1
|
Min WK, Lee KH, Song JT, Seo HS. Rice small protein OsS1Fa1 participates in stress responses as an inner nuclear membrane protein. PLANT SIGNALING & BEHAVIOR 2024; 19:2439252. [PMID: 39652403 PMCID: PMC11633190 DOI: 10.1080/15592324.2024.2439252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/14/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
The rice small protein OsS1Fa1, a homolog of spinach S1Fa, plays a significant role in drought tolerance, attributed to its transmembrane domain. In this study, we aim to further elucidate the potential roles of OsS1Fa1 in cold and biotic stresses as an inner nuclear membrane protein. Fluorescence analysis confirmed the localization of OsS1Fa1 to the inner nuclear membrane. Utilizing the bimolecular fluorescence complementation (BiFC) and bacterial infiltration assays with OsS1Fa1 and the inner nuclear membrane protein OsSUN1 (Rice Sad1 and UNC84 (SUN) domain containing 1 (SUN1)), we observed fluorescence detection within the inner nuclear membrane, indicating a direct interaction and colocalization between OsS1Fa1 and OsSUN1. Expression analysis revealed that overexpression of OsS1Fa1 induced the expression of various genes associated with cold and defense responses, including COLD-REGULATED 15A (COR15A), PATHOGENESIS-RELATED PROTEIN 1 (PR1), and PLANT DEFENSIN 1.2 (PDF1.2). Our findings collectively indicate that OsS1Fa1 plays crucial roles in both abiotic and biotic stress tolerance as an inner nuclear membrane protein.
Collapse
Affiliation(s)
- Wang Ki Min
- Department of Agriculture, Forestry and Bioresources, Research Institute for Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| | - Kyu Ho Lee
- Department of Agriculture, Forestry and Bioresources, Research Institute for Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| | - Jong Tae Song
- Department of Applied Biosciences, Kyungpook National University, Daegu, Korea
| | - Hak Soo Seo
- Department of Agriculture, Forestry and Bioresources, Research Institute for Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
- Bio-MAX Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
2
|
Wang C, Chen Z, Copenhaver GP, Wang Y. Heterochromatin in plant meiosis. Nucleus 2024; 15:2328719. [PMID: 38488152 PMCID: PMC10950279 DOI: 10.1080/19491034.2024.2328719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/05/2024] [Indexed: 03/19/2024] Open
Abstract
Heterochromatin is an organizational property of eukaryotic chromosomes, characterized by extensive DNA and histone modifications, that is associated with the silencing of transposable elements and repetitive sequences. Maintaining heterochromatin is crucial for ensuring genomic integrity and stability during the cell cycle. During meiosis, heterochromatin is important for homologous chromosome synapsis, recombination, and segregation, but our understanding of meiotic heterochromatin formation and condensation is limited. In this review, we focus on the dynamics and features of heterochromatin and how it condenses during meiosis in plants. We also discuss how meiotic heterochromatin influences the interaction and recombination of homologous chromosomes during prophase I.
Collapse
Affiliation(s)
- Cong Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Zhiyu Chen
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Gregory P. Copenhaver
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Yingxiang Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
3
|
Zhou Y, Li Y, You H, Chen J, Wang B, Wen M, Zhang Y, Tang D, Shen Y, Yu H, Cheng Z. Kinesin-1-like protein PSS1 is essential for full-length homologous pairing and synapsis in rice meiosis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:928-940. [PMID: 39283979 DOI: 10.1111/tpj.17025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/23/2024] [Accepted: 08/28/2024] [Indexed: 11/01/2024]
Abstract
The pairing and synapsis of homologous chromosomes are crucial for their correct segregation during meiosis. The LINC (Linker of Nucleoskeleton and Cytoskeleton) complex can recruit kinesin protein at the nuclear envelope, affecting telomere bouquet formation and homologous pairing. Kinesin-1-like protein Pollen Semi-Sterility1 (PSS1) plays a pivotal role in male meiotic chromosomal behavior and is essential for fertility in rice. However, its exact role in meiosis, especially as kinesin involved in homologous pairing and synapsis, has not been fully elucidated. Here, we generated three pss1 mutants by genome editing technology to dissect PSS1 biological functions in meiosis. The pss1 mutants exhibit alterations in the radial microtubule organization at pachytene and manifest a deficiency in telomere clustering, which is critical for full-length homologous pairing. We reveal that PSS1 serves as a key mediator between chromosomes and cytoskeleton, thereby regulating microtubule organization and transmitting the force to nuclei to facilitate homologous chromosome pairing and synapsis in meiosis.
