mechanism of this [CO2] enrichment effect on root drought stress is not clear. In this study, the effects of different drought stresses (simulated with 0, 5% and 10% PEG 6000, i.e., no, moderate, and severe drought stress) and [CO2] (400 μmol·mol-1 and 800 ± 40 μmol·mol-1) on the cucumber seedling root proteome were analyzed using the tandem mass tag (TMT) quantitative proteomics method. The results showed that after [CO2] enrichment, 346 differentially accumulating proteins (DAPs) were found only under moderate drought stress, 27 DAPs only under severe drought stress, and 34 DAPs under both moderate and severe drought stress. [CO2] enrichment promoted energy metabolism, amino acid metabolism, and secondary metabolism, induced the expression of proteins related to root cell wall and cytoskeleton metabolism, effectively maintained the balance of protein processing and degradation, and enhanced the cell wall regulation ability. However, the extent to which [CO2] enrichment alleviated drought stress in cucumber seedling roots was limited under severe drought stress, which may be due to excessive damage to the seedlings.
Collapse
|
12
|
Aphelenchoides besseyi Ab-FAR-1 Interacts with Arabidopsis thaliana AtADF3 to Interfere with Actin Cytoskeleton, and Promotes Nematode Parasitism and Pathogenicity. Int J Mol Sci 2022; 23:ijms232012280. [PMID: 36293146 PMCID: PMC9603084 DOI: 10.3390/ijms232012280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 01/24/2023] Open
Abstract
Fatty acid and retinol binding proteins (FAR) are unique proteins found in nematodes and are considered potential targets for controlling these parasites. However, their functions in nematode parasitism and pathogenicity and interaction with hosts are still unclear. In this study, we investigated the specific roles of rice white tip nematodes (RWTNs), Aphelenchoides besseyi, and a protein, Ab-FAR-1, to elucidate the parasitic and pathogenic processes of nematodes. The results showed that the expression level of Ab-far-1 was significantly up-regulated after A. besseyi infection of the plant. The immunofluorescence and subcellular localisation showed that Ab-FAR-1 was secreted into plant tissues mainly through the body wall of nematodes and might act in the nucleus and cytoplasm of plant cells. The pathogenicity of RWTNs was enhanced in Arabidopsis thaliana overexpressing Ab-FAR-1 and inhibited in Ab-far-1 RNAi A. thaliana. Yeast two-hybrid, Co-IP, BiFC, and nematode inoculation experiments showed that Ab-FAR-1 could interact with the A. thaliana actin-depolymerizing factor protein AtADF3, and the A. thaliana adf3 mutant was more susceptible to nematodes. An in vitro actin filament depolymerisation assay demonstrated that Ab-FAR-1 could inhibit AtADF3-mediated depolymerisation of actin filaments, and the turnover process of cellular actin filaments was also affected in A. thaliana overexpressing Ab-FAR-1. In addition, flg22-mediated host defence responses were suppressed in A. thaliana overexpressing Ab-FAR-1 and adf3 mutants. Therefore, this study confirmed that RWTNs can affect the turnover of actin filament remodelling mediated by AtADF3 through Ab-FAR-1 secretion and thus inhibit plant PAMP-triggered immunity (PTI), promoting the parasitism and pathogenicity of nematodes.
Collapse
|
13
|
Alam ST, Sarowar S, Mondal HA, Makandar R, Chowdhury Z, Louis J, Shah J. Opposing effects of MYZUS PERSICAE-INDUCED LIPASE 1 and jasmonic acid influence the outcome of Arabidopsis thaliana-Fusarium graminearum interaction. MOLECULAR PLANT PATHOLOGY 2022; 23:1141-1153. [PMID: 35396792 PMCID: PMC9276950 DOI: 10.1111/mpp.13216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 05/21/2023]
Abstract
Fusarium graminearum (Fg) is an important fungal pathogen of small grain cereals that can also infect Arabidopsis thaliana. In Arabidopsis, jasmonic acid (JA) signalling involving JASMONATE RESISTANT 1 (JAR1), which synthesizes JA-isoleucine, a signalling form of JA, promotes susceptibility to Fg. Here we show that Arabidopsis MYZUS PERSICAE-INDUCED LIPASE 1 (MPL1), via its influence on limiting JA accumulation, restricts Fg infection. MPL1 expression was up-regulated in response to Fg infection, and MPL1-OE plants, which overexpress MPL1, exhibited enhanced resistance against Fg. In comparison, disease severity was higher on the mpl1 mutant than the wild type. JA content was lower in MPL1-OE and higher in mpl1 than in the wild type, indicating that MPL1 limits JA accumulation. Pharmacological experiments confirmed the importance of MPL1-determined restriction of JA accumulation on curtailment of Fg infection. Methyl-JA application attenuated the MPL1-OE-conferred resistance, while the JA biosynthesis inhibitor ibuprofen enhanced resistance in mpl1. Also, the JA biosynthesis-defective opr3 mutant was epistatic to mpl1, resulting in enhanced resistance in mpl1 opr3 plants. In comparison, JAR1 was not essential for the mpl1-conferred susceptibility to Fg. Considering that methyl-JA promotes Fg growth in culture, we suggest that in part MPL1 curtails disease by limiting the availability of a plant-derived Fg growth-promoting factor.
Collapse
Affiliation(s)
- Syeda T. Alam
- Department of Biological SciencesUniversity of North TexasDentonTexasUSA
- BioDiscovery InstituteUniversity of North TexasDentonTexasUSA
| | - Sujon Sarowar
- Department of Biological SciencesUniversity of North TexasDentonTexasUSA
- Present address:
Genetic Improvement of Fruits and Vegetables Laboratory, United States Department of Agriculture‐Agricultural Research ServiceChatsworthNew JerseyUSA
| | - Hossain A. Mondal
- Department of Biological SciencesUniversity of North TexasDentonTexasUSA
- College of Postgraduate Studies in Agricultural Sciences (CPGS‐AS)under Central Agricultural UniversityImphalIndia
| | - Ragiba Makandar
- Department of Biological SciencesUniversity of North TexasDentonTexasUSA
- Department of Plant SciencesUniversity of HyderabadGachibowliIndia
| | - Zulkarnain Chowdhury
- Department of Biological SciencesUniversity of North TexasDentonTexasUSA
- BioDiscovery InstituteUniversity of North TexasDentonTexasUSA
| | - Joe Louis
- Department of Biological SciencesUniversity of North TexasDentonTexasUSA
- Department of Entomology and Department of BiochemistryUniversity of NebraskaLincolnNebraskaUSA
| | - Jyoti Shah
- Department of Biological SciencesUniversity of North TexasDentonTexasUSA
- BioDiscovery InstituteUniversity of North TexasDentonTexasUSA
| |
Collapse
|
14
|
Twayana M, Girija AM, Mohan V, Shah J. Phloem: At the center of action in plant defense against aphids. JOURNAL OF PLANT PHYSIOLOGY 2022; 273:153695. [PMID: 35468314 DOI: 10.1016/j.jplph.2022.153695] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
The location of the phloem deep inside the plant, the high hydrostatic pressure in the phloem, and the composition of phloem sap, which is rich in sugar with a high C:N ratio, allows phloem sap feeding insects to occupy a unique ecological niche. The anatomy and physiology of aphids, a large group of phytophagous insects that use their mouthparts, which are modified into stylets, to consume large amounts of phloem sap, has allowed aphids to successfully exploit this niche, however, to the detriment of agriculture and horticulture. The ability to reproduce asexually, a short generation time, the development of resistance to commonly used insecticides, and their ability to vector viral diseases makes aphids among the most damaging pests of plants. Here we review how plants utilize their ability to occlude sieve elements and accumulate antibiotic and antinutritive factors in the phloem sap to limit aphid infestation. In addition, we summarize progress on understanding how plants perceive aphids to activate defenses in the phloem.
