1
|
Liu D, Wang M, Gent JI, Sun P, Dawe RK, Umen J. Two CENH3 paralogs in the green alga Chlamydomonas reinhardtii have a redundantly essential function and associate with ZeppL-LINE1 elements. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70153. [PMID: 40289909 DOI: 10.1111/tpj.70153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/30/2025]
Abstract
Centromeres in eukaryotes are defined by the presence of histone H3 variant CENP-A/CENH3. Chlamydomonas encodes two predicted CENH3 paralogs, CENH3.1 and CENH3.2, that have not been previously characterized. We generated peptide antibodies to unique N-terminal epitopes for each of the two predicted Chlamydomonas CENH3 paralogs as well as an antibody against a shared CENH3 epitope. All three CENH3 antibodies recognized proteins of the expected size on immunoblots and had punctate nuclear immunofluorescence staining patterns. These results are consistent with both paralogs being expressed and localized to centromeres. CRISPR-Cas9-mediated insertional mutagenesis was used to generate predicted null mutations in either CENH3.1 or CENH3.2. Single mutants were viable but cenh3.1 cenh3.2 double mutants were not recovered, confirming that the function of CENH3 is essential. We sequenced and assembled two chromosome-scale Chlamydomonas genomes from strains CC-400 and UL-1690 (a derivative of CC-1690) with complete centromere sequences for 17/17 and 14/17 chromosomes respectively, enabling us to compare centromere evolution across four isolates with near complete assemblies. These data revealed significant changes across isolates between homologous centromeres including mobility and degeneration of ZeppL-LINE1 (ZeppL) transposons that comprise the major centromere repeat sequence in Chlamydomonas. We used cleavage under targets and tagmentation (CUT&Tag) to purify and map CENH3-bound genomic sequences and found enrichment of CENH3-binding almost exclusively at predicted centromere regions. An interesting exception was chromosome 2 in UL-1690, which had enrichment at its genetically mapped centromere repeat region as well as a second, distal location, centered around a single recently acquired ZeppL insertion. The CENH3-bound regions of the 17 Chlamydomonas centromeres ranged from 63.5 kb (average lower estimate) to 175 kb (average upper estimate). The relatively small size of its centromeres suggests that Chlamydomonas may be a useful organism for testing and deploying artificial chromosome technologies.
Collapse
Affiliation(s)
- Dianyi Liu
- Donald Danforth Plant Science Center, 975 N. Warson Rd., St. Louis, Missouri, 63132, USA
| | - Mingyu Wang
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, 30602, USA
| | - Jonathan I Gent
- Department of Plant Biology, University of Georgia, Athens, Georgia, 30602, USA
| | - Peipei Sun
- Donald Danforth Plant Science Center, 975 N. Warson Rd., St. Louis, Missouri, 63132, USA
| | - R Kelly Dawe
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, 30602, USA
- Department of Plant Biology, University of Georgia, Athens, Georgia, 30602, USA
- Department of Genetics, University of Georgia, Athens, Georgia, 30602, USA
| | - James Umen
- Donald Danforth Plant Science Center, 975 N. Warson Rd., St. Louis, Missouri, 63132, USA
| |
Collapse
|
2
|
Penny GM, Dutcher SK. Gene dosage of independent dynein arm motor preassembly factors influences cilia assembly in Chlamydomonas reinhardtii. PLoS Genet 2024; 20:e1011038. [PMID: 38498551 PMCID: PMC11020789 DOI: 10.1371/journal.pgen.1011038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/16/2024] [Accepted: 02/26/2024] [Indexed: 03/20/2024] Open
Abstract
Motile cilia assembly utilizes over 800 structural and cytoplasmic proteins. Variants in approximately 58 genes cause primary ciliary dyskinesia (PCD) in humans, including the dynein arm (pre)assembly factor (DNAAF) gene DNAAF4. In humans, outer dynein arms (ODAs) and inner dynein arms (IDAs) fail to assemble motile cilia when DNAAF4 function is disrupted. In Chlamydomonas reinhardtii, a ciliated unicellular alga, the DNAAF4 ortholog is called PF23. The pf23-1 mutant assembles short cilia and lacks IDAs, but partially retains ODAs. The cilia of a new null allele (pf23-4) completely lack ODAs and IDAs and are even shorter than cilia from pf23-1. In addition, PF23 plays a role in the cytoplasmic modification of IC138, a protein of the two-headed IDA (I1/f). As most PCD variants in humans are recessive, we sought to test if heterozygosity at two genes affects ciliary function using a second-site non-complementation (SSNC) screening approach. We asked if phenotypes were observed in diploids with pairwise heterozygous combinations of 21 well-characterized ciliary mutant Chlamydomonas strains. Vegetative cultures of single and double heterozygous diploid cells did not show SSNC for motility phenotypes. When protein synthesis is inhibited, wild-type Chlamydomonas cells utilize the pool of cytoplasmic proteins to assemble half-length cilia. In this sensitized assay, 8 double heterozygous diploids with pf23 and other DNAAF mutations show SSNC; they assemble shorter cilia than wild-type. In contrast, double heterozygosity of the other 203 strains showed no effect on ciliary assembly. Immunoblots of diploids heterozygous for pf23 and wdr92 or oda8 show that PF23 is reduced by half in these strains, and that PF23 dosage affects phenotype severity. Reductions in PF23 and another DNAAF in diploids affect the ability to assemble ODAs and IDAs and impedes ciliary assembly. Thus, dosage of multiple DNAAFs is an important factor in cilia assembly and regeneration.
Collapse
Affiliation(s)
- Gervette M. Penny
- Department of Genetics, Washington University in Saint Louis, Saint Louis,Missouri, United States of America
| | - Susan K. Dutcher
- Department of Genetics, Washington University in Saint Louis, Saint Louis,Missouri, United States of America
| |
Collapse
|
3
|
Payne ZL, Penny GM, Turner TN, Dutcher SK. A gap-free genome assembly of Chlamydomonas reinhardtii and detection of translocations induced by CRISPR-mediated mutagenesis. PLANT COMMUNICATIONS 2023; 4:100493. [PMID: 36397679 PMCID: PMC10030371 DOI: 10.1016/j.xplc.2022.100493] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/26/2022] [Accepted: 11/15/2022] [Indexed: 05/04/2023]
Abstract
Genomic assemblies of the unicellular green alga Chlamydomonas reinhardtii have provided important resources for researchers. However, assembly errors, large gaps, and unplaced scaffolds as well as strain-specific variants currently impede many types of analysis. By combining PacBio HiFi and Oxford Nanopore long-read technologies, we generated a de novo genome assembly for strain CC-5816, derived from crosses of strains CC-125 and CC-124. Multiple methods of evaluating genome completeness and base-pair error rate suggest that the final telomere-to-telomere assembly is highly accurate. The CC-5816 assembly enabled previously difficult analyses that include characterization of the 17 centromeres, rDNA arrays on three chromosomes, and 56 insertions of organellar DNA into the nuclear genome. Using Nanopore sequencing, we identified sites of cytosine (CpG) methylation, which are enriched at centromeres. We analyzed CRISPR-Cas9 insertional mutants in the PF23 gene. Two of the three alleles produced progeny that displayed patterns of meiotic inviability that suggested the presence of a chromosomal aberration. Mapping Nanopore reads from pf23-2 and pf23-3 onto the CC-5816 genome showed that these two strains each carry a translocation that was initiated at the PF23 gene locus on chromosome 11 and joined with chromosomes 5 or 3, respectively. The translocations were verified by demonstrating linkage between loci on the two translocated chromosomes in meiotic progeny. The three pf23 alleles display the expected short-cilia phenotype, and immunoblotting showed that pf23-2 lacks the PF23 protein. Our CC-5816 genome assembly will undoubtedly provide an important tool for the Chlamydomonas research community.
