1
|
Krasauskas J, Ganie SA, Al-Husari A, Bindschedler L, Spanu P, Ito M, Devoto A. Jasmonates, gibberellins, and powdery mildew modify cell cycle progression and evoke differential spatiotemporal responses along the barley leaf. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:180-203. [PMID: 37611210 PMCID: PMC10735486 DOI: 10.1093/jxb/erad331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/22/2023] [Indexed: 08/25/2023]
Abstract
Barley (Hordeum vulgare) is an important cereal crop, and its development, defence, and stress responses are modulated by different hormones including jasmonates (JAs) and the antagonistic gibberellins (GAs). Barley productivity is severely affected by the foliar biotrophic fungal pathogen Blumeria hordei. In this study, primary leaves were used to examine the molecular processes regulating responses to methyl-jasmonate (MeJA) and GA to B. hordei infection along the leaf axis. Flow cytometry, microscopy, and spatiotemporal expression patterns of genes associated with JA, GA, defence, and the cell cycle provided insights on cell cycle progression and on the gradient of susceptibility to B. hordei observed along the leaf. Notably, the combination of B. hordei with MeJA or GA pre-treatment had a different effect on the expression patterns of the analysed genes compared to individual treatments. MeJA reduced susceptibility to B. hordei in the proximal part of the leaf blade. Overall, distinctive spatiotemporal gene expression patterns correlated with different degrees of cell proliferation, growth capacity, responses to hormones, and B. hordei infection along the leaf. Our results highlight the need to further investigate differential spatial and temporal responses to pathogens at the organ, tissue, and cell levels in order to devise effective disease control strategies in crops.
Collapse
Affiliation(s)
- Jovaras Krasauskas
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Showkat Ahmad Ganie
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Aroub Al-Husari
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Laurence Bindschedler
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Pietro Spanu
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Masaki Ito
- School of Biological Science and Technology, Kanazawa University, Ishikawa 920-1192, Japan
| | - Alessandra Devoto
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| |
Collapse
|
2
|
Kocyigit E, Kocaadam-Bozkurt B, Bozkurt O, Ağagündüz D, Capasso R. Plant Toxic Proteins: Their Biological Activities, Mechanism of Action and Removal Strategies. Toxins (Basel) 2023; 15:356. [PMID: 37368657 PMCID: PMC10303728 DOI: 10.3390/toxins15060356] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Plants evolve to synthesize various natural metabolites to protect themselves against threats, such as insects, predators, microorganisms, and environmental conditions (such as temperature, pH, humidity, salt, and drought). Plant-derived toxic proteins are often secondary metabolites generated by plants. These proteins, including ribosome-inactivating proteins, lectins, protease inhibitors, α-amylase inhibitors, canatoxin-like proteins and ureases, arcelins, antimicrobial peptides, and pore-forming toxins, are found in different plant parts, such as the roots, tubers, stems, fruits, buds, and foliage. Several investigations have been conducted to explore the potential applications of these plant proteins by analyzing their toxic effects and modes of action. In biomedical applications, such as crop protection, drug development, cancer therapy, and genetic engineering, toxic plant proteins have been utilized as potentially useful instruments due to their biological activities. However, these noxious metabolites can be detrimental to human health and cause problems when consumed in high amounts. This review focuses on different plant toxic proteins, their biological activities, and their mechanisms of action. Furthermore, possible usage and removal strategies for these proteins are discussed.
Collapse
Affiliation(s)
- Emine Kocyigit
- Department of Nutrition and Dietetics, Ordu University, Cumhuriyet Yerleşkesi, 52200 Ordu, Turkey;
| | - Betul Kocaadam-Bozkurt
- Department of Nutrition and Dietetics, Erzurum Technical University, Yakutiye, 25100 Erzurum, Turkey; (B.K.-B.); (O.B.)
| | - Osman Bozkurt
- Department of Nutrition and Dietetics, Erzurum Technical University, Yakutiye, 25100 Erzurum, Turkey; (B.K.-B.); (O.B.)
