1
|
Leydon AR, Flores L, Khakhar A, Nemhauser JL. Reprogramming feedback strength in gibberellin biosynthesis highlights conditional regulation by the circadian clock and carbon dioxide. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.644045. [PMID: 40166289 PMCID: PMC11956932 DOI: 10.1101/2025.03.18.644045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The phytohormone gibberellin (GA) is an important regulator of plant morphology and reproduction, and the biosynthesis and distribution of GA in planta is agriculturally relevant to past and current breeding efforts. Tools like biosensors, extensive molecular genetic resources in reference plants and mathematical models have greatly contributed to current understanding of GA homeostasis; however, these tools are difficult to tune or repurpose for engineering crop plants. Previously, we showed that a GA-regulated Hormone Activated CAS9-based Repressor (GAHACR) functions in planta. Here, we use GAHACRs to modulate the strength of feedback on endemic GA regulated genes, and to directly test the importance of transcriptional feedback in GA signaling. We first adapted existing mathematical models to predict the impact of targeting a GAHACR to different nodes in the GA biosynthesis pathway, and then implemented a perturbation predicted by the model to lower GA levels. Specifically, we individually targeted either the biosynthetic gene GA20 oxidase (GA20ox) or the GA receptor GID1, and characterized primary root length, flowering time and the transcriptome of these transgenic lines. Using this approach, we identified a strong connection between GA signaling status and the circadian clock, which can be largely attenuated by elevated carbon dioxide levels. Our results identify a node in the GA signaling pathway that can be engineered to modulate plant size and flowering time. Our results also raise concerns that rising atmospheric CO2 concentration are likely to reverse many of the gains of Green Revolution crops.
Collapse
Affiliation(s)
| | - Leonel Flores
- Department of Biology, University of Washington, USA
| | - Arjun Khakhar
- Department of Biology, Colorado State University, USA
| | | |
Collapse
|
2
|
Li X, He B, Djari A, Frasse P, Maza E, Regad F, Pirrello J, Hu G, Bouzayen M. Transcriptomic reprogramming and epigenetic regulation underlying pollination-dependent and auxin-induced fruit set in tomato. FRONTIERS IN PLANT SCIENCE 2025; 16:1495494. [PMID: 40007955 PMCID: PMC11850327 DOI: 10.3389/fpls.2025.1495494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/08/2025] [Indexed: 02/27/2025]
Abstract
The transition from flower to fruit, naturally triggered by flower pollination and known as fruit set, is instrumental for plant reproduction, seed formation, and crop yield. Notably, this developmental process can also proceed in the absence of flower fertilization, although it remains unclear whether pollination-dependent and pollination-independent fruit sets undergo similar transcriptomic reprogramming. Genome-wide transcriptomic profiling of the flower-to-fruit transition, either pollination-induced or triggered by auxin treatment, shows that both types of triggers modulate the expression of a common large set of genes primarily expressed in maternal tissues. These include genes related to auxin, gibberellin, brassinosteroid, and ethylene signaling. Furthermore, analysis of changes in histone marking during this transition phase indicated that gene reprogramming underlying both types of fruit set primarily correlated with dynamic changes in H3K9ac and H3K4me3 histone marks. Notably, MCM1, AG, DEFA and SRF (MADS)-box and NAM, ATAF1/2, and CUC2 (NAC) genes were extensively downregulated during the transition from flower to fruit, suggesting their negative roles in fruit initiation. In contrast, Teosinte branched1/Cincinnata/proliferating cell factor (TCP), SQUAMOSA -promoter binding proteins (SBP), Sucrose nonfermenting 2 (SNF2), Growth-regulating factor (GRF), and Su (var)3-9, Enhancer-of-zeste and Trithorax (SET) family genes were significantly upregulated in both pollinated and auxin-treated young developing fruits, suggesting their active roles in promoting fruit sets. Despite these similarities, a comparative analysis of the effects of natural pollination and auxin treatment revealed several differences, primarily related to seed development and hormone signaling. Taken together, the data support the idea that auxin serves as the central hormone orchestrating the extensive gene reprogramming associated with fruit initiation in tomato.