Collapse
Affiliation(s)
- Yue Zhou
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yafei Li
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hanli You
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Jiawei Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bingxin Wang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minsi Wen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yansong Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ding Tang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Shen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hengxiu Yu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Zhukuan Cheng
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
4
|
Cromer L, Tiscareno-Andrade M, Lefranc S, Chambon A, Hurel A, Brogniez M, Guérin J, Le Masson I, Adam G, Charif D, Andrey P, Grelon M. Rapid meiotic prophase chromosome movements in Arabidopsis thaliana are linked to essential reorganization at the nuclear envelope. Nat Commun 2024; 15:5964. [PMID: 39013853 PMCID: PMC11252379 DOI: 10.1038/s41467-024-50169-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/02/2024] [Indexed: 07/18/2024] Open
Abstract
Meiotic rapid prophase chromosome movements (RPMs) require connections between the chromosomes and the cytoskeleton, involving SUN (Sad1/UNC-84)-domain-containing proteins at the inner nuclear envelope (NE). RPMs remain significantly understudied in plants, with respect to their importance in the regulation of meiosis. Here, we demonstrate that Arabidopsis thaliana meiotic centromeres undergo rapid (up to 500 nm/s) and uncoordinated movements during the zygotene and pachytene stages. These centromere movements are not affected by altered chromosome organization and recombination but are abolished in the double mutant sun1 sun2. We also document the changes in chromosome dynamics and nucleus organization during the transition from leptotene to zygotene, including telomere attachment to SUN-enriched NE domains, bouquet formation, and nucleolus displacement, all of which were defective in sun1 sun2. These results establish A. thaliana as a model species for studying the functional implications of meiotic RPMs and demonstrate the mechanistic conservation of telomere-led RPMs in plants.
Collapse
Affiliation(s)
- Laurence Cromer
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Mariana Tiscareno-Andrade
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Sandrine Lefranc
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Aurélie Chambon
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Aurélie Hurel
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Manon Brogniez
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Julie Guérin
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Ivan Le Masson
- Université Paris-Saclay, AgroParisTech, INRAE, UMR Agronomie, 91120, Palaiseau, France
| | - Gabriele Adam
- Université Paris-Saclay, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif sur Yvette, France
- Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif sur Yvette, France
| | - Delphine Charif
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Philippe Andrey
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Mathilde Grelon
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France.
| |
Collapse
|
5
|
Zhao Y, Ren L, Zhao T, You H, Miao Y, Liu H, Cao L, Wang B, Shen Y, Li Y, Tang D, Cheng Z. SCC3 is an axial element essential for homologous chromosome pairing and synapsis. eLife 2024; 13:RP94180. [PMID: 38864853 PMCID: PMC11168746 DOI: 10.7554/elife.94180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024] Open
Abstract
Cohesin is a multi-subunit protein that plays a pivotal role in holding sister chromatids together during cell division. Sister chromatid cohesion 3 (SCC3), constituents of cohesin complex, is highly conserved from yeast to mammals. Since the deletion of individual cohesin subunit always causes lethality, it is difficult to dissect its biological function in both mitosis and meiosis. Here, we obtained scc3 weak mutants using CRISPR-Cas9 system to explore its function during rice mitosis and meiosis. The scc3 weak mutants displayed obvious vegetative defects and complete sterility, underscoring the essential roles of SCC3 in both mitosis and meiosis. SCC3 is localized on chromatin from interphase to prometaphase in mitosis. However, in meiosis, SCC3 acts as an axial element during early prophase I and subsequently situates onto centromeric regions following the disassembly of the synaptonemal complex. The loading of SCC3 onto meiotic chromosomes depends on REC8. scc3 shows severe defects in homologous pairing and synapsis. Consequently, SCC3 functions as an axial element that is essential for maintaining homologous chromosome pairing and synapsis during meiosis.
