1
|
Aros-Mualin D, Kessler M. Untangling poikilohydry and desiccation tolerance: evolutionary and macroecological drivers in ferns. ANNALS OF BOTANY 2024; 134:1139-1150. [PMID: 39344981 DOI: 10.1093/aob/mcae167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/27/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND AND AIMS Poikilohydry describes the inability of plants to internally regulate their water content (hydroregulation), whereas desiccation tolerance (DT) refers to the ability to restore normal metabolic functions upon rehydration. The failure to clearly separate these two adaptations has impeded a comprehensive understanding of their unique evolutionary and ecological drivers. Unlike bryophytes and angiosperms, these adaptations in ferns are sometimes uncorrelated, offering a unique opportunity to navigate their intricate interplay. METHODS We classified ferns into two syndromes: the Hymenophyllum-type (H-type), encompassing species with filmy leaves lacking stomata that experience extreme poikilohydry and varying degrees of DT, and the Pleopeltis-type (P-type), consisting of resurrection plants with variable hydroregulation but high DT. KEY RESULTS The H-type evolved during globally cool Icehouse periods, as an adaptation to low light levels in damp, shady habitats, and currently prevails in wet environments. Conversely, the P-type evolved predominantly under Greenhouse periods as an adaptation to periodic water shortage, with most extant species thriving in warm, seasonally dry habitats. CONCLUSIONS Out study underscores the fundamental differences between poikilohydry and DT, emphasizing the imperative to meticulously differentiate and qualify the strength of each strategy as well as their interactions, as a basis for understanding the genetic and evolutionary background of these ecologically crucial adaptations.
Collapse
Affiliation(s)
- Daniela Aros-Mualin
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Michael Kessler
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
The Future Potential Distribution and Sustainable Management of Ancient Pu’er Tea Trees (Camellia sinensis var. assamica (J. W. Mast.) Kitam.). FORESTS 2022. [DOI: 10.3390/f13070983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ancient Pu’er tea trees (Camellia sinensis var. assamica (J. W. Mast.) Kitam.) are an important ecological resource with high economic value. Knowledge of the environmental variables shaping the original distribution and the effects of climate change on the future potential distribution of these trees, as well as the identification of sustainable management approaches, is essential for ensuring their future health and production. Here, we used 28 current environmental variables and the future climate data to model the suitable areas for ancient Pu’er tea trees. We also compared the health of these ancient trees in areas under different local management strategies. The results suggested the general distribution is likely to remain stable, but there are environmentally suitable areas outside its current habitats. To achieve more sustainable management, the main areas in which the management of poorly-managed trees can be improved include learning from managers of well-managed trees and following the common technical management regulations stipulated by the local government. The suitable value ranges for environmental factors, potentially suitable areas under climate change, and assessment of management approaches will aid the future cultivation and transplantation of ancient Pu’er tea trees. The methodology includes management-level analysis and provides practical insights that could be applied to regions outside the most suitable areas identified.
Collapse
|
3
|
Shiva S, Samarakoon T, Lowe KA, Roach C, Vu HS, Colter M, Porras H, Hwang C, Roth MR, Tamura P, Li M, Schrick K, Shah J, Wang X, Wang H, Welti R. Leaf Lipid Alterations in Response to Heat Stress of Arabidopsis thaliana. PLANTS 2020; 9:plants9070845. [PMID: 32635518 PMCID: PMC7412450 DOI: 10.3390/plants9070845] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 01/19/2023]
Abstract
In response to elevated temperatures, plants alter the activities of enzymes that affect lipid composition. While it has long been known that plant leaf membrane lipids become less unsaturated in response to heat, other changes, including polygalactosylation of galactolipids, head group acylation of galactolipids, increases in phosphatidic acid and triacylglycerols, and formation of sterol glucosides and acyl sterol glucosides, have been observed more recently. In this work, by measuring lipid levels with mass spectrometry, we confirm the previously observed changes in Arabidopsis thaliana leaf lipids under three heat stress regimens. Additionally, in response to heat, increased oxidation of the fatty acyl chains of leaf galactolipids, sulfoquinovosyldiacylglycerols, and phosphatidylglycerols, and incorporation of oxidized acyl chains into acylated monogalactosyldiacylglycerols are shown. We also observed increased levels of digalactosylmonoacylglycerols and monogalactosylmonoacylglycerols. The hypothesis that a defect in sterol glycosylation would adversely affect regrowth of plants after a severe heat stress regimen was tested, but differences between wild-type and sterol glycosylation-defective plants were not detected.
Collapse
Affiliation(s)
- Sunitha Shiva
- Division of Biology, Kansas State University, Ackert Hall, Manhattan, KS 66506-4901, USA; (T.S.); (K.A.L.); (C.R.); (H.S.V.); (M.C.); (H.P.); (C.H.); (M.R.R.); (P.T.); (K.S.)
- Correspondence: (S.S.); (R.W.)
| | - Thilani Samarakoon
- Division of Biology, Kansas State University, Ackert Hall, Manhattan, KS 66506-4901, USA; (T.S.); (K.A.L.); (C.R.); (H.S.V.); (M.C.); (H.P.); (C.H.); (M.R.R.); (P.T.); (K.S.)
| | - Kaleb A. Lowe
- Division of Biology, Kansas State University, Ackert Hall, Manhattan, KS 66506-4901, USA; (T.S.); (K.A.L.); (C.R.); (H.S.V.); (M.C.); (H.P.); (C.H.); (M.R.R.); (P.T.); (K.S.)
| | - Charles Roach
- Division of Biology, Kansas State University, Ackert Hall, Manhattan, KS 66506-4901, USA; (T.S.); (K.A.L.); (C.R.); (H.S.V.); (M.C.); (H.P.); (C.H.); (M.R.R.); (P.T.); (K.S.)
| | - Hieu Sy Vu
- Division of Biology, Kansas State University, Ackert Hall, Manhattan, KS 66506-4901, USA; (T.S.); (K.A.L.); (C.R.); (H.S.V.); (M.C.); (H.P.); (C.H.); (M.R.R.); (P.T.); (K.S.)
| | - Madeline Colter
- Division of Biology, Kansas State University, Ackert Hall, Manhattan, KS 66506-4901, USA; (T.S.); (K.A.L.); (C.R.); (H.S.V.); (M.C.); (H.P.); (C.H.); (M.R.R.); (P.T.); (K.S.)
| | - Hollie Porras
- Division of Biology, Kansas State University, Ackert Hall, Manhattan, KS 66506-4901, USA; (T.S.); (K.A.L.); (C.R.); (H.S.V.); (M.C.); (H.P.); (C.H.); (M.R.R.); (P.T.); (K.S.)
| | - Caroline Hwang
- Division of Biology, Kansas State University, Ackert Hall, Manhattan, KS 66506-4901, USA; (T.S.); (K.A.L.); (C.R.); (H.S.V.); (M.C.); (H.P.); (C.H.); (M.R.R.); (P.T.); (K.S.)
| | - Mary R. Roth
- Division of Biology, Kansas State University, Ackert Hall, Manhattan, KS 66506-4901, USA; (T.S.); (K.A.L.); (C.R.); (H.S.V.); (M.C.); (H.P.); (C.H.); (M.R.R.); (P.T.); (K.S.)
| | - Pamela Tamura
- Division of Biology, Kansas State University, Ackert Hall, Manhattan, KS 66506-4901, USA; (T.S.); (K.A.L.); (C.R.); (H.S.V.); (M.C.); (H.P.); (C.H.); (M.R.R.); (P.T.); (K.S.)
| | - Maoyin Li
- Department of Biological Sciences, University of North Texas, Denton, TX 76203-5017, USA; (M.L.); (X.W.)
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121-4499, USA
| | - Kathrin Schrick
- Division of Biology, Kansas State University, Ackert Hall, Manhattan, KS 66506-4901, USA; (T.S.); (K.A.L.); (C.R.); (H.S.V.); (M.C.); (H.P.); (C.H.); (M.R.R.); (P.T.); (K.S.)
| | - Jyoti Shah
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA;
| | - Xuemin Wang
- Department of Biological Sciences, University of North Texas, Denton, TX 76203-5017, USA; (M.L.); (X.W.)
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121-4499, USA
| | - Haiyan Wang
- Department of Statistics, Kansas State University, Manhattan, KS 66506-0802, USA;
| | - Ruth Welti
- Division of Biology, Kansas State University, Ackert Hall, Manhattan, KS 66506-4901, USA; (T.S.); (K.A.L.); (C.R.); (H.S.V.); (M.C.); (H.P.); (C.H.); (M.R.R.); (P.T.); (K.S.)
- Correspondence: (S.S.); (R.W.)
| |
Collapse
|