Collapse
Affiliation(s)
- Xiaohan Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Bing He
- College of Horticulture, China Agricultural University, Beijing, China
| | - Anis Djari
- Laboratoire de Recherche en Sciences Végétales—Génomique et Biotechnologie des Fruits—UMR5546, Université de Toulouse, Centre national de la recherche scientifique (CNRS), Université de Toulouse 3 - Paul Sabatier (UPS), Toulouse-Institut National Polytechnique (INP), Toulouse, France
| | - Pierre Frasse
- Laboratoire de Recherche en Sciences Végétales—Génomique et Biotechnologie des Fruits—UMR5546, Université de Toulouse, Centre national de la recherche scientifique (CNRS), Université de Toulouse 3 - Paul Sabatier (UPS), Toulouse-Institut National Polytechnique (INP), Toulouse, France
| | - Elie Maza
- Laboratoire de Recherche en Sciences Végétales—Génomique et Biotechnologie des Fruits—UMR5546, Université de Toulouse, Centre national de la recherche scientifique (CNRS), Université de Toulouse 3 - Paul Sabatier (UPS), Toulouse-Institut National Polytechnique (INP), Toulouse, France
| | - Farid Regad
- Laboratoire de Recherche en Sciences Végétales—Génomique et Biotechnologie des Fruits—UMR5546, Université de Toulouse, Centre national de la recherche scientifique (CNRS), Université de Toulouse 3 - Paul Sabatier (UPS), Toulouse-Institut National Polytechnique (INP), Toulouse, France
| | - Julien Pirrello
- Laboratoire de Recherche en Sciences Végétales—Génomique et Biotechnologie des Fruits—UMR5546, Université de Toulouse, Centre national de la recherche scientifique (CNRS), Université de Toulouse 3 - Paul Sabatier (UPS), Toulouse-Institut National Polytechnique (INP), Toulouse, France
| | - Guojian Hu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
- Laboratoire de Recherche en Sciences Végétales—Génomique et Biotechnologie des Fruits—UMR5546, Université de Toulouse, Centre national de la recherche scientifique (CNRS), Université de Toulouse 3 - Paul Sabatier (UPS), Toulouse-Institut National Polytechnique (INP), Toulouse, France
| | - Mondher Bouzayen
- Laboratoire de Recherche en Sciences Végétales—Génomique et Biotechnologie des Fruits—UMR5546, Université de Toulouse, Centre national de la recherche scientifique (CNRS), Université de Toulouse 3 - Paul Sabatier (UPS), Toulouse-Institut National Polytechnique (INP), Toulouse, France
| |
Collapse
|
3
|
Jardim-Messeder D, de Souza-Vieira Y, Sachetto-Martins G. Dressed Up to the Nines: The Interplay of Phytohormones Signaling and Redox Metabolism During Plant Response to Drought. PLANTS (BASEL, SWITZERLAND) 2025; 14:208. [PMID: 39861561 PMCID: PMC11768152 DOI: 10.3390/plants14020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
Plants must effectively respond to various environmental stimuli to achieve optimal growth. This is especially relevant in the context of climate change, where drought emerges as a major factor globally impacting crops and limiting overall yield potential. Throughout evolution, plants have developed adaptative strategies for environmental stimuli, with plant hormones and reactive oxygen species (ROS) playing essential roles in their development. Hormonal signaling and the maintenance of ROS homeostasis are interconnected, playing indispensable roles in growth, development, and stress responses and orchestrating diverse molecular responses during environmental adversities. Nine principal classes of phytohormones have been categorized: auxins, brassinosteroids, cytokinins, and gibberellins primarily oversee developmental growth regulation, while abscisic acid, ethylene, jasmonic acid, salicylic acid, and strigolactones are the main orchestrators of environmental stress responses. Coordination between phytohormones and transcriptional regulation is crucial for effective plant responses, especially in drought stress. Understanding the interplay of ROS and phytohormones is pivotal for elucidating the molecular mechanisms involved in plant stress responses. This review provides an overview of the intricate relationship between ROS, redox metabolism, and the nine different phytohormones signaling in plants, shedding light on potential strategies for enhancing drought tolerance for sustainable crop production.
Collapse
Affiliation(s)
- Douglas Jardim-Messeder
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Ygor de Souza-Vieira
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Gilberto Sachetto-Martins
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| |
Collapse
|
4
|
Xuan L, Tian Y, Chen X, Gao L, Wang M, Wu H. Endogenous H 2S promotes Arabidopsis flowering through the regulation of GA20ox4 in the gibberellin pathway. PHYSIOLOGIA PLANTARUM 2025; 177:e70084. [PMID: 39901639 DOI: 10.1111/ppl.70084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/16/2024] [Accepted: 01/12/2025] [Indexed: 02/05/2025]
Abstract
Flowering time is a critical determinant of plant reproductive success and agricultural yield. Hydrogen sulfide (H₂S), as a signaling molecule, regulates various aspects of plant growth and development. In this study, we examined the role of endogenous H₂S in regulating flowering time in Arabidopsis. The O-acetylserine thiol lyase a1 (oasa1) mutant, which has elevated H₂S levels due to impaired OASA1 activity that catalyzes the synthesis of Cys from H2S, flowers earlier than wild type (WT). The OASA1 overexpression lines (OE-OASA1-#33/#142), characterized by reduced H₂S levels, show delayed flowering, accompanied by decreased expression of key flowering regulators, FLOWERING LOCUS T (FT), SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1), and AGAMOUS-LIKE24 (AGL24). Notably, vernalization and short-day (SD) conditions did not affect their flowering patterns. Exogenous H₂S and GA₃ treatment rescued the delayed flowering phenotype of OE-OASA1-#33/#142. In oasa1, levels of GA intermediates (GA15 and GA53) were elevated, while their levels were reduced in OE-OASA1-#33/#142. RT-qPCR analysis showed a significant reduction in the expression of GIBBERELLIN 20-OXIDASE 4 (GA20ox4) in OE-OASA1-#33/#142 compared to WT. Overexpression of GA20ox4 (OE-GA20ox4-#20/#30) resulted in earlier flowering and partially rescued the delayed flowering phenotype of OE-OASA1-#33/#142. Additionally, the expression of age pathway-related genes, including miRNA172b and SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 3/4/5/9/15 (SPL3/4/5/9/15), was significantly reduced in OE-OASA1-#33/#142 seedlings. These findings suggest that endogenous H₂S positively regulates GA20ox4 expression, thereby promoting gibberellin synthesis and advancing flowering in Arabidopsis through the GA pathway. Furthermore, the promotion of flowering by H₂S appears to be linked to the age pathway.