Collapse
Affiliation(s)
- Yangzi Zhao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou UniversityYangzhouChina
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of SciencesBeijingChina
| | - Lijun Ren
- College of Horticulture Science and Engineering, Shandong Agricultural UniversityShandongChina
| | - Tingting Zhao
- College of Horticulture Science and Engineering, Shandong Agricultural UniversityShandongChina
| | - Hanli You
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou UniversityYangzhouChina
| | - Yongjie Miao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou UniversityYangzhouChina
| | - Huixin Liu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of SciencesBeijingChina
| | - Lei Cao
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of SciencesBeijingChina
| | - Bingxin Wang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of SciencesBeijingChina
| | - Yi Shen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of SciencesBeijingChina
| | - Yafei Li
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of SciencesBeijingChina
| | - Ding Tang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of SciencesBeijingChina
| | - Zhukuan Cheng
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou UniversityYangzhouChina
| |
Collapse
|
6
|
Fernández-Jiménez N, Martinez-Garcia M, Varas J, Gil-Dones F, Santos JL, Pradillo M. The scaffold nucleoporins SAR1 and SAR3 are essential for proper meiotic progression in Arabidopsis thaliana. Front Cell Dev Biol 2023; 11:1285695. [PMID: 38111849 PMCID: PMC10725928 DOI: 10.3389/fcell.2023.1285695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/21/2023] [Indexed: 12/20/2023] Open
Abstract
Nuclear Pore Complexes (NPCs) are embedded in the nuclear envelope (NE), regulating macromolecule transport and physically interacting with chromatin. The NE undergoes dramatic breakdown and reformation during plant cell division. In addition, this structure has a specific meiotic function, anchoring and positioning telomeres to facilitate the pairing of homologous chromosomes. To elucidate a possible function of the structural components of the NPCs in meiosis, we have characterized several Arabidopsis lines with mutations in genes encoding nucleoporins belonging to the outer ring complex. Plants defective for either SUPPRESSOR OF AUXIN RESISTANCE1 (SAR1, also called NUP160) or SAR3 (NUP96) present condensation abnormalities and SPO11-dependent chromosome fragmentation in a fraction of meiocytes, which is increased in the double mutant sar1 sar3. We also observed these meiotic defects in mutants deficient in the outer ring complex protein HOS1, but not in mutants affected in other components of this complex. Furthermore, our findings may suggest defects in the structure of NPCs in sar1 and a potential link between the meiotic role of this nucleoporin and a component of the RUBylation pathway. These results provide the first insights in plants into the role of nucleoporins in meiotic chromosome behavior.
Collapse
Affiliation(s)
- Nadia Fernández-Jiménez
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Universidad Complutense de Madrid, Madrid, Spain
| | - Marina Martinez-Garcia
- Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering, Universidad Politécnica de Madrid, Madrid, Spain
| | | | - Félix Gil-Dones
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Universidad Complutense de Madrid, Madrid, Spain
| | - Juan Luis Santos
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Universidad Complutense de Madrid, Madrid, Spain
| | - Mónica Pradillo
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
7
|
Tang Y. Plant nuclear envelope as a hub connecting genome organization with regulation of gene expression. Nucleus 2023; 14:2178201. [PMID: 36794966 PMCID: PMC9980628 DOI: 10.1080/19491034.2023.2178201] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
Eukaryotic cells organize their genome within the nucleus with a double-layered membrane structure termed the nuclear envelope (NE) as the physical barrier. The NE not only shields the nuclear genome but also spatially separates transcription from translation. Proteins of the NE including nucleoskeleton proteins, inner nuclear membrane proteins, and nuclear pore complexes have been implicated in interacting with underlying genome and chromatin regulators to establish a higher-order chromatin architecture. Here, I summarize recent advances in the knowledge of NE proteins that are involved in chromatin organization, gene regulation, and coordination of transcription and mRNA export. These studies support an emerging view of plant NE as a central hub that contributes to chromatin organization and gene expression in response to various cellular and environmental cues.