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Gazi University, Faculty of Health Sciences, Emek, 06490 Ankara, Turkey;
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
3
|
Fortini EA, Batista DS, Felipe SHS, Silva TD, Correia LNF, Farias LM, Faria DV, Pinto VB, Santa-Catarina C, Silveira V, De-la-Peña C, Castillo-Castro E, Otoni WC. Physiological, epigenetic, and proteomic responses in Pfaffia glomerata growth in vitro under salt stress and 5-azacytidine. PROTOPLASMA 2023; 260:467-482. [PMID: 35788779 DOI: 10.1007/s00709-022-01789-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Plants adjust their complex molecular, biochemical, and metabolic processes to overcome salt stress. Here, we investigated the proteomic and epigenetic alterations involved in the morphophysiological responses of Pfaffia glomerata, a medicinal plant, to salt stress and the demethylating agent 5-azacytidine (5-azaC). Moreover, we investigated how these changes affected the biosynthesis of 20-hydroxyecdysone (20-E), a pharmacologically important specialized metabolite. Plants were cultivated in vitro for 40 days in Murashige and Skoog medium supplemented with NaCl (50 mM), 5-azaC (25 μM), and NaCl + 5-azaC. Compared with the control (medium only), the treatments reduced growth, photosynthetic rates, and photosynthetic pigment content, with increase in sucrose, total amino acids, and proline contents, but a reduction in starch and protein. Comparative proteomic analysis revealed 282 common differentially accumulated proteins involved in 87 metabolic pathways, most of them related to amino acid and carbohydrate metabolism, and specialized metabolism. 5-azaC and NaCl + 5-azaC lowered global DNA methylation levels and 20-E content, suggesting that 20-E biosynthesis may be regulated by epigenetic mechanisms. Moreover, downregulation of a key protein in jasmonate biosynthesis indicates the fundamental role of this hormone in the 20-E biosynthesis. Taken together, our results highlight possible regulatory proteins and epigenetic changes related to salt stress tolerance and 20-E biosynthesis in P. glomerata, paving the way for future studies of the mechanisms involved in this regulation.
Collapse
Affiliation(s)
- Evandro Alexandre Fortini
- Laboratório de Cultura de Tecidos Vegetais (LCTII), Departamento de Biologia Vegetal/BIOAGRO, Universidade Federal de Viçosa, Campus Universitário, Avenida Peter Henry Rolfs s/n, Viçosa, MG, 36570-900, Brazil
| | - Diego Silva Batista
- Departamento de Agricultura, Universidade Federal da Paraíba, Campus III, Bananeiras, PB, 58220-000, Brazil
| | - Sérgio Heitor Sousa Felipe
- PPG em Agroecologia, Universidade Estadual do Maranhão, Av. Lourenço Vieira da Silva, s/nº, Cidade Universitária Paulo VI, São Luís, MA, Brazil
| | - Tatiane Dulcineia Silva
- Laboratório de Cultura de Tecidos Vegetais (LCTII), Departamento de Biologia Vegetal/BIOAGRO, Universidade Federal de Viçosa, Campus Universitário, Avenida Peter Henry Rolfs s/n, Viçosa, MG, 36570-900, Brazil
| | - Ludmila Nayara Freitas Correia
- Laboratório de Cultura de Tecidos Vegetais (LCTII), Departamento de Biologia Vegetal/BIOAGRO, Universidade Federal de Viçosa, Campus Universitário, Avenida Peter Henry Rolfs s/n, Viçosa, MG, 36570-900, Brazil
| | - Letícia Monteiro Farias
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Daniele Vidal Faria
- Laboratório de Cultura de Tecidos Vegetais (LCTII), Departamento de Biologia Vegetal/BIOAGRO, Universidade Federal de Viçosa, Campus Universitário, Avenida Peter Henry Rolfs s/n, Viçosa, MG, 36570-900, Brazil
| | - Vitor Batista Pinto
- Laboratório de Biotecnologia (LBT), Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego 2000, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Claudete Santa-Catarina
- Laboratório de Biologia Celular e Tecidual (LBCT), CBB-UENF, Campos dos Goytacazes, RJ, Brazil
| | - Vanildo Silveira
- Laboratório de Biotecnologia (LBT), Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego 2000, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Clelia De-la-Peña
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A. C. (CICY), 97205, Mérida, Yucatán, Mexico
| | - Eduardo Castillo-Castro
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A. C. (CICY), 97205, Mérida, Yucatán, Mexico
| | - Wagner Campos Otoni
- Laboratório de Cultura de Tecidos Vegetais (LCTII), Departamento de Biologia Vegetal/BIOAGRO, Universidade Federal de Viçosa, Campus Universitário, Avenida Peter Henry Rolfs s/n, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|
4
|