Collapse
Affiliation(s)
- Lijuan Xuan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Yongke Tian
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
- Present address: Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Xiaoyan Chen
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
- Pressent address: School of Life Sciences, Tsinghua University, Beijing, Beijing, China
| | - Le Gao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Meng Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Haijun Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
5
|
Zhang Y, Zhang J, Huang G, Tan Y, Ning L, Li M, Mo Y. Over Expression of Mango MiGA2ox12 in Tobacco Reduced Plant Height by Reducing GA 1 and GA 4 Content. Int J Mol Sci 2024; 25:12109. [PMID: 39596175 PMCID: PMC11594832 DOI: 10.3390/ijms252212109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
The regulation of gibberellic acid 2-oxidase (GA2ox) gene expression represents a critical mechanism in the modulation of endogenous gibberellic acids (GAs) levels, thereby exerting an influence on plant height. In this context, we conducted a comprehensive genome-wide analysis of the GA2ox gene family in mango (Mangifera indica L.), a species of significant economic importance, with the aim of identifying potential candidate genes for mango dwarf breeding. Our findings delineated the presence of at least 14 members within the MiGA2ox gene family in the mango genome, which were further categorized into three subfamilies: C19-GA2ox-I, C19-GA2ox-II, and C20-GA2ox-I. Notably, MiGA2ox12, a member of the C19-GA2ox-II subfamily, exhibited substantial expression across various tissues, including roots, bark, leaves, and flowers. Through overexpression of the MiGA2ox12 gene in tobacco, a distinct dwarf phenotype was observed alongside reduced levels of GA1 and GA4, while the knockout line exhibited contrasting traits. This provides evidence suggesting that MiGA2ox12 may exert control over plant height by modulating GA content. Consequently, the MiGA2ox12 gene emerges as a promising candidate for facilitating advancements in mango dwarfing techniques.
Collapse
Affiliation(s)
- Yu Zhang
- Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530001, China; (G.H.); (Y.T.); (L.N.); (M.L.); (Y.M.)
- Guangxi Zhuang Autonomous Region Engineering Research Center of Green and Efficient Development for Mango Industry, Nanning 530001, China
| | - Ji Zhang
- Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530001, China; (G.H.); (Y.T.); (L.N.); (M.L.); (Y.M.)
- Guangxi Zhuang Autonomous Region Engineering Research Center of Green and Efficient Development for Mango Industry, Nanning 530001, China
| | - Guodi Huang
- Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530001, China; (G.H.); (Y.T.); (L.N.); (M.L.); (Y.M.)
- Guangxi Zhuang Autonomous Region Engineering Research Center of Green and Efficient Development for Mango Industry, Nanning 530001, China
| | - Yiwei Tan
- Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530001, China; (G.H.); (Y.T.); (L.N.); (M.L.); (Y.M.)
- Guangxi Zhuang Autonomous Region Engineering Research Center of Green and Efficient Development for Mango Industry, Nanning 530001, China
| | - Lei Ning
- Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530001, China; (G.H.); (Y.T.); (L.N.); (M.L.); (Y.M.)
- Guangxi Zhuang Autonomous Region Engineering Research Center of Green and Efficient Development for Mango Industry, Nanning 530001, China
| | - Mu Li
- Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530001, China; (G.H.); (Y.T.); (L.N.); (M.L.); (Y.M.)
- Guangxi Zhuang Autonomous Region Engineering Research Center of Green and Efficient Development for Mango Industry, Nanning 530001, China
| | - Yonglong Mo
- Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530001, China; (G.H.); (Y.T.); (L.N.); (M.L.); (Y.M.)
- Guangxi Zhuang Autonomous Region Engineering Research Center of Green and Efficient Development for Mango Industry, Nanning 530001, China
| |
Collapse
|
6
|
Gou H, Lu S, Nai G, Ma W, Ren J, Guo L, Chen B, Mao J. The role of gibberellin synthase gene VvGA2ox7 acts as a positive regulator to salt stress in Arabidopsis thaliana. BMC PLANT BIOLOGY 2024; 24:1051. [PMID: 39506686 PMCID: PMC11542264 DOI: 10.1186/s12870-024-05708-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Soil salinity is an important environmental component affecting plant growth and yield, but high-salinity soils are a major constraint to the development of the grape industry. Previous studies have provided lines of evidence that gibberellins (GAs) play a significant regulatory role in plant responses to salt stress. However, it remains unclear whether GA2ox, a key enzyme that maintains the balance of bioactive gibberellins and intermediates in plants, is involved in the mechanism of salt stress tolerance in grapes. RESULTS In this study, we found that GA2ox7 positively modulates salt stress via its ectopic expression in Arabidopsis thaliana. The GA2ox7 gene cloned from grape was a hydrophilic protein, its CDS length was 1002 bp. Besides, VvGA2ox7 protein contained DIOX_N and 2OG-FeII_Oxy domains and was localized at the nucleus and cytoplasm. Yeast two-hybrid (Y2H) showed VvARCN1, VvB5R, VvRUB2, and VvCAR11 might be potential interaction proteins of VvGA2ox7. Compared with the wild type, overexpression of VvGA2ox7 in Arabidopsis thaliana enhanced antioxidant enzymatic activities and proline, chlorophyll, and ABA contents, and decreased relative electrical conductivity, malondialdehyde, and GA3 contents. Moreover, overexpression of VvGA2ox7 positively regulated the expression of salt stress response genes (KAT1, APX1, LEA, P5CS1, AVP1, CBF1), indicating that the VvGA2ox7 overexpression improved the salt stress tolerance of plants. CONCLUSIONS Taken together, this investigation indicates that VvGA2ox7 may act as a positive regulator in response to salt stress and provide novel insights for a deeper understanding of the role of VvGA2ox7 in grapes.