Collapse
Affiliation(s)
- Yu Tang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
| |
Collapse
|
8
|
Liu K, Chen E, Gu Z, Dai B, Wang A, Zhu Z, Feng Q, Zhou C, Zhu J, Shangguan Y, Wang Y, Li Z, Hou Q, Lv D, Wang C, Huang T, Wang Z, Huang X, Han B. A retrotransposon insertion in MUTL-HOMOLOG 1 affects wild rice seed set and cultivated rice crossover rate. PLANT PHYSIOLOGY 2022; 190:1747-1762. [PMID: 35976143 PMCID: PMC9614510 DOI: 10.1093/plphys/kiac378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/12/2022] [Indexed: 06/06/2023]
Abstract
Wild rice (Oryza rufipogon) has a lower panicle seed setting rate (PSSR) and gamete fertility than domesticated rice (Oryza sativa), but the genetic mechanisms of this phenomenon remain unknown. Here, we cloned a null allele of OsMLH1, an ortholog of MutL-homolog 1 to yeast and mammals, from wild rice O. rufipogon W1943 and revealed a 5.4-kb retrotransposon insertion in OsMLH1 is responsible for the low PSSR in wild rice. In contrast to the wild-type, a near isogenic line NIL-mlh1 exhibits defective crossover (CO) formation during meiosis, resulting in reduced pollen viability, partial embryo lethality, and low PSSR. Except for the mutant of mismatch repair gene postmeiotic segregation 1 (Ospms1), all other MutL mutants from O. sativa indica subspecies displayed male and female semi-sterility similar to NIL-mlh1, but less severe than those from O. sativa japonica subspecies. MLH1 and MLH3 did not contribute in an additive fashion to fertility. Two types of MutL heterodimers, MLH1-PMS1 and MLH1-MLH3, were identified in rice, but only the latter functions in promoting meiotic CO formation. Compared to japonica varieties, indica cultivars had greater numbers of CO events per meiosis. Our results suggest that low fertility in wild rice may be caused by different gene defects, and indica and japonica subspecies have substantially different CO rates responsible for the discrepancy between the fertility of mlh1 and mlh3 mutants.
Collapse
Affiliation(s)
- Kun Liu
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Erwang Chen
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Zhoulin Gu
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Bingxin Dai
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Ahong Wang
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Zhou Zhu
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Qi Feng
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Congcong Zhou
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Jingjie Zhu
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Yingying Shangguan
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Yongchun Wang
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Zhen Li
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Qingqing Hou
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Danfeng Lv
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Changsheng Wang
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Tao Huang
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Zixuan Wang
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Xuehui Huang
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Bin Han
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| |
Collapse
|
9
|
Jing J, Wu N, Xu W, Wang Y, Pawlowski WP, He Y. An F-box protein ACOZ1 functions in crossover formation by ensuring proper chromosome compaction during maize meiosis. THE NEW PHYTOLOGIST 2022; 235:157-172. [PMID: 35322878 DOI: 10.1111/nph.18116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Meiosis is an essential reproductive process to create new genetic variation. During early meiosis, higher order chromosome organization creates a platform for meiotic processes to ensure the accuracy of recombination and chromosome segregation. However, little is known about the regulatory mechanisms underlying dynamic chromosome organization in plant meiosis. Here, we describe abnormal chromosome organization in zygotene1 (ACOZ1), which encodes a canonical F-box protein in maize. In acoz1 mutant meiocytes, chromosomes maintain a leptotene-like state and never compact to a zygotene-like configuration. Telomere bouquet formation and homologous pairing are also distorted and installation of synaptonemal complex ZYP1 protein is slightly defective. Loading of early recombination proteins RAD51 and DMC1 is unaffected, indicating that ACOZ1 is not required for double strand break formation or repair. However, crossover formation is severely disturbed. The ACOZ1 protein localizes on the boundary of chromatin, rather directly to chromosomes. Furthermore, we identified that ACOZ1 interacts with SKP1 through its C-terminus, revealing that it acts as a subunit of the SCF E3 ubiquitin/SUMO ligase complex. Overall, our results suggest that ACOZ1 functions independently from the core meiotic recombination pathway to influence crossover formation by controlling chromosome compaction during maize meiosis.
Collapse
Affiliation(s)
- Juli Jing
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100094, China
| | - Nan Wu
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100094, China
| | - Wanyue Xu
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yingxiang Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | | | - Yan He
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100094, China
| |
Collapse
|
10
|
Bouquet Formation Failure in Meiosis of F1 Wheat–Rye Hybrids with Mitotic-Like Division. PLANTS 2022; 11:plants11121582. [PMID: 35736732 PMCID: PMC9229938 DOI: 10.3390/plants11121582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/09/2022] [Indexed: 12/05/2022]
Abstract
Bouquet formation is believed to be involved in initiating homologous chromosome pairings in meiosis. A bouquet is also formed in the absence of chromosome pairing, such as in F1 wheat–rye hybrids. In some hybrids, meiosis is characterized by a single, mitotic-like division that leads to the formation of unreduced gametes. In this study, FISH with the telomere and centromere-specific probe, and immunoFISH with ASY1, CENH3 and rye subtelomere repeat pSc200 were employed to perform a comparative analysis of early meiotic prophase nuclei in four combinations of wheat–rye hybrids. One of these, with disomic rye chromosome 2R, is known to undergo normal meiosis, and here, 78.9% of the meiocytes formed a normal-appearing telomere bouquet and rye subtelomeres clustered in 83.2% of the meiocytes. In three combinations with disomic rye chromosomes 1R, 5R and 6R, known to undergo a single division of meiosis, telomeres clustered in 11.4%, 44.8% and 27.6% of the meiocytes, respectively. In hybrids with chromosome 1R, rye subtelomeres clustered in 12.19% of the meiocytes. In the remaining meiocytes, telomeres and subtelomeres were scattered along the nucleus circumference, forming large and small groups. We conclude that in wheat–rye hybrids with mitotic-like meiosis, chromosome behavior is altered already in the early prophase.
Collapse
|
11
|
Kim HJ, Liu C, Dernburg AF. How and Why Chromosomes Interact with the Cytoskeleton during Meiosis. Genes (Basel) 2022; 13:genes13050901. [PMID: 35627285 PMCID: PMC9140367 DOI: 10.3390/genes13050901] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 11/28/2022] Open
Abstract
During the early meiotic prophase, connections are established between chromosomes and cytoplasmic motors via a nuclear envelope bridge, known as a LINC (linker of nucleoskeleton and cytoskeleton) complex. These widely conserved links can promote both chromosome and nuclear motions. Studies in diverse organisms have illuminated the molecular architecture of these connections, but important questions remain regarding how they contribute to meiotic processes. Here, we summarize the current knowledge in the field, outline the challenges in studying these chromosome dynamics, and highlight distinctive features that have been characterized in major model systems.
Collapse
Affiliation(s)
- Hyung Jun Kim
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA;
| | - Chenshu Liu
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789, USA;
| | - Abby F. Dernburg
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA;
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789, USA;
- Correspondence:
| |
Collapse
|
12
|
Gutiérrez Pinzón Y, González Kise JK, Rueda P, Ronceret A. The Formation of Bivalents and the Control of Plant Meiotic Recombination. FRONTIERS IN PLANT SCIENCE 2021; 12:717423. [PMID: 34557215 PMCID: PMC8453087 DOI: 10.3389/fpls.2021.717423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/13/2021] [Indexed: 06/06/2023]
Abstract
During the first meiotic division, the segregation of homologous chromosomes depends on the physical association of the recombined homologous DNA molecules. The physical tension due to the sites of crossing-overs (COs) is essential for the meiotic spindle to segregate the connected homologous chromosomes to the opposite poles of the cell. This equilibrated partition of homologous chromosomes allows the first meiotic reductional division. Thus, the segregation of homologous chromosomes is dependent on their recombination. In this review, we will detail the recent advances in the knowledge of the mechanisms of recombination and bivalent formation in plants. In plants, the absence of meiotic checkpoints allows observation of subsequent meiotic events in absence of meiotic recombination or defective meiotic chromosomal axis formation such as univalent formation instead of bivalents. Recent discoveries, mainly made in Arabidopsis, rice, and maize, have highlighted the link between the machinery of double-strand break (DSB) formation and elements of the chromosomal axis. We will also discuss the implications of what we know about the mechanisms regulating the number and spacing of COs (obligate CO, CO homeostasis, and interference) in model and crop plants.
Collapse
|
13
|
Evans DE, Mermet S, Tatout C. Advancing knowledge of the plant nuclear periphery and its application for crop science. Nucleus 2021; 11:347-363. [PMID: 33295233 PMCID: PMC7746251 DOI: 10.1080/19491034.2020.1838697] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In this review, we explore recent advances in knowledge of the structure and dynamics of the plant nuclear envelope. As a paradigm, we focused our attention on the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex, a structurally conserved bridging complex comprising SUN domain proteins in the inner nuclear membrane and KASH domain proteins in the outer nuclear membrane. Studies have revealed that this bridging complex has multiple functions with structural roles in positioning the nucleus within the cell, conveying signals across the membrane and organizing chromatin in the 3D nuclear space with impact on gene transcription. We also provide an up-to-date survey in nuclear dynamics research achieved so far in the model plant Arabidopsis thaliana that highlights its potential impact on several key plant functions such as growth, seed maturation and germination, reproduction and response to biotic and abiotic stress. Finally, we bring evidences that most of the constituents of the LINC Complex and associated components are, with some specificities, conserved in monocot and dicot crop species and are displaying very similar functions to those described for Arabidopsis. This leads us to suggest that a better knowledge of this system and a better account of its potential applications will in the future enhance the resilience and productivity of crop plants.