Collapse
Affiliation(s)
- Moon Twayana
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, 76210, USA.
| | - Anil M Girija
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, 76210, USA.
| | - Vijee Mohan
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, 76210, USA.
| | - Jyoti Shah
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, 76210, USA.
| |
Collapse
|
15
|
Poosapati S, Poretsky E, Dressano K, Ruiz M, Vazquez A, Sandoval E, Estrada-Cardenas A, Duggal S, Lim JH, Morris G, Szczepaniec A, Walse SS, Ni X, Schmelz EA, Huffaker A. A sorghum genome-wide association study (GWAS) identifies a WRKY transcription factor as a candidate gene underlying sugarcane aphid (Melanaphis sacchari) resistance. PLANTA 2022; 255:37. [PMID: 35020066 DOI: 10.1007/s00425-021-03814-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
A WRKY transcription factor identified through forward genetics is associated with sorghum resistance to the sugarcane aphid and through heterologous expression reduces aphid populations in multiple plant species. Crop plant resistance to insect pests is based on genetically encoded traits which often display variability across diverse germplasm. In a comparatively recent event, a predominant sugarcane aphid (SCA: Melanaphis sacchari) biotype has become a significant agronomic pest of grain sorghum (Sorghum bicolor). To uncover candidate genes underlying SCA resistance, we used a forward genetics approach combining the genetic diversity present in the Sorghum Association Panel (SAP) and the Bioenergy Association Panel (BAP) for a genome-wide association study, employing an established SCA damage rating. One major association was found on Chromosome 9 within the WRKY transcription factor 86 (SbWRKY86). Transcripts encoding SbWRKY86 were previously identified as upregulated in SCA-resistant germplasm and the syntenic ortholog in maize accumulates following Rhopalosiphum maidis infestation. Analyses of SbWRKY86 transcripts displayed patterns of increased SCA-elicited accumulation in additional SCA-resistant sorghum lines. Heterologous expression of SbWRKY86 in both tobacco (Nicotiana benthamiana) and Arabidopsis resulted in reduced population growth of green peach aphid (Myzus persicae). Comparative RNA-Seq analyses of Arabidopsis lines expressing 35S:SbWRKY86-YFP identified changes in expression for a small network of genes associated with carbon-nitrogen metabolism and callose deposition, both contributing factors to defense against aphids. As a test of altered plant responses, 35S:SbWRKY86-YFP Arabidopsis lines were activated using the flagellin epitope elicitor, flg22, and displayed significant increases in callose deposition. Our findings indicate that both heterologous and increased native expression of the transcription factor SbWRKY86 contributes to reduced aphid levels in diverse plant models.
Collapse
Affiliation(s)
- Sowmya Poosapati
- Section of Cell and Developmental Biology, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0116, USA
| | - Elly Poretsky
- Section of Cell and Developmental Biology, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0116, USA
| | - Keini Dressano
- Section of Cell and Developmental Biology, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0116, USA
| | - Miguel Ruiz
- Section of Cell and Developmental Biology, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0116, USA
| | - Armando Vazquez
- Section of Cell and Developmental Biology, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0116, USA
| | - Evan Sandoval
- Section of Cell and Developmental Biology, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0116, USA
| | - Adelaida Estrada-Cardenas
- Section of Cell and Developmental Biology, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0116, USA
| | - Sarthak Duggal
- Section of Cell and Developmental Biology, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0116, USA
| | - Jia-Hui Lim
- Section of Cell and Developmental Biology, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0116, USA
| | - Geoffrey Morris
- Soil and Crop Sciences, Colorado State University, 307 University Ave., Fort Collins, CO, 80523-1177, USA
| | - Adrianna Szczepaniec
- Agricultural Biology, Colorado State University, 307 University Ave., Fort Collins, CO, 80523-1177, USA
| | - Spencer S Walse
- USDA-Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA, 93648-9757, USA
| | - Xinzhi Ni
- Crop Genetics and Breeding Research Unit, USDA-ARS, 115 Coastal Way, Tifton, GA, 31793, USA
| | - Eric A Schmelz
- Section of Cell and Developmental Biology, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0116, USA
| | - Alisa Huffaker
- Section of Cell and Developmental Biology, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0116, USA.
| |
Collapse
|
16
|
Wang L, Qiu T, Yue J, Guo N, He Y, Han X, Wang Q, Jia P, Wang H, Li M, Wang C, Wang X. Arabidopsis ADF1 is Regulated by MYB73 and is Involved in Response to Salt Stress Affecting Actin Filament Organization. PLANT & CELL PHYSIOLOGY 2021; 62:1387-1395. [PMID: 34086948 DOI: 10.1093/pcp/pcab081] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/26/2021] [Accepted: 06/03/2021] [Indexed: 06/12/2023]
Abstract
Actin cytoskeleton and transcription factors play key roles in plant response to salt stress; however, little is known about the link between the two regulators in response to salt stress. Actin-depolymerizing factors (ADFs) are conserved actin-binding proteins in eukaryotes. Here, we revealed that the expression level of ADF1 was induced by salt stress. The adf1 mutants showed significantly reduced survival rate, increased percentage of actin cable and reduced density of actin filaments, while ADF1 overexpression seedlings displayed the opposite results when compared with WT under the same condition. Furthermore, biochemical assays revealed that MYB73, a R2R3 MYB transcription factor, binds to the promoter of ADF1 and represses its expression via the MYB-binding site core motif ACCTAC. Taken together, our results indicate that ADF1 participates in salt stress by regulating actin organization and may also serve as a potential downstream target of MYB73, which is a negative regulator of salt stress.
Collapse
Affiliation(s)
- Lu Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
- College of Horticulture, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| | - Tianqi Qiu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| | - Jianru Yue
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| | - Nannan Guo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| | - Yunjian He
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| | - Xueping Han
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| | - Qiuyang Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| | - Pengfei Jia
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| | - Hongdan Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| | - Muzi Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| | - Che Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| | - Xianling Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| |
Collapse
|
17
|
Inada N, Takahashi N, Umeda M. Arabidopsis thaliana subclass I ACTIN DEPOLYMERIZING FACTORs and vegetative ACTIN2/8 are novel regulators of endoreplication. JOURNAL OF PLANT RESEARCH 2021; 134:1291-1300. [PMID: 34282484 DOI: 10.1007/s10265-021-01333-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Endoreplication is a type of cell cycle where genome replication occurs without mitosis. An increase of ploidy level by endoreplication is often associated with cell enlargement and an enhanced plant growth. Here we report Arabidopsis thaliana subclass I ACTIN DEPOLYMERIZING FACTORs (ADFs) and vegetative ACTIN2/8 as novel regulators of endoreplication. A. thaliana has 11 ADF members that are divided into 4 subclasses. Subclass I consists of four members, ADF1, -2, -3, and -4, all of which constitutively express in various tissues. We found that both adf4 knockout mutant and transgenic plants in which expressions of all of four subclass I ADFs are suppressed (ADF1-4Ri) showed an increased leaf area of mature first leaves, which was associated with a significant increase of epidermal pavement cell area. Ploidy analysis revealed that the ploidy level was significantly increased in mature leaves of ADF1-4Ri. The increased ploidy was also observed in roots of adf4 and ADF1-4Ri, as well as in dark-grown hypocotyls of adf4. Furthermore, double mutants of vegetative ACT2 and ACT8 (act2/8) exhibited an increase of leaf area and ploidy level in mature leaves. Therefore, actin-relating pathway could regulate endoreplication. The possible mechanisms that actin and ADFs regulate endoreplication are discussed.
Collapse
Affiliation(s)
- Noriko Inada
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan.
| | - Naoki Takahashi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Masaaki Umeda
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| |
Collapse
|
18
|
Javed K, Humayun T, Humayun A, Wang Y, Javed H. PeaT1 and PeBC1 Microbial Protein Elicitors Enhanced Resistance against Myzus persicae Sulzer in Chili Capsicum annum L. Microorganisms 2021; 9:microorganisms9112197. [PMID: 34835323 PMCID: PMC8618443 DOI: 10.3390/microorganisms9112197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
The green peach aphid (Myzus persicae Sulzer), a major and harmful chili aphid usually managed using chemical pesticides, is responsible for massive annual agricultural losses. The efficacy of two protein elicitors, PeaT1 and PeBC1, to stimulate a defensive response against M. persicae in chili was studied in this study. When compared to positive (water) and negative (buffer, 50 mM Tris-HCl, pH 8.0) controls, the rates of population growth (intrinsic rate of increase) of M. persicae (second and third generations) were lower with PeaT1- and PeBC1-treated chilli seedlings. M. persicae demonstrated a preference for colonizing control (12.18 ± 0.06) plants over PeaT1- (7.60 ± 0.11) and PeBC1 (6.82 ± 0.09) treated chilli seedlings in a host selection assay. Moreover, PeaT1- and PeBC1-treated chilli seedlings, the nymphal development period of the M. persicae was extended. Similarly, fecundity was lowered in the PeaT1- and PeBC1-treated chilli seedlings, with fewer offspring produced compared to the positive (water) and negative controls (50 mM Tris-HCl, pH 8.0). The trichomes and wax production on the PeaT1 and PeBC1-treated chilli leaves created a disadvantageous surface environment for M. persicae. Compared to control (30.17 ± 0.16 mm-2), PeaT1 (56.23 ± 0.42 mm-2) and PeBC1 (52.14 ± 0.34 mm-2) had more trichomes. The levels of jasmonic acid (JA), salicylic acid (SA), and ethylene (ET) were significantly higher in the PeaT1- and PeBC1-treated chili seedlings, indicating considerable accumulation. PeaT1 and PeBC1 significantly affected the height of the chili plant and the surface structure of the leaves, reducing M. persicae reproduction and preventing colonization, according to the data. The activation of pathways was also part of the defensive response (JA, SA, and ET). This present research findings established an evidence of biocontrol for the utilization of PeaT1 and PeBC1 in the defence of chili plants against M. persicae.