Collapse
Affiliation(s)
- Huimin Gou
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, 730070, People's Republic of China
| | - Shixiong Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, 730070, People's Republic of China
| | - Guojie Nai
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, 730070, People's Republic of China
| | - Weifeng Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, 730070, People's Republic of China
| | - Jiaxuan Ren
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, 730070, People's Republic of China
| | - Lili Guo
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, 730070, People's Republic of China
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, 730070, People's Republic of China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, 730070, People's Republic of China.
| |
Collapse
|
7
|
Griffiths J, Rizza A, Tang B, Frommer WB, Jones AM. GIBBERELLIN PERCEPTION SENSOR 2 reveals genesis and role of cellular GA dynamics in light-regulated hypocotyl growth. THE PLANT CELL 2024; 36:4426-4441. [PMID: 39039020 PMCID: PMC11449061 DOI: 10.1093/plcell/koae198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/27/2024] [Indexed: 07/24/2024]
Abstract
The phytohormone gibberellic acid (GA) is critical for environmentally sensitive plant development including germination, skotomorphogenesis, and flowering. The Förster resonance energy transfer biosensor GIBBERELLIN PERCEPTION SENSOR1, which permits single-cell GA measurements in vivo, has been used to observe a GA gradient correlated with cell length in dark-grown, but not light-grown, hypocotyls. We sought to understand how light signaling integrates into cellular GA regulation. Here, we show how the E3 ligase CONSTITUTIVE PHOTOMORPHOGENESIS1 (COP1) and transcription factor ELONGATED HYPOCOTYL 5 (HY5) play central roles in directing cellular GA distribution in skoto- and photomorphogenic hypocotyls, respectively. We demonstrate that the expression pattern of the GA biosynthetic enzyme gene GA20ox1 is the key determinant of the GA gradient in dark-grown hypocotyls and is a target of COP1 signaling. We engineered a second generation GPS2 biosensor with improved orthogonality and reversibility. GPS2 revealed a previously undetectable cellular pattern of GA depletion during the transition to growth in the light. This GA depletion partly explains the resetting of hypocotyl growth dynamics during photomorphogenesis. Achieving cell-level resolution has revealed how GA distributions link environmental conditions with morphology and morphological plasticity. The GPS2 biosensor is an ideal tool for GA studies in many conditions, organs, and plant species.
Collapse
Affiliation(s)
- Jayne Griffiths
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Annalisa Rizza
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Bijun Tang
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Wolf B Frommer
- Heinrich Heine University, Institute for Molecular Physiology, 40225 Düsseldorf, Germany
| | - Alexander M Jones
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| |
Collapse
|
8
|
Yan R, Zhang T, Wang Y, Wang W, Sharif R, Liu J, Dong Q, Luan H, Zhang X, Li H, Guo S, Qi G, Jia P. The apple MdGA2ox7 modulates the balance between growth and stress tolerance in an anthocyanin-dependent manner. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108707. [PMID: 38763002 DOI: 10.1016/j.plaphy.2024.108707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/19/2024] [Accepted: 05/05/2024] [Indexed: 05/21/2024]
Abstract
Apple (Malus domestica Borkh.) is a widely cultivated fruit crop worldwide but often suffers from abiotic stresses such as salt and cold. Gibberellic acid (GA) plays a pivotal in controlling plant development, environmental adaptability, and secondary metabolism. The GA2-oxidase (GA2ox) is responsible for the deactivation of bioactive GA. In this study, seventeen GA2-oxidase genes were identified in the apple genome, and these members could be clustered into four clades based on phylogenetic relationships and conserved domain structures. MdGA2ox7 exhibited robust expression across various tissues, responded to cold and salt treatments, and was triggered in apple fruit peels via light-induced anthocyanin accumulation. Subcellular localization prediction and experiments confirmed that MdGA2ox7 was located in the cytoplasm. Overexpression of MdGA2ox7 in Arabidopsis caused a lower level of active GA and led to GA-deficient phenotypes, such as dwarfism and delayed flowering. MdGA2ox7 alleviated cold and salt stress damage in both Arabidopsis and apple in concert with melatonin (MT). Additionally, MdGA2ox7 enhanced anthocyanin biosynthesis in apple calli and activated genes involved in anthocyanin synthesis. These findings provide new insights into the functions of apple GA2ox in regulating development, stress tolerance, and secondary metabolism.
Collapse
Affiliation(s)
- Rui Yan
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Tianle Zhang
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Yuan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071000, China
| | - Wenxiu Wang
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Rahat Sharif
- Department of Horticulture, School of Horticulture and Landscape, Yangzhou University, Yangzhou, 225009, China
| | - Jiale Liu
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Qinglong Dong
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Haoan Luan
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Xuemei Zhang
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Han Li
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Suping Guo
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Guohui Qi
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China.
| | - Peng Jia
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China.
| |
Collapse
|
9
|
Yang FS, Liu M, Guo X, Xu C, Jiang J, Mu W, Fang D, Xu YC, Zhang FM, Wang YH, Yang T, Chen H, Sahu SK, Li R, Wang G, Wang Q, Xu X, Ge S, Liu H, Guo YL. Signatures of Adaptation and Purifying Selection in Highland Populations of Dasiphora fruticosa. Mol Biol Evol 2024; 41:msae099. [PMID: 38768215 PMCID: PMC11156201 DOI: 10.1093/molbev/msae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024] Open
Abstract
High mountains harbor a considerable proportion of biodiversity, but we know little about how diverse plants adapt to the harsh environment. Here we finished a high-quality genome assembly for Dasiphora fruticosa, an ecologically important plant distributed in the Qinghai-Tibetan Plateau and lowland of the Northern Hemisphere, and resequenced 592 natural individuals to address how this horticulture plant adapts to highland. Demographic analysis revealed D. fruticosa underwent a bottleneck after Naynayxungla Glaciation. Selective sweep analysis of two pairs of lowland and highland populations identified 63 shared genes related to cell wall organization or biogenesis, cellular component organization, and dwarfism, suggesting parallel adaptation to highland habitats. Most importantly, we found that stronger purging of estimated genetic load due to inbreeding in highland populations apparently contributed to their adaptation to the highest mountain. Our results revealed how plants could tolerate the extreme plateau, which could provide potential insights for species conservation and crop breeding.
Collapse
Affiliation(s)
- Fu-Sheng Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Liu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
- BGI Research, Wuhan 430074, China
| | - Xing Guo
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
- BGI Research, Wuhan 430074, China
| | - Chao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Juan Jiang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weixue Mu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
| | - Dongming Fang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
| | - Yong-Chao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Fu-Min Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying-Hui Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Yang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
| | - Hongyun Chen
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
- BGI Research, Wuhan 430074, China
| | - Ruirui Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
| | - Guanlong Wang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
| | - Qiang Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xun Xu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
| | - Ya-Long Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Hu D, Cui R, Wang K, Yang Y, Wang R, Zhu H, He M, Fan Y, Wang L, Wang L, Chu S, Zhang J, Zhang S, Yang Y, Zhai X, Lü H, Zhang D, Wang J, Kong F, Yu D, Zhang H, Zhang D. The Myb73-GDPD2-GA2ox1 transcriptional regulatory module confers phosphate deficiency tolerance in soybean. THE PLANT CELL 2024; 36:2176-2200. [PMID: 38345432 PMCID: PMC11132883 DOI: 10.1093/plcell/koae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 02/07/2024] [Indexed: 05/30/2024]
Abstract
Phosphorus is indispensable in agricultural production. An increasing food supply requires more efficient use of phosphate due to limited phosphate resources. However, how crops regulate phosphate efficiency remains largely unknown. Here, we identified a major quantitative trait locus, qPE19, that controls 7 low-phosphate (LP)-related traits in soybean (Glycine max) through linkage mapping and genome-wide association studies. We identified the gene responsible for qPE19 as GLYCEROPHOSPHORYL DIESTER PHOSPHODIESTERASE2 (GmGDPD2), and haplotype 5 represents the optimal allele favoring LP tolerance. Overexpression of GmGDPD2 significantly affects hormone signaling and improves root architecture, phosphate efficiency and yield-related traits; conversely, CRISPR/Cas9-edited plants show decreases in these traits. GmMyb73 negatively regulates GmGDPD2 by directly binding to its promoter; thus, GmMyb73 negatively regulates LP tolerance. GmGDPD2 physically interacts with GA 2-oxidase 1 (GmGA2ox1) in the plasma membrane, and overexpressing GmGA2ox1 enhances LP-associated traits, similar to GmGDPD2 overexpression. Analysis of double mutants for GmGDPD2 and GmGA2ox1 demonstrated that GmGDPD2 regulates LP tolerance likely by influencing auxin and gibberellin dose-associated cell division in the root. These results reveal a regulatory module that plays a major role in regulating LP tolerance in soybeans and is expected to be utilized to develop phosphate-efficient varieties to enhance soybean production, particularly in phosphate-deficient soils.
Collapse
Affiliation(s)
- Dandan Hu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Ruifan Cui
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Ke Wang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Yuming Yang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Ruiyang Wang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Hongqing Zhu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Mengshi He
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Yukun Fan
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Le Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Li Wang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Shanshan Chu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Jinyu Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Shanshan Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Yifei Yang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Xuhao Zhai
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Haiyan Lü
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Dandan Zhang
- State Key Laboratory of Agricultural Microbiology, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinshe Wang
- Zhengzhou National Subcenter for Soybean Improvement, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Fanjiang Kong
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Deyue Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Hengyou Zhang
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Dan Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
11
|
Andres J, Schmunk LJ, Grau-Enguix F, Braguy J, Samodelov SL, Blomeier T, Ochoa-Fernandez R, Weber W, Al-Babili S, Alabadí D, Blázquez MA, Zurbriggen MD. Ratiometric gibberellin biosensors for the analysis of signaling dynamics and metabolism in plant protoplasts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:927-939. [PMID: 38525669 DOI: 10.1111/tpj.16725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024]
Abstract
Gibberellins (GAs) are major regulators of developmental and growth processes in plants. Using the degradation-based signaling mechanism of GAs, we have built transcriptional regulator (DELLA)-based, genetically encoded ratiometric biosensors as proxies for hormone quantification at high temporal resolution and sensitivity that allow dynamic, rapid and simple analysis in a plant cell system, i.e. Arabidopsis protoplasts. These ratiometric biosensors incorporate a DELLA protein as a degradation target fused to a firefly luciferase connected via a 2A peptide to a renilla luciferase as a co-expressed normalization element. We have implemented these biosensors for all five Arabidopsis DELLA proteins, GA-INSENSITIVE, GAI; REPRESSOR-of-ga1-3, RGA; RGA-like1, RGL1; RGL2 and RGL3, by applying a modular design. The sensors are highly sensitive (in the low pm range), specific and dynamic. As a proof of concept, we have tested the applicability in three domains: the study of substrate specificity and activity of putative GA-oxidases, the characterization of GA transporters, and the use as a discrimination platform coupled to a GA agonists' chemical screening. This work demonstrates the development of a genetically encoded quantitative biosensor complementary to existing tools that allow the visualization of GA in planta.
Collapse
Affiliation(s)
- Jennifer Andres
- Institute of Synthetic Biology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Lisa J Schmunk
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Federico Grau-Enguix
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), Valencia, Spain
| | - Justine Braguy
- Institute of Synthetic Biology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- The BioActives Lab, Division of Biological and Environmental Science and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Sophia L Samodelov
- Institute of Synthetic Biology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Tim Blomeier
- Institute of Synthetic Biology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Rocio Ochoa-Fernandez
- Institute of Synthetic Biology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Wilfried Weber
- Signalling Research Centres BIOSS and CIBSS and Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Salim Al-Babili
- The BioActives Lab, Division of Biological and Environmental Science and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - David Alabadí
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), Valencia, Spain
| | - Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), Valencia, Spain
| | - Matias D Zurbriggen
- Institute of Synthetic Biology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- CEPLAS-Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| |
Collapse
|
12
|
Shani E, Hedden P, Sun TP. Highlights in gibberellin research: A tale of the dwarf and the slender. PLANT PHYSIOLOGY 2024; 195:111-134. [PMID: 38290048 PMCID: PMC11060689 DOI: 10.1093/plphys/kiae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 02/01/2024]
Abstract
It has been almost a century since biologically active gibberellin (GA) was isolated. Here, we give a historical overview of the early efforts in establishing the GA biosynthesis and catabolism pathway, characterizing the enzymes for GA metabolism, and elucidating their corresponding genes. We then highlight more recent studies that have identified the GA receptors and early GA signaling components (DELLA repressors and F-box activators), determined the molecular mechanism of DELLA-mediated transcription reprograming, and revealed how DELLAs integrate multiple signaling pathways to regulate plant vegetative and reproductive development in response to internal and external cues. Finally, we discuss the GA transporters and their roles in GA-mediated plant development.
Collapse
Affiliation(s)
- Eilon Shani
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - Peter Hedden
- Laboratory of Growth Regulators, Institute of Experimental Botany and Palacky University, 78371 Olomouc, Czech Republic
- Sustainable Soils and Crops, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Tai-ping Sun
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
13
|
Boucher JJ, Ireland HS, Wang R, David KM, Schaffer RJ. The genetic control of herkogamy. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23315. [PMID: 38687848 DOI: 10.1071/fp23315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/14/2024] [Indexed: 05/02/2024]
Abstract
Herkogamy is the spatial separation of anthers and stigmas within complete flowers, and is a key floral trait that promotes outcrossing in many angiosperms. The degree of separation between pollen-producing anthers and receptive stigmas has been shown to influence rates of self-pollination amongst plants, with a reduction in herkogamy increasing rates of successful selfing in self-compatible species. Self-pollination is becoming a critical issue in horticultural crops grown in environments where biotic pollinators are limited, absent, or difficult to utilise. In these cases, poor pollination results in reduced yield and misshapen fruit. Whilst there is a growing body of work elucidating the genetic basis of floral organ development, the genetic and environmental control points regulating herkogamy are poorly understood. A better understanding of the developmental and regulatory pathways involved in establishing varying degrees of herkogamy is needed to provide insights into the production of flowers more adept at selfing to produce consistent, high-quality fruit. This review presents our current understanding of herkogamy from a genetics and hormonal perspective.
Collapse
Affiliation(s)
- Jacques-Joseph Boucher
- The New Zealand Institute for Plant and Food Research Ltd, 55 Old Mill Road, Motueka 7198, New Zealand; and School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Hilary S Ireland
- The New Zealand Institute for Plant and Food Research Ltd, Private Bag 92196, Auckland 1142, New Zealand
| | - Ruiling Wang
- The New Zealand Institute for Plant and Food Research Ltd, Private Bag 92196, Auckland 1142, New Zealand
| | - Karine M David
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Robert J Schaffer
- The New Zealand Institute for Plant and Food Research Ltd, 55 Old Mill Road, Motueka 7198, New Zealand; and School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
14
|
Kubalová M, Müller K, Dobrev PI, Rizza A, Jones AM, Fendrych M. Auxin co-receptor IAA17/AXR3 controls cell elongation in Arabidopsis thaliana root solely by modulation of nuclear auxin pathway. THE NEW PHYTOLOGIST 2024; 241:2448-2463. [PMID: 38308183 DOI: 10.1111/nph.19557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 01/06/2024] [Indexed: 02/04/2024]
Abstract
The nuclear TIR1/AFB-Aux/IAA auxin pathway plays a crucial role in regulating plant growth and development. Specifically, the IAA17/AXR3 protein participates in Arabidopsis thaliana root development, response to auxin and gravitropism. However, the mechanism by which AXR3 regulates cell elongation is not fully understood. We combined genetical and cell biological tools with transcriptomics and determination of auxin levels and employed live cell imaging and image analysis to address how the auxin response pathways influence the dynamics of root growth. We revealed that manipulations of the TIR1/AFB-Aux/IAA pathway rapidly modulate root cell elongation. While inducible overexpression of the AXR3-1 transcriptional inhibitor accelerated growth, overexpression of the dominant activator form of ARF5/MONOPTEROS inhibited growth. In parallel, AXR3-1 expression caused loss of auxin sensitivity, leading to transcriptional reprogramming, phytohormone signaling imbalance and increased levels of auxin. Furthermore, we demonstrated that AXR3-1 specifically perturbs nuclear auxin signaling, while the rapid auxin response remains functional. Our results shed light on the interplay between the nuclear and cytoplasmic auxin pathways in roots, revealing their partial independence but also the dominant role of the nuclear auxin pathway during the gravitropic response of Arabidopsis thaliana roots.
Collapse
Affiliation(s)
- Monika Kubalová
- Department of Experimental Plant Biology, Charles University, Prague, 12844, Czech Republic
| | - Karel Müller
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, 16502, Czech Republic
| | - Petre Ivanov Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, 16502, Czech Republic
| | - Annalisa Rizza
- Sainsbury Laboratory, Cambridge University, Cambridge, CB2 1LR, UK
| | | | - Matyáš Fendrych
- Department of Experimental Plant Biology, Charles University, Prague, 12844, Czech Republic
| |
Collapse
|
15
|
Liaqat S, Ali Z, Saddique MAB, Ikram RM, Ali I. Comparative transcript abundance of gibberellin oxidases genes in two barley ( Hordeum vulgare) genotypes with contrasting lodging resistance under different regimes of water deficit. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23246. [PMID: 38252957 DOI: 10.1071/fp23246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024]
Abstract
Barley (Hordeum vulgare ) is the world's fourth most important cereal crop, and is particularly well adapted to harsh environments. However, lodging is a major productivity constraint causing 13-65% yield losses. Gibberellic acid (GA) homeostatic genes such as HvGA20ox, HvGA3ox and HvGA2ox are responsible for changes in plant phenotype for height and internodal length that contribute towards lodging resistance. This study explored the expression of different HvGAox transcripts in two contrasting barley genotypes (5-GSBON-18, lodging resistant; and 5-GSBON-70, lodging sensitive), which were sown both under controlled (hydroponic, completely randomised factorial design) and field conditions (split-plot, completely randomised block design) with two irrigation treatments (normal with three irrigation events; and water deficit with one irrigation event). In the hydroponic experiment, expression analysis was performed on seedlings at 0, ¾, 1½, 3 and 6h after application of treatment. In the field experiment, leaf, shoot nodes and internodes were sampled. Downregulation of HvGA20ox.1 transcript and 2-fold upregulation of HvGA2ox.2 transcript were observed in 5-GSBON-18 under water deficit conditions. This genotype also showed a significant reduction in plant height (18-20%), lodging (<10%), and increased grain yield (15-18%) under stress. Utilisation of these transcripts in barley breeding has the potential to reduce plant height, lodging and increased grain yield.
Collapse
Affiliation(s)
- Shoaib Liaqat
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan 60000, Pakistan
| | - Zulfiqar Ali
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan 60000, Pakistan; and Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan; and Programs and Projects Department, Islamic Organization for Food Security, Astana, Kazakhstan
| | | | - Rao Muhammad Ikram
- Department of Agronomy, MNS University of Agriculture, Multan 60000, Pakistan
| | - Imtiaz Ali
- Regional Agricultural Research Institute, Bahawalpur 63100, Pakistan
| |
Collapse
|
16
|
Sharma A, Pridgeon AJ, Liu W, Segers F, Sharma B, Jenkins GI, Franklin KA. ELONGATED HYPOCOTYL5 (HY5) and HY5 HOMOLOGUE (HYH) maintain shade avoidance suppression in UV-B. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1394-1407. [PMID: 37243898 PMCID: PMC10953383 DOI: 10.1111/tpj.16328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023]
Abstract
Reductions in red to far-red ratio (R:FR) provide plants with an unambiguous signal of vegetational shade and are monitored by phytochrome photoreceptors. Plants integrate this information with other environmental cues to determine the proximity and density of encroaching vegetation. Shade-sensitive species respond to reductions in R:FR by initiating a suite of developmental adaptations termed shade avoidance. These include the elongation of stems to facilitate light foraging. Hypocotyl elongation is driven by increased auxin biosynthesis promoted by PHYTOCHROME INTERACTING FACTORs (PIF) 4, 5 and 7. UV-B perceived by the UV RESISTANCE LOCUS 8 (UVR8) photoreceptor rapidly inhibits shade avoidance, in part by suppressing PIF4/5 transcript accumulation and destabilising PIF4/5 protein. Here, we show that longer-term inhibition of shade avoidance is sustained by ELONGATED HYPOCOTYL 5 (HY5) and HY5 HOMOLOGUE (HYH), which regulate transcriptional reprogramming of genes involved in hormone signalling and cell wall modification. HY5 and HYH are elevated in UV-B and suppress the expression of XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDROLASE (XTH) genes involved in cell wall loosening. They additionally increase expression GA2-OXIDASE1 (GA2ox1) and GA2ox2, encoding gibberellin catabolism enzymes that act redundantly to stabilise the PIF-inhibiting DELLA proteins. UVR8 therefore regulates temporally distinct signalling pathways to first rapidly inhibit and subsequently maintain suppression of shade avoidance following UV-B exposure.
Collapse
Affiliation(s)
- Ashutosh Sharma
- School of Biological Sciences, Life Sciences BuildingUniversity of BristolBristolBS8 1TQUK
| | - Ashley J. Pridgeon
- School of Biological Sciences, Life Sciences BuildingUniversity of BristolBristolBS8 1TQUK
| | - Wei Liu
- School of Molecular Biosciences, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - Francisca Segers
- School of Biological Sciences, Life Sciences BuildingUniversity of BristolBristolBS8 1TQUK
| | - Bhavana Sharma
- School of Biological Sciences, Life Sciences BuildingUniversity of BristolBristolBS8 1TQUK
| | - Gareth I. Jenkins
- School of Molecular Biosciences, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - Keara A. Franklin
- School of Biological Sciences, Life Sciences BuildingUniversity of BristolBristolBS8 1TQUK
| |
Collapse
|
17
|
Hanifah NASB, Ghadamgahi F, Ghosh S, Ortiz R, Whisson SC, Vetukuri RR, Kalyandurg PB. Comparative transcriptome profiling provides insights into the growth promotion activity of Pseudomonas fluorescens strain SLU99 in tomato and potato plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1141692. [PMID: 37534284 PMCID: PMC10393259 DOI: 10.3389/fpls.2023.1141692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/03/2023] [Indexed: 08/04/2023]
Abstract
The use of biocontrol agents with plant growth-promoting activity has emerged as an approach to support sustainable agriculture. During our field evaluation of potato plants treated with biocontrol rhizobacteria, four bacteria were associated with increased plant height. Using two important solanaceous crop plants, tomato and potato, we carried out a comparative analysis of the growth-promoting activity of the four bacterial strains: Pseudomonas fluorescens SLU99, Serratia plymuthica S412, S. rubidaea AV10, and S. rubidaea EV23. Greenhouse and in vitro experiments showed that P. fluorescens SLU99 promoted plant height, biomass accumulation, and yield of potato and tomato plants, while EV23 promoted growth in potato but not in tomato plants. SLU99 induced the expression of plant hormone-related genes in potato and tomato, especially those involved in maintaining homeostasis of auxin, cytokinin, gibberellic acid and ethylene. Our results reveal potential mechanisms underlying the growth promotion and biocontrol effects of these rhizobacteria and suggest which strains may be best deployed for sustainably improving crop yield.
Collapse
Affiliation(s)
- Nurul Atilia Shafienaz binti Hanifah
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma, Sweden
- Agrobiodiversity and Environment Research Centre, Malaysian Agricultural Research and Development Institute (MARDI), Serdang, Selangor, Malaysia
| | - Farideh Ghadamgahi
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Samrat Ghosh
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Rodomiro Ortiz
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Stephen C. Whisson
- Cell and Molecular Sciences, James Hutton Institute, Dundee, United Kingdom
| | - Ramesh R. Vetukuri
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Pruthvi B. Kalyandurg
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma, Sweden
| |
Collapse
|
18
|
Zhang S, Gottschalk C, van Nocker S. Conservation and divergence of expression of GA2-oxidase homeologs in apple ( Malus x domestica Borkh.). FRONTIERS IN PLANT SCIENCE 2023; