1
|
Liu Y, Qiao Y, Liao W. Calmodulin-Binding Transcription Factors: Roles in Plant Response to Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2025; 14:532. [PMID: 40006791 PMCID: PMC11859506 DOI: 10.3390/plants14040532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/07/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025]
Abstract
Plants face many abiotic stresses throughout their life cycle, such as drought, high temperature, low temperature, and salinity. To survive and reproduce, plants have evolved a complex and elaborate signal transduction network to sense stress signals and initiate corresponding defense mechanisms. Calcium ion (Ca2+), as a secondary messenger, plays an important role in mediating signal transduction in plant cells. Calmodulin (CaM) is an important class of Ca2+ receptors that sense changes in cellular calcium ion concentration and can interact with a range of proteins to regulate the activity of downstream target proteins. Calmodulin-binding transcription factors (CAMTAs) are a family of transcription factors (TFs) that are widely present in plants and can bind to CaM. The CAMTAs are regarded as the most characterized CaM-binding TF family in the plant Ca2+ signaling pathway. In recent years, studies have shown that CAMTAs play an important regulatory role in plant abiotic stress response and plant growth and development. Therefore, this review summarizes the recent progress in the discovery, structure, and role of CAMTAs under abiotic stresses, with a view to providing a reference for future CAMTA studies. Finally, the prospects and directions for further research on the potential mechanisms of CAMTAs in plants are also discussed.
Collapse
Affiliation(s)
| | | | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (Y.L.); (Y.Q.)
| |
Collapse
|
2
|
Yu Y, Rong K, Sui X, Zhang L, Zhang M, Hu H, Jia J, Wu J, Li C. Analysis of NRAMP genes in the Triticeae reveals that TaNRAMP5 positively regulates cadmium (Cd) tolerance in wheat (Triticum aestivum). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109321. [PMID: 39616798 DOI: 10.1016/j.plaphy.2024.109321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 02/05/2025]
Abstract
Natural Resistance-Associated Macrophage Protein (NRAMP), a class of metal transporter proteins widely distributed in plants, is mainly involved in the uptake and transport by plants of metal ions, such as iron, manganese and cadmium. The current study is the first to fully investigate the Triticum aestivum (T. aestivum) NRAMP gene family. 33 NRAMP members were identified from the entire T. aestivum genome and classified into three main groups based on related genes found in five other species. Among the TaNRAMP genes, the exon-intron structure and motif composition exhibited significant similarity among members of the same evolutionary branch of the phylogenetic tree. Based on RNA-seq and qRT-PCR analyses, we identified the expression patterns of the TaNRAMP genes in different tissues and under various stress conditions. TaNRAMP genes expression were responsive to induction by cadmium (Cd). Overexpression of the TaNRAMP5 gene enhanced wheat and tobacco tolerance to Cd toxicity. Additionally, the TaNRAMP5 protein physically interacted with protein phosphatase 2A (PP2A) in yeast cells. This study provides a valuable reference point for further investigations into the functional and molecular mechanisms of the NRAMP gene family.
Collapse
Affiliation(s)
- Yongang Yu
- College of Agriculture, Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, 453003, China; Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Kaikuo Rong
- College of Agriculture, Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Xiaotian Sui
- College of Agriculture, Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Lei Zhang
- College of Agriculture, Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, 453003, China; College of Life Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Mingxia Zhang
- College of Life Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Haiyan Hu
- College of Agriculture, Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Jishen Jia
- College of Mathematical Sciences, Henan Institute of Science and Technology, Xinxiang, China; Henan Engineering and Technology Research Center of Digital Agriculture, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| | - Jianyu Wu
- Henan Agricultural University, Zhengzhou 450000, China.
| | - Chengwei Li
- Henan Agricultural University, Zhengzhou 450000, China.
| |
Collapse
|
3
|
Pandey P, Rai G, Garg A, Kumar D. Comprehensive in-silico characterization and expression pattern of calmodulin genes under various abiotic and biotic stresses in Indian mustard ( Brassica juncea). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2025; 31:247-262. [PMID: 40070539 PMCID: PMC11890825 DOI: 10.1007/s12298-025-01561-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 03/14/2025]
Abstract
Calcium (Ca2⁺) as a secondary messenger has a multidimensional role, including the growth and development of plants and the adaptive response to stress conditions. Calmodulin (CaM), a calcium-binding protein, uniquely binds with these Ca2⁺ ions and transmits Ca2⁺ signals. Calmodulin proteins have been well-reported in various plants for playing a role in abiotic and biotic stress signaling; however, a comprehensive analysis of the CaM genes of Indian mustard (Brassica juncea) has not been studied much. This study reports their chromosome placements, phylogenetic relations, the presence of protein motifs and cis-acting elements, and their expression patterns under stress due to salt, heat, cadmium, Xanthomonas campestris, and Alternaria brassicae. We identified 23 BjCaM genes coding for eight BjCaM proteins possessing the signature EF-hand domains. Chromosome locations, intron-exon structure, and in-silico protein characterization pointed toward genetic diversification. Phylogenetic analysis revealed a close relationship with previously characterized CaM proteins from Arabidopsis and rice. Cis-acting elements in the promoter regions suggested the potential role of BjCaM candidates in hormone signaling and various stress-responsive regulatory mechanisms. qRT-PCR analysis showed differential expression patterns, of which BjCaM17 and BjCaM19 showed higher expression under all stresses. The seven selected BjCaM genes were sensitive to cadmium stress. Interestingly, despite translating to same protein, BjCaM15, BjCaM17, and BjCaM19 showed differential expressions under the same stresses. This research represents the first genome-wide analysis of calmodulin genes in Indian mustard, providing a valuable reference for decoding calcium signaling via calmodulin and its potential exploitation to improve crop resistance to stress conditions. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-025-01561-x.
Collapse
Affiliation(s)
- Prashasti Pandey
- Plant Engineering and Stress Adaptomics Lab, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh India
| | - Garima Rai
- Plant Engineering and Stress Adaptomics Lab, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh India
| | - Anchal Garg
- Plant Engineering and Stress Adaptomics Lab, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh India
| | - Deepak Kumar
- Plant Engineering and Stress Adaptomics Lab, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh India
| |
Collapse
|
4
|
Wei S, Chen M, Wang F, Tu Y, Xu Y, Fu L, Zeng F, Zhang G, Wu D, Shen Q. OsCaM1-1 Is Responsible for Salt Tolerance by Regulating Na +/K + Homoeostasis in Rice. PLANT, CELL & ENVIRONMENT 2025; 48:1393-1408. [PMID: 39445791 DOI: 10.1111/pce.15212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024]
Abstract
Calmodulin, a highly conserved calcium-binding protein, plays a crucial role in response to salt stress. Previous studies investigated sequence and function of calmodulin members in some plants, but their roles in rice have not been fully elucidated. Three OsCaM1 genes namely OsCaM1-1/2/3 encode the same OsCaM1 protein. Here, we found that OsCaM1-1 had significantly higher expression than the other two genes under salt stress. After 4 weeks of exposure to 75 mM NaCl, OsCaM1-1 overexpressed mutants showed higher salt tolerance, while knocked-out mutants exhibited lower salt tolerance, compared to the wild type. Moreover, the oscam1-1 mutants had higher Na+ concentration and Na+/K+ ratio in both shoots and roots, less instantaneous K+ and Ca2+ fluxes in roots, compared to wild type under salt stress, indicating the involvement of OsCaM1-1 in regulation of Na+ and K+ homoeostasis via Ca2+ signal. RNA-seq analysis identified 452 differentially expressed genes (DEGs) regulated by OsCaM1-1 and salt stress, and they were mainly enriched in nucleus DNA-binding activities, including ABI5, WRKY76, WRKY48 and bHLH120 transcription factors. Knockout of OsCaM1-1 also modulated the expression of Na+ transporters, including HKT1;1, HKT1;5, SOS1, NHX1 and NHX4. In conclusion, OsCaM1-1 positively regulates salt tolerance in rice through mediating ion homoeostasis.
Collapse
Affiliation(s)
- Siqi Wei
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Mingjiong Chen
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Fengyue Wang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yishan Tu
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yunfeng Xu
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Liangbo Fu
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Fanrong Zeng
- School of Agriculture, Yangtze University, Jingzhou, China
| | - Guoping Zhang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Zhongyuan Institute, Zhejiang University, Zhengzhou, China
| | - Dezhi Wu
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Changsha, China
- Yuelushan Laboratory, Changsha, China
| | - Qiufang Shen
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Zhongyuan Institute, Zhejiang University, Zhengzhou, China
| |
Collapse
|
5
|
Li Q, Pan Z, Zhang Z, Tang H, Cai J, Zeng X, Li Z. β-Glucan content increase in Waxy-mutated barley is closely associated with positive stress responses and is regulated by ASR1. Carbohydr Polym 2025; 347:122536. [PMID: 39486912 DOI: 10.1016/j.carbpol.2024.122536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/30/2024] [Accepted: 07/22/2024] [Indexed: 11/04/2024]
Abstract
Mixed-linkage (1,3; 1,4)-β-D-glucan (MLG) impacts the food and industrial end-uses of barley, but the molecular mechanism of variations in MLG content remains unclear. MLG content usually increases in Waxy-mutated barley. This study applied transcriptomic, proteomic, and metabolomic analyses to Waxy-mutated recombinant inbred lines with higher MLG content and wild-type lines with lower MLG content, and identified candidate genes and pathways regulating MLG content through combining preliminary gene function analysis. MLG biosynthesis differed significantly during late grain development in the Waxy-mutated and wild-type barley lines. The MLG increase was closely associated with strongly active sugar and starch metabolism and stress-responsive plant hormones, particularly abscisic acid (ABA) signaling process. Stress-responsive transcript factors ILR3, BTF3, RGGA, and PR13 protein bind to CslF6, which is critical for barley MLG biosynthesis, and the stress-responsive gene ASR1 also had a positive effect on MLG increase. Waxy mutation enhances barley stress responses by activating ABA- or other stress-responsive plant hormones signaling processes, which facilitates MLG biosynthesis. This study provides a new approach for elucidating the variations in MLG content of barley grains.
Collapse
Affiliation(s)
- Qiao Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin South Road, Chengdu 610041, People's Republic of China
| | - Zhifen Pan
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin South Road, Chengdu 610041, People's Republic of China.
| | - Zhihui Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin South Road, Chengdu 610041, People's Republic of China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, People's Republic of China
| | - Hongmei Tang
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin South Road, Chengdu 610041, People's Republic of China
| | - Jingchi Cai
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin South Road, Chengdu 610041, People's Republic of China; University of the Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100039, People's Republic of China
| | - Xingquan Zeng
- Tibet Academy of Agriculture and Animal Sciences, No. 130 Jinzhu West Road, Lhasa 850032, People's Republic of China
| | - Zhongyi Li
- CSIRO Agriculture Flagship, GPO Box 1600, Canberra, ACT 2601, Australia
| |
Collapse
|
6
|
Fu MM, Cao F, Qiu CW, Liu C, Tong T, Feng X, Cai S, Chen ZH, Wu F. Xyloglucan endotransglucosylase-hydrolase 1 is a negative regulator of drought tolerance in barley via modulating lignin biosynthesis and stomatal closure. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109171. [PMID: 39369646 DOI: 10.1016/j.plaphy.2024.109171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/08/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
The projected increase in drought severity and duration worldwide poses a significant threat to crop growth and sustainable food production. Xyloglucan endotransglucosylase/hydrolases (XTHs) family is essential in cell wall modification through the construction and restructuring of xyloglucan cross-links, but their role in drought tolerance and stomatal regulation is still illusive. We cloned and functionally characterized HvXTH1 using genetic, physiological, biochemical, transcriptomic and metabolomic approaches in barley. Evolutionary bioinformatics showed that orthologues of XTH1 was originated from Streptophyte algae (e.g. some species in the Zygnematales) the closest clade to land plants based on OneKP database. HvXTH1 is highly expressed in leaves and HvXTH1 is localized to the plasma membrane. Under drought conditions, silencing HvXTH1 in drought-tolerant Tibetan wild barley XZ5 induced a significant reduction in water loss rate and increase in biomass, however overexpressing HvXTH1 exhibited drought sensitivity with significantly less drought-responsive stomata, lower lignin content and a thicker cell wall. Transcriptome profile of the wild type Golden Promise and HvXTH1-OX demonstrated that drought-induced differentially expressed genes in leaves are related to cell wall biosynthesis, abscisic acid and stomatal signaling, and stress response. Furthermore, overexpressing HvXTH1 suppressed both genes and metabolites in the phenylpropanoid pathway for lignin biosynthesis, leading to drought sensitivity of HvXTH1-OX. We provide new insight by deciphering the function of a novel protein HvXTH1 for drought tolerance in cell wall modification, stomatal regulation, and phenylpropanoid pathway for lignin biosynthesis in barley. The function of HvXTH1 in drought response will be beneficial to develop crop varieties adapted to drought.
Collapse
Affiliation(s)
- Man-Man Fu
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China; College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, China
| | - Fangbin Cao
- College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, China
| | - Cheng-Wei Qiu
- College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Chen Liu
- College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, China
| | - Tao Tong
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Xue Feng
- College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, China
| | - Shengguan Cai
- College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, 2751, Australia; Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia.
| | - Feibo Wu
- College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
7
|
Ding Q, Huang Z, Wang Z, Jian S, Zhang M. Identifying Calmodulin and Calmodulin-like Protein Members in Canavalia rosea and Exploring Their Potential Roles in Abiotic Stress Tolerance. Int J Mol Sci 2024; 25:11725. [PMID: 39519274 PMCID: PMC11545983 DOI: 10.3390/ijms252111725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Calmodulins (CaMs) and calmodulin-like proteins (CMLs) belong to families of calcium-sensors that act as calcium ion (Ca2+) signal-decoding proteins and regulate downstream target proteins. As a tropical halophyte, Canavalia rosea shows great resistance to multiple abiotic stresses, including high salinity/alkalinity, extreme drought, heat, and intense sunlight. However, investigations of calcium ion signal transduction involved in the stress responses of C. rosea are limited. The CaM and CML gene families have been identified and characterized in many other plant species. Nevertheless, there is limited available information about these genes in C. rosea. In this study, a bioinformatic analysis, including the gene structures, conserved protein domains, phylogenetic relationships, chromosome distribution, and gene synteny, was comprehensively performed to identify and characterize CrCaMs and CrCMLs. A spatio-temporal expression assay in different organs and environmental conditions was then conducted using the RNA sequencing technique. Additionally, several CrCaM and CrCML members were then cloned and functionally characterized using the yeast heterogeneous expression system, and some of them were found to change the tolerance of yeast to heat, salt, alkalinity, and high osmotic stresses. The results of this study provide a foundation for understanding the possible roles of the CrCaM and CrCML genes, especially for halophyte C. rosea's natural ecological adaptability for its native habitats. This study also provides a theoretical basis for further study of the physiological and biochemical functions of plant CaMs and CMLs that are involved in tolerance to multiple abiotic stresses.
Collapse
Affiliation(s)
- Qianqian Ding
- Guangdong Provincial Key Laboratory of Applied Botany & South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Q.D.); (Z.H.); (Z.W.); (S.J.)
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zengwang Huang
- Guangdong Provincial Key Laboratory of Applied Botany & South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Q.D.); (Z.H.); (Z.W.); (S.J.)
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhengfeng Wang
- Guangdong Provincial Key Laboratory of Applied Botany & South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Q.D.); (Z.H.); (Z.W.); (S.J.)
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Shuguang Jian
- Guangdong Provincial Key Laboratory of Applied Botany & South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Q.D.); (Z.H.); (Z.W.); (S.J.)
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Mei Zhang
- Guangdong Provincial Key Laboratory of Applied Botany & South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Q.D.); (Z.H.); (Z.W.); (S.J.)
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
8
|
Li YN, Lei C, Yang Q, Yu X, Li S, Sun Y, Ji C, Zhang C, Xue JA, Cui H, Li R. Identification and expression analysis of calcium-dependent protein kinase family in oat ( Avena sativa L.) and their functions in response to saline-alkali stresses. FRONTIERS IN PLANT SCIENCE 2024; 15:1395696. [PMID: 39450084 PMCID: PMC11499199 DOI: 10.3389/fpls.2024.1395696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/18/2024] [Indexed: 10/26/2024]
Abstract
Calcium-dependent protein kinases (CDPKs) serve as calcium ion sensors and play crucial roles in all aspects of plant life cycle. While CDPK gene family has been extensively studied in various plants, there is limited information available for CDPK members in oat, an important cereal crop worldwide. Totally, 60 AsCDPK genes were identified in oat genome and were classified into four subfamilies based on their phylogenetic relationship. The members within each subfamily shared similar gene structure and conserved motifs. Collinearity analysis revealed that AsCDPK gene amplification was attributed to segmental duplication events and underwent strong purifying selection. AsCDPK promoters were predicted to contain cis-acting elements associated with hormones, biotic and abiotic stresses. AsCDPK gene expressions were induced by different salt stresses, exhibiting stress-specific under different salt treatments. Moreover, overexpression of AsCDPK26 gene enhanced salt resistance in C. reinhardtii, a single-cell photoautotrophic model plants. Further analysis revealed a significant correlation between AsCDPK26 and Na+/H+ antiporter 1 (p<0.05), suggesting that AsCDPK26 may interact with ion transporter to modulate salt resistance. These results not only provide valuable insights into AsCDPK genes in response to different salt stresses, but also lay the foundation to mine novel candidates for improving salt tolerance in oat and other crops.
Collapse
Affiliation(s)
- Ya-nan Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Chunyan Lei
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Qian Yang
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Xiao Yu
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Siming Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Yan Sun
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Chunli Ji
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Chunhui Zhang
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Jin-ai Xue
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Hongli Cui
- Key Laboratory of Coastal Biology and Bio-Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandon, China
| | - Runzhi Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| |
Collapse
|
9
|
Thongsima N, Khunsanit P, Navapiphat S, Henry IM, Comai L, Buaboocha T. Sequence-based analysis of the rice CAMTA family: haplotype and network analyses. Sci Rep 2024; 14:23156. [PMID: 39367004 PMCID: PMC11452383 DOI: 10.1038/s41598-024-73668-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/19/2024] [Indexed: 10/06/2024] Open
Abstract
The calmodulin-binding transcription activator (CAMTA) family contributes to stress responses in many plant species. The Oryza sativa ssp. japonica genome harbors seven CAMTA genes; however, intraspecific variation and functional roles of this gene family have not been determined. Here, we comprehensively evaluated the structure and characteristics of the CAMTA genes in japonica rice using bioinformatics approaches and RT-qPCR. Within the CAMTA gene and promoter sequences, 527 single nucleotide polymorphisms were retrieved from 3,024 rice accessions. The CAMTA genes could be subdivided into 5-14 haplotypes. Association analyses between haplotypes and phenotypic traits, such as grain weight and salt stress parameters, identified phenotypic differences between rice subpopulations harboring different CAMTA haplotypes. Co-expression analyses and the identification of CAMTA-specific binding motifs revealed candidate genes regulated by CAMTA. A Gene Ontology functional enrichment analysis of 690 co-expressed genes revealed that CAMTA genes have key roles in defense responses. An interaction analysis identified 30 putative CAMTA interactors. Three genes were identified in co-expression and interaction network analyses, suggesting that they are potentially regulated by CAMTAs. Based on all information obtained together with the phenotypes of the CRISPR-Cas9 knockout mutant lines of three OskCAMTA genes generated, CAMTA1 likely plays important roles in the response to salt stress in rice. Overall, our findings suggest that the CAMTA gene family is involved in development and the salt stress response and reveal candidate target genes, providing a basis for further functional characterization.
Collapse
Affiliation(s)
- Nattana Thongsima
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Prasit Khunsanit
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sarunkorn Navapiphat
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Isabelle M Henry
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, 95616, USA
| | - Luca Comai
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, 95616, USA
| | - Teerapong Buaboocha
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
10
|
Xiong J, Huang B, Peng D, Shen Q, Wu D, Zhang G. JAZ2 Negatively Regulates Drought Tolerance in Barley by Modulating PLT2 Expression. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39323024 DOI: 10.1111/pce.15149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/27/2024]
Abstract
Drought is an important abiotic factor constricting crop production globally. Although the roles of JAZ proteins in regulating jasmonic acid signalling and plant responses to environmental stress are well documented, their specific functions and underlying mechanisms remain little known. In this study, JAZ proteins in barley were thoroughly analyzed, revealing a total of 11 members classified into three phylogenetic subgroups. HvJAZ2, based on its distinct expression patterns, is considered a key candidate gene for regulating drought tolerance in barley. Using the HvJAZ2 knockout mutants, we revealed that the gene negatively regulates drought tolerance by inhibiting barley root growth. Notably, the jaz2 mutants upregulated the expression of root development genes, including SHR1, PLT1, PLT2 and PLT6. plt2 and plt1/plt2 mutants exhibited suppressed root development and reduced drought tolerance. Analysis of interactions between HvJAZ2 and other proteins showed that HvJAZ2 does not directly interact with HvPLT1/2/6, but interacts with some other proteins. BIFC and LCA assays further confirmed the nuclear interaction between HvJAZ2 and HvMYC2. Y1H and Dual-Luciferase experiments demonstrated that HvMYC2 can bind to and activate the HvPLT2 promoter. In summary, HvJAZ2 negatively regulates root development and drought tolerance in barley by suppressing HvPLT2 expression through interacting with HvMYC2.
Collapse
Affiliation(s)
- Jiangyan Xiong
- Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Department of Agronomy, Zhejiang University, Hangzhou, China
| | - Binbin Huang
- Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Department of Agronomy, Zhejiang University, Hangzhou, China
| | - Di Peng
- Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Department of Agronomy, Zhejiang University, Hangzhou, China
| | - Qiufang Shen
- Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Department of Agronomy, Zhejiang University, Hangzhou, China
| | - DeZhi Wu
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Guoping Zhang
- Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Department of Agronomy, Zhejiang University, Hangzhou, China
- Zhongyuan Institute, Zhejiang University, Zhengzhou, P.R. China
| |
Collapse
|
11
|
Mehla S, Singh Y, Kumar U, Balyan P, Singh KP, Dhankher OP. Overexpression of rice lectin receptor-like kinase, OsLec-RLK, confers salinity stress tolerance and increases seed yield in pigeon pea (Cajanus cajan (L.) Millsp.). PLANT CELL REPORTS 2024; 43:230. [PMID: 39251423 DOI: 10.1007/s00299-024-03314-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/10/2024] [Indexed: 09/11/2024]
Abstract
KEY MESSAGE OsLec-RLK overexpression enhances cell signalling and salt stress tolerance in pigeon pea, enhancing seed yield and harvest index and thus, enabling marginal lands to increase food and nutritional security. Lectin Receptor-like kinases (Lec-RLKs) are highly effective cell signaling molecules that counteract various stresses, including salt stress. We engineered pigeon pea by overexpressing OsLec-RLK gene for enhancing salt tolerance. The OsLec-RLK overexpression lines demonstrated superior performance under salt stress, from vegetative to reproductive phase, compared to wild types (WT). The overexpression lines had significantly higher K+/Na+ ratio than WT exposed to 100 mM NaCl. Under salt stress, transgenic lines showed higher levels of chlorophyll, proline, total soluble sugars, relative water content, and peroxidase and catalase activity than WT plants. Membrane injury index and lipid peroxidation were significantly reduced in transgenic lines. Analysis of phenological and yield attributes confirmed that the OsLec-RLK pigeon pea lines maintain plant vigor, with 10.34-fold increase in seed yield (per plant) and 4-5-fold increase in harvest index of overexpression lines, compared to wild type. Meanwhile, the overexpression of OsLec-RLK up-regulated the expression levels of histone deacetylase1, acyl CoA, ascorbate peroxidase, peroxidase, glutathione reductase and catalase, which were involved in the K+/Na+ homeostasis pathway. This study showed the potential of OsLec-RLK gene for increasing crop productivity and yields under salt stress and enabling the crops to be grown on marginal lands for increasing food and nutritional security.
Collapse
Affiliation(s)
- Sheetal Mehla
- Department of Molecular Biology and Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Yogita Singh
- Department of Molecular Biology and Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, 125004, India
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| | - Upendra Kumar
- Department of Molecular Biology and Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, 125004, India.
- Department of Plant Science, Mahatma Jyotiba Phule Rohilkhand University, Bareilly, 243006, India.
| | - Priyanka Balyan
- Department of Botany, Deva Nagri P.G. College, CCS University, Meerut, 245206, India
| | - Krishna Pal Singh
- Biophysics Unit, College of Basic Sciences & Humanities, GB Pant University of Agriculture & Technology, Pantnagar, 263145, India
- Vice-Chancellor's Secretariat, Mahatma Jyotiba Phule Rohilkhand University, Bareilly, 243001, India
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
12
|
Chang H, Wu T, Shalmani A, Xu L, Li C, Zhang W, Pan R. Heat shock protein HvHSP16.9 from wild barley enhances tolerance to salt stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:687-704. [PMID: 38846458 PMCID: PMC11150235 DOI: 10.1007/s12298-024-01455-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/13/2024] [Accepted: 04/29/2024] [Indexed: 06/09/2024]
Abstract
Heat shock proteins (HSPs) are known to play a crucial role in the response of plants to environmental stress, particularly heat stress. Nevertheless, the function of HSPs in salt stress tolerance in plants, especially in barley, remains largely unexplored. Here, we aimed to investigate and compare the salt tolerance mechanisms between wild barley EC_S1 and cultivated barley RGT Planet through a comprehensive analysis of physiological parameters and transcriptomic profiles. Results demonstrated that the number of differentially expressed genes (DEGs) in EC_S1 was significantly higher than in RGT Planet, indicating that wild barley gene regulation is more adaptive to salt stress. KEGG enrichment analysis revealed that DEGs were mainly enriched in the processes of photosynthesis, plant hormone signal transduction, and reactive oxygen species metabolism. Furthermore, the application of weighted gene correlation network analysis (WGCNA) enabled the identification of a set of key genes, including small heat shock protein (sHSP), Calmodulin-like proteins (CML), and protein phosphatases 2C (PP2C). Subsequently, a novel sHSP gene, HvHSP16.9 encoding a protein of 16.9 kDa, was cloned from wild barley, and its role in plant response to salt stress was elucidated. In Arabidopsis, overexpression of HvHSP16.9 increased the salt tolerance. Meanwhile, barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) of HvHSP16.9 significantly reduced the salt tolerance in wild barley. Overall, this study offers a new theoretical framework for comprehending the tolerance and adaptation mechanisms of wild barley under salt stress. It provides valuable insights into the salt tolerance function of HSP, and identifies new candidate genes for enhancing cultivated barley varieties. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01455-4.
Collapse
Affiliation(s)
- Haowen Chang
- Research Center of Crop Stresses Resistance Technologies/MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Yangtze University, Jingzhou, 434025 China
| | - Tiantian Wu
- Research Center of Crop Stresses Resistance Technologies/MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Yangtze University, Jingzhou, 434025 China
| | - Abdullah Shalmani
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100 China
| | - Le Xu
- Research Center of Crop Stresses Resistance Technologies/MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Yangtze University, Jingzhou, 434025 China
| | - Chengdao Li
- Western Crop Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6105 Australia
| | - Wenying Zhang
- Research Center of Crop Stresses Resistance Technologies/MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Yangtze University, Jingzhou, 434025 China
| | - Rui Pan
- Research Center of Crop Stresses Resistance Technologies/MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Yangtze University, Jingzhou, 434025 China
| |
Collapse
|
13
|
Hau B, Symonds K, Teresinski H, Janssen A, Duff L, Smith M, Benidickson K, Plaxton W, Snedden WA. Arabidopsis Calmodulin-like Proteins CML13 and CML14 Interact with Calmodulin-Binding Transcriptional Activators and Function in Salinity Stress Response. PLANT & CELL PHYSIOLOGY 2024; 65:282-300. [PMID: 38036467 DOI: 10.1093/pcp/pcad152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 12/02/2023]
Abstract
Eukaryotic cells use calcium ions (Ca2+) as second messengers, particularly in response to abiotic and biotic stresses. These signals are detected by Ca2+ sensor proteins, such as calmodulin (CaM), which regulate the downstream target proteins. Plants also possess many CaM-like proteins (CMLs), most of which remain unstudied. We recently demonstrated that Arabidopsis CML13 and CML14 interact with proteins containing isoleucine/glutamine (IQ) domains, including CaM-binding transcriptional activators (CAMTAs). Here, we show that CaM, CML13 and CML14 bind all six members of the Arabidopsis CAMTA family. Using a combination of in planta and in vitro protein-interaction assays, we tested 11 members of the CaM/CML family and demonstrated that only CaM, CML13 and CML14 bind to CAMTA IQ domains. CaM, CML13 and CML14 showed Ca2+-independent binding to the IQ region of CAMTA6 and CAMTA3, and CAMTA6 in vitro exhibited some specificity toward individual IQ domains within CAMTA6 in split-luciferase in planta assays. We show that cml13 mutants exhibited enhanced salinity tolerance during germination compared to wild-type plants, a phenotype similar to camta6 mutants. In contrast, plants overexpressing CML13-GFP or CML14-GFP in the wild-type background showed increased NaCl sensitivity. Under mannitol stress, cml13 mutants were more susceptible than camta6 mutants or wild-type plants. The phenotype of cml13 mutants could be rescued with the wild-type CML13 gene. Several salinity-marker genes under CAMTA6 control were similarly misregulated in both camta6 and cml13 mutants, further supporting a role for CML13 in CAMTA6 function. Collectively, our data suggest that CML13 and CML14 participate in abiotic stress signaling as CAMTA effectors.
Collapse
Affiliation(s)
- Bryan Hau
- Department of Biology, Queen's University, Kingston, ON K7L 4L8, Canada
| | - Kyle Symonds
- Department of Biology, Queen's University, Kingston, ON K7L 4L8, Canada
| | - Howard Teresinski
- Department of Biology, Queen's University, Kingston, ON K7L 4L8, Canada
| | - Abby Janssen
- Department of Biology, Queen's University, Kingston, ON K7L 4L8, Canada
| | - Liam Duff
- Department of Biology, Queen's University, Kingston, ON K7L 4L8, Canada
| | - Milena Smith
- Department of Biology, Queen's University, Kingston, ON K7L 4L8, Canada
| | | | - William Plaxton
- Department of Biology, Queen's University, Kingston, ON K7L 4L8, Canada
| | - Wayne A Snedden
- Department of Biology, Queen's University, Kingston, ON K7L 4L8, Canada
| |
Collapse
|
14
|
Xiong M, Xu J, Zhou Z, Peng B, Shen Y, Shen H, Xu X, Li C, Deng L, Feng G. Salinity inhibits seed germination and embryo growth by reducing starch mobilization efficiency in barley. PLANT DIRECT 2024; 8:e564. [PMID: 38312996 PMCID: PMC10835642 DOI: 10.1002/pld3.564] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/21/2023] [Accepted: 12/12/2023] [Indexed: 02/06/2024]
Abstract
Barley is one of the world's earliest domesticated crops, which is widely used for beer production, animal feeding, and health care. Barley seed germination, particularly in increasingly saline soils, is key to ensure the safety of crop production. However, the mechanism of salt-affected seed germination in barley remains elusive. Here, two different colored barley varieties were used to independently study the regulation mechanism of salt tolerance during barley seed germination. High salinity delays barley seed germination by slowing down starch mobilization efficiency in seeds. The starch plate test revealed that salinity had a significant inhibitory effect on α-amylase activity in barley seeds. Further, NaCl treatment down-regulated the expression of Amy1, Amy2 and Amy3 genes in germinated seeds, thereby inhibiting α-amylase activity. In addition, the result of embryogenic culture system in vitro showed that the shoot elongation of barley was significantly inhibited by salt stress. These findings indicate that it is a feasible idea to study the regulation mechanism of salinity on barley seed germination and embryo growth from the aspect of starch-related source-sink communication.
Collapse
Affiliation(s)
- Min Xiong
- College of Marine and Biology EngineeringYancheng Institute of TechnologyYanchengJiangsuChina
| | - Jian Xu
- College of Marine and Biology EngineeringYancheng Institute of TechnologyYanchengJiangsuChina
| | - Zhou Zhou
- College of Marine and Biology EngineeringYancheng Institute of TechnologyYanchengJiangsuChina
| | - Bin Peng
- College of Marine and Biology EngineeringYancheng Institute of TechnologyYanchengJiangsuChina
| | - Yuxiang Shen
- College of Marine and Biology EngineeringYancheng Institute of TechnologyYanchengJiangsuChina
| | - Huiquan Shen
- Jiangsu Coastal Area Institute of Agricultural SciencesYanchengJiangsuChina
| | - Xiao Xu
- Jiangsu Coastal Area Institute of Agricultural SciencesYanchengJiangsuChina
| | - Changya Li
- Yancheng Grain and Oil Crop Technical Guidance StationYanchengJiangsuChina
| | - Lina Deng
- College of Marine and Biology EngineeringYancheng Institute of TechnologyYanchengJiangsuChina
| | - Gongneng Feng
- College of Marine and Biology EngineeringYancheng Institute of TechnologyYanchengJiangsuChina
| |
Collapse
|
15
|
You W, Zhang J, Ru X, Xu F, Wu Z, Jin P, Zheng Y, Cao S. CmCML11 interacts with CmCAMTA5 to enhance γ-aminobutyric acid (GABA) accumulation by regulating GABA shunt in fresh-cut cantaloupe. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108217. [PMID: 38039581 DOI: 10.1016/j.plaphy.2023.108217] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023]
Abstract
The effect of calcium chloride (CaCl2) treatment on γ-aminobutyric acid (GABA) accumulation in fresh-cut cantaloupe and the involved mechanisms were investigated. The result showed that 1% (w/v) CaCl2 treatment increased GABA content and activities of glutamate decarboxylase (GAD) and succinate semialdehyde dehydrogenase (SSADH), while decreased glutamate (Glu) content and GABA transaminase (GABA-T) activities in fresh-cut cantaloupe. CmCML11 and CmCAMTA5 expressions of CaCl2-treated fruit increased by 187.4% and 165.6% than control fruit in the initial 6 h. Besides, expressions of GABA shunt genes, including CmGAD1, CmGAD2, CmGABA-T and CmSSADH were also up-regulated by CaCl2 treatment during early storage. Moreover, acting as a transcriptional activator, CmCAMTA5 could bind to the CG-box in promoters of CmGAD1, CmGABA-T and CmSSADH and activate their transcription. Furthermore, the interaction between CmCML11 and CmCAMTA5 could enhance the transcriptional activation on GABA shunt genes which were regulated by CmCAMTA5. Collectively, our findings revealed that CaCl2 treatment promoted GABA accumulation in fresh-cut cantaloupe via the combined effect of CmCML11 and CmCAMTA5 in the regulation of expressions of CmGAD1, CmGABA-T, and CmSSADH in GABA shunt.
Collapse
Affiliation(s)
- Wanli You
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Jinglin Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Xueyin Ru
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Feng Xu
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Zhengguo Wu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Peng Jin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China.
| | - Shifeng Cao
- College of Biological and Environmental Sciences, Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Zhejiang Wanli University, Ningbo 315100, PR China.
| |
Collapse
|
16
|
Song H, Cao Y, Zhao X, Zhang L. Na+-preferential ion transporter HKT1;1 mediates salt tolerance in blueberry. PLANT PHYSIOLOGY 2023; 194:511-529. [PMID: 37757893 DOI: 10.1093/plphys/kiad510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023]
Abstract
Soil salinity is a major environmental factor constraining growth and productivity of highbush blueberry (Vaccinium corymbosum). Leaf Na+ content is associated with variation in salt tolerance among blueberry cultivars; however, the determinants and mechanisms conferring leaf Na+ exclusion are unknown. Here, we observed that the blueberry cultivar 'Duke' was more tolerant than 'Sweetheart' and accumulated less Na+ in leaves under salt stress conditions. Through transcript profiling, we identified a member of the high-affinity K+ transporter (HKT) family in blueberry, VcHKT1;1, as a candidate gene involved in leaf Na+ exclusion and salt tolerance. VcHKT1;1 encodes a Na+-preferential transporter localized to the plasma membrane and is preferentially expressed in the root stele. Heterologous expression of VcHKT1;1 in Arabidopsis (Arabidopsis thaliana) rescued the salt hypersensitivity phenotype of the athkt1 mutant. Decreased VcHKT1;1 transcript levels in blueberry plants expressing antisense-VcHKT1;1 led to increased Na+ concentrations in xylem sap and higher leaf Na+ contents compared with wild-type plants, indicating that VcHKT1;1 promotes leaf Na+ exclusion by retrieving Na+ from xylem sap. A naturally occurring 8-bp insertion in the promoter increased the transcription level of VcHKT1;1, thus promoting leaf Na+ exclusion and blueberry salt tolerance. Collectively, we provide evidence that VcHKT1;1 promotes leaf Na+ exclusion and propose natural variation in VcHKT1;1 will be valuable for breeding Na+-tolerant blueberry cultivars in the future.
Collapse
Affiliation(s)
- Huifang Song
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, Research & Development Center of Blueberry, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Yibo Cao
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, Research & Development Center of Blueberry, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Xinyan Zhao
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, Research & Development Center of Blueberry, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Lingyun Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, Research & Development Center of Blueberry, College of Forestry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
17
|
Lin R, Song J, Tang M, Wang L, Yu J, Zhou Y. CALMODULIN6 negatively regulates cold tolerance by attenuating ICE1-dependent stress responses in tomato. PLANT PHYSIOLOGY 2023; 193:2105-2121. [PMID: 37565524 DOI: 10.1093/plphys/kiad452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/12/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023]
Abstract
Chilling temperatures induce an increase in cytoplasmic calcium (Ca2+) ions to transmit cold signals, but the precise role of Calmodulins (CaMs), a type of Ca2+ sensor, in plant tolerance to cold stress remains elusive. In this study, we characterized a tomato (Solanum lycopersicum) CaM gene, CALMODULIN6 (CaM6), which responds to cold stimulus. Overexpressing CaM6 increased tomato sensitivity to cold stress whereas silencing CaM6 resulted in a cold-insensitive phenotype. We showed that CaM6 interacts with Inducer of CBF expression 1 (ICE1) in a Ca2+-independent process and ICE1 contributes to cold tolerance in tomato plants. By integrating RNA-sequencing (RNA-seq) and chromatin immunoprecipitation-sequencing (ChIP-seq) assays, we revealed that ICE1 directly altered the expression of 76 downstream cold-responsive (COR) genes that potentially confer cold tolerance to tomato plants. Moreover, the physical interaction of CaM6 with ICE1 attenuated ICE1 transcriptional activity during cold stress. These findings reveal that CaM6 attenuates the cold tolerance of tomato plants by suppressing ICE1-dependent COR gene expression. We propose a CaM6/ICE1 module in which ICE1 is epistatic to CaM6 under cold stress. Our study sheds light on the mechanism of plant response to cold stress and reveals CaM6 is involved in the regulation of ICE1.
Collapse
Affiliation(s)
- Rui Lin
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Jianing Song
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Mingjia Tang
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Lingyu Wang
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
- Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou 310058, PR China
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
- Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou 310058, PR China
- Hainan Institute, Zhejiang University, Sanya 572025, PR China
| |
Collapse
|
18
|
Ren H, Zhang Y, Zhong M, Hussian J, Tang Y, Liu S, Qi G. Calcium signaling-mediated transcriptional reprogramming during abiotic stress response in plants. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:210. [PMID: 37728763 DOI: 10.1007/s00122-023-04455-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023]
Abstract
Calcium (Ca2+) is a second messenger in plants growth and development, as well as in stress responses. The transient elevation in cytosolic Ca2+ concentration have been reported to be involved in plants response to abiotic and biotic stresses. In plants, Ca2+-induced transcriptional changes trigger molecular mechanisms by which plants adapt and respond to environment stresses. The mechanism for transcription regulation by Ca2+ could be either rapid in which Ca2+ signals directly cause the related response through the gene transcript and protein activities, or involved amplification of Ca2+ signals by up-regulation the expression of Ca2+ responsive genes, and then increase the transmission of Ca2+ signals. Ca2+ regulates the expression of genes by directly binding to the transcription factors (TFs), or indirectly through its sensors like calmodulin, calcium-dependent protein kinases (CDPK) and calcineurin B-like protein (CBL). In recent years, significant progress has been made in understanding the role of Ca2+-mediated transcriptional regulation in different processes in plants. In this review, we have provided a comprehensive overview of Ca2+-mediated transcriptional regulation in plants in response to abiotic stresses including nutrition deficiency, temperature stresses (like heat and cold), dehydration stress, osmotic stress, hypoxic, salt stress, acid rain, and heavy metal stress.
Collapse
Affiliation(s)
- Huimin Ren
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Yuting Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Minyi Zhong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Jamshaid Hussian
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad, 22060, Pakistan
| | - Yuting Tang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China.
| | - Guoning Qi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
19
|
Li Q, Gao L, Yu F, Lü S, Yang P. Evolution and diversification of CaM/CML gene family in green plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107922. [PMID: 37573794 DOI: 10.1016/j.plaphy.2023.107922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/18/2023] [Accepted: 07/29/2023] [Indexed: 08/15/2023]
Abstract
Calmodulin (CaM) and calmodulin-like (CML) proteins are crucial Ca2+ sensors, which are widely involved in different biological processes of plants, including their growth and development, and stress responses. However, the origin and evolution of the CaM/CML gene family in plants remain elusive. In this study, 2133 CaM and 23094 CML genes were identified from the 1000 plants project (1 KP) species and the sequenced plants, covering algae, mosses, monilophytes, lycophytes, flowering plants, and all other green plant branches. Analysis showed that the size of the CML subfamily was correlated with the genome size of corresponding plant species, as well as the total gene number in the genome. Moreover, with the evolution from algae to angiosperms, the number of CML genes in plants increased gradually which could have been driven mainly by genome-wide segmental duplication events, while the number of CaMs remained basically stable at 2-3. Phylogenetic analysis demonstrated that CaM first appeared in green algae, while CML appeared earlier and has already been presented in dinoflagellates. Further analysis showed that the number and sequence of EF-hand domain in CaMs are highly conserved, while those of CMLs are diverse among different plant taxa. Expression analysis revealed that the expression level of CaMs was generally higher than that of CMLs, indicating that the high-expression genes have essential functions, while the low-expression genes are the main reasons for the functional diversity of the CaM/CML gene family in plants. The results might contribute to understanding the evolution of CaM/CML genes as well as their molecular functions.
Collapse
Affiliation(s)
- Qinghua Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430026, China.
| | - Li Gao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430026, China.
| | - Feng Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430026, China.
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430026, China.
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430026, China.
| |
Collapse
|
20
|
Qiu CW, Ma Y, Wang QQ, Fu MM, Li C, Wang Y, Wu F. Barley HOMOCYSTEINE METHYLTRANSFERASE 2 confers drought tolerance by improving polyamine metabolism. PLANT PHYSIOLOGY 2023; 193:389-409. [PMID: 37300541 DOI: 10.1093/plphys/kiad333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/25/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023]
Abstract
Drought stress poses a serious threat to crop production worldwide. Genes encoding homocysteine methyltransferase (HMT) have been identified in some plant species in response to abiotic stress, but its molecular mechanism in plant drought tolerance remains unclear. Here, transcriptional profiling, evolutionary bioinformatics, and population genetics were conducted to obtain insight into the involvement of HvHMT2 from Tibetan wild barley (Hordeum vulgare ssp. agriocrithon) in drought tolerance. We then performed genetic transformation coupled with physio-biochemical dissection and comparative multiomics approaches to determine the function of this protein and the underlying mechanism of HvHMT2-mediated drought tolerance. HvHMT2 expression was strongly induced by drought stress in tolerant genotypes in a natural Tibetan wild barley population and contributed to drought tolerance through S-adenosylmethionine (SAM) metabolism. Overexpression of HvHMT2 promoted HMT synthesis and efficiency of the SAM cycle, leading to enhanced drought tolerance in barley through increased endogenous spermine and less oxidative damage and growth inhibition, thus improving water status and final yield. Disruption of HvHMT2 expression led to hypersensitivity under drought treatment. Application of exogenous spermine reduced accumulation of reactive oxygen species (ROS), which was increased by exogenous mitoguazone (inhibitor of spermine biosynthesis), consistent with the association of HvHMT2-mediated spermine metabolism and ROS scavenging in drought adaptation. Our findings reveal the positive role and key molecular mechanism of HvHMT2 in drought tolerance in plants, providing a valuable gene not only for breeding drought-tolerant barley cultivars but also for facilitating breeding schemes in other crops in a changing global climate.
Collapse
Affiliation(s)
- Cheng-Wei Qiu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, P.R. China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, P.R. China
| | - Yue Ma
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, P.R. China
| | - Qing-Qing Wang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, P.R. China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, P.R. China
| | - Man-Man Fu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, P.R. China
| | - Chengdao Li
- Western Barley Genetics Alliance, State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
| | - Yizhou Wang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, P.R. China
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, P.R. China
| |
Collapse
|
21
|
Qiu CW, Ma Y, Liu W, Zhang S, Wang Y, Cai S, Zhang G, Chater CCC, Chen ZH, Wu F. Genome resequencing and transcriptome profiling reveal molecular evidence of tolerance to water deficit in barley. J Adv Res 2023; 49:31-45. [PMID: 36170948 PMCID: PMC10334146 DOI: 10.1016/j.jare.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/27/2022] Open
Abstract
INTRODUCTION Frequent climate change-induced drought events are detrimental environmental stresses affecting global crop production and ecosystem health. Several efforts have facilitated crop breeding for resilient varieties to counteract stress. However, progress is hampered due to the complexity of drought tolerance; a greater variety of novel genes are required across varying environments. Tibetan annual wild barley is a unique and precious germplasm that is well adapted to abiotic stress and can provide elite genes for crop improvement in drought tolerance. OBJECTIVES To identify the genetic basis and unique mechanisms for drought tolerance in Tibetan wild barley. METHODS Whole genome resequencing and comparative RNA-seq approaches were performed to identify candidate genes associated with drought tolerance via investigating the genetic diversity and transcriptional variation between cultivated and Tibetan wild barley. Bioinformatics, population genetics, and gene silencing were conducted to obtain insights into ecological adaptation in barley and functions of key genes. RESULTS Over 20 million genetic variants and a total of 15,361 significantly affected genes were identified in our dataset. Combined genomic, transcriptomic, evolutionary, and experimental analyses revealed 26 water deficit resilience-associated genes in the drought-tolerant wild barley XZ5 with unique genetic variants and expression patterns. Functional prediction revealed Tibetan wild barley employs effective regulators to activate various responsive pathways with novel genes, such as Zinc-Induced Facilitator-Like 2 (HvZIFL2) and Peroxidase 11 (HvPOD11), to adapt to water deficit conditions. Gene silencing and drought tolerance evaluation in a natural barley population demonstrated that HvZIFL2 and HvPOD11 positively regulate drought tolerance in barley. CONCLUSION Our findings reveal functional genes that have been selected across barley's complex history of domestication to thrive in water deficit environments. This will be useful for molecular breeding and provide new insights into drought-tolerance mechanisms in wild relatives of major cereal crops.
Collapse
Affiliation(s)
- Cheng-Wei Qiu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Yue Ma
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Wenxing Liu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Shuo Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Yizhou Wang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Shengguan Cai
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Caspar C C Chater
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK; School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, Australia; Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia.
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
22
|
Han L, Wu X, Hou K, Zhang H, Liang X, Chen C, Wang Z, Shen C. Identification and functional analysis of calcium sensor calmodulins from heavy metal hyperaccumulator Noccaea caerulescens. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:294-302. [PMID: 36683141 DOI: 10.1071/fp22243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Noccaea caerulescens (J. Presl & C. Presl) F. K. Mey. is a heavy metal hyperaccumulator exhibiting extreme tolerance to various environmental stresses. To date, the functional role of Ca2+ -binding protein in this plant is largely unknown. To investigate the function of calmodulins (CaMs) in N. caerulescens , CaM2 , a Ca2+ sensor encoding gene, was identified and functionally characterised. Protein structure analysis showed that NcCaM2 contains four classic exchange factor (EF)-hand motifs with high sequence similarity to the CaM proteins from model plant Arabidopsis thaliana L. Tissue specific expression analysis showed that NcCaM2 is constitutively expressed in stems, leaves, and roots. Expression level of NcCaM2 was significantly upregulated under various environmental stimulus, indicating a potential involvement of NcCaM2 in the tolerance to abiotic stresses. The heterologous expression of NcCaM2 in a yeast mutant strain increased the heavy metal tolerance in yeast cells. Furthermore, the constitutive expression of NcCaM2 enhanced the heavy metal tolerance capability of transgenic tobacco (Nicotiana tabacum L.) plants. Our data suggested an important role of NcCaM2 in the responses to environmental stresses and provided a potential target gene to enhance of the ability to hyperaccumulate metals.
Collapse
Affiliation(s)
- Lu Han
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; and Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Xiaohua Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; and Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Kailin Hou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; and Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China
| | - Hongshan Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; and Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China
| | - Xueshuang Liang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; and Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China
| | - Cheng Chen
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhijing Wang
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; and Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China
| |
Collapse
|
23
|
Imtiaz K, Ahmed M, Annum N, Tester M, Saeed NA. AtCIPK16, a CBL-interacting protein kinase gene, confers salinity tolerance in transgenic wheat. FRONTIERS IN PLANT SCIENCE 2023; 14:1127311. [PMID: 37008481 PMCID: PMC10060804 DOI: 10.3389/fpls.2023.1127311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
Globally, wheat is the major source of staple food, protein, and basic calories for most of the human population. Strategies must be adopted for sustainable wheat crop production to fill the ever-increasing food demand. Salinity is one of the major abiotic stresses involved in plant growth retardation and grain yield reduction. In plants, calcineurin-B-like proteins form a complicated network with the target kinase CBL-interacting protein kinases (CIPKs) in response to intracellular calcium signaling as a consequence of abiotic stresses. The AtCIPK16 gene has been identified in Arabidopsis thaliana and found to be significantly upregulated under salinity stress. In this study, the AtCIPK16 gene was cloned in two different plant expression vectors, i.e., pTOOL37 having a UBI1 promoter and pMDC32 having a 2XCaMV35S constitutive promoter transformed through the Agrobacterium-mediated transformation protocol, in the local wheat cultivar Faisalabad-2008. Based on their ability to tolerate different levels of salt stress (0, 50, 100, and 200 mM), the transgenic wheat lines OE1, OE2, and OE3 expressing AtCIPK16 under the UBI1 promoter and OE5, OE6, and OE7 expressing the same gene under the 2XCaMV35S promoter performed better at 100 mM of salinity stress as compared with the wild type. The AtCIPK16 overexpressing transgenic wheat lines were further investigated for their K+ retention ability in root tissues by utilizing the microelectrode ion flux estimation technique. It has been demonstrated that after 10 min of 100 mM NaCl application, more K+ ions were retained in the AtCIPK16 overexpressing transgenic wheat lines than in the wild type. Moreover, it could be concluded that AtCIPK16 functions as a positive elicitor in sequestering Na+ ions into the cell vacuole and retaining more cellular K+ under salt stress to maintain ionic homeostasis.
Collapse
Affiliation(s)
- Khadija Imtiaz
- Wheat Biotechnology Lab, Agriculture Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Moddassir Ahmed
- Wheat Biotechnology Lab, Agriculture Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Nazish Annum
- Wheat Biotechnology Lab, Agriculture Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Mark Tester
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Nasir A. Saeed
- Wheat Biotechnology Lab, Agriculture Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| |
Collapse
|
24
|
Chen Z, Jiang Q, Guo G, Shen Q, Yang J, Wang E, Zhang G, Lu R, Liu C. Rapid Generation of Barley Homozygous Transgenic Lines Based on Microspore Culture: HvPR1 Overexpression as an Example. Int J Mol Sci 2023; 24:ijms24054945. [PMID: 36902374 PMCID: PMC10003194 DOI: 10.3390/ijms24054945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/06/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Obtaining homozygous lines from transgenic plants is an important step for phenotypic evaluations, but the selection of homozygous plants is time-consuming and laborious. The process would be significantly shortened if anther or microspore culture could be completed in one generation. In this study, we obtained 24 homozygous doubled haploid (DH) transgenic plants entirely by microspore culture from one T0 transgenic plant overexpressing the gene HvPR1 (pathogenesis-related-1). Nine of the doubled haploids grew to maturity and produced seeds. qRCR (quantitative real-time PCR) validation showed that the HvPR1 gene was expressed differentially even among different DH1 plants (T2) from the same DH0 line (T1). Phenotyping analysis suggested that the overexpression of HvPR1 inhibited nitrogen use efficiency (NUE) only under low nitrogen treatment. The established method of producing homozygous transgenic lines will enable the rapid evaluation of transgenic lines for gene function studies and trait evaluation. As an example, the HvPR1 overexpression of DH lines also could be used for further analysis of NUE-related research in barley.
Collapse
Affiliation(s)
- Zhiwei Chen
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
- Correspondence: (Z.C.); (C.L.)
| | - Qi Jiang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Guimei Guo
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Qiufang Shen
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jun Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Guoping Zhang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ruiju Lu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Chenghong Liu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
- Correspondence: (Z.C.); (C.L.)
| |
Collapse
|
25
|
Bano N, Fakhrah S, Lone RA, Mohanty CS, Bag SK. Genome-wide identification and expression analysis of the HD2 protein family and its response to drought and salt stress in Gossypium species. FRONTIERS IN PLANT SCIENCE 2023; 14:1109031. [PMID: 36860898 PMCID: PMC9968887 DOI: 10.3389/fpls.2023.1109031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Histone deacetylase 2 (HD2) proteins play an important role in the regulation of gene expression. This helps with the growth and development of plants and also plays a crucial role in responses to biotic and abiotic stress es. HD2s comprise a C2H2-type Zn2+ finger at their C-terminal and an HD2 label, deacetylation and phosphorylation sites, and NLS motifs at their N-terminal. In this study, a total of 27 HD2 members were identified, using Hidden Markov model profiles, in two diploid cotton genomes (Gossypium raimondii and Gossypium arboretum) and two tetraploid cotton genomes (Gossypium hirsutum and Gossypium barbadense). These cotton HD2 members were classified into 10 major phylogenetic groups (I-X), of which group III was found to be the largest with 13 cotton HD2 members. An evolutionary investigation showed that the expansion of HD2 members primarily occurred as a result of segmental duplication in paralogous gene pairs. Further qRT-PCR validation of nine putative genes using RNA-Seq data suggested that GhHDT3D.2 exhibits significantly higher levels of expression at 12h, 24h, 48h, and 72h of exposure to both drought and salt stress conditions compared to a control measure at 0h. Furthermore, gene ontology, pathways, and co-expression network study of GhHDT3D.2 gene affirmed their significance in drought and salt stress responses.
Collapse
Affiliation(s)
- Nasreen Bano
- Council of Scientific & Industrial Research (CSIR)-National Botanical Research Institute (CSIR-NBRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shafquat Fakhrah
- Council of Scientific & Industrial Research (CSIR)-National Botanical Research Institute (CSIR-NBRI), Lucknow, India
- Department of Botany, University of Lucknow, Lucknow, India
| | - Rayees Ahmad Lone
- Council of Scientific & Industrial Research (CSIR)-National Botanical Research Institute (CSIR-NBRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Chandra Sekhar Mohanty
- Council of Scientific & Industrial Research (CSIR)-National Botanical Research Institute (CSIR-NBRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sumit Kumar Bag
- Council of Scientific & Industrial Research (CSIR)-National Botanical Research Institute (CSIR-NBRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
26
|
Sun X, Zheng HX, Li S, Gao Y, Dang Y, Chen Z, Wu F, Wang X, Xie Q, Sui N. MicroRNAs balance growth and salt stress responses in sweet sorghum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:677-697. [PMID: 36534087 DOI: 10.1111/tpj.16065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 11/10/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Salt stress is one of the major causes of reduced crop production, limiting agricultural development globally. Plants have evolved with complex systems to maintain the balance between growth and stress responses, where signaling pathways such as hormone signaling play key roles. Recent studies revealed that hormones are modulated by microRNAs (miRNAs). Previously, two sweet sorghum (Sorghum bicolor) inbred lines with different salt tolerance were identified: the salt-tolerant M-81E and the salt-sensitive Roma. The levels of endogenous hormones in M-81E and Roma varied differently under salt stress, showing a different balance between growth and stress responses. miRNA and degradome sequencing showed that the expression of many upstream transcription factors regulating signal transduction and hormone-responsive genes was directly induced by differentially expressed miRNAs, whose levels were very different between the two sweet sorghum lines. Furthermore, the effects of representative miRNAs on salt tolerance in sorghum were verified through a transformation system mediated by Agrobacterium rhizogenes. Also, miR-6225-5p reduced the level of Ca2+ in the miR-6225-5p-overexpressing line by inhibiting the expression of the Ca2+ uptake gene SbGLR3.1 in the root epidermis and affected salt tolerance in sorghum. This study provides evidence for miRNA-mediated growth and stress responses in sweet sorghum.
Collapse
Affiliation(s)
- Xi Sun
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, China University of Chinese Academy of Sciences, Beijing, 100081, China
| | - Hong-Xiang Zheng
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Simin Li
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yinping Gao
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yingying Dang
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Zengting Chen
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Fenghui Wu
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Xuemei Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, China University of Chinese Academy of Sciences, Beijing, 100081, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| |
Collapse
|
27
|
Wang NH, Zhou XY, Shi SH, Zhang S, Chen ZH, Ali MA, Ahmed IM, Wang Y, Wu F. An miR156-regulated nucleobase-ascorbate transporter 2 confers cadmium tolerance via enhanced anti-oxidative capacity in barley. J Adv Res 2023; 44:23-37. [PMID: 36725193 PMCID: PMC9936425 DOI: 10.1016/j.jare.2022.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/29/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION Cadmium (Cd) is one of the most detrimental heavy metal pollutants, seriously affecting crop production and human health. Nucleobase-ascorbic acid transporters (NAT) are widely present in many living organisms including plants, animals and microbes; however, the role of NAT in plant Cd tolerance remains unknown. OBJECTIVES To identify Cd-induced miRNAs that target HvNAT2 and to determine the role of this gene and its product in Cd tolerance. METHODS High-throughput-sequencing was used to identify the miRNA expression profile of barley roots in response to Cd stress. Overexpression (OX) and RNAi lines were then constructed for HvNAT2 and comparative transcriptomic analysis was performed to determine the function of this transporter examining its effects on traits such as Cd uptake/flux and translocation, morphology and antioxidant capacity in relation to Cd tolerance. In addition, phylogenetic analysis was performed to obtain insights into the evolution of HvNAT2. RESULTS Cd stress-induced genome-wide expression profiles of miRNAs identified a Cd-induced miRNA, miR156g-3p_3, that had HvNAT2 as its target. HvNAT2 was negatively regulated in the high-Cd-accumulating and Cd-tolerant genotype Zhenong8. Evolutionary analysis indicated that orthologues of the plasma membrane localized, HvNAT2, can be traced back to the sister group of land plants, the streptophyte algae. Overexpression of HvNAT2 increases Cd tolerance with higher tissue Cd accumulation but less oxidative damage in transgenic barley plants. RNAi of HvNAT2 leads to a significant reduction of Cd tolerance. The higher Cd accumulation in roots of the OX3 line was also demonstrated by confocal microscopy and electrophysiology. Transcriptome analysis showed that the enhancement of antioxidant capacity by HvNAT2 was related to stress signaling pathways. Furthermore, oxidative stress tolerance in HvNAT2-OX plants was regulated by the synthesis of phytochelatins and the glutathione metabolism cycle. CONCLUSION Our study reveals a key molecular mechanism of NAT in Cd tolerance in plants that is useful for sustainable agricultural production and management of hazardous this heavy metal for better environment management and ecosystem function.
Collapse
Affiliation(s)
- Nian-Hong Wang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, PR China
| | - Xue-Yi Zhou
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, PR China
| | - Shou-Heng Shi
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, PR China
| | - Shuo Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, PR China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, PR China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, Australia; Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Mohamed Abdelalim Ali
- Faculty of Agriculture, Microbiology Department, Cairo University, Giza, 2613, Egypt
| | - Imrul Mosaddek Ahmed
- Plant Physiology Division, Bangladesh Agricultural Research Institute, Gazipur-1701, Bangladesh
| | - Yizhou Wang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, PR China
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, PR China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, PR China.
| |
Collapse
|
28
|
Photosynthesis and Salt Exclusion Are Key Physiological Processes Contributing to Salt Tolerance of Canola ( Brassica napus L.): Evidence from Physiology and Transcriptome Analysis. Genes (Basel) 2022; 14:genes14010003. [PMID: 36672744 PMCID: PMC9858917 DOI: 10.3390/genes14010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Plant salt tolerance is controlled by various physiological processes such as water and ion homeostasis, photosynthesis, and cellular redox balance, which are in turn controlled by gene expression. In the present study, plants of six canola cultivars (DGL, Dunkled, Faisal Canola, Cyclone, Legend, and Oscar) were evaluated for salt tolerance by subjecting them to 0 or 200 mM NaCl stress. Based on growth, cultivars DGL, Dunkled, and Faisal Canola were ranked as salt tolerant, while cultivars Cyclone, Legend, and Oscar were ranked as salt-sensitive ones. Differential salt tolerance in these canola cultivars was found to be associated with a relatively lower accumulation of Na+ and greater accumulation of K+ in the leaves, lower oxidative damage (MDA), and better antioxidative defense system (Superoxide dismutase, SOD; peroxidase, POD, and catalase, CAT). Cultivar Oscar was the poorest to discriminate Na+ and K+ uptake and accumulation in leaves and had poor antioxidant potential to scavenge ROS. Salt stress did not affect the structural stability of photosystem-II (PSII) till three weeks, thereafter it caused a significant decrease. Salt stress increased the performance index (PIABS) by increasing the density of active reaction centers in Oscar. Salt stress decreased the antenna size thereby lowering the absorption and trapping energy flux, and maintaining the electron transport with an increase in heat dissipation. This may represent a potential mechanism to cope with salt stress. Transcriptome analysis of salt-sensitive cultivar Oscar further revealed that salt stress down-regulated DEGs related to hormonal signal transduction pathways, photosynthesis, and transcription factors, while DEGs related to the biosynthesis of amino acid and ion transport were up-regulated. In conclusion, salt tolerance in canola cultivars was associated with ion exclusion and maintenance of photosynthesis. Salt stress sensitivity in cultivar Oscar was mainly associated with poor control of ion homeostasis which caused oxidative stress and reduced photosynthetic efficiency.
Collapse
|
29
|
Deng F, Zeng F, Shen Q, Abbas A, Cheng J, Jiang W, Chen G, Shah AN, Holford P, Tanveer M, Zhang D, Chen ZH. Molecular evolution and functional modification of plant miRNAs with CRISPR. TRENDS IN PLANT SCIENCE 2022; 27:890-907. [PMID: 35165036 DOI: 10.1016/j.tplants.2022.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/06/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Gene editing using clustered regularly interspaced short palindromic repeat/CRISPR-associated proteins (CRISPR/Cas) has revolutionized biotechnology and provides genetic tools for medicine and life sciences. However, the application of this technology to miRNAs, with the function as negative gene regulators, has not been extensively reviewed in plants. Here, we summarize the evolution, biogenesis, and structure of miRNAs, as well as their interactions with mRNAs and computational models for predicting target genes. In addition, we review current advances in CRISPR/Cas for functional analysis and for modulating miRNA genes in plants. Extending our knowledge of miRNAs and their manipulation with CRISPR will provide fundamental understanding of the functions of plant miRNAs and facilitate more sustainable and publicly acceptable genetic engineering of crops.
Collapse
Affiliation(s)
- Fenglin Deng
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Fanrong Zeng
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Qiufang Shen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Asad Abbas
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Jianhui Cheng
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Wei Jiang
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Guang Chen
- Central Laboratory, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khawaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Paul Holford
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Mohsin Tanveer
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7004, Australia.
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; School of Agriculture, Food, and Wine, University of Adelaide, Glen Osmond, SA, Australia.
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia; Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia.
| |
Collapse
|
30
|
Su T, Fu L, Kuang L, Chen D, Zhang G, Shen Q, Wu D. Transcriptome-wide m6A methylation profile reveals regulatory networks in roots of barley under cadmium stress. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127140. [PMID: 34523471 DOI: 10.1016/j.jhazmat.2021.127140] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/13/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) pollutants restrict crop yield and food security in long-term agricultural activities. Crops have evolved adaptive strategies under Cd condition, however, the transcriptional regulatory mechanism of Cd-tolerant genes remains to be largely illustrated. In this study, barley roots were exposed to 5 µM CdCl2 for physiological response and transcriptome-wide m6A methylation profile. Cd stress inhibited root growth after 7 d Cd treatment, which is mainly associated with inhibited absorption of Mn. After Cd treatment, 8151 significantly modified m6A sites and 3920 differentially expressed genes were identified. Transcriptome-wide m6A hypermethylation was widely induced by Cd stress and enriched near the stop codon and 3' UTR regions. Among 435 m6A modified DEGs, 319 hypermethylated genes were up-regulated and 84 hypomethylated genes were down-regulated, respectively, indicating a positive correlation of m6A methylation and expression. But well-known Cd transporter genes (HvNramp5, HvIRT1, HvHMA3, etc.) were not modified by m6A methylation, except for ABC transporters. We further found key Cd-responding regulatory genes were positively modulated with m6A methylation, including MAPK, WRKY and MYB members. This study proposed a transcriptional regulatory network of Cd stress response in barley roots, which may provide new insight into gene manipulation of controlling low Cd accumulation for crops.
Collapse
Affiliation(s)
- Tingting Su
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Liangbo Fu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Liuhui Kuang
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Danyi Chen
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Guoping Zhang
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Qiufang Shen
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| | - Dezhi Wu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
31
|
Fu L, Wu D, Zhang X, Xu Y, Kuang L, Cai S, Zhang G, Shen Q. Vacuolar H+-pyrophosphatase HVP10 enhances salt tolerance via promoting Na+ translocation into root vacuoles. PLANT PHYSIOLOGY 2022; 188:1248-1263. [PMID: 34791461 PMCID: PMC8825340 DOI: 10.1093/plphys/kiab538] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/25/2021] [Indexed: 05/06/2023]
Abstract
Vacuolar H+-pumping pyrophosphatases (VPs) provide a proton gradient for Na+ sequestration in the tonoplast; however, the regulatory mechanisms of VPs in developing salt tolerance have not been fully elucidated. Here, we cloned a barley (Hordeum vulgare) VP gene (HVP10) that was identified previously as the HvNax3 gene. Homology analysis showed VP10 in plants had conserved structure and sequence and likely originated from the ancestors of the Ceramiales order of Rhodophyta (Cyanidioschyzon merolae). HVP10 was mainly expressed in roots and upregulated in response to salt stress. After salt treatment for 3 weeks, HVP10 knockdown (RNA interference) and knockout (CRISPR/Cas9 gene editing) barley plants showed greatly inhibited growth and higher shoot Na+ concentration, Na+ transportation rate and xylem Na+ loading relative to wild-type (WT) plants. Reverse transcription quantitative polymerase chain reaction and microelectronic Ion Flux Estimation results indicated that HVP10 likely modulates Na+ sequestration into the root vacuole by acting synergistically with Na+/H+ antiporters (HvNHX1 and HvNHX4) to enhance H+ efflux and K+ maintenance in roots. Moreover, transgenic rice (Oryza sativa) lines overexpressing HVP10 also showed higher salt tolerance than the WT at both seedling and adult stages with less Na+ translocation to shoots and higher grain yields under salt stress. This study reveals the molecular mechanism of HVP10 underlying salt tolerance and highlights its potential in improving crop salt tolerance.
Collapse
Affiliation(s)
- Liangbo Fu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Dezhi Wu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Xincheng Zhang
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Yunfeng Xu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Liuhui Kuang
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Shengguan Cai
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
- Zhongyuan Institute, Zhejiang University, Zhengzhou 450000, China
| | - Guoping Zhang
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
- Zhongyuan Institute, Zhejiang University, Zhengzhou 450000, China
| | - Qiufang Shen
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
- Zhongyuan Institute, Zhejiang University, Zhengzhou 450000, China
- Author for communication:
| |
Collapse
|
32
|
Cai K, Kuang L, Yue W, Xie S, Xia X, Zhang G, Wang J. Calmodulin and calmodulin-like gene family in barley: Identification, characterization and expression analyses. FRONTIERS IN PLANT SCIENCE 2022; 13:964888. [PMID: 36061813 PMCID: PMC9439640 DOI: 10.3389/fpls.2022.964888] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/29/2022] [Indexed: 05/11/2023]
Abstract
Calmodulin (CaM) and calmodulin-like (CML) proteins are Ca2+ relays and play diverse and multiple roles in plant growth, development and stress responses. However, CaM/CML gene family has not been identified in barley (Hordeum vulgare). In the present study, 5 HvCaMs and 80 HvCMLs were identified through a genome-wide analysis. All HvCaM proteins possessed 4 EF-hand motifs, whereas HvCMLs contained 1 to 4 EF-hand motifs. HvCaM2, HvCaM3 and HvCaM5 coded the same polypeptide although they differed in nucleotide sequence, which was identical to the polypeptides coded by OsCaM1-1, OsCaM1-2 and OsCaM1-3. HvCaMs/CMLs were unevenly distributed over barley 7 chromosomes, and could be phylogenetically classified into 8 groups. HvCaMs/CMLs differed in gene structure, cis-acting elements and tissue expression patterns. Segmental and tandem duplication were observed among HvCaMs/CMLs during evolution. HvCML16, HvCML18, HvCML50 and HvCML78 were dispensable genes and the others were core genes in barley pan-genome. In addition, 14 HvCaM/CML genes were selected to examine their responses to salt, osmotic and low potassium stresses by qRT-PCR, and their expression were stress-and time-dependent. These results facilitate our understanding and further functional identification of HvCaMs/CMLs.
Collapse
Affiliation(s)
- Kangfeng Cai
- Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- National Barley Improvement Centre, Hangzhou, China
| | - Liuhui Kuang
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Wenhao Yue
- Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- National Barley Improvement Centre, Hangzhou, China
| | - Shanggeng Xie
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Xue Xia
- Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guoping Zhang
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Junmei Wang
- Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- National Barley Improvement Centre, Hangzhou, China
- *Correspondence: Junmei Wang,
| |
Collapse
|
33
|
Patra N, Hariharan S, Gain H, Maiti MK, Das A, Banerjee J. TypiCal but DeliCate Ca ++re: Dissecting the Essence of Calcium Signaling Network as a Robust Response Coordinator of Versatile Abiotic and Biotic Stimuli in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:752246. [PMID: 34899779 PMCID: PMC8655846 DOI: 10.3389/fpls.2021.752246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/27/2021] [Indexed: 06/14/2023]
Abstract
Plant growth, development, and ultimately crop productivity are largely impacted by the interaction of plants with different abiotic and biotic factors throughout their life cycle. Perception of different abiotic stresses, such as salt, cold, drought, heat, and heavy metals, and interaction with beneficial and harmful biotic agents by plants lead to transient, sustained, or oscillatory changes of [calcium ion, Ca2+]cyt within the cell. Significant progress has been made in the decoding of Ca2+ signatures into downstream responses to modulate differential developmental and physiological responses in the whole plant. Ca2+ sensor proteins, mainly calmodulins (CaMs), calmodulin-like proteins (CMLs), and others, such as Ca2+-dependent protein kinases (CDPKs), calcineurin B-like proteins (CBLs), and calmodulin-binding transcription activators (CAMTAs) have played critical roles in coupling the specific stress stimulus with an appropriate response. This review summarizes the current understanding of the Ca2+ influx and efflux system in plant cells and various Ca2+ binding protein-mediated signal transduction pathways that are delicately orchestrated to mitigate abiotic and biotic stresses. The probable interactions of different components of Ca2+ sensor relays and Ca2+ sensor responders in response to various external stimuli have been described diagrammatically focusing on established pathways and latest developments. Present comprehensive insight into key components of the Ca2+ signaling toolkit in plants can provide an innovative framework for biotechnological manipulations toward crop improvability in near future.
Collapse
Affiliation(s)
- Neelesh Patra
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Shruthi Hariharan
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Hena Gain
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Mrinal K. Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Arpita Das
- Department of Genetics and Plant Breeding, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, India
| | - Joydeep Banerjee
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
34
|
Tong T, Li Q, Jiang W, Chen G, Xue D, Deng F, Zeng F, Chen ZH. Molecular Evolution of Calcium Signaling and Transport in Plant Adaptation to Abiotic Stress. Int J Mol Sci 2021; 22:12308. [PMID: 34830190 PMCID: PMC8618852 DOI: 10.3390/ijms222212308] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/06/2021] [Accepted: 11/12/2021] [Indexed: 01/16/2023] Open
Abstract
Adaptation to unfavorable abiotic stresses is one of the key processes in the evolution of plants. Calcium (Ca2+) signaling is characterized by the spatiotemporal pattern of Ca2+ distribution and the activities of multi-domain proteins in integrating environmental stimuli and cellular responses, which are crucial early events in abiotic stress responses in plants. However, a comprehensive summary and explanation for evolutionary and functional synergies in Ca2+ signaling remains elusive in green plants. We review mechanisms of Ca2+ membrane transporters and intracellular Ca2+ sensors with evolutionary imprinting and structural clues. These may provide molecular and bioinformatics insights for the functional analysis of some non-model species in the evolutionarily important green plant lineages. We summarize the chronological order, spatial location, and characteristics of Ca2+ functional proteins. Furthermore, we highlight the integral functions of calcium-signaling components in various nodes of the Ca2+ signaling pathway through conserved or variant evolutionary processes. These ultimately bridge the Ca2+ cascade reactions into regulatory networks, particularly in the hormonal signaling pathways. In summary, this review provides new perspectives towards a better understanding of the evolution, interaction and integration of Ca2+ signaling components in green plants, which is likely to benefit future research in agriculture, evolutionary biology, ecology and the environment.
Collapse
Affiliation(s)
- Tao Tong
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434022, China; (T.T.); (W.J.); (F.D.)
| | - Qi Li
- Central Laboratory, Zhejiang Academy of Agricultural Science, Hangzhou 310030, China; (Q.L.); (G.C.)
| | - Wei Jiang
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434022, China; (T.T.); (W.J.); (F.D.)
| | - Guang Chen
- Central Laboratory, Zhejiang Academy of Agricultural Science, Hangzhou 310030, China; (Q.L.); (G.C.)
| | - Dawei Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China;
| | - Fenglin Deng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434022, China; (T.T.); (W.J.); (F.D.)
| | - Fanrong Zeng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434022, China; (T.T.); (W.J.); (F.D.)
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith 2751, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith 2751, Australia
| |
Collapse
|
35
|
Jamra G, Agarwal A, Singh N, Sanyal SK, Kumar A, Pandey GK. Ectopic expression of finger millet calmodulin confers drought and salinity tolerance in Arabidopsis thaliana. PLANT CELL REPORTS 2021; 40:2205-2223. [PMID: 34250550 DOI: 10.1007/s00299-021-02743-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Overexpression of finger millet calmodulin imparts drought and salt tolerance in plants. Drought and salinity are major environmental stresses which affect crop productivity and therefore are major hindrance in feeding growing population world-wide. Calcium (Ca2+) signaling plays a crucial role during the plant's response to these stress stimuli. Calmodulin (CaM), a crucial Ca2+sensor, is involved in transducing the signal downstream in various physiological, developmental and stress responses by modulating a plethora of target proteins. The role of CaM has been well established in the model plant Arabidopsis thaliana for regulating various developmental processes, stress signaling and ion transport. In the current study, we investigate the CaM of Eleusine coracana (common name finger millet, known especially for its drought tolerance and superior Ca2+ content). In-silico analysis showed that Eleusine CaM (EcCaM) has greater similarity to rice CaM as compared to Arabidopsis CaM due to the presence of highly conserved four EF-hand domains. To decipher the in-planta function of EcCaM, we have adopted the gain-of-function approach by generating the 35S::EcCaM over-expression transgenic in Arabidopsis. Overexpression of EcCaM in Arabidopsis makes the plant tolerant to polyethylene glycol (PEG) induced drought and salt stress (NaCl) as demonstrated by post-germination based phenotypic assay, ion leakage, MDA and proline estimation, ROS detection under stressed and normal conditions. Moreover, EcCaM overexpression leads to hypersensitivity toward exogenously applied ABA at the seed germination stage. These findings reveal that EcCaM mediates tolerance to drought and salinity stress. Also, our results indicate that EcCaM is involved in modulating ABA signaling. Summarizing our results, we report for the first time that EcCaM is involved in modulating plants response to stress and this information can be used for the generation of future-ready crops that can tolerate a wide range of abiotic stresses.
Collapse
Affiliation(s)
- Gautam Jamra
- Department of Molecular Biology and Genetic Engineering, GBPUA&T, Pantnagar, Uttarakhand, India
- Lab No. 302, Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Marg, South Campus, South Moti Bagh, Dhaula Kuan, New Delhi, 110021, India
| | - Aparna Agarwal
- Department of Molecular Biology and Genetic Engineering, GBPUA&T, Pantnagar, Uttarakhand, India
| | - Nidhi Singh
- Lab No. 302, Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Marg, South Campus, South Moti Bagh, Dhaula Kuan, New Delhi, 110021, India
| | - Sibaji K Sanyal
- Lab No. 302, Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Marg, South Campus, South Moti Bagh, Dhaula Kuan, New Delhi, 110021, India
| | - Anil Kumar
- Department of Molecular Biology and Genetic Engineering, GBPUA&T, Pantnagar, Uttarakhand, India.
- Rani Lakshmi Bai Central Agriculture University, NH-75, Near Pahuj Dam, Gwalior Road, Jhansi, 284003, Uttar Pradesh, India.
| | - Girdhar K Pandey
- Lab No. 302, Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Marg, South Campus, South Moti Bagh, Dhaula Kuan, New Delhi, 110021, India.
| |
Collapse
|
36
|
Tu Y, Fu L, Wang F, Wu D, Shen Q, Zhang G. GWAS and transcriptomic integrating analysis reveals key salt-responding genes controlling Na + content in barley roots. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:596-606. [PMID: 34464826 DOI: 10.1016/j.plaphy.2021.08.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Salt stress is one of the major environmental restricts for crop production and food safety. Barley (Hordeum vulgare L.) is the most salt-tolerant cereal crop, which could be the pioneer for shifting agricultural crop production to marginal saline lands. However, probably due to high genetic complexity of salinity tolerance trait, the progress in the identification of salt-tolerant locus or genes of barley roots moves slowly. Here, we determined physiological and ionic changes in mini-core barley accessions under salt conditions. Na+ content was lower in whole-plant but higher in roots of the salt tolerant genotypes than sensitive ones under salt stress. Genome-wide association study (GWAS) analysis identified 43 significant SNPs out of 12,564 SNPs and 215 candidate genes (P < 10-3) in the roots of worldwide barley accessions, highly associated with root relative dry weight (RDW) and Na+ content after hydroponic salinity in greenhouse and growth chamber. Meanwhile, transcriptomic analysis (RNA-Seq) identified 3217 differentially expression genes (DEGs) in barley roots induced by salt stress, mainly enriched in metabolism and transport processes. After GWAS and RNA-Seq integrating analysis, 39 DEGs were verified by qRT-PCR as salt-responding genes, including CYPs, LRR-KISS and CML genes, mostly related to the signal regulation. Taken together, current results provide genetic map-based genes or new locus useful for improving salt tolerance in crop and contributing to the utilization of saline soils.
Collapse
Affiliation(s)
- Yishan Tu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Liangbo Fu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Fengyue Wang
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Dezhi Wu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Qiufang Shen
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China.
| | - Guoping Zhang
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
37
|
Yang J, Ji L, Liu S, Jing P, Hu J, Jin D, Wang L, Xie G. The CaM1-associated CCaMK-MKK1/6 cascade positively affects lateral root growth via auxin signaling under salt stress in rice. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6611-6627. [PMID: 34129028 DOI: 10.1093/jxb/erab287] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/12/2021] [Indexed: 06/12/2023]
Abstract
Ca2+/calmodulin (CaM)-dependent protein kinases (CCaMKs) and mitogen-activated protein kinase kinases (MAPKKs) are two types of kinases that regulate salt stress response in plants. It remains unclear, however, how they cooperatively affect lateral root growth under salt stress. Here, two conserved phosphorylation sites (S102 and T118) of OsCaM1 were identified, and found to affect the ability to bind to Ca2+in vitro and the kinase activity of OsCCaMK in vivo. OsCCaMK specifically interacted with OsMKK1/6 in a Ca2+/CaM-dependent manner. In vitro kinase and in vivo dual-luciferase assays revealed that OsCCaMK phosphorylated OsMKK6 while OsMKK1 phosphorylated OsCCaMK. Overexpression and antisense-RNA repression expression of OsCaM1-1, and CRISPR/Cas9-mediated gene editing mutations of OsMKK1, OsMKK6, and OsMKK1/6 proved that OsCaM1-1, OsMKK1, and OsMKK6 enhanced the auxin content in roots and lateral root growth under salt stress. Consistently, OsCaM1-1, OsMKK1, and OsMKK6 regulated the transcript levels of the genes of this cascade, and salt stress-related and lateral root growth-related auxin signaling under salt stress in rice roots. These findings demonstrate that the OsCaM1-associated OsCCaMK-OsMKK1/6 cascade plays a critical role in recruiting auxin signaling in rice roots. These results also provide new insight into the regulatory mechanism of the CaM-mediated phosphorylation relay cascade to auxin signaling in lateral root growth under salt stress in plants.
Collapse
Affiliation(s)
- Jun Yang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lingxiao Ji
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuang Liu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Pei Jing
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jin Hu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Deming Jin
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lingqiang Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Guosheng Xie
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
38
|
Jiang W, Pan R, Buitrago S, Wu C, Abou-Elwafa SF, Xu Y, Zhang W. Conservation and divergence of the TaSOS1 gene family in salt stress response in wheat ( Triticum aestivum L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1245-1260. [PMID: 34177146 PMCID: PMC8212347 DOI: 10.1007/s12298-021-01009-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 05/09/2021] [Accepted: 05/18/2021] [Indexed: 05/09/2023]
Abstract
UNLABELLED Salinity is one of the most important problems that adversely affect crops growth, productivity and quality worldwide. Salt Overly Sensitive 1 (SOS1) gene family plays vital roles in plant response to salt stress. Herein, we report the identification of the SOS family in wheat and the exploration of the expression profiles of SOSs under salt stress. Complete genome sequences of T. aestivum were downloaded from Ensembl plant database. Conservation and divergence of TaSOS1 family were conducted by using phylogenetic tree, gene structure and synteny distribution analysis. Expression profiles of TaSOS1s were obtained based on transcriptome and qRT-PCR analysis. Totally, 119 TaSOS1 proteins in wheat were identified at the genome-wide level and classified into three groups. Six motifs were conserved in TaSOS1 gene family. Moreover, 25 TaSOS1 genes had three copies distributing in three sub-genomes (A, B and D). A total of 32, 28 and 29 TaSOS1 genes were located on the sub-genomes A, B and D, respectively. Moreover, there were 19, 12, 6, 7, 28, 5 and 12 genes located on the three homologous of chromosomes 1, 2, 3, 4, 5, 6 and 7, respectively. Two genes were mapped to unattributed scaffolds. The duplication events analysis indicated that tandem repeats contributed to the expansion of the SOS1 family in wheat. Collinearity analysis demonstrated that segmental duplications play an important role in the expansion of SOS1 members. Chromosome 7, 5, 3, and 2 showed collinear relationship. Tissue specific expression pattern analysis revealed that 41 TaSOS1 genes expressed in various tissues, such as root, shoot, leaf, spike and grain. Transcriptomic analysis revealed that 28 and 26 genes were up- and down-regulated under salinity stress, respectively, of which 18 genes were further confirmed by RT-qPCR. The plants with high expression level of these genes displayed higher tolerance to salinity stress, stronger root system, higher Fv/Fm value and water potential. The results could be helpful for further elucidating the molecular mechanism of TaSOS1 related to salt tolerance in wheat and provide a toolkit for improving the salinity tolerance of wheat. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01009-y.
Collapse
Affiliation(s)
- Wei Jiang
- Hubei Collaborative Innovation Center for Grain Industry/Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, 434025 China
| | - Rui Pan
- Hubei Collaborative Innovation Center for Grain Industry/Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, 434025 China
| | - Sebastian Buitrago
- Hubei Collaborative Innovation Center for Grain Industry/Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, 434025 China
| | - Chu Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025 China
| | | | - Yanhao Xu
- Hubei Collaborative Innovation Center for Grain Industry/Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, 434025 China
| | - Wenying Zhang
- Hubei Collaborative Innovation Center for Grain Industry/Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, 434025 China
| |
Collapse
|
39
|
Iqbal Z, Iqbal MS, Hashem A, Abd_Allah EF, Ansari MI. Plant Defense Responses to Biotic Stress and Its Interplay With Fluctuating Dark/Light Conditions. FRONTIERS IN PLANT SCIENCE 2021; 12:631810. [PMID: 33763093 PMCID: PMC7982811 DOI: 10.3389/fpls.2021.631810] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/08/2021] [Indexed: 05/24/2023]
Abstract
Plants are subjected to a plethora of environmental cues that cause extreme losses to crop productivity. Due to fluctuating environmental conditions, plants encounter difficulties in attaining full genetic potential for growth and reproduction. One such environmental condition is the recurrent attack on plants by herbivores and microbial pathogens. To surmount such attacks, plants have developed a complex array of defense mechanisms. The defense mechanism can be either preformed, where toxic secondary metabolites are stored; or can be inducible, where defense is activated upon detection of an attack. Plants sense biotic stress conditions, activate the regulatory or transcriptional machinery, and eventually generate an appropriate response. Plant defense against pathogen attack is well understood, but the interplay and impact of different signals to generate defense responses against biotic stress still remain elusive. The impact of light and dark signals on biotic stress response is one such area to comprehend. Light and dark alterations not only regulate defense mechanisms impacting plant development and biochemistry but also bestow resistance against invading pathogens. The interaction between plant defense and dark/light environment activates a signaling cascade. This signaling cascade acts as a connecting link between perception of biotic stress, dark/light environment, and generation of an appropriate physiological or biochemical response. The present review highlights molecular responses arising from dark/light fluctuations vis-à-vis elicitation of defense mechanisms in plants.
Collapse
Affiliation(s)
- Zahra Iqbal
- Molecular Crop Research Unit, Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand
| | | | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, ARC, Giza, Egypt
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
40
|
Karahara I, Horie T. Functions and structure of roots and their contributions to salinity tolerance in plants. BREEDING SCIENCE 2021; 71:89-108. [PMID: 33762879 PMCID: PMC7973495 DOI: 10.1270/jsbbs.20123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/15/2020] [Indexed: 05/03/2023]
Abstract
Soil salinity is an increasing threat to the productivity of glycophytic crops worldwide. The root plays vital roles under various stress conditions, including salinity, as well as has diverse functions in non-stress soil environments. In this review, we focus on the essential functions of roots such as in ion homeostasis mediated by several different membrane transporters and signaling molecules under salinity stress and describe recent advances in the impacts of quantitative trait loci (QTLs) or genetic loci (and their causal genes, if applicable) on salinity tolerance. Furthermore, we introduce important literature for the development of barriers against the apoplastic flow of ions, including Na+, as well as for understanding the functions and components of the barrier structure under salinity stress.
Collapse
Affiliation(s)
- Ichirou Karahara
- Department of Biology, Faculty of Science, University of Toyama, Toyama 930-8555, Japan
| | - Tomoaki Horie
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
- Corresponding author (e-mail: )
| |
Collapse
|
41
|
Yadav B, Jogawat A, Lal SK, Lakra N, Mehta S, Shabek N, Narayan OP. Plant mineral transport systems and the potential for crop improvement. PLANTA 2021; 253:45. [PMID: 33483879 DOI: 10.1007/s00425-020-03551-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/22/2020] [Indexed: 05/09/2023]
Abstract
Nutrient transporter genes could be a potential candidate for improving crop plants, with enhanced nutrient uptake leading to increased crop yield by providing tolerance against different biotic and abiotic stresses. The world's food supply is nearing a crisis in meeting the demands of an ever-growing global population, and an increase in both yield and nutrient value of major crops is vitally necessary to meet the increased population demand. Nutrients play an important role in plant metabolism as well as growth and development, and nutrient deficiency results in retarded plant growth and leads to reduced crop yield. A variety of cellular processes govern crop plant nutrient absorption from the soil. Among these, nutrient membrane transporters play an important role in the acquisition of nutrients from soil and transport of these nutrients to their target sites. In addition, as excess nutrient delivery has toxic effects on plant growth, these membrane transporters also play a significant role in the removal of excess nutrients in the crop plant. The key function provided by membrane transporters is the ability to supply the crop plant with an adequate level of tolerance against environmental stresses, such as soil acidity, alkalinity, salinity, drought, and pathogen attack. Membrane transporter genes have been utilized for the improvement of crop plants, with enhanced nutrient uptake leading to increased crop yield by providing tolerance against different biotic and abiotic stresses. Further understanding of the basic mechanisms of nutrient transport in crop plants could facilitate the advanced design of engineered plant crops to achieve increased yield and improve nutrient quality through the use of genetic technologies as well as molecular breeding. This review is focused on nutrient toxicity and tolerance mechanisms in crop plants to aid in understanding and addressing the anticipated global food demand.
Collapse
Affiliation(s)
- Bindu Yadav
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Abhimanyu Jogawat
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Shambhu Krishan Lal
- ICAR- Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Nita Lakra
- Department of Biotechnology, CCS HAU, Hisar, India
| | - Sahil Mehta
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Nitzan Shabek
- Department of Plant Biology, University of California, Davis, CA, USA
| | | |
Collapse
|
42
|
Tounsi S, Saïdi MN, Abdelhedi R, Feki K, Bahloul N, Alcon C, Masmoudi K, Brini F. Functional analysis of TmHKT1;4-A2 promoter through deletion analysis provides new insight into the regulatory mechanism underlying abiotic stress adaptation. PLANTA 2021; 253:18. [PMID: 33392811 DOI: 10.1007/s00425-020-03533-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Bioinformatic, molecular, and biochemical analysis were performed to get more insight into the regulatory mechanism by which TmHKT1;4-A2 is regulated. HKT transporters from different plant species have been shown to play important role in plant response to salt. In previous work, TmHKT1;4-A2 gene from Triticum monococcum has been characterized as a major gene for Nax1 QTL (Tounsi et al. Plant Cell Physiol 57:2047-2057, 2016). So far, little is known about its regulatory mechanism. In this study, the promoter region of TmHKT1;4-A2 (1400 bp) was isolated and considered as the full-length promoter (PA2-1400). In silico analysis revealed the presence of important cis-acting elements related to abiotic stresses and phytohormones. Interestingly, our real-time RT-PCR analysis provided evidence that TmHKT1;4-A2 is regulated not only by salt stress but also by osmotic, heavy metal, oxidative, and hormones stresses. In transgenic Arabidopsis plants, TmHKT1;4-A2 is strongly active in vascular tissues of roots and leaves. Through 5'-end deletion analysis, we showed that PA2-1400 promoter is able to drive strong GUS activity under normal conditions and in response to different stresses compared to PA2-824 and PA2-366 promoters. These findings provide new information on the regulatory mechanism of TmHKT1;4-A2 and shed more light on its role under different stresses.
Collapse
Affiliation(s)
- Sana Tounsi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/University of Sfax, B.P "1177", 3018, Sfax, Tunisia
| | - Mohamed Najib Saïdi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/University of Sfax, B.P "1177", 3018, Sfax, Tunisia
| | - Rania Abdelhedi
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Route Sidi Mansour, 3018, Sfax, Tunisia
| | - Kaouthar Feki
- Laboratory of Legumes, Centre of Biotechnology Bordj Cedria, BP 901, 2050, Hammam Lif, Tunisia
| | - Noura Bahloul
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/University of Sfax, B.P "1177", 3018, Sfax, Tunisia
| | - Carine Alcon
- Biochimie & Physiologie Moléculaire Des Plantes, PHIV Platform, UMR 5004 CNRS/386, INRA/Supagro Montpellier/Université Montpellier 2, Campus Supagro-INRA, 34060, Montpellier Cedex 2, France
| | - Khaled Masmoudi
- Department of Integrative Agriculture, College of Food and Agriculture, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Faiçal Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/University of Sfax, B.P "1177", 3018, Sfax, Tunisia.
| |
Collapse
|
43
|
Iqbal Z, Shariq Iqbal M, Singh SP, Buaboocha T. Ca 2+/Calmodulin Complex Triggers CAMTA Transcriptional Machinery Under Stress in Plants: Signaling Cascade and Molecular Regulation. FRONTIERS IN PLANT SCIENCE 2020; 11:598327. [PMID: 33343600 PMCID: PMC7744605 DOI: 10.3389/fpls.2020.598327] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/30/2020] [Indexed: 05/21/2023]
Abstract
Calcium (Ca2+) ion is a critical ubiquitous intracellular second messenger, acting as a lead currency for several distinct signal transduction pathways. Transient perturbations in free cytosolic Ca2+ ([Ca2+]cyt) concentrations are indispensable for the translation of signals into adaptive biological responses. The transient increase in [Ca2+]cyt levels is sensed by an array of Ca2+ sensor relay proteins such as calmodulin (CaM), eventually leading to conformational changes and activation of CaM. CaM, in a Ca2+-dependent manner, regulates several transcription factors (TFs) that are implicated in various molecular, physiological, and biochemical functions in cells. CAMTA (calmodulin-binding transcription activator) is one such member of the Ca2+-loaded CaM-dependent family of TFs. The present review focuses on Ca2+ as a second messenger, its interaction with CaM, and Ca2+/CaM-mediated CAMTA transcriptional regulation in plants. The review recapitulates the molecular and physiological functions of CAMTA in model plants and various crops, confirming its probable involvement in stress signaling pathways and overall plant development. Studying Ca2+/CaM-mediated CAMTA TF will help in answering key questions concerning signaling cascades and molecular regulation under stress conditions and plant growth, thus improving our knowledge for crop improvement.
Collapse
Affiliation(s)
- Zahra Iqbal
- Molecular Crop Research Unit, Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand
| | - Mohammed Shariq Iqbal
- Amity Institute of Biotechnology, Amity University, Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Surendra Pratap Singh
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, India
| | - Teerapong Buaboocha
- Molecular Crop Research Unit, Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|