Collapse
Affiliation(s)
- Khadija Javed
- Department of Plant Pathology, Agriculture College, Guizhou University, Guiyang 550025, China;
- Department of Environmental Science, PMAS-Arid Agriculture University, Rawalpindi 46000, Pakistan
| | - Talha Humayun
- Department of Surgery (Surgical Unit 1 HFH), Rawalpindi Medical University, Rawalpindi 46000, Pakistan;
| | - Ayesha Humayun
- Department of Clinical studies, Pir Mehr Ali Shah-Arid Agriculture University, Rawalpindi 46300, Pakistan;
| | - Yong Wang
- Department of Plant Pathology, Agriculture College, Guizhou University, Guiyang 550025, China;
- Correspondence:
| | - Humayun Javed
- Department of Entomology, PMAS-Arid Agriculture University, Rawalpindi 46000, Pakistan;
- Rothamsted Research, West Common, Harpenden AL5 2JQ, UK
| |
Collapse
|
19
|
Wang J, Song J, Wu XB, Deng QQ, Zhu ZY, Ren MJ, Ye M, Zeng RS. Seed priming with calcium chloride enhances wheat resistance against wheat aphid Schizaphis graminum Rondani. PEST MANAGEMENT SCIENCE 2021; 77:4709-4718. [PMID: 34146457 DOI: 10.1002/ps.6513] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/30/2021] [Accepted: 06/19/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Calcium is an essential macronutrient for plant growth. Although it has been shown that exogenous Ca application can increase plant resistance to abiotic stress, little is known about its potential to enhance plant tolerance to biotic stress. Here, we investigated whether pretreatment of wheat (Triticum aestivum L.) seeds with calcium chloride (CaCl2 ) improves plant resistance against wheat aphid (Schizaphis graminum Rondani). The developmental time, population size, feeding behavior of aphids on plants grown from CaCl2 - and water-pretreated seeds, and plant defense responses to aphid attack were investigated. RESULTS Seed pretreatment with CaCl2 extended aphid development time and reduced aphid population size and feeding efficiency. In addition, the pretreatment significantly increased the concentration of Ca2+ in wheat leaves, and upregulated expression levels of TaCaM genes and callose synthase genes (TaGSL2, TaGSL8, TaGSL10, TaGSL12, TaGSL19, TaGSL22 and TaGSL23). Callose concentration in the leaves of plants grown from CaCl2 -pretreated seeds increased significantly upon aphid attack. Further, callose deposition was observed mainly in the phloem. CONCLUSION These results suggest that seed pretreatment with CaCl2 primes the plant response against wheat aphid attack, leading to modulation of callose deposition in the phloem in response to aphid attack. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jun Wang
- Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture, Guiyang, China
| | - Jia Song
- Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture, Guiyang, China
| | - Xiao-Bao Wu
- Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture, Guiyang, China
| | - Qian-Qian Deng
- Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture, Guiyang, China
| | - Zhong-Yan Zhu
- Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture, Guiyang, China
| | - Ming-Jian Ren
- Guizhou Branch of the National Wheat Improvement Center, Guiyang, China
| | - Mao Ye
- Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture, Guiyang, China
| | - Ren-Sen Zeng
- Key Laboratory of the Ministry of Education for Genetics, Breeding, and Multiple Uses of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
20
|
van Bel AJE. The plant axis as the command centre for (re)distribution of sucrose and amino acids. JOURNAL OF PLANT PHYSIOLOGY 2021; 265:153488. [PMID: 34416599 DOI: 10.1016/j.jplph.2021.153488] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/13/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Along with the increase in size required for optimal colonization of terrestrial niches, channels for bidirectional bulk transport of materials in land plants evolved during a period of about 100 million years. These transport systems are essentially still in operation - though perfected over the following 400 million years - and make use of hydrostatic differentials. Substances are accumulated or released at the loading and unloading ends, respectively, of the transport channels. The intermediate stretch between the channel termini is bifunctional and executes orchestrated release and retrieval of solutes. Analyses of anatomical and physiological data demonstrate that the release/retrieval zone extends deeper into sources and sinks than is commonly thought and covers usually much more than 99% of the translocation stretch. This review sketches the significance of events in the intermediate stretch for distribution of organic materials over the plant body. Net leakage from the channels does not only serve maintenance and growth of tissues along the pathway, but also diurnal, short-term or seasonal storage of reserve materials, and balanced distribution of organic C- and N-compounds over axial and terminal sinks. Release and retrieval are controlled by plasma-membrane transporters at the vessel/parenchyma interface in the contact pits along xylem vessels and by plasma-membrane transporters at the interface between companion cells and phloem parenchyma along sieve tubes. The xylem-to-phloem pathway vice versa is a bifacial, radially oriented system comprising a symplasmic pathway, of which entrance and exit are controlled at specific membrane checkpoints, and a parallel apoplasmic pathway. A broad range of specific sucrose and amino-acid transporters are deployed at the checkpoint plasma membranes. SUCs, SUTs, STPs, SWEETs, and AAPs, LTHs, CATs are localized to the plasma membranes in question, both in monocots and eudicots. Presence of Umamits in monocots is uncertain. There is some evidence for endo- and exocytosis at the vessel/parenchyma interface supplementary to the transporter-mediated uptake and release. Actions of transporters at the checkpoints are equally decisive for storage and distribution of amino acids and sucrose in monocots and eudicots, but storage and distribution patterns may differ between both taxa. While the majority of reserves is sequestered in vascular parenchyma cells in dicots, lack of space in monocot vasculature urges "outsourcing" of storage in ground parenchyma around the translocation path. In perennial dicots, specialized radial pathways (rays) include the sites for seasonal alternation of storage and mobilization. In dicots, apoplasmic phloem loading and a correlated low rate of release along the path would favour supply with photoassimilates of terminal sinks, while symplasmic phloem loading and a correlated higher rate of release along the path favours supply of axial sinks and transfer to the xylem. The balance between the resource acquisition by terminal and axial sinks is an important determinant of relative growth rate and, hence, for the fitness of plants in various habitats. Body enlargement as the evolutionary drive for emergence of vascular systems and mass transport propelled by hydrostatic differentials.
Collapse
Affiliation(s)
- Aart J E van Bel
- Institute of Phythopathology, Centre for BioSystems, Land Use and Nutrition, Justus-Liebig University, Heinrich-Buff-Ring 26-32, D-35392, Giessen, Germany.
| |
Collapse
|
21
|
Kloth KJ, Shah P, Broekgaarden C, Ström C, Albrectsen BR, Dicke M. SLI1 confers broad-spectrum resistance to phloem-feeding insects. PLANT, CELL & ENVIRONMENT 2021; 44:2765-2776. [PMID: 33837973 PMCID: PMC8360143 DOI: 10.1111/pce.14064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 05/13/2023]
Abstract
Resistance (R) genes usually compete in a coevolutionary arms race with reciprocal effectors to confer strain-specific resistance to pathogens or herbivorous insects. Here, we investigate the specificity of SLI1, a recently identified R gene in Arabidopsis that encodes a small heat shock-like protein involved in resistance to Myzus persicae aphids. In a panel with several aphid and whitefly species, SLI1 compromised reproductive rates of three species: the tobacco aphid M. persicae nicotianae, the cabbage aphid Brevicoryne brassicae and the cabbage whitefly Aleyrodes proletella. Electrical penetration graph recording of aphid behaviour, revealed shorter salivations and a 3-to-5-fold increase in phloem feeding on sli1 loss-of-function plants. The mustard aphid Lipaphis erysimi and Bemisia tabaci whitefly were not affected by SLI1. Unlike the other two aphid species, L. erysimi exhibited repetitive salivations preceding successful phloem feeding, indicating a role of salivary effectors in overcoming SLI1-mediated resistance. Microscopic characterization showed that SLI1 proteins localize in the sieve tubes of virtually all above- and below-ground tissues and co-localize with the aphid stylet tip after penetration of the sieve element plasma membrane. These observations reveal an unconventional R gene that escapes the paradigm of strain specificity and confers broad-spectrum quantitative resistance to phloem-feeding insects.
