1
|
Kleczkowski LA, Igamberdiev AU. Adenylate-driven equilibration of both ribo- and deoxyribonucleotides is under magnesium control: Quantification of the Mg 2+-signal. JOURNAL OF PLANT PHYSIOLOGY 2025; 304:154380. [PMID: 39709740 DOI: 10.1016/j.jplph.2024.154380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/28/2024] [Accepted: 11/12/2024] [Indexed: 12/24/2024]
Abstract
Nucleoside mono-, di- and triphosphates (NMP, NDP, and NTP) and their deoxy-counterparts (dNMP, dNDP, dNTP) are involved in energy metabolism and are the building blocks of RNA and DNA, respectively. The production of NTP and dNTP is carried out by several NMP kinases (NMPK) and NDP kinases (NDPK). All NMPKs are fully reversible and use defined Mg-free and Mg-complexed nucleotides in both directions of their reactions, with Mg2+ controlling the ratios of Mg-free and Mg-complexed reactants. Their activities are driven by adenylates produced by adenylate kinase which controls the direction of NMPK and NDPK reactions, depending on the energy status of a cell. This enzymatic machinery is localized in the cytosol, mitochondria, and plastids, i.e. compartments with high energy budgets and where (except for cytosol) RNA and DNA synthesis occur. Apparent equilibrium constants of NMPKs, based on total nucleotide contents, are [Mg2+]-dependent. This allows for an indirect estimation of internal [Mg2+], which constitutes a signal of the energetic status of a given tissue/cell/compartment. Adenylates contribute the most to this Mg2+-signal, followed by uridylates, guanylates, and cytidylates, with deoxynucleotides' contribution deemed negligible. A method to quantify the Mg2+-signal, using nucleotide datasets, is discussed.
Collapse
Affiliation(s)
- Leszek A Kleczkowski
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 901 87, Umeå, Sweden.
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1C5S7, Canada.
| |
Collapse
|
2
|
Scherer V, Bellin L, Schwenkert S, Lehmann M, Rinne J, Witte CP, Jahnke K, Richter A, Pruss T, Lau A, Waller L, Stein S, Leister D, Möhlmann T. Uracil phosphoribosyltransferase is required to establish a functional cytochrome b 6f complex. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1064-1078. [PMID: 39323000 DOI: 10.1111/tpj.17036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/08/2024] [Accepted: 09/05/2024] [Indexed: 09/27/2024]
Abstract
Arabidopsis uracil phosphoribosyltransferase (UPP) is an essential enzyme and plants lacking this enzyme are strongly compromised in chloroplast function. Our analysis of UPP amiRNA mutants has confirmed that this vital function is crucial to establish a fully functional photosynthesis as the RIESKE iron sulfur protein (PetC) is almost absent, leading to a block in photosynthetic electron transport. Interestingly, this function appears to be unrelated to nucleotide homeostasis since nucleotide levels were not altered in the studied mutants. Transcriptomics and proteomic analysis showed that protein homeostasis but not gene expression is most likely responsible for this observation and high light provoked an upregulation of protease levels, including thylakoid filamentation temperature-sensitive 1, 5 (FtsH), caseinolytic protease proteolytic subunit 1 (ClpP1), and processing peptidases, as well as components of the chloroplast protein import machinery in UPP amiRNA lines. Strongly reduced PetC amounts were not only detected by immunoblot from mature plants but in addition in a de-etiolation experiment with young seedlings and are causing reduced high light-induced non-photochemical quenching Φ(NPQ) but increased unregulated energy dissipation Φ(NO). This impaired photosynthesis results in an inability to induce flavonoid biosynthesis. In addition, the levels of the osmoprotectants raffinose, proline, and fumarate were found to be reduced. In sum, our work suggests that UPP assists in stabilization PetC during import, processing or targeting to the thylakoid membrane, or protects it against proteolytic degradation.
Collapse
Affiliation(s)
- Vanessa Scherer
- Plant Physiology, Faculty of Biology, University of Kaiserslautern, Erwin-Schrödinger-Straße, Kaiserslautern, 67663, Germany
| | - Leo Bellin
- Plant Physiology, Faculty of Biology, University of Kaiserslautern, Erwin-Schrödinger-Straße, Kaiserslautern, 67663, Germany
| | - Serena Schwenkert
- Plant Sciences, Faculty of Biology, Ludwig-Maximilian-University of Munich, Großhaderner Straße 2-4, Planegg-Martinsried, 82152, Germany
| | - Martin Lehmann
- Plant Sciences, Faculty of Biology, Ludwig-Maximilian-University of Munich, Großhaderner Straße 2-4, Planegg-Martinsried, 82152, Germany
| | - Jannis Rinne
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Herrenhäuser Straße 2, Hannover, 30419, Germany
| | - Claus-Peter Witte
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Herrenhäuser Straße 2, Hannover, 30419, Germany
| | - Kathrin Jahnke
- Physiology of Plant Metabolism, Institute for Biosciences, University of Rostock, Albert-Einstein-Strasse 3, Rostock, 18059, Germany
| | - Andreas Richter
- Physiology of Plant Metabolism, Institute for Biosciences, University of Rostock, Albert-Einstein-Strasse 3, Rostock, 18059, Germany
| | - Tobias Pruss
- Plant Physiology, Faculty of Biology, University of Kaiserslautern, Erwin-Schrödinger-Straße, Kaiserslautern, 67663, Germany
| | - Anne Lau
- Plant Physiology, Faculty of Biology, University of Kaiserslautern, Erwin-Schrödinger-Straße, Kaiserslautern, 67663, Germany
| | - Lisa Waller
- Plant Physiology, Faculty of Biology, University of Kaiserslautern, Erwin-Schrödinger-Straße, Kaiserslautern, 67663, Germany
| | - Sebastian Stein
- Plant Physiology, Faculty of Biology, University of Kaiserslautern, Erwin-Schrödinger-Straße, Kaiserslautern, 67663, Germany
| | - Dario Leister
- Plant Sciences, Faculty of Biology, Ludwig-Maximilian-University of Munich, Großhaderner Straße 2-4, Planegg-Martinsried, 82152, Germany
| | - Torsten Möhlmann
- Plant Physiology, Faculty of Biology, University of Kaiserslautern, Erwin-Schrödinger-Straße, Kaiserslautern, 67663, Germany
| |
Collapse
|
3
|
Rinne J, Niehaus M, Medina-Escobar N, Straube H, Schaarschmidt F, Rugen N, Braun HP, Herde M, Witte CP. Three Arabidopsis UMP kinases have different roles in pyrimidine nucleotide biosynthesis and (deoxy)CMP salvage. THE PLANT CELL 2024; 36:3611-3630. [PMID: 38865437 PMCID: PMC11371195 DOI: 10.1093/plcell/koae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/09/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
Pyrimidine nucleotide monophosphate biosynthesis ends in the cytosol with uridine monophosphate (UMP). UMP phosphorylation to uridine diphosphate (UDP) by UMP KINASEs (UMKs) is required for the generation of all pyrimidine (deoxy)nucleoside triphosphates as building blocks for nucleic acids and central metabolites like UDP-glucose. The Arabidopsis (Arabidopsis thaliana) genome encodes five UMKs and three belong to the AMP KINASE (AMK)-like UMKs, which were characterized to elucidate their contribution to pyrimidine metabolism. Mitochondrial UMK2 and cytosolic UMK3 are evolutionarily conserved, whereas cytosolic UMK1 is specific to the Brassicaceae. In vitro, all UMKs can phosphorylate UMP, cytidine monophosphate (CMP) and deoxycytidine monophosphate (dCMP), but with different efficiencies. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9)-induced null mutants were generated for UMK1 and UMK2, but not for UMK3, since frameshift alleles were lethal for germline cells. However, a mutant with diminished UMK3 activity showing reduced growth was obtained. Metabolome analyses of germinating seeds and adult plants of single- and higher-order mutants revealed that UMK3 plays an indispensable role in the biosynthesis of all pyrimidine (deoxy)nucleotides and UDP-sugars, while UMK2 is important for dCMP recycling that contributes to mitochondrial DNA stability. UMK1 is primarily involved in CMP recycling. We discuss the specific roles of these UMKs referring also to the regulation of pyrimidine nucleoside triphosphate synthesis.
Collapse
Affiliation(s)
- Jannis Rinne
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover 30419, Germany
| | - Markus Niehaus
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover 30419, Germany
| | - Nieves Medina-Escobar
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover 30419, Germany
| | - Henryk Straube
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover 30419, Germany
| | - Frank Schaarschmidt
- Department of Biostatistics, Institute of Cell Biology and Biophysics, Leibniz Universität Hannover, Hannover 30419, Germany
| | - Nils Rugen
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz Universität Hannover, Hannover 30419, Germany
| | - Hans-Peter Braun
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz Universität Hannover, Hannover 30419, Germany
| | - Marco Herde
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover 30419, Germany
| | - Claus-Peter Witte
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover 30419, Germany
| |
Collapse
|
4
|
Schmid LM, Manavski N, Chi W, Meurer J. Chloroplast Ribosome Biogenesis Factors. PLANT & CELL PHYSIOLOGY 2024; 65:516-536. [PMID: 37498958 DOI: 10.1093/pcp/pcad082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/13/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023]
Abstract
The formation of chloroplasts can be traced back to an ancient event in which a eukaryotic host cell containing mitochondria ingested a cyanobacterium. Since then, chloroplasts have retained many characteristics of their bacterial ancestor, including their transcription and translation machinery. In this review, recent research on the maturation of rRNA and ribosome assembly in chloroplasts is explored, along with their crucial role in plant survival and their implications for plant acclimation to changing environments. A comparison is made between the ribosome composition and auxiliary factors of ancient and modern chloroplasts, providing insights into the evolution of ribosome assembly factors. Although the chloroplast contains ancient proteins with conserved functions in ribosome assembly, newly evolved factors have also emerged to help plants acclimate to changes in their environment and internal signals. Overall, this review offers a comprehensive analysis of the molecular mechanisms underlying chloroplast ribosome assembly and highlights the importance of this process in plant survival, acclimation and adaptation.