Collapse
Affiliation(s)
- Zachary L Payne
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Gervette M Penny
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Tychele N Turner
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Susan K Dutcher
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
4
|
Craig RJ, Gallaher SD, Shu S, Salomé PA, Jenkins JW, Blaby-Haas CE, Purvine SO, O’Donnell S, Barry K, Grimwood J, Strenkert D, Kropat J, Daum C, Yoshinaga Y, Goodstein DM, Vallon O, Schmutz J, Merchant SS. The Chlamydomonas Genome Project, version 6: Reference assemblies for mating-type plus and minus strains reveal extensive structural mutation in the laboratory. THE PLANT CELL 2023; 35:644-672. [PMID: 36562730 PMCID: PMC9940879 DOI: 10.1093/plcell/koac347] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 10/12/2022] [Accepted: 12/16/2022] [Indexed: 05/20/2023]
Abstract
Five versions of the Chlamydomonas reinhardtii reference genome have been produced over the last two decades. Here we present version 6, bringing significant advances in assembly quality and structural annotations. PacBio-based chromosome-level assemblies for two laboratory strains, CC-503 and CC-4532, provide resources for the plus and minus mating-type alleles. We corrected major misassemblies in previous versions and validated our assemblies via linkage analyses. Contiguity increased over ten-fold and >80% of filled gaps are within genes. We used Iso-Seq and deep RNA-seq datasets to improve structural annotations, and updated gene symbols and textual annotation of functionally characterized genes via extensive manual curation. We discovered that the cell wall-less classical reference strain CC-503 exhibits genomic instability potentially caused by deletion of the helicase RECQ3, with major structural mutations identified that affect >100 genes. We therefore present the CC-4532 assembly as the primary reference, although this strain also carries unique structural mutations and is experiencing rapid proliferation of a Gypsy retrotransposon. We expect all laboratory strains to harbor gene-disrupting mutations, which should be considered when interpreting and comparing experimental results. Collectively, the resources presented here herald a new era of Chlamydomonas genomics and will provide the foundation for continued research in this important reference organism.
Collapse
Affiliation(s)
- Rory J Craig
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, USA
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Sean D Gallaher
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, USA
| | - Shengqiang Shu
- United States Department of Energy, Joint Genome Institute, Berkeley, California 94720, USA
| | - Patrice A Salomé
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
- Institute for Genomics and Proteomics, University of California, Los Angeles, California 90095, USA
| | - Jerry W Jenkins
- HudsonAlpha Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Crysten E Blaby-Haas
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Samuel O Purvine
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Samuel O’Donnell
- Laboratory of Computational and Quantitative Biology, UMR 7238, CNRS, Institut de Biologie Paris-Seine, Sorbonne Université, Paris 75005, France
| | - Kerrie Barry
- United States Department of Energy, Joint Genome Institute, Berkeley, California 94720, USA
| | - Jane Grimwood
- HudsonAlpha Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Daniela Strenkert
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, USA
| | - Janette Kropat
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | - Chris Daum
- United States Department of Energy, Joint Genome Institute, Berkeley, California 94720, USA
| | - Yuko Yoshinaga
- United States Department of Energy, Joint Genome Institute, Berkeley, California 94720, USA
| | - David M Goodstein
- United States Department of Energy, Joint Genome Institute, Berkeley, California 94720, USA
| | - Olivier Vallon
- Unité Mixte de Recherche 7141, CNRS, Institut de Biologie Physico-Chimique, Sorbonne Université, Paris 75005, France
| | - Jeremy Schmutz
- United States Department of Energy, Joint Genome Institute, Berkeley, California 94720, USA
- HudsonAlpha Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Sabeeha S Merchant
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
5
|
Identification and analysis of smORFs in Chlamydomonas reinhardtii. Genomics 2022; 114:110444. [PMID: 35933072 DOI: 10.1016/j.ygeno.2022.110444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/06/2022] [Accepted: 07/31/2022] [Indexed: 11/24/2022]
Abstract
Small open reading frames (smORFs) have been acknowledged as an important partner in organism functions ranging from bacteria to higher eukaryotes. However, lack of investigation of smORFs in green algae, despite their importance in ecology and evolution. We applied bioinformatic analysis, ribosome profiling, and small peptide proteomics to provide a genome-wide and high-confident smORF database in the model green alga Chlamydomonas reinhardtii. The whole genome was screened first to mine potential coding smORFs. Then conservative analysis, ribosome profiling, and proteomics data were processed to identify conserved smORFs and generate translation evidence. The combination of procedures resulted in 2014 smORFs that might exist in the C. reinhardtii genome. The expression of smORFs in Cd treatment suggested that two smORFs might participate in redox reaction, three in inorganic phosphate transport, and one in DNA repair under stress. Our study built a genome-widely database in C. reinhardtii, providing target smORFs for further research.
Collapse
|
6
|
Insertional mutagenesis in Chlamydomonas reinhardtii: An effective strategy for the identification of new genes involved in the DNA damage response. Eur J Protistol 2021; 82:125855. [PMID: 34954500 DOI: 10.1016/j.ejop.2021.125855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/26/2021] [Accepted: 12/02/2021] [Indexed: 11/23/2022]
Abstract
The formation of double-strand breaks in DNA represents a serious stress for all types of organisms and requires a precisely regulated and organized DNA damage response (DDR) to maintain genetic information and genome integrity. Chlamydomonas reinhardtii possesses the characteristics of both plants and animals and is therefore suitable for the identification of novel genes connected to a wide spectrum of metabolic pathways, including DDR. One very effective tool for the detection and subsequent characterization of new mutants in C. reinhardtii is insertional mutagenesis. We isolated several insertion mutants sensitive to DNA-damaging agents that had disrupted or completely deleted genes with putative functions in the DDR. In most of the analysed mutants, we identified various changes at both ends and even inside the inserted cassette. Using recent information from databases, we were also able to supplement the characteristics of the previously described mutant with a pleiotropic phenotype. In addition, we confirmed the effectiveness of hairpin-PCR as a strategy for the identification of insertion flanking sites and as a tool for the detection of changes at the site of insertion, thus enabling a better understanding of insertion events.
Collapse
|
7
|
Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK. Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Genet 2021; 17:e1009725. [PMID: 34492001 PMCID: PMC8448359 DOI: 10.1371/journal.pgen.1009725] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/17/2021] [Accepted: 07/19/2021] [Indexed: 11/18/2022] Open
Abstract
Large-scale mutant libraries have been indispensable for genetic studies, and the development of next-generation genome sequencing technologies has greatly advanced efforts to analyze mutants. In this work, we sequenced the genomes of 660 Chlamydomonas reinhardtii acetate-requiring mutants, part of a larger photosynthesis mutant collection previously generated by insertional mutagenesis with a linearized plasmid. We identified 554 insertion events from 509 mutants by mapping the plasmid insertion sites through paired-end sequences, in which one end aligned to the plasmid and the other to a chromosomal location. Nearly all (96%) of the events were associated with deletions, duplications, or more complex rearrangements of genomic DNA at the sites of plasmid insertion, and together with deletions that were unassociated with a plasmid insertion, 1470 genes were identified to be affected. Functional annotations of these genes were enriched in those related to photosynthesis, signaling, and tetrapyrrole synthesis as would be expected from a library enriched for photosynthesis mutants. Systematic manual analysis of the disrupted genes for each mutant generated a list of 253 higher-confidence candidate photosynthesis genes, and we experimentally validated two genes that are essential for photoautotrophic growth, CrLPA3 and CrPSBP4. The inventory of candidate genes includes 53 genes from a phylogenomically defined set of conserved genes in green algae and plants. Altogether, 70 candidate genes encode proteins with previously characterized functions in photosynthesis in Chlamydomonas, land plants, and/or cyanobacteria; 14 genes encode proteins previously shown to have functions unrelated to photosynthesis. Among the remaining 169 uncharacterized genes, 38 genes encode proteins without any functional annotation, signifying that our results connect a function related to photosynthesis to these previously unknown proteins. This mutant library, with genome sequences that reveal the molecular extent of the chromosomal lesions and resulting higher-confidence candidate genes, will aid in advancing gene discovery and protein functional analysis in photosynthesis.
Collapse
Affiliation(s)
- Setsuko Wakao
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| | - Patrick M. Shih
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, California, United States of America
- Innovative Genomics Institute, University of California, Berkeley, California, United States of America
| | - Katharine Guan
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
| | - Wendy Schackwitz
- Joint Genome Institute, Berkeley, California, United States of America
| | - Joshua Ye
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
| | - Dhruv Patel
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| | - Robert M. Shih
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Rachel M. Dent
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| | - Mansi Chovatia
- Joint Genome Institute, Berkeley, California, United States of America
| | - Aditi Sharma
- Joint Genome Institute, Berkeley, California, United States of America
| | - Joel Martin
- Joint Genome Institute, Berkeley, California, United States of America
| | - Chia-Lin Wei
- Joint Genome Institute, Berkeley, California, United States of America
| | - Krishna K. Niyogi
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
| |
Collapse
|
8
|
Craig RJ, Hasan AR, Ness RW, Keightley PD. Comparative genomics of Chlamydomonas. THE PLANT CELL 2021; 33:1016-1041. [PMID: 33793842 PMCID: PMC8226300 DOI: 10.1093/plcell/koab026] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/22/2021] [Indexed: 05/06/2023]
Abstract
Despite its role as a reference organism in the plant sciences, the green alga Chlamydomonas reinhardtii entirely lacks genomic resources from closely related species. We present highly contiguous and well-annotated genome assemblies for three unicellular C. reinhardtii relatives: Chlamydomonas incerta, Chlamydomonas schloesseri, and the more distantly related Edaphochlamys debaryana. The three Chlamydomonas genomes are highly syntenous with similar gene contents, although the 129.2 Mb C. incerta and 130.2 Mb C. schloesseri assemblies are more repeat-rich than the 111.1 Mb C. reinhardtii genome. We identify the major centromeric repeat in C. reinhardtii as a LINE transposable element homologous to Zepp (the centromeric repeat in Coccomyxa subellipsoidea) and infer that centromere locations and structure are likely conserved in C. incerta and C. schloesseri. We report extensive rearrangements, but limited gene turnover, between the minus mating type loci of these Chlamydomonas species. We produce an eight-species core-Reinhardtinia whole-genome alignment, which we use to identify several hundred false positive and missing genes in the C. reinhardtii annotation and >260,000 evolutionarily conserved elements in the C. reinhardtii genome. In summary, these resources will enable comparative genomics analyses for C. reinhardtii, significantly extending the analytical toolkit for this emerging model system.
Collapse
Affiliation(s)
| | - Ahmed R Hasan
- Department of Biology, University of Toronto Mississauga, Mississauga, Onatrio, Canada L5L 1C6
| | - Rob W Ness
- Department of Biology, University of Toronto Mississauga, Mississauga, Onatrio, Canada L5L 1C6
| | - Peter D Keightley
- School of Biological Sciences, Institute of Evolutionary Biology, University of Edinburgh, EH9 3FL Edinburgh, UK
| |
Collapse
|
9
|
Gutiérrez S, Lauersen KJ. Gene Delivery Technologies with Applications in Microalgal Genetic Engineering. BIOLOGY 2021; 10:265. [PMID: 33810286 PMCID: PMC8067306 DOI: 10.3390/biology10040265] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 12/28/2022]
Abstract
Microalgae and cyanobacteria are photosynthetic microbes that can be grown with the simple inputs of water, carbon dioxide, (sun)light, and trace elements. Their engineering holds the promise of tailored bio-molecule production using sustainable, environmentally friendly waste carbon inputs. Although algal engineering examples are beginning to show maturity, severe limitations remain in the transformation of multigene expression cassettes into model species and DNA delivery into non-model hosts. This review highlights common and emerging DNA delivery methods used for other organisms that may find future applications in algal engineering.
Collapse
Affiliation(s)
| | - Kyle J. Lauersen
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| |
Collapse
|
10
|
Picariello T, Hou Y, Kubo T, McNeill NA, Yanagisawa HA, Oda T, Witman GB. TIM, a targeted insertional mutagenesis method utilizing CRISPR/Cas9 in Chlamydomonas reinhardtii. PLoS One 2020; 15:e0232594. [PMID: 32401787 PMCID: PMC7219734 DOI: 10.1371/journal.pone.0232594] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/18/2020] [Indexed: 01/16/2023] Open
Abstract
Generation and subsequent analysis of mutants is critical to understanding the functions of genes and proteins. Here we describe TIM, an efficient, cost-effective, CRISPR-based targeted insertional mutagenesis method for the model organism Chlamydomonas reinhardtii. TIM utilizes delivery into the cell of a Cas9-guide RNA (gRNA) ribonucleoprotein (RNP) together with exogenous double-stranded (donor) DNA. The donor DNA contains gene-specific homology arms and an integral antibiotic-resistance gene that inserts at the double-stranded break generated by Cas9. After optimizing multiple parameters of this method, we were able to generate mutants for six out of six different genes in two different cell-walled strains with mutation efficiencies ranging from 40% to 95%. Furthermore, these high efficiencies allowed simultaneous targeting of two separate genes in a single experiment. TIM is flexible with regard to many parameters and can be carried out using either electroporation or the glass-bead method for delivery of the RNP and donor DNA. TIM achieves a far higher mutation rate than any previously reported for CRISPR-based methods in C. reinhardtii and promises to be effective for many, if not all, non-essential nuclear genes.
Collapse
Affiliation(s)
- Tyler Picariello
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Yuqing Hou
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Tomohiro Kubo
- Department of Anatomy and Structural Biology, Interdisciplinary Graduate School, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Nathan A. McNeill
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | | | - Toshiyuki Oda
- Department of Anatomy and Structural Biology, Interdisciplinary Graduate School, University of Yamanashi, Chuo, Yamanashi, Japan
| | - George B. Witman
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|