Collapse
Affiliation(s)
- Karen J. Kloth
- Laboratory of EntomologyWageningen University & ResearchWageningenThe Netherlands
| | - Parth Shah
- Laboratory of EntomologyWageningen University & ResearchWageningenThe Netherlands
| | | | - Cecilia Ström
- Department of Plant Physiology, Umeå Plant Science CentreUmeå UniversityUmeåSweden
| | | | - Marcel Dicke
- Laboratory of EntomologyWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
22
|
Microtubule Dynamics Plays a Vital Role in Plant Adaptation and Tolerance to Salt Stress. Int J Mol Sci 2021; 22:ijms22115957. [PMID: 34073070 PMCID: PMC8199277 DOI: 10.3390/ijms22115957] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 01/02/2023] Open
Abstract
Although recent studies suggest that the plant cytoskeleton is associated with plant stress responses, such as salt, cold, and drought, the molecular mechanism underlying microtubule function in plant salt stress response remains unclear. We performed a comparative proteomic analysis between control suspension-cultured cells (A0) and salt-adapted cells (A120) established from Arabidopsis root callus to investigate plant adaptation mechanisms to long-term salt stress. We identified 50 differentially expressed proteins (45 up- and 5 down-regulated proteins) in A120 cells compared with A0 cells. Gene ontology enrichment and protein network analyses indicated that differentially expressed proteins in A120 cells were strongly associated with cell structure-associated clusters, including cytoskeleton and cell wall biogenesis. Gene expression analysis revealed that expressions of cytoskeleton-related genes, such as FBA8, TUB3, TUB4, TUB7, TUB9, and ACT7, and a cell wall biogenesis-related gene, CCoAOMT1, were induced in salt-adapted A120 cells. Moreover, the loss-of-function mutant of Arabidopsis TUB9 gene, tub9, showed a hypersensitive phenotype to salt stress. Consistent overexpression of Arabidopsis TUB9 gene in rice transgenic plants enhanced tolerance to salt stress. Our results suggest that microtubules play crucial roles in plant adaptation and tolerance to salt stress. The modulation of microtubule-related gene expression can be an effective strategy for developing salt-tolerant crops.
Collapse
|
23
|
Zhang P, Qian D, Luo C, Niu Y, Li T, Li C, Xiang Y, Wang X, Niu Y. Arabidopsis ADF5 Acts as a Downstream Target Gene of CBFs in Response to Low-Temperature Stress. Front Cell Dev Biol 2021; 9:635533. [PMID: 33585491 PMCID: PMC7876393 DOI: 10.3389/fcell.2021.635533] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Low temperature is a major adverse environment that affects normal plant growth. Previous reports showed that the actin cytoskeleton plays an important role in the plant response to low-temperature stress, but the regulatory mechanism of the actin cytoskeleton in this process is not clear. C-repeat binding factors (CBFs) are the key molecular switches for plants to adapt to cold stress. However, whether CBFs are involved in the regulation of the actin cytoskeleton has not been reported. We found that Arabidopsis actin depolymerizing factor 5 (ADF5), an ADF that evolved F-actin bundling function, was up-regulated at low temperatures. We also demonstrated that CBFs bound to the ADF5 promoter directly in vivo and in vitro. The cold-induced expression of ADF5 was significantly inhibited in the cbfs triple mutant. The freezing resistance of the adf5 knockout mutant was weaker than that of wild type (WT) with or without cold acclimation. After low-temperature treatment, the actin cytoskeleton of WT was relatively stable, but the actin cytoskeletons of adf5, cbfs, and adf5 cbfs were disturbed to varying degrees. Compared to WT, the endocytosis rate of the amphiphilic styryl dye FM4-64 in adf5, cbfs, and adf5 cbfs at low temperature was significantly reduced. In conclusion, CBFs directly combine with the CRT/DRE DNA regulatory element of the ADF5 promoter after low-temperature stress to transcriptionally activate the expression of ADF5; ADF5 further regulates the actin cytoskeleton dynamics to participate in the regulation of plant adaptation to a low-temperature environment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yue Niu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
24
|
Cao H, Amin R, Niu L, Song Z, Dong B, Li H, Wang L, Meng D, Yang Q, Fu Y. Multidimensional analysis of actin depolymerising factor family in pigeon pea under different environmental stress revealed specific response genes in each subgroup. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:180-194. [PMID: 32970987 DOI: 10.1071/fp20190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
Actin depolymerising factor (ADF) is an actin binding protein that is ubiquitous in animal and plant cells. It plays an important role in plant growth and development, as well as resistance to biotic and abiotic stress. The research of plant ADF family has been restricted to Arabidopsis thaliana (L.) Heynh. and some herb crops, but no woody cash crops have been reported to date. All members of the Cajanus cajan (L.) Millsp. ADF (CcADF) family were identified from the pigeon pea genome, and distributed among the four subfamilies by phylogenetic analysis. CcADFs were relatively conservative in gene structure evolution, protein structure and functional expression, and different CcADFs showed specific expression patterns under different treatments. The expression characteristics of several key CcADFs were revealed by analysing the stress response pattern of CcADFs and the time series RNA-seq of aluminium stress. Among them, CcADF9 in the first subgroup specifically responded to aluminium stress in the roots; CcADF3 in the second subgroup intensively responded to fungal infection in the leaves; and CcADF2 in the fourth subgroup positively responded to various stress treatments in different tissues. This study extended the relationship between plant ADF family and aluminium tolerance, as well as adding to the understanding of CcADF family in woody crops.
Collapse
Affiliation(s)
- Hongyan Cao
- State Forestry and Grassland Administration Key Laboratory of Forest Resources and Environmental Management, Beijing Forestry University, Beijing 100083, PR China
| | - Rohul Amin
- State Forestry and Grassland Administration Key Laboratory of Forest Resources and Environmental Management, Beijing Forestry University, Beijing 100083, PR China
| | - Lili Niu
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design, Beijing 100083, PR China
| | - Zhihua Song
- State Forestry and Grassland Administration Key Laboratory of Forest Resources and Environmental Management, Beijing Forestry University, Beijing 100083, PR China
| | - Biying Dong
- State Forestry and Grassland Administration Key Laboratory of Forest Resources and Environmental Management, Beijing Forestry University, Beijing 100083, PR China
| | - Hanghang Li
- State Forestry and Grassland Administration Key Laboratory of Forest Resources and Environmental Management, Beijing Forestry University, Beijing 100083, PR China
| | - Litao Wang
- State Forestry and Grassland Administration Key Laboratory of Forest Resources and Environmental Management, Beijing Forestry University, Beijing 100083, PR China
| | - Dong Meng
- State Forestry and Grassland Administration Key Laboratory of Forest Resources and Environmental Management, Beijing Forestry University, Beijing 100083, PR China; and Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design, Beijing 100083, PR China
| | - Qing Yang
- State Forestry and Grassland Administration Key Laboratory of Forest Resources and Environmental Management, Beijing Forestry University, Beijing 100083, PR China; and Corresponding authors. ;
| | - Yujie Fu
- State Forestry and Grassland Administration Key Laboratory of Forest Resources and Environmental Management, Beijing Forestry University, Beijing 100083, PR China; and Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design, Beijing 100083, PR China; and Key Laboratory of Forestry Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; and Corresponding authors. ;
| |
Collapse
|
25
|
Pitzalis N, Amari K, Graindorge S, Pflieger D, Donaire L, Wassenegger M, Llave C, Heinlein M. Turnip mosaic virus in oilseed rape activates networks of sRNA-mediated interactions between viral and host genomes. Commun Biol 2020; 3:702. [PMID: 33230160 PMCID: PMC7683744 DOI: 10.1038/s42003-020-01425-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/22/2020] [Indexed: 11/12/2022] Open
Abstract
Virus-induced plant diseases in cultivated plants cause important damages in yield. Although the mechanisms of virus infection are intensely studied at the cell biology level, only little is known about the molecular dialog between the invading virus and the host genome. Here we describe a combinatorial genome-wide approach to identify networks of sRNAs-guided post-transcriptional regulation within local Turnip mosaic virus (TuMV) infection sites in Brassica napus leaves. We show that the induction of host-encoded, virus-activated small interfering RNAs (vasiRNAs) observed in virus-infected tissues is accompanied by site-specific cleavage events on both viral and host RNAs that recalls the activity of small RNA-induced silencing complexes (RISC). Cleavage events also involve virus-derived siRNA (vsiRNA)–directed cleavage of target host transcripts as well as cleavage of viral RNA by both host vasiRNAs and vsiRNAs. Furthermore, certain coding genes act as virus-activated regulatory hubs to produce vasiRNAs for the targeting of other host genes. The observations draw an advanced model of plant-virus interactions and provide insights into the complex regulatory networking at the plant-virus interface within cells undergoing early stages of infection. Pitzalis et al. use replicative RNAseq, small RNA (sRNA)seq, and parallel analysis of RNA ends (PARE)seq analysis to identify networks of sRNAs-guided post-transcriptional regulation within local Turnip mosaic virus infection sites. This study provides insights into the complex regulatory networking at the plantvirus interface within cells undergoing early stages of infection.
Collapse
Affiliation(s)
- Nicolas Pitzalis
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (IBMP-CNRS), Université de Strasbourg, F-67000, Strasbourg, France
| | - Khalid Amari
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (IBMP-CNRS), Université de Strasbourg, F-67000, Strasbourg, France.,Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Biosafety in Plant Biotechnology, Erwin-Baur-Strasse 27, 06484, Quedlinburg, Germany
| | - Stéfanie Graindorge
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (IBMP-CNRS), Université de Strasbourg, F-67000, Strasbourg, France
| | - David Pflieger
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (IBMP-CNRS), Université de Strasbourg, F-67000, Strasbourg, France
| | - Livia Donaire
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.,Department of Biology of Stress and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, 30100, Murcia, Spain
| | - Michael Wassenegger
- RLP Agroscience, AlPlanta-Institute for Plant Research, 67435, Neustadt, Germany.,Centre for Organismal Studies, University of Heidelberg, 69120, Heidelberg, Germany
| | - César Llave
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | - Manfred Heinlein
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (IBMP-CNRS), Université de Strasbourg, F-67000, Strasbourg, France.
| |
Collapse
|
26
|
Zogli P, Pingault L, Grover S, Louis J. Ento(o)mics: the intersection of 'omic' approaches to decipher plant defense against sap-sucking insect pests. CURRENT OPINION IN PLANT BIOLOGY 2020; 56:153-161. [PMID: 32721874 DOI: 10.1016/j.pbi.2020.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/15/2020] [Accepted: 06/07/2020] [Indexed: 05/27/2023]
Abstract
Plants are constantly challenged by insect pests that can dramatically decrease yields. Insects with piercing-sucking mouthparts, for example, aphids, whiteflies, and leaf hoppers, seemingly cause less physical damage to tissues, however, they feed on the plant's sap by piercing plant tissue and extracting plant fluids, thereby transmitting several plant-pathogenic viruses as well. As a counter-defense, plants activate an array of dynamic defense machineries against insect pests including the rapid reprogramming of the host cell processes. For a holistic understanding of plant-sap-sucking insect interactions, there is a need to call for techniques with the capacity to concomitantly capture these dynamic changes. Recent progress with various 'omic' technologies possess this capacity. In this review, we will provide a concise summary of application of 'omic' technologies and their utilization in plant and sap-sucking insect interaction studies. Finally, we will provide a perspective on the integration of 'omics' data in uncovering novel plant defense mechanisms against sap-sucking insect pests.
Collapse
Affiliation(s)
- Prince Zogli
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Lise Pingault
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Sajjan Grover
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Joe Louis
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| |
Collapse
|
27
|
Yao L, Yang B, Ma X, Wang S, Guan Z, Wang B, Jiang Y. A Genome-Wide View of Transcriptional Responses during Aphis glycines Infestation in Soybean. Int J Mol Sci 2020; 21:E5191. [PMID: 32707968 PMCID: PMC7432633 DOI: 10.3390/ijms21155191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 11/16/2022] Open
Abstract
Soybean aphid (Aphis glycines Matsumura) is one of the major limiting factors in soybean production. The mechanism of aphid resistance in soybean remains enigmatic as little information is available about the different mechanisms of antibiosis and antixenosis. Here, we used genome-wide gene expression profiling of aphid susceptible, antibiotic, and antixenotic genotypes to investigate the underlying aphid-plant interaction mechanisms. The high expression correlation between infested and non-infested genotypes indicated that the response to aphid was controlled by a small subset of genes. Plant response to aphid infestation was faster in antibiotic genotype and the interaction in antixenotic genotype was moderation. The expression patterns of transcription factor genes in susceptible and antixenotic genotypes clustered together and were distant from those of antibiotic genotypes. Among them APETALA 2/ethylene response factors (AP2/ERF), v-myb avian myeloblastosis viral oncogene homolog (MYB), and the transcription factor contained conserved WRKYGQK domain (WRKY) were proposed to play dominant roles. The jasmonic acid-responsive pathway was dominant in aphid-soybean interaction, and salicylic acid pathway played an important role in antibiotic genotype. Callose deposition was more rapid and efficient in antibiotic genotype, while reactive oxygen species were not involved in the response to aphid attack in resistant genotypes. Our study helps to uncover important genes associated with aphid-attack response in soybean genotypes expressing antibiosis and antixenosis.
Collapse
Affiliation(s)
- Luming Yao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.Y.); (X.M.)
| | - Biyun Yang
- School of Life Sciences, East China Normal University, Shanghai 200241, China; (B.Y.); (S.W.); (Z.G.)
| | - Xiaohong Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.Y.); (X.M.)
| | - Shuangshuang Wang
- School of Life Sciences, East China Normal University, Shanghai 200241, China; (B.Y.); (S.W.); (Z.G.)
| | - Zhe Guan
- School of Life Sciences, East China Normal University, Shanghai 200241, China; (B.Y.); (S.W.); (Z.G.)
| | - Biao Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.Y.); (X.M.)
| | - Yina Jiang
- School of Life Sciences, East China Normal University, Shanghai 200241, China; (B.Y.); (S.W.); (Z.G.)
| |
Collapse
|
28
|
Javed K, Javed H, Qiu D. Biocontrol Potential of Purified Elicitor Protein PeBL1 Extracted from Brevibacillus laterosporus Strain A60 and Its Capacity in the Induction of Defense Process against Cucumber Aphid ( Myzus persicae) in Cucumber ( Cucumis sativus). BIOLOGY 2020; 9:biology9070179. [PMID: 32708244 PMCID: PMC7408455 DOI: 10.3390/biology9070179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 11/16/2022]
Abstract
The Cucumber aphid (Myzus persicae), a destructive cucumber aphid usually managed by chemical pesticides, is responsible for enormous annual agricultural losses. A protein elicitor, PeBL1, was investigated in the present work for its ability to induce a defense response against M. persicae in cucumber. The rates of population growth (Intrinsic rate of increase) of M. persicae (second and third generations) decreased with PeBL1-treated cucumber seedlings as compared to positive (water) and negative 70.58 μg mL-1 controls (50 mM Tris-HCl, pH 8.0). In an assay on host selection, M. persicae had a preference for colonizing control plants as compared to the PeBL1-treated cucumber seedlings. The nymphal development time of the aphid was extended with the PeBL1-treated cucumber seedlings. Likewise, fecundity was reduced, with less offspring produced in the PeBL1-treated cucumber seedlings as compared to the positive (water) and negative 70.58 μg mL-1 controls (50 mM Tris-HCl, pH 8.0). The cucumber leaves treated with PeBL1 had a hazardous surface environment for M. persicae, caused by trichomes and wax formation. Jasmonic acid (JA), salicylic acid (SA), and ethylene (ET) levels were significantly higher, exhibiting significant accumulation in the PeBL1-treated cucumber seedlings. The following results showed that PeBL1 considerably altered the height of the cucumber plant and the surface structure of the leaves to minimize M. persicae reproduction, and it prevented colonization. Defensive processes also included the activation of pathways (JA, SA, and ET). This study provides evidence of biocontrol for the use of PeBL1 in cucumber defense against M. persicae.
Collapse
Affiliation(s)
- Khadija Javed
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12 Zhong-Guan-Cun South Street, Beijing 100081, China; or
| | - Humayun Javed
- Department of Entomology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46000, Pakistan;
| | - Dewen Qiu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12 Zhong-Guan-Cun South Street, Beijing 100081, China; or
- Correspondence:
| |
Collapse
|
29
|
Ortega-Ortega Y, Carrasco-Castilla J, Juárez-Verdayes MA, Toscano-Morales R, Fonseca-García C, Nava N, Cárdenas L, Quinto C. Actin Depolymerizing Factor Modulates Rhizobial Infection and Nodule Organogenesis in Common Bean. Int J Mol Sci 2020; 21:ijms21061970. [PMID: 32183068 PMCID: PMC7139724 DOI: 10.3390/ijms21061970] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/28/2022] Open
Abstract
Actin plays a critical role in the rhizobium-legume symbiosis. Cytoskeletal rearrangements and changes in actin occur in response to Nod factors secreted by rhizobia during symbiotic interactions with legumes. These cytoskeletal rearrangements are mediated by diverse actin-binding proteins, such as actin depolymerization factors (ADFs). We examined the function of an ADF in the Phaseolus vulgaris-rhizobia symbiotic interaction (PvADFE). PvADFE was preferentially expressed in rhizobia-inoculated roots and nodules. PvADFE promoter activity was associated with root hairs harbouring growing infection threads, cortical cell divisions beneath root hairs, and vascular bundles in mature nodules. Silencing of PvADFE using RNA interference increased the number of infection threads in the transgenic roots, resulting in increased nodule number, nitrogen fixation activity, and average nodule diameter. Conversely, overexpression of PvADFE reduced the nodule number, nitrogen fixation activity, average nodule diameter, as well as NODULE INCEPTION (NIN) and EARLY NODULIN2 (ENOD2) transcript accumulation. Hence, changes in ADFE transcript levels affect rhizobial infection and nodulation, suggesting that ADFE is fine-tuning these processes.
Collapse
Affiliation(s)
- Yolanda Ortega-Ortega
- Departamento de Biociencias y Agrobiotecnología, Centro de Investigación en Química Aplicada-CONACYT, Saltillo 25294, Coahuila, Mexico;
| | - Janet Carrasco-Castilla
- Instituto Politécnico Nacional, Centro de Estudios Científicos y Tecnológicos 17 León, León 37358, Guanajuato, Mexico;
| | - Marco A. Juárez-Verdayes
- Departamento de Docencia, Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Coahuila, Mexico;
| | - Roberto Toscano-Morales
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA;
| | - Citlali Fonseca-García
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, UNAM, Cuernavaca 62210, Morelos, Mexico; (C.F.-G.); (N.N.); (L.C.)
| | - Noreide Nava
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, UNAM, Cuernavaca 62210, Morelos, Mexico; (C.F.-G.); (N.N.); (L.C.)
| | - Luis Cárdenas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, UNAM, Cuernavaca 62210, Morelos, Mexico; (C.F.-G.); (N.N.); (L.C.)
| | - Carmen Quinto
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, UNAM, Cuernavaca 62210, Morelos, Mexico; (C.F.-G.); (N.N.); (L.C.)
- Correspondence:
| |
Collapse
|
30
|
Genome-Wide Identification and Characterization of Actin-Depolymerizing Factor ( ADF) Family Genes and Expression Analysis of Responses to Various Stresses in Zea Mays L. Int J Mol Sci 2020; 21:ijms21051751. [PMID: 32143437 PMCID: PMC7084653 DOI: 10.3390/ijms21051751] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022] Open
Abstract
Actin-depolymerizing factor (ADF) is a small class of actin-binding proteins that regulates the dynamics of actin in cells. Moreover, it is well known that the plant ADF family plays key roles in growth, development and defense-related functions. Results: Thirteen maize (Zea mays L., ZmADFs) ADF genes were identified using Hidden Markov Model. Phylogenetic analysis indicated that the 36 identified ADF genes in Physcomitrella patens, Arabidopsis thaliana, Oryza sativa japonica, and Zea mays were clustered into five groups. Four pairs of segmental genes were found in the maize ADF gene family. The tissue-specific expression of ZmADFs and OsADFs was analyzed using microarray data obtained from the Maize and Rice eFP Browsers. Five ZmADFs (ZmADF1/2/7/12/13) from group V exhibited specifically high expression in tassel, pollen, and anther. The expression patterns of 13 ZmADFs in seedlings under five abiotic stresses were analyzed using qRT-PCR, and we found that the ADFs mainly responded to heat, salt, drought, and ABA. Conclusions: In our study, we identified ADF genes in maize and analyzed the gene structure and phylogenetic relationships. The results of expression analysis demonstrated that the expression level of ADF genes was diverse in various tissues and different stimuli, including abiotic and phytohormone stresses, indicating their different roles in plant growth, development, and response to external stimulus. This report extends our knowledge to understand the function of ADF genes in maize.
Collapse
|
31
|
Dongus JA, Bhandari DD, Patel M, Archer L, Dijkgraaf L, Deslandes L, Shah J, Parker JE. The Arabidopsis PAD4 Lipase-Like Domain Is Sufficient for Resistance to Green Peach Aphid. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:328-335. [PMID: 31702436 DOI: 10.1094/mpmi-08-19-0245-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Plants have evolved mechanisms to protect themselves against pathogenic microbes and insect pests. In Arabidopsis, the immune regulator PAD4 functions with its cognate partner EDS1 to limit pathogen growth. PAD4, independently of EDS1, reduces infestation by green peach aphid (GPA). How PAD4 regulates these defense outputs is unclear. By expressing the N-terminal PAD4 lipase-like domain (PAD4LLD) without its C-terminal EDS1-PAD4 (EP) domain, we interrogated PAD4 functions in plant defense. Here, we show that transgenic expression of PAD4LLD in Arabidopsis is sufficient for limiting GPA infestation but not for conferring basal and effector-triggered pathogen immunity. This suggests that the C-terminal PAD4 EP domain is necessary for EDS1-dependent immune functions but is dispensable for aphid resistance. Moreover, PAD4LLD is not sufficient to interact with EDS1, indicating the PAD4-EP domain is required for stable heterodimerization. These data provide molecular evidence that PAD4 has domain-specific functions.
Collapse
Affiliation(s)
- Joram A Dongus
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-weg 10, 50829 Cologne, Germany
| | - Deepak D Bhandari
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-weg 10, 50829 Cologne, Germany
| | - Monika Patel
- Department of Biological Sciences, University of North Texas; 1511 West Sycamore, Denton, TX 76201, U.S.A
| | - Lani Archer
- Department of Biological Sciences, University of North Texas; 1511 West Sycamore, Denton, TX 76201, U.S.A
| | - Lucas Dijkgraaf
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-weg 10, 50829 Cologne, Germany
- Plant-Microbe Interactions - Utrecht University, Padualaan 8; 3584 CH Utrecht, Netherlands
| | | | - Jyoti Shah
- Department of Biological Sciences, University of North Texas; 1511 West Sycamore, Denton, TX 76201, U.S.A
| | - Jane E Parker
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-weg 10, 50829 Cologne, Germany
| |
Collapse
|
32
|
Javed K, Qiu D. Protein Elicitor PeBL1 of Brevibacillus laterosporus Enhances Resistance Against Myzus persicae in Tomato. Pathogens 2020; 9:pathogens9010057. [PMID: 31947681 PMCID: PMC7168619 DOI: 10.3390/pathogens9010057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/29/2022] Open
Abstract
Myzus persicae, a destructive aphid of tomato usually managed by chemical pesticides, is responsible for huge annual losses in agriculture. In the current work, a protein elicitor, PeBL1, was investigated for its capacity to induce a defense response against M. persicae in tomato. Population growth rates of M. persicae (second and third generation) decreased with PeBL1 treatments as compared with controls. In a host selection assay, M. persicae showed preference for colonizing control plants as compared to tomato seedlings treated with PeBL1. Tomato leaves treated with PeBL1 gave rise to a hazardous surface environment for M. persicae due to formation of trichomes and wax. Jasmonic acid (JA), salicylic acid (SA), and ethylene (ET) showed significant accumulation in tomato seedlings treated by PeBL1. The following results showed that PeBL1 significantly modified the tomato leaf surface structure to reduce reproduction and deter colonization by M. persicae. Defense processes also included activation of JA, SA, and ET pathways. The study provides evidence for use of PeBL1 in the protection of tomato from M. persicae.
Collapse
|
33
|
Li L, Wang S, Yang X, Francis F, Qiu D. Protein elicitor PeaT1 enhanced resistance against aphid (Sitobion avenae) in wheat. PEST MANAGEMENT SCIENCE 2020; 76:236-243. [PMID: 31149755 DOI: 10.1002/ps.5502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/28/2019] [Accepted: 05/25/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Sitobion avenae, a dominant aphid in wheat that causes huge annual losses in agriculture, is mainly controlled using chemical pesticides. In this study, we investigated a protein elicitor, PeaT, for its induction of the defense response in wheat against Sitobion avenae. RESULTS Intrinsic rates of increase in second and third generations of S. avenae decreased in the PeaT1 (second generation 0.31 ± 0.01, third generation 0.28 ± 0.01) treatment compared with controls (second generation 0.28 ± 0.01, third generation 0.26 ± 0.01). S. avenae preferred to colonize control rather than PeaT1-treated wheat seedlings in a host selection test. PeaT1-treated wheat leaves possessed more trichomes and wax that formed a disadvantageous surface environment for S. avenae. Both salicylic acid (SA) and jasmonic acid (JA) accumulated significantly in PeaT1-treated wheat seedlings. CONCLUSION These results showed that PeaT1 modified physical surface structures in wheat to reduce reproduction and deter colonization by S. avenae. SA and JA were involved in the induced physical defense process. This study provided evidence for use of PeaT1 as a 'vaccine' to protect wheat from Sitobion avenae. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lin Li
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Shuangchao Wang
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Xiufen Yang
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Frederic Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Dewen Qiu
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| |
Collapse
|
34
|
Jiang Y, Zhang CX, Chen R, He SY. Challenging battles of plants with phloem-feeding insects and prokaryotic pathogens. Proc Natl Acad Sci U S A 2019; 116:23390-23397. [PMID: 31712429 PMCID: PMC6876188 DOI: 10.1073/pnas.1915396116] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
For the past 4 decades, intensive molecular studies of mostly leaf mesophyll cell-infecting pathogens and chewing insects have led to compelling models of plant-pathogen and plant-insect interactions. Yet, some of the most devastating pathogens and insect pests live in or feed on the phloem, a systemic tissue belonging to the plant vascular system. Phloem tissues are difficult to study, and phloem-inhabiting pathogens are often impossible to culture, thus limiting our understanding of phloem-insect/pathogen interactions at a molecular level. In this Perspective, we highlight recent literature that reports significant advances in the understanding of phloem interactions with insects and prokaryotic pathogens and attempt to identify critical questions that need attention for future research. It is clear that study of phloem-insect/pathogen interactions represents an exciting frontier of plant science, and influx of new scientific expertise and funding is crucial to achieve faster progress in this important area of research that is integral to global food security.
Collapse
Affiliation(s)
- Yanjuan Jiang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China;
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming 650223, China
- Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
- Howard Hughes Medical Institute, Michigan State University, East Lansing, MI 48824
| | - Chuan-Xi Zhang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Rongzhi Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430070, China
| | - Sheng Yang He
- Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, MI 48824;
- Howard Hughes Medical Institute, Michigan State University, East Lansing, MI 48824
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
35
|
van Bel AJE, Musetti R. Sieve element biology provides leads for research on phytoplasma lifestyle in plant hosts. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3737-3755. [PMID: 30972422 DOI: 10.1093/jxb/erz172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Phytoplasmas reside exclusively in sieve tubes, tubular arrays of sieve element-companion cell complexes. Hence, the cell biology of sieve elements may reveal (ultra)structural and functional conditions that are of significance for survival, propagation, colonization, and effector spread of phytoplasmas. Electron microscopic images suggest that sieve elements offer facilities for mobile and stationary stages in phytoplasma movement. Stationary stages may enable phytoplasmas to interact closely with diverse sieve element compartments. The unique, reduced sieve element outfit requires permanent support by companion cells. This notion implies a future focus on the molecular biology of companion cells to understand the sieve element-phytoplasma inter-relationship. Supply of macromolecules by companion cells is channelled via specialized symplasmic connections. Ca2+-mediated gating of symplasmic corridors is decisive for the communication within and beyond the sieve element-companion cell complex and for the dissemination of phytoplasma effectors. Thus, Ca2+ homeostasis, which affects sieve element Ca2+ signatures and induces a range of modifications, is a key issue during phytoplasma infection. The exceptional physical and chemical environment in sieve elements seems an essential, though not the only factor for phytoplasma survival.
Collapse
Affiliation(s)
- Aart J E van Bel
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus-Liebig University, Giessen, Germany
| | - Rita Musetti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| |
Collapse
|
36
|
Varsani S, Grover S, Zhou S, Koch KG, Huang PC, Kolomiets MV, Williams WP, Heng-Moss T, Sarath G, Luthe DS, Jander G, Louis J. 12-Oxo-Phytodienoic Acid Acts as a Regulator of Maize Defense against Corn Leaf Aphid. PLANT PHYSIOLOGY 2019; 179:1402-1415. [PMID: 30643012 PMCID: PMC6446797 DOI: 10.1104/pp.18.01472] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/03/2019] [Indexed: 05/25/2023]
Abstract
The corn leaf aphid (CLA; Rhopalosiphum maidis) is a phloem sap-sucking insect that attacks many cereal crops, including maize (Zea mays). We previously showed that the maize inbred line Mp708, which was developed by classical plant breeding, provides enhanced resistance to CLA. Here, using electrophysiological monitoring of aphid feeding behavior, we demonstrate that Mp708 provides phloem-mediated resistance to CLA. Furthermore, feeding by CLA on Mp708 plants enhanced callose deposition, a potential defense mechanism utilized by plants to limit aphid feeding and subsequent colonization. In maize, benzoxazinoids (BX) or BX-derived metabolites contribute to enhanced callose deposition by providing heightened resistance to CLA. However, BX and BX-derived metabolites were not significantly altered in CLA-infested Mp708 plants, indicating BX-independent defense against CLA. Evidence presented here suggests that the constitutively higher levels of 12-oxo-phytodienoic acid (OPDA) in Mp708 plants contributed to enhanced callose accumulation and heightened CLA resistance. OPDA enhanced the expression of ethylene biosynthesis and receptor genes, and the synergistic interactions of OPDA and CLA feeding significantly induced the expression of the transcripts encoding Maize insect resistance1-Cysteine Protease, a key defensive protein against insect pests, in Mp708 plants. Furthermore, exogenous application of OPDA on maize jasmonic acid-deficient plants caused enhanced callose accumulation and heightened resistance to CLA, suggesting that the OPDA-mediated resistance to CLA is independent of the jasmonic acid pathway. We further demonstrate that the signaling function of OPDA, rather than a direct toxic effect, contributes to enhanced CLA resistance in Mp708.
Collapse
Affiliation(s)
- Suresh Varsani
- Department of Entomology, University of Nebraska, Lincoln, Nebraska 68583
| | - Sajjan Grover
- Department of Entomology, University of Nebraska, Lincoln, Nebraska 68583
| | - Shaoqun Zhou
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853
- School of Integrated Plant Sciences, Cornell University, Ithaca, New York 14853
| | - Kyle G Koch
- Department of Entomology, University of Nebraska, Lincoln, Nebraska 68583
| | - Pei-Cheng Huang
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843
| | - Michael V Kolomiets
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843
| | - W Paul Williams
- United States Department of Agriculture-Agricultural Research Service, Corn Host Plant Resistance Research Unit, Mississippi State, Mississippi 39762
| | - Tiffany Heng-Moss
- Department of Entomology, University of Nebraska, Lincoln, Nebraska 68583
| | - Gautam Sarath
- Wheat, Sorghum, and Forage Research Unit, United States Department of Agriculture-Agricultural Research Service, Lincoln, Nebraska 68583
| | - Dawn S Luthe
- Department of Plant Science, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Georg Jander
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853
| | - Joe Louis
- Department of Entomology, University of Nebraska, Lincoln, Nebraska 68583
- Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68583
| |
Collapse
|
37
|
Nalam V, Louis J, Shah J. Plant defense against aphids, the pest extraordinaire. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 279:96-107. [PMID: 30709498 DOI: 10.1016/j.plantsci.2018.04.027] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/02/2018] [Accepted: 04/30/2018] [Indexed: 05/20/2023]
Abstract
Aphids are amongst the most damaging pests of plants that use their stylets to penetrate the plant tissue to consume large amounts of phloem sap and thus deprive the plant of photoassimilates. In addition, some aphids vector important viral diseases of plants. Plant defenses targeting aphids are broadly classified as antibiosis, which interferes with aphid growth, survival and fecundity, and antixenosis, which influences aphid behavior, including plant choice and feeding from the sieve elements. Here we review the multitude of steps in the infestation process where these defenses can be exerted and highlight the progress made on identifying molecular factors and mechanisms that contribute to host defense, including plant resistance genes and signaling components, as well as aphid-derived effectors that elicit or attenuate host defenses. Also discussed is the impact of aphid-vectored plant viruses on plant-aphid interaction and the concept of tolerance, which allows plant to withstand or recover from damage resulting from the infestation.
Collapse
Affiliation(s)
- Vamsi Nalam
- Department of Biology, Indiana University-Purdue University, Fort Wayne, Indiana, 46805, USA.
| | - Joe Louis
- Department of Entomology and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| | - Jyoti Shah
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA.
| |
Collapse
|
38
|
Stadler R, Sauer N. The AtSUC2 Promoter: A Powerful Tool to Study Phloem Physiology and Development. Methods Mol Biol 2019; 2014:267-287. [PMID: 31197803 DOI: 10.1007/978-1-4939-9562-2_22] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The sucrose carrier AtSUC2 of Arabidopsis thaliana is localized in the phloem, where it catalyzes the uptake of sucrose from the apoplast into companion cells. Imported sucrose moves passively via plasmodesmata from the companion cells into the neighboring sieve elements that distribute this disaccharide to the different sink organs. Phloem loading of sucrose by the AtSUC2 protein is an essential process, and mutants lacking this protein stay tiny, develop no or only few flowers, and have a strongly reduced root system. The promoter of the AtSUC2 gene is active exclusively in companion cells of the phloem. Moreover, it drives very strong expression not only in Arabidopsis, but also in all plant species tested so far, including monocot species. Due to these features, the AtSUC2 promoter has become an important tool in diverse areas of plant research during the last two decades. It was used to study phloem development and function including phloem loading and unloading. Furthermore, it was helpful in analyzing the pathways of posttranscriptional silencing by RNA interference, the regulation of flowering, mechanisms of nutrient withdrawal by phloem-feeding pathogens, and other physiological functions that are related to long distance transport. The present paper gives an overview of different approaches in plant research that utilized the strong and companion cell-specific expression of own or foreign genes driven by the AtSUC2 promoter.
Collapse
Affiliation(s)
- Ruth Stadler
- Molecular Plant Physiology, Department of Biology, University of Erlangen-Nuremberg, Erlangen, Germany.
| | - Norbert Sauer
- Molecular Plant Physiology, Department of Biology, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
39
|
Li P, Day B. Battlefield Cytoskeleton: Turning the Tide on Plant Immunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:25-34. [PMID: 30355064 PMCID: PMC6326859 DOI: 10.1094/mpmi-07-18-0195-fi] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The plant immune system comprises a complex network of signaling processes, regulated not only by classically defined immune components (e.g., resistance genes) but also by a suite of developmental, environmental, abiotic, and biotic-associated factors. In total, it is the sum of these interactions-the connectivity to a seemingly endless array of environments-that ensures proper activation, and control, of a system that is responsible for cell surveillance and response to threats presented by invading pests and pathogens. Over the past decade, the field of plant pathology has witnessed the discovery of numerous points of convergence between immunity, growth, and development, as well as overlap with seemingly disparate processes such as those that underpin plant response to changes in the environment. Toward defining how immune signaling is regulated, recent studies have focused on dissecting the mechanisms that underpin receptor-ligand interactions, phospho-regulation of signaling cascades, and the modulation of host gene expression during infection. As one of the major regulators of these immune signaling cascades, the plant cytoskeleton is the stage from which immune-associated processes are mobilized and oriented and, in this role, it controls the movement of the organelles, proteins, and chemical signals that support plant defense signaling. In short, the cytoskeleton is the battlefield from which pathogens and plants volley virulence and resistance, transforming resistance to susceptibility. Herein, we discuss the role of the eukaryotic cytoskeleton as a platform for the function of the plant immune system.
Collapse
Affiliation(s)
- Pai Li
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Brad Day
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
- Michigan State University Plant Resilience Institute, East Lansing, MI 48824, USA
| |
Collapse
|
40
|
Wu SW, Kumar R, Iswanto ABB, Kim JY. Callose balancing at plasmodesmata. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5325-5339. [PMID: 30165704 DOI: 10.1093/jxb/ery317] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/20/2018] [Indexed: 05/19/2023]
Abstract
In plants, communication and molecular exchanges between different cells and tissues are dependent on the apoplastic and symplastic pathways. Symplastic molecular exchanges take place through the plasmodesmata, which connect the cytoplasm of neighboring cells in a highly controlled manner. Callose, a β-1,3-glucan polysaccharide, is a plasmodesmal marker molecule that is deposited in cell walls near the neck zone of plasmodesmata and controls their permeability. During cell differentiation and plant development, and in response to diverse stresses, the level of callose in plasmodesmata is highly regulated by two antagonistic enzymes, callose synthase or glucan synthase-like and β-1,3-glucanase. The diverse modes of regulation by callose synthase and β-1,3-glucanase have been uncovered in the past decades through biochemical, molecular, genetic, and omics methods. This review highlights recent findings regarding the function of plasmodesmal callose and the molecular players involved in callose metabolism, and provides new insight into the mechanisms maintaining plasmodesmal callose homeostasis.
Collapse
Affiliation(s)
- Shu-Wei Wu
- Division of Applied Life Science (BK21 Plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Ritesh Kumar
- Division of Applied Life Science (BK21 Plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Arya Bagus Boedi Iswanto
- Division of Applied Life Science (BK21 Plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
- Division of Life Science (CK1 program), Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
41
|
Sun M, Voorrips RE, Steenhuis-Broers G, van’t Westende W, Vosman B. Reduced phloem uptake of Myzus persicae on an aphid resistant pepper accession. BMC PLANT BIOLOGY 2018; 18:138. [PMID: 29945550 PMCID: PMC6020309 DOI: 10.1186/s12870-018-1340-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 06/04/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND The green peach aphid (GPA), Myzus persicae, is economically one of the most threatening pests in pepper cultivation, which not only causes direct damage but also transmits many viruses. Breeding aphid resistant pepper varieties is a promising and environmentally friendly method to control aphid populations in the field and in the greenhouse. Until now, no strong sources of resistance against the GPA have been identified. Therefore the main aims of this study were to identify pepper materials with a good level of resistance to GPA and to elucidate possible resistance mechanisms. RESULTS We screened 74 pepper accessions from different geographical areas for resistance to M. persicae. After four rounds of evaluation we identified one Capsicum baccatum accession (PB2013071) as highly resistant to M. persicae, while the accessions PB2013062 and PB2012022 showed intermediate resistance. The resistance of PB2013071 resulted in a severely reduced uptake of phloem compared to the susceptible accession, as determined by Electrical Penetration Graph (EPG) studies. Feeding of M. persicae induced the expression of callose synthase genes and resulted in callose deposition in the sieve elements in resistant, but not in susceptible plants. CONCLUSIONS Three aphid resistant pepper accessions were identified, which will be important for breeding aphid resistant pepper varieties in the future. The most resistant accession PB2013071 showed phloem-based resistance against aphid infestation.
Collapse
Affiliation(s)
- Mengjing Sun
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Roeland E. Voorrips
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Greet Steenhuis-Broers
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Wendy van’t Westende
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Ben Vosman
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| |
Collapse
|
42
|
Arabidopsis Transcription Factor MYB102 Increases Plant Susceptibility to Aphids by Substantial Activation of Ethylene Biosynthesis. Biomolecules 2018; 8:biom8020039. [PMID: 29880735 PMCID: PMC6023100 DOI: 10.3390/biom8020039] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 02/06/2023] Open
Abstract
Induction of ethylene biosynthesis by aphids increases the susceptibility of several plant species to aphids. Recent studies have indicated that some MYB transcription factors regulate the phloem-based defense against aphid infestation by modulating ethylene (ET) signaling. Arabidopsis MYB102 has previously been shown to be induced by wound signaling and regulate defense response against chewing insects. However, it remains unclear whether ArabidopsisMYB102 takes part in the defense response of plants to aphids. Here, we investigated the function of MYB102 in the response of Arabidopsis to aphid infestation. ArabidopsisMYB102 was primarily expressed in vascular tissues, and its transcription was remarkably induced by green peach aphids (GPA; Myzus persicae). The results of RNA-Sequencing revealed that overexpression of MYB102 in Arabidopsis promoted ET biosynthesis by upregulation of some 1-aminocyclopropane-1-carboxylate synthase (ACS) genes, which are rate-limiting enzymes of the ET-synthetic pathway. Enhanced ET levels led to reduced Arabidopsis resistance to GPA. Furthermore, dominant suppression of MYB102 inhibited aphid-induced increase of ET levels in Arabidopsis. In agreement with a negative regulatory role for ET in aphid defense responses, the MYB102-overexpressing lines were more susceptible to GPA than wild-type (WT) plants. Overexpression of MYB102 in Arabidopsis obviously repressed aphid-induced callose deposition. Conversely, overexpression of MYB102 failed to increase aphid susceptibility in both the ET-insensitive mutants and plants treated with inhibitors of ET signaling pathways, demonstrating that the ET was critical for promoting aphid performance conferred by overexpression of MYB102. Collectively, our findings indicate that the Arabidopsis MYB102 increases host susceptibility to GPA through the ET-dependent signaling pathways.
Collapse
|