Collapse
Affiliation(s)
- Lisa-Marie Schmid
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, Planegg-Martinsried 82152, Germany
| | - Nikolay Manavski
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, Planegg-Martinsried 82152, Germany
| | - Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jörg Meurer
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, Planegg-Martinsried 82152, Germany
| |
Collapse
|
5
|
Vicente AM, Manavski N, Rohn PT, Schmid LM, Garcia-Molina A, Leister D, Seydel C, Bellin L, Möhlmann T, Ammann G, Kaiser S, Meurer J. The plant cytosolic m 6A RNA methylome stabilizes photosynthesis in the cold. PLANT COMMUNICATIONS 2023; 4:100634. [PMID: 37287225 PMCID: PMC10721483 DOI: 10.1016/j.xplc.2023.100634] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/10/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023]
Abstract
The sessile lifestyle of plants requires an immediate response to environmental stressors that affect photosynthesis, growth, and crop yield. Here, we showed that three abiotic perturbations-heat, cold, and high light-triggered considerable changes in the expression signatures of 42 epitranscriptomic factors (writers, erasers, and readers) with putative chloroplast-associated functions that formed clusters of commonly expressed genes in Arabidopsis. The expression changes under all conditions were reversible upon deacclimation, identifying epitranscriptomic players as modulators in acclimation processes. Chloroplast dysfunctions, particularly those induced by the oxidative stress-inducing norflurazon in a largely GENOME UNCOUPLED-independent manner, triggered retrograde signals to remodel chloroplast-associated epitranscriptomic expression patterns. N6-methyladenosine (m6A) is known as the most prevalent RNA modification and impacts numerous developmental and physiological functions in living organisms. During cold treatment, expression of components of the primary nuclear m6A methyltransferase complex was upregulated, accompanied by a significant increase in cellular m6A mRNA marks. In the cold, the presence of FIP37, a core component of the writer complex, played an important role in positive regulation of thylakoid structure, photosynthetic functions, and accumulation of photosystem I, the Cytb6f complex, cyclic electron transport proteins, and Curvature Thylakoid1 but not that of photosystem II components and the chloroplast ATP synthase. Downregulation of FIP37 affected abundance, polysomal loading, and translation of cytosolic transcripts related to photosynthesis in the cold, suggesting m6A-dependent translational regulation of chloroplast functions. In summary, we identified multifaceted roles of the cellular m6A RNA methylome in coping with cold; these were predominantly associated with chloroplasts and served to stabilize photosynthesis.
Collapse
Affiliation(s)
- Alexandre Magno Vicente
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Nikolay Manavski
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Paul Torben Rohn
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Lisa-Marie Schmid
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Antoni Garcia-Molina
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Charlotte Seydel
- Plant Development, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Leo Bellin
- Plant Physiology, Faculty of Biology, University of Kaiserslautern, Erwin-Schrödinger-Street, 7, 67663 Kaiserslautern, Germany
| | - Torsten Möhlmann
- Plant Physiology, Faculty of Biology, University of Kaiserslautern, Erwin-Schrödinger-Street, 7, 67663 Kaiserslautern, Germany
| | - Gregor Ammann
- Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Stefanie Kaiser
- Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Jörg Meurer
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
6
|
Quiroz-Castañeda RE, Aguilar-Díaz H, Amaro-Estrada I. An alternative vaccine target for bovine Anaplasmosis based on enolase, a moonlighting protein. Front Vet Sci 2023; 10:1225873. [PMID: 37808115 PMCID: PMC10556744 DOI: 10.3389/fvets.2023.1225873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
The discovery of new targets for preventing bovine anaplasmosis has moved away from focusing on proteins that have already been extensively studied in Anaplasma marginale, including the Major Surface Proteins, Outer Membrane Proteins, and Type IV Secretion System proteins. An alternative is moonlighting or multifunctional proteins, capable of performing various biological functions within various cellular compartments. There are several reports on the role of moonlighting proteins as virulence factors in various microorganisms. Moreover, it is known that about 25% of all moonlighting is involved in the virulence of pathogens. In this work, for the first time, we present the identification of three enolase proteins (AmEno01, AmEno15, and AmEno31) in the genome of Mexican strains of A. marginale. Using bioinformatics tools, we predicted the catalytic domains, enolase signature, and amino acids binding magnesium ion of the catalytic domain and performed a phylogenetic reconstruction. In addition, by molecular docking analysis, we found that AmEno01 would bind to erythrocyte proteins spectrin, ankyrin, and stomatin. This adhesion function has been reported for enolases from other pathogens. It is considered a promising target since blocking this function would impede the fundamental adhesion process that facilitates the infection of erythrocytes. Additionally, molecular docking predicts that AmEno01 could bind to extracellular matrix protein fibronectin, which would be significant if we consider that some proteins with fibronectin domains are localized in tick gut cells and used as an adhesion strategy to gather bacteria before traveling to salivary glands. Derived from the molecular docking analysis of AmEno01, we hypothesized that enolases could be proteins driven by the pathogen and redirected at the expense of the pathogen's needs.
Collapse
|
7
|
Kleczkowski LA, Igamberdiev AU. Magnesium and cell energetics: At the junction of metabolism of adenylate and non-adenylate nucleotides. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153901. [PMID: 36549033 DOI: 10.1016/j.jplph.2022.153901] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Free magnesium (Mg2+) represents a powerful signal arising from interconversions of adenylates (ATP, ADP and AMP). This is a consequence of the involvement of adenylate kinase (AK) which equilibrates adenylates and uses defined species of Mg-complexed and Mg-free adenylates in both directions of its reaction. However, cells contain also other reversible Mg2+-dependent enzymes that equilibrate non-adenylate nucleotides (uridylates, cytidylates and guanylates), i.e. nucleoside monophosphate kinases (NMPKs) and nucleoside diphosphate kinase (NDPK). Here, we propose that AK activity is tightly coupled to activities of NMPK and NDPK, linking adenylate equilibrium to equilibria of other nucleotides, and with [Mg2+] controlling the ratios of Mg-chelated and Mg-free nucleotides. This coupling establishes main hubs for adenylate-driven equilibration of non-adenylate nucleotides, with [Mg2+] acting as signal arising from all nucleotides rather than adenylates only. Further consequences involve an overall adenylate control of UTP-, GTP- and CTP-dependent pathways and the availability of substrates for RNA and DNA synthesis.