Dougherty K, Hudak KA. Phylogeny and domain architecture of plant ribosome inactivating proteins. PHYTOCHEMISTRY 2022; 202:113337. [PMID: 35934106 DOI: 10.1016/j.phytochem.2022.113337] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/01/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Ribosome inactivating proteins (RIPs) are rRNA N-glycosylases (EC 3.2.2.22) best known for hydrolyzing an adenine base from the conserved sarcin/ricin loop of ribosomal RNA. Protein translation is inhibited by ribosome depurination; therefore, RIPs are generally considered toxic to cells. The expression of some RIPs is upregulated by biotic and abiotic stress, though the connection between RNA depurination and defense response is not well understood. Despite their prevalence in approximately one-third of flowering plant orders, our knowledge of RIPs stems primarily from biochemical analyses of individuals or genomics-scale analyses of small datasets from a limited number of species. Here, we performed an unbiased search for proteins with RIP domains and identified several-fold more RIPs than previously known - more than 800 from 120 species, many with novel associated domains and physicochemical characteristics. Based on protein domain configuration, we established 15 distinct groups, suggesting diverse functionality. Surprisingly, most of these RIPs lacked a signal peptide, indicating they may be localized to the nucleocytoplasm of cells, raising questions regarding their toxicity against conspecific ribosomes. Our phylogenetic analysis significantly extends previous models for RIP evolution in plants, predicting an original single-domain RIP that later evolved to acquire a signal peptide and different protein domains. We show that RIPs are distributed throughout 21 plant orders with many species maintaining genes for more than one RIP group. Our analyses provide the foundation for further characterization of these new RIP types, to understand how these enzymes function in plants.
Collapse
Affiliation(s)
- Kyra Dougherty
- Department of Biology, York University, Toronto, Canada.
| | | |
Collapse
|
5
|
Zhang Z, Lu S, Yu W, Ehsan S, Zhang Y, Jia H, Fang J. Jasmonate increases terpene synthase expression, leading to strawberry resistance to Botrytis cinerea infection. PLANT CELL REPORTS 2022; 41:1243-1260. [PMID: 35325290 DOI: 10.1007/s00299-022-02854-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Jasmonate induced FaTPS1 to produce terpene, and overexpression FaTPS1 led to fruit resistant against B. cinerea infection, FaMYC2 induced FaTPS1 by binding to its promoter that downstream of jasmonate. Jasmonic acid (JA) and its derivatives are associated with plant defence responses against pathogenic organisms. In the present study, a total of 10,631 differentially expressed genes, 239 differentially expressed proteins, and 229 differential metabolites were screened and found to be mainly involved in pathogen perception, hormone biosynthesis and signal transduction, photosynthesis, and secondary metabolism. In strawberry fruits, methyl jasmonate (MeJA) induced FaTPS1 expression and quickly increased the terpene content. Furthermore, FaTPS1 overexpression increased the emission of sesquiterpenes, especially germacrene D, and improved strawberry resistance against Botrytis cinerea infection, although the knockdown of FaTPS1 increased its susceptibility to the same pathogen. Using a yeast one-hybrid assay and transient expression analysis, we demonstrated that FaMYC2 can bind to the G-box element in the promoter region of FaTPS1, thus inducing FaTPS1 expression. MeJA also stimulated FaMYC2 expression and regulated downstream signalling cascades. Moreover, we presented a possible model of the new signalling pathway of MeJA-mediated strawberry resistance to B. cinerea.
Collapse
Affiliation(s)
- Zibo Zhang
- Key Laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, 1st Weigang Road, Nanjing, 210095, China
| | - Suwen Lu
- Key Laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, 1st Weigang Road, Nanjing, 210095, China
| | - Wenbin Yu
- Key Laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, 1st Weigang Road, Nanjing, 210095, China
- NJAU (Suqian) Academy of Protected Horticultures, Suqian, China
| | - Sadeghnezhad Ehsan
- Key Laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, 1st Weigang Road, Nanjing, 210095, China
| | - Yanping Zhang
- Suzhou Polytechnic Institute of Agriculture, 279 Xiyuan Road, Suzhou, 215008, China
- NJAU (Suqian) Academy of Protected Horticultures, Suqian, China
| | - Haifeng Jia
- Key Laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, 1st Weigang Road, Nanjing, 210095, China.