Collapse
Affiliation(s)
- David E Evans
- Department of Biological and Medical Sciences, Oxford Brookes University , Oxford, UK
| | - Sarah Mermet
- GReD, CNRS, INSERM, Université Clermont Auvergne , Clermont-Ferrand, France
| | - Christophe Tatout
- GReD, CNRS, INSERM, Université Clermont Auvergne , Clermont-Ferrand, France
| |
Collapse
|
14
|
Yuan L, Pan J, Zhu S, Li Y, Yao J, Li Q, Fang S, Liu C, Wang X, Li B, Chen W, Zhang Y. Evolution and Functional Divergence of SUN Genes in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:646622. [PMID: 33763102 PMCID: PMC7982736 DOI: 10.3389/fpls.2021.646622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/18/2021] [Indexed: 05/27/2023]
Abstract
SUN-domain containing proteins are crucial nuclear membrane proteins involved in a plethora of biological functions, including meiosis, nuclear morphology, and embryonic development, but their evolutionary history and functional divergence are obscure. In all, 216 SUN proteins from protists, fungi, and plants were divided into two monophyletic clades (Cter-SUN and Mid-SUN). We performed comprehensive evolutionary analyses, investigating the characteristics of different subfamilies in plants. Mid-SUNs further evolved into two subgroups, SUN3 and SUN5, before the emergence of the ancestor of angiosperms, while Cter-SUNs retained one subfamily of SUN1. The two clades were distinct from each other in the conserved residues of the SUN domain, the TM motif, and exon/intron structures. The gene losses occurred with equal frequency between these two clades, but duplication events of Mid-SUNs were more frequent. In cotton, SUN3 proteins are primarily expressed in petals and stamens and are moderately expressed in other tissues, whereas SUN5 proteins are specifically expressed in mature pollen. Virus-induced knock-down and the CRISPR/Cas9-mediated knockout of GbSUN5 both showed higher ratios of aborted seeds, although pollen viability remained normal. Our results indicated divergence of biological function between SUN3 and SUN5, and that SUN5 plays an important role in reproductive development.
Collapse
Affiliation(s)
- Li Yuan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jingwen Pan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shouhong Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yan Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jinbo Yao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Qiulin Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shengtao Fang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Chunyan Liu
- College of Plant Science, Tarim University, Xinjiang, China
| | - Xinyu Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Bei Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Wei Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yongshan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| |
Collapse
|
15
|
Aguilar M, Prieto P. Telomeres and Subtelomeres Dynamics in the Context of Early Chromosome Interactions During Meiosis and Their Implications in Plant Breeding. FRONTIERS IN PLANT SCIENCE 2021; 12:672489. [PMID: 34149773 PMCID: PMC8212018 DOI: 10.3389/fpls.2021.672489] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/06/2021] [Indexed: 05/08/2023]
Abstract
Genomic architecture facilitates chromosome recognition, pairing, and recombination. Telomeres and subtelomeres play an important role at the beginning of meiosis in specific chromosome recognition and pairing, which are critical processes that allow chromosome recombination between homologs (equivalent chromosomes in the same genome) in later stages. In plant polyploids, these terminal regions are even more important in terms of homologous chromosome recognition, due to the presence of homoeologs (equivalent chromosomes from related genomes). Although telomeres interaction seems to assist homologous pairing and consequently, the progression of meiosis, other chromosome regions, such as subtelomeres, need to be considered, because the DNA sequence of telomeres is not chromosome-specific. In addition, recombination operates at subtelomeres and, as it happens in rye and wheat, homologous recognition and pairing is more often correlated with recombining regions than with crossover-poor regions. In a plant breeding context, the knowledge of how homologous chromosomes initiate pairing at the beginning of meiosis can contribute to chromosome manipulation in hybrids or interspecific genetic crosses. Thus, recombination in interspecific chromosome associations could be promoted with the aim of transferring desirable agronomic traits from related genetic donor species into crops. In this review, we summarize the importance of telomeres and subtelomeres on chromatin dynamics during early meiosis stages and their implications in recombination in a plant breeding framework.
Collapse
Affiliation(s)
- Miguel Aguilar
- Área de Fisiología Vegetal, Universidad de Córdoba, Córdoba, Spain
| | - Pilar Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
- *Correspondence: Pilar Prieto, ; orcid.org/0000-0002-8160-808X
| |
Collapse
|