Collapse
Affiliation(s)
- Leszek A Kleczkowski
- Department of Plant Physiology, Umeå Plant Science Centre, University of Umeå, 901 87, Umeå, Sweden.
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1B3X9, Canada.
| |
Collapse
|
8
|
Neusius D, Kleinknecht L, Teh JT, Ostermeier M, Kelterborn S, Eirich J, Hegemann P, Finkemeier I, Bohne AV, Nickelsen J. Lysine acetylation regulates moonlighting activity of the E2 subunit of the chloroplast pyruvate dehydrogenase complex in Chlamydomonas. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1780-1800. [PMID: 35899410 DOI: 10.1111/tpj.15924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/08/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
The dihydrolipoamide acetyltransferase subunit DLA2 of the chloroplast pyruvate dehydrogenase complex (cpPDC) in the green alga Chlamydomonas reinhardtii has previously been shown to possess moonlighting activity in chloroplast gene expression. Under mixotrophic growth conditions, DLA2 forms part of a ribonucleoprotein particle (RNP) with the psbA mRNA that encodes the D1 protein of the photosystem II (PSII) reaction center. Here, we report on the characterization of the molecular switch that regulates shuttling of DLA2 between its functions in carbon metabolism and D1 synthesis. Determination of RNA-binding affinities by microscale thermophoresis demonstrated that the E3-binding domain (E3BD) of DLA2 mediates psbA-specific RNA recognition. Analyses of cpPDC formation and activity, as well as RNP complex formation, showed that acetylation of a single lysine residue (K197) in E3BD induces the release of DLA2 from the cpPDC, and its functional shift towards RNA binding. Moreover, Förster resonance energy transfer microscopy revealed that psbA mRNA/DLA2 complexes localize around the chloroplast's pyrenoid. Pulse labeling and D1 re-accumulation after induced PSII degradation strongly suggest that DLA2 is important for D1 synthesis during de novo PSII biogenesis.
Collapse
Affiliation(s)
- Daniel Neusius
- Molecular Plant Sciences, Faculty of Biology, LMU Munich, Großhaderner Str. 2-4, 82152 Planegg-, Martinsried, Germany
| | - Laura Kleinknecht
- Molecular Plant Sciences, Faculty of Biology, LMU Munich, Großhaderner Str. 2-4, 82152 Planegg-, Martinsried, Germany
| | - Jing Tsong Teh
- Molecular Plant Sciences, Faculty of Biology, LMU Munich, Großhaderner Str. 2-4, 82152 Planegg-, Martinsried, Germany
| | - Matthias Ostermeier
- Molecular Plant Sciences, Faculty of Biology, LMU Munich, Großhaderner Str. 2-4, 82152 Planegg-, Martinsried, Germany
| | - Simon Kelterborn
- Experimental Biophysics, Institute of Biology, Humboldt University of Berlin, Invalidenstr. 42, 10115, Berlin, Germany
| | - Jürgen Eirich
- Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 7, 48149, Münster, Germany
| | - Peter Hegemann
- Experimental Biophysics, Institute of Biology, Humboldt University of Berlin, Invalidenstr. 42, 10115, Berlin, Germany
| | - Iris Finkemeier
- Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 7, 48149, Münster, Germany
| | - Alexandra-Viola Bohne
- Molecular Plant Sciences, Faculty of Biology, LMU Munich, Großhaderner Str. 2-4, 82152 Planegg-, Martinsried, Germany
| | - Jörg Nickelsen
- Molecular Plant Sciences, Faculty of Biology, LMU Munich, Großhaderner Str. 2-4, 82152 Planegg-, Martinsried, Germany
| |
Collapse
|
9
|
Bellin L, Scherer V, Dörfer E, Lau A, Vicente AM, Meurer J, Hickl D, Möhlmann T. Cytosolic CTP Production Limits the Establishment of Photosynthesis in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:789189. [PMID: 34917117 PMCID: PMC8669480 DOI: 10.3389/fpls.2021.789189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/02/2021] [Indexed: 06/14/2023]
Abstract
CTP synthases (CTPS) comprise a protein family of the five members CTPS1-CTPS5 in Arabidopsis, all located in the cytosol. Specifically, downregulation of CTPS2 by amiRNA technology results in plants with defects in chlorophyll accumulation and photosynthetic performance early in development. CTP and its deoxy form dCTP are present at low levels in developing seedlings. Thus, under conditions of fast proliferation, the synthesis of CTP (dCTP) can become a limiting factor for RNA and DNA synthesis. The higher sensitivity of ami-CTPS2 lines toward the DNA-Gyrase inhibitor ciprofloxacin, together with reduced plastid DNA copy number and 16S and 23S chloroplast ribosomal RNA support this view. High expression and proposed beneficial biochemical features render CTPS2 the most important isoform for early seedling development. In addition, CTPS2 was identified as an essential enzyme in embryo development before, as knock-out mutants were embryo lethal. In line with this, ami-CTPS2 lines also exhibited reduced seed numbers per plant.
Collapse
Affiliation(s)
- Leo Bellin
- Plant Physiology, Faculty of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Vanessa Scherer
- Plant Physiology, Faculty of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Eva Dörfer
- Plant Physiology, Faculty of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Anne Lau
- Plant Physiology, Faculty of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Alexandre Magno Vicente
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Jörg Meurer
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Daniel Hickl
- Plant Physiology, Faculty of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Torsten Möhlmann
- Plant Physiology, Faculty of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
10
|
Dastmalchi M. Elusive partners: a review of the auxiliary proteins guiding metabolic flux in flavonoid biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:314-329. [PMID: 34318549 DOI: 10.1111/tpj.15446] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Flavonoids are specialized metabolites widely distributed across the plant kingdom. They are involved in the growth and survival of plants, conferring the ability to filter ultra-violet rays, conduct symbiotic partnerships, and respond to stress. While many branches of flavonoid biosynthesis have been resolved, recent discoveries suggest missing auxiliary components. These overlooked elements can guide metabolic flux, enhance production, mediate stereoselectivity, transport intermediates, and exert regulatory functions. This review describes several families of auxiliary proteins from across the plant kingdom, including examples from specialized metabolism. In flavonoid biosynthesis, we discuss the example of chalcone isomerase-like (CHIL) proteins and their non-catalytic role. CHILs mediate the cyclization of tetraketides, forming the chalcone scaffold by interacting with chalcone synthase (CHS). Loss of CHIL activity leads to derailment of the CHS-catalyzed reaction and a loss of pigmentation in fruits and flowers. Similarly, members of the pathogenesis-related 10 (PR10) protein family have been found to differentially bind flavonoid intermediates, guiding the composition of anthocyanins. This role comes within a larger body of PR10 involvement in specialized metabolism, from outright catalysis (e.g., (S)-norcoclaurine synthesis) to controlling stereochemistry (e.g., enhancing cis-trans cyclization in catnip). Both CHILs and PR10s hail from larger families of ligand-binding proteins with a spectrum of activity, complicating the characterization of their enigmatic roles. Strategies for the discovery of auxiliary proteins are discussed, as well as mechanistic models for their function. Targeting such unanticipated components will be crucial in manipulating plants or engineering microbial systems for natural product synthesis.
Collapse
Affiliation(s)
- Mehran Dastmalchi
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, Québec, H9X 3V9, Canada
| |
Collapse
|
11
|
Kleine T, Nägele T, Neuhaus HE, Schmitz-Linneweber C, Fernie AR, Geigenberger P, Grimm B, Kaufmann K, Klipp E, Meurer J, Möhlmann T, Mühlhaus T, Naranjo B, Nickelsen J, Richter A, Ruwe H, Schroda M, Schwenkert S, Trentmann O, Willmund F, Zoschke R, Leister D. Acclimation in plants - the Green Hub consortium. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:23-40. [PMID: 33368770 DOI: 10.1111/tpj.15144] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 05/04/2023]
Abstract
Acclimation is the capacity to adapt to environmental changes within the lifetime of an individual. This ability allows plants to cope with the continuous variation in ambient conditions to which they are exposed as sessile organisms. Because environmental changes and extremes are becoming even more pronounced due to the current period of climate change, enhancing the efficacy of plant acclimation is a promising strategy for mitigating the consequences of global warming on crop yields. At the cellular level, the chloroplast plays a central role in many acclimation responses, acting both as a sensor of environmental change and as a target of cellular acclimation responses. In this Perspective article, we outline the activities of the Green Hub consortium funded by the German Science Foundation. The main aim of this research collaboration is to understand and strategically modify the cellular networks that mediate plant acclimation to adverse environments, employing Arabidopsis, tobacco (Nicotiana tabacum) and Chlamydomonas as model organisms. These efforts will contribute to 'smart breeding' methods designed to create crop plants with improved acclimation properties. To this end, the model oilseed crop Camelina sativa is being used to test modulators of acclimation for their potential to enhance crop yield under adverse environmental conditions. Here we highlight the current state of research on the role of gene expression, metabolism and signalling in acclimation, with a focus on chloroplast-related processes. In addition, further approaches to uncovering acclimation mechanisms derived from systems and computational biology, as well as adaptive laboratory evolution with photosynthetic microbes, are highlighted.
Collapse
Affiliation(s)
- Tatjana Kleine
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| | - Thomas Nägele
- Plant Evolutionary Cell Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Munich, 82152, Germany
| | - H Ekkehard Neuhaus
- Plant Physiology, Department of Biology, Technische Universität Kaiserslautern, Kaiserslautern, 67663, Germany
| | | | - Alisdair R Fernie
- Central Metabolism, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, 14476, Germany
| | - Peter Geigenberger
- Plant Metabolism, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Munich, 82152, Germany
| | - Bernhard Grimm
- Plant Physiology, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
| | - Kerstin Kaufmann
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
| | - Edda Klipp
- Theoretical Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
| | - Jörg Meurer
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| | - Torsten Möhlmann
- Plant Physiology, Department of Biology, Technische Universität Kaiserslautern, Kaiserslautern, 67663, Germany
| | - Timo Mühlhaus
- Computational Systems Biology, Department of Biology, Technische Universität Kaiserslautern, Kaiserslautern, 67663, Germany
| | - Belen Naranjo
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| | - Jörg Nickelsen
- Molecular Plant Science, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Munich, 82152, Germany
| | - Andreas Richter
- Physiology of Plant Organelles, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
| | - Hannes Ruwe
- Molecular Genetics, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
| | - Michael Schroda
- Molecular Biotechnology & Systems Biology, Department of Biology, Technische Universität Kaiserslautern, Kaiserslautern, 67663, Germany
| | - Serena Schwenkert
- Plant Biochemistry and Physiology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Munich, 82152, Germany
| | - Oliver Trentmann
- Plant Physiology, Department of Biology, Technische Universität Kaiserslautern, Kaiserslautern, 67663, Germany
| | - Felix Willmund
- Molecular Genetics of Eukaryotes, Department of Biology, Technische Universität Kaiserslautern, Kaiserslautern, 67663, Germany
| | - Reimo Zoschke
- Translational Regulation in Plants, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, 14476, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| |
Collapse
|
12
|
Burjoski V, Reddy ASN. The Landscape of RNA-Protein Interactions in Plants: Approaches and Current Status. Int J Mol Sci 2021; 22:2845. [PMID: 33799602 PMCID: PMC7999938 DOI: 10.3390/ijms22062845] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/25/2021] [Accepted: 03/10/2021] [Indexed: 12/28/2022] Open
Abstract
RNAs transmit information from DNA to encode proteins that perform all cellular processes and regulate gene expression in multiple ways. From the time of synthesis to degradation, RNA molecules are associated with proteins called RNA-binding proteins (RBPs). The RBPs play diverse roles in many aspects of gene expression including pre-mRNA processing and post-transcriptional and translational regulation. In the last decade, the application of modern techniques to identify RNA-protein interactions with individual proteins, RNAs, and the whole transcriptome has led to the discovery of a hidden landscape of these interactions in plants. Global approaches such as RNA interactome capture (RIC) to identify proteins that bind protein-coding transcripts have led to the identification of close to 2000 putative RBPs in plants. Interestingly, many of these were found to be metabolic enzymes with no known canonical RNA-binding domains. Here, we review the methods used to analyze RNA-protein interactions in plants thus far and highlight the understanding of plant RNA-protein interactions these techniques have provided us. We also review some recent protein-centric, RNA-centric, and global approaches developed with non-plant systems and discuss their potential application to plants. We also provide an overview of results from classical studies of RNA-protein interaction in plants and discuss the significance of the increasingly evident ubiquity of RNA-protein interactions for the study of gene regulation and RNA biology in plants.
Collapse
Affiliation(s)
| | - Anireddy S. N. Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA;
| |
Collapse
|
13
|
Lv J, Shang L, Chen Y, Han Y, Yang X, Xie S, Bai W, Hu M, Wu H, Lei K, Yang Y, Ge S, Trinh HP, Zhang Y, Guo L, Wang Z. OsSLC1 Encodes a Pentatricopeptide Repeat Protein Essential for Early Chloroplast Development and Seedling Survival. RICE (NEW YORK, N.Y.) 2020; 13:25. [PMID: 32297039 PMCID: PMC7160225 DOI: 10.1186/s12284-020-00385-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 04/01/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND The large family of pentatricopeptide repeat (PPR) proteins is widely distributed among land plants. Such proteins play vital roles in intron splicing, RNA editing, RNA processing, RNA stability and RNA translation. However, only a small number of PPR genes have been identified in rice. RESULTS In this study, we raised a mutant from tissue-culture-derived plants of Oryza sativa subsp. japonica 'Zhonghua 11', which exhibited a lethal chlorosis phenotype from germination to the third-leaf stage. The mutant was designated seedling-lethal chlorosis 1 (slc1). The slc1 mutant leaves showed extremely low contents of photosynthetic pigments and abnormal chloroplast development, and were severely defective in photosynthesis. Map-based cloning of OsSLC1 revealed that a single base (G) deletion was detected in the first exon of Os06g0710800 in the slc1 mutant, which caused a premature stop codon. Knockout and complementation experiments further confirmed that OsSLC1 is responsible for the seedling-lethal chlorosis phenotype in the slc1 mutant. OsSLC1 was preferentially expressed in green leaves, and encoded a chloroplast-localized PPR protein harboring 12 PPR motifs. Loss-of-function of OsSLC1 affected the intron splicing of multiple group II introns, and especially precluded the intron splicing of rps16, and resulted in significant increase in the transcript levels of 3 chloroplast ribosomal RNAs and 16 chloroplast development-related and photosynthesis-related genes, and in significant reduction in the transcript levels of 1 chloroplast ribosomal RNAs and 2 chloroplast development-related and photosynthesis-related genes. CONCLUSION We characterized a novel chloroplast-localized PPR protein, OsSLC1, which plays a vital role in the intron splicing of multiple group II introns, especially the rps16 intron, and is essential for early chloroplast development and seedling survival in rice.
Collapse
Affiliation(s)
- Jun Lv
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
| | - Lianguang Shang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124 China
| | - Yun Chen
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Research Center for Perennial Rice Engineering and Technology in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500 China
| | - Yao Han
- Chongqing Key Laboratory of Adversity Agriculture Research, Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing, 401329 China
| | - Xiaoyan Yang
- Chongqing Key Laboratory of Adversity Agriculture Research, Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing, 401329 China
| | - Shuzhang Xie
- Chongqing Key Laboratory of Adversity Agriculture Research, Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing, 401329 China
| | - Wenqin Bai
- Chongqing Key Laboratory of Adversity Agriculture Research, Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing, 401329 China
| | - Mingyu Hu
- Chongqing Key Laboratory of Adversity Agriculture Research, Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing, 401329 China
| | - Hong Wu
- Chongqing Key Laboratory of Adversity Agriculture Research, Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing, 401329 China
| | - Kairong Lei
- Chongqing Key Laboratory of Adversity Agriculture Research, Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing, 401329 China
| | - Ya’nan Yang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124 China
| | - Shengzhen Ge
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
| | - Hai Phuong Trinh
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
| | - Yi Zhang
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Research Center for Perennial Rice Engineering and Technology in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500 China
| | - Longbiao Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Zhejiang, 310006 China
| | - Zhongwei Wang
- Chongqing Key Laboratory of Adversity Agriculture Research, Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing, 401329 China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Zhejiang, 310006 China
| |
Collapse
|
14
|
Foyer CH, Baker A, Wright M, Sparkes IA, Mhamdi A, Schippers JHM, Van Breusegem F. On the move: redox-dependent protein relocation in plants. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:620-631. [PMID: 31421053 DOI: 10.1093/jxb/erz330] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/01/2019] [Indexed: 05/04/2023]
Abstract
Compartmentation of proteins and processes is a defining feature of eukaryotic cells. The growth and development of organisms is critically dependent on the accurate sorting of proteins within cells. The mechanisms by which cytosol-synthesized proteins are delivered to the membranes and membrane compartments have been extensively characterized. However, the protein complement of any given compartment is not precisely fixed and some proteins can move between compartments in response to metabolic or environmental triggers. The mechanisms and processes that mediate such relocation events are largely uncharacterized. Many proteins can in addition perform multiple functions, catalysing alternative reactions or performing structural, non-enzymatic functions. These alternative functions can be equally important functions in each cellular compartment. Such proteins are generally not dual-targeted proteins in the classic sense of having targeting sequences that direct de novo synthesized proteins to specific cellular locations. We propose that redox post-translational modifications (PTMs) can control the compartmentation of many such proteins, including antioxidant and/or redox-associated enzymes.
Collapse
Affiliation(s)
- Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, UK
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Alison Baker
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Centre for Plant Sciences, University of Leeds, Leeds, UK
| | - Megan Wright
- The Astbury Centre for Structural Biology, University of Leeds, Leeds, UK
- School of Chemistry, University of Leeds, Leeds, UK
| | - Imogen A Sparkes
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Amna Mhamdi
- VIB-UGent Center for Plant Systems Biology, Ghent University, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Jos H M Schippers
- Institute of Biology I, RWTH Aachen University, Aachen, Germany
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Frank Van Breusegem
- VIB-UGent Center for Plant Systems Biology, Ghent University, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| |
Collapse
|
15
|
Tan H, Wang X, Fei Z, Li H, Tadmor Y, Mazourek M, Li L. Genetic mapping of green curd gene Gr in cauliflower. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:353-364. [PMID: 31676958 DOI: 10.1007/s00122-019-03466-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
Gr5.1 is the major locus for cauliflower green curd color and mapped to an interval of 236 Kbp with four most likely candidate genes. Cauliflower with colored curd enhances not only the visual appeal but also the nutritional value of the crop. Green cauliflower results from ectopic development of chloroplasts in the normal white curd. However, the underlying genetic basis is unknown. In this study, we employed QTL-seq analysis to identify the loci that were associated with green curd phenotype in cauliflower. A F2 population was generated following a cross between a white curd (Stovepipe) and a green curd (ACX800) cauliflower plants. By whole-genome resequencing and SNP analysis of green and white F2 bulks, two QTLs were detected on chromosomes 5 (Gr5.1) and 7 (Gr7.1). Validation by traditional genetic mapping with CAPS markers suggested that Gr5.1 represented a major QTL, whereas Gr7.1 had a minor effect. Subsequent high-resolution mapping of Gr5.1 in the second large F2 population with additional CAPS markers narrowed down the target region to a genetic and physical distance of 0.3 cM and 236 Kbp, respectively. This region contained 35 genes with four of them representing the best candidates for the green curd phenotype in cauliflower. They are LOC106295953, LOC106343833, LOC106345143, and LOC106295954, which encode UMP kinase, DEAD-box RNA helicase 51-like, glutathione S-transferase T3-like, and protein MKS1, respectively. These findings lay a solid foundation for the isolation of the Gr gene and provide a potential for marker-assisted selection of the green curd trait in cauliflower breeding. The eventual isolation of Gr will also facilitate better understanding of chloroplast biogenesis and development in plants.
Collapse
Affiliation(s)
- Huaqiang Tan
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA
- College of Horticulture, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Xin Wang
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Zhangjun Fei
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Huanxiu Li
- College of Horticulture, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Yaakov Tadmor
- Plant Science Institute, Israeli Agricultural Research Organization, Newe Yaar Research Center, P.O. Box 1021, 30095, Ramat Yishay, Israel
| | - Michael Mazourek
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA.
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
16
|
Witte CP, Herde M. Nucleotide Metabolism in Plants. PLANT PHYSIOLOGY 2020; 182:63-78. [PMID: 31641078 PMCID: PMC6945853 DOI: 10.1104/pp.19.00955] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/15/2019] [Indexed: 05/14/2023]
Abstract
Nucleotide metabolism is an essential function in plants.
Collapse
Affiliation(s)
- Claus-Peter Witte
- Leibniz Universität Hannover, Department of Molecular Nutrition and Biochemistry of Plants, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| | - Marco Herde
- Leibniz Universität Hannover, Department of Molecular Nutrition and Biochemistry of Plants, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| |
Collapse
|
17
|
Arrivault S. UMP Pyrophosphorylase: A Moonlighting Protein with Essential Functions in Chloroplast Development and Photosynthesis Establishment. PLANT PHYSIOLOGY 2019; 180:1779-1780. [PMID: 31366699 PMCID: PMC6670083 DOI: 10.1104/pp.19.00714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Stéphanie Arrivault
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| |
Collapse
|
18
|
Ohler L, Niopek-Witz S, Mainguet SE, Möhlmann T. Pyrimidine Salvage: Physiological Functions and Interaction with Chloroplast Biogenesis. PLANT PHYSIOLOGY 2019; 180:1816-1828. [PMID: 31101721 PMCID: PMC6670073 DOI: 10.1104/pp.19.00329] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/01/2019] [Indexed: 05/07/2023]
Abstract
The synthesis of pyrimidine nucleotides, an essential process in every organism, is accomplished by de novo synthesis or by salvaging pyrimdines from e.g. nucleic acid turnover. Here, we identify two Arabidopsis (Arabidopsis thaliana) uridine/cytidine kinases, UCK1 and UCK2, which are located in the cytosol and are responsible for the majority of pyrimidine salvage activity in vivo. In addition, the chloroplast has an active uracil salvage pathway. Uracil phosphoribosyltransferase (UPP) catalyzes the initial step in this pathway and is required for the establishment of photosynthesis, as revealed by analysis of upp mutants. The upp knockout mutants are unable to grow photoautotrophically, and knockdown mutants exhibit a variegated phenotype, with leaves that have chlorotic pale areas. Moreover, the upp mutants did not show altered expression of chloroplast-encoded genes, but transcript accumulation of the LIGHT HARVESTING COMPLEX B nuclear genes LHCB1.2 and LHCB2.3 was markedly reduced. An active UPP homolog from Escherichia coli failed to complement the upp mutant phenotype when targeted to the chloroplast, suggesting that the catalytic function of UPP is not the important factor for the chloroplast phenotype. Indeed, the expression of catalytically inactive Arabidopsis UPP, generated by introduction of point mutations, did complement the upp chloroplast phenotype. These results suggest that UPP has a vital function in chloroplast biogenesis unrelated to its catalytic activity and driven by a moonlighting function.
Collapse
Affiliation(s)
- Lisa Ohler
- Pflanzenphysiologie, Fachbereich Biologie, Universität Kaiserslautern, Erwin-Schrödinger-Strasse, D-67663 Kaiserslautern, Germany
| | - Sandra Niopek-Witz
- Pflanzenphysiologie, Fachbereich Biologie, Universität Kaiserslautern, Erwin-Schrödinger-Strasse, D-67663 Kaiserslautern, Germany
| | - Samuel E Mainguet
- INRA-URGV, 91057 Evry, France - Université Paris-Sud 11, ED145 Sciences du Végétal, 91405 Orsay, France
| | - Torsten Möhlmann
- Pflanzenphysiologie, Fachbereich Biologie, Universität Kaiserslautern, Erwin-Schrödinger-Strasse, D-67663 Kaiserslautern, Germany
| |
Collapse
|
19
|
Dong Q, Zhang YX, Zhou Q, Liu QE, Chen DB, Wang H, Cheng SH, Cao LY, Shen XH. UMP Kinase Regulates Chloroplast Development and Cold Response in Rice. Int J Mol Sci 2019; 20:E2107. [PMID: 31035645 PMCID: PMC6539431 DOI: 10.3390/ijms20092107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 02/04/2023] Open
Abstract
Pyrimidine nucleotides are important metabolites that are building blocks of nucleic acids, which participate in various aspects of plant development. Only a few genes involved in pyrimidine metabolism have been identified in rice and the majority of their functions remain unclear. In this study, we used a map-based cloning strategy to isolate a UMPK gene in rice, encoding the UMP kinase that phosphorylates UMP to form UDP, from a recessive mutant with pale-green leaves. In the mutant, UDP content always decreased, while UTP content fluctuated with the development of leaves. Mutation of UMPK reduced chlorophyll contents and decreased photosynthetic capacity. In the mutant, transcription of plastid-encoded RNA polymerase-dependent genes, including psaA, psbB, psbC and petB, was significantly reduced, whereas transcription of nuclear-encoded RNA polymerase-dependent genes, including rpoA, rpoB, rpoC1, and rpl23, was elevated. The expression of UMPK was significantly induced by various stresses, including cold, heat, and drought. Increased sensitivity to cold stress was observed in the mutant, based on the survival rate and malondialdehyde content. High accumulation of hydrogen peroxide was found in the mutant, which was enhanced by cold treatment. Our results indicate that the UMP kinase gene plays important roles in regulating chloroplast development and stress response in rice.
Collapse
Affiliation(s)
- Qing Dong
- State Key Laboratory of Rice Biology and Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou 310006, China.
| | - Ying-Xin Zhang
- State Key Laboratory of Rice Biology and Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou 310006, China.
| | - Quan Zhou
- State Key Laboratory of Rice Biology and Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou 310006, China.
| | - Qun-En Liu
- State Key Laboratory of Rice Biology and Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou 310006, China.
| | - Dai-Bo Chen
- State Key Laboratory of Rice Biology and Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou 310006, China.
| | - Hong Wang
- State Key Laboratory of Rice Biology and Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou 310006, China.
| | - Shi-Hua Cheng
- State Key Laboratory of Rice Biology and Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou 310006, China.
| | - Li-Yong Cao
- State Key Laboratory of Rice Biology and Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou 310006, China.
| | - Xi-Hong Shen
- State Key Laboratory of Rice Biology and Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou 310006, China.
| |
Collapse
|
20
|
Nagel R. Moonlighting Enzymes: How Often Are We Missing Secondary Functions? PLANT PHYSIOLOGY 2019; 179:15. [PMID: 30610131 PMCID: PMC6324242 DOI: 10.1104/pp.18.01403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Affiliation(s)
- Raimund Nagel
- Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, Iowa 50011
| |
Collapse
|