- NJAU (Suqian) Academy of Protected Horticultures, Suqian, China.
| | - Jinggui Fang
- Key Laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, 1st Weigang Road, Nanjing, 210095, China
| |
Collapse
|
6
|
Citores L, Iglesias R, Ferreras JM. Antiviral Activity of Ribosome-Inactivating Proteins. Toxins (Basel) 2021; 13:80. [PMID: 33499086 PMCID: PMC7912582 DOI: 10.3390/toxins13020080] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
Ribosome-inactivating proteins (RIPs) are rRNA N-glycosylases from plants (EC 3.2.2.22) that inactivate ribosomes thus inhibiting protein synthesis. The antiviral properties of RIPs have been investigated for more than four decades. However, interest in these proteins is rising due to the emergence of infectious diseases caused by new viruses and the difficulty in treating viral infections. On the other hand, there is a growing need to control crop diseases without resorting to the use of phytosanitary products which are very harmful to the environment and in this respect, RIPs have been shown as a promising tool that can be used to obtain transgenic plants resistant to viruses. The way in which RIPs exert their antiviral effect continues to be the subject of intense research and several mechanisms of action have been proposed. The purpose of this review is to examine the research studies that deal with this matter, placing special emphasis on the most recent findings.
Collapse
Affiliation(s)
| | | | - José M. Ferreras
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, E-47011 Valladolid, Spain; (L.C.); (R.I.)
| |
Collapse
|
7
|
Choudhary N, Lodha ML, Baranwal VK. The role of enzymatic activities of antiviral proteins from plants for action against plant pathogens. 3 Biotech 2020; 10:505. [PMID: 33184592 PMCID: PMC7642053 DOI: 10.1007/s13205-020-02495-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/19/2020] [Indexed: 11/25/2022] Open
Abstract
Antiviral proteins (AVPs) from plants possess multiple activities, such as N-glycosidase, RNase, DNase enzymatic activity, and induce pathogenesis-related proteins, salicylic acid, superoxide dismutase, peroxidase, and catalase. The N-glycosidase activity releases the adenine residues from sarcin/ricin (S/R) loop of large subunit of ribosomes and interfere the host protein synthesis process and this activity has been attributed for antiviral activity in plant. It has been shown that AVP binds directly to viral genome-linked protein of plant viruses and interfere with protein synthesis of virus. AVPs also possess the RNase and DNase like activity and may be targeting nucleic acid of viruses directly. Recently, the antifungal, antibacterial, and antiinsect properties of AVPs have also been demonstrated. Gene encoding for AVPs has been used for the development of transgenic resistant crops to a broad range of plant pathogens and insect pests. However, the cytotoxicity has been observed in transgenic crops using AVP gene in some cases which can be a limiting factor for its application in agriculture. In this review, we have reviewed various aspects of AVPs particularly their characteristics, possible mode of action and application.
Collapse
Affiliation(s)
- Nandlal Choudhary
- Amity Institute of Virology & Immunology, Amity University Uttar Pradesh, Noida, 201313 India
| | - M. L. Lodha
- Division of Biochemistry, Indian Agricultural Research Institute, Pusa, New Delhi, 110012 India
| | - V. K. Baranwal
- Division of Plant Pathology, Indian Agricultural Research Institute, Pusa, New Delhi, 110012 India
| |
Collapse
|
8
|
Urquidi-Camacho RA, Lokdarshi A, von Arnim AG. Translational gene regulation in plants: A green new deal. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1597. [PMID: 32367681 PMCID: PMC9258721 DOI: 10.1002/wrna.1597] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 01/09/2023]
Abstract
The molecular machinery for protein synthesis is profoundly similar between plants and other eukaryotes. Mechanisms of translational gene regulation are embedded into the broader network of RNA-level processes including RNA quality control and RNA turnover. However, over eons of their separate history, plants acquired new components, dropped others, and generally evolved an alternate way of making the parts list of protein synthesis work. Research over the past 5 years has unveiled how plants utilize translational control to defend themselves against viruses, regulate translation in response to metabolites, and reversibly adjust translation to a wide variety of environmental parameters. Moreover, during seed and pollen development plants make use of RNA granules and other translational controls to underpin developmental transitions between quiescent and metabolically active stages. The economics of resource allocation over the daily light-dark cycle also include controls over cellular protein synthesis. Important new insights into translational control on cytosolic ribosomes continue to emerge from studies of translational control mechanisms in viruses. Finally, sketches of coherent signaling pathways that connect external stimuli with a translational response are emerging, anchored in part around TOR and GCN2 kinase signaling networks. These again reveal some mechanisms that are familiar and others that are different from other eukaryotes, motivating deeper studies on translational control in plants. This article is categorized under: Translation > Translation Regulation RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Ricardo A. Urquidi-Camacho
- UT-ORNL Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, TN 37996
| | - Ansul Lokdarshi
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Albrecht G von Arnim
- Department of Biochemistry & Cellular and Molecular Biology and UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996
| |
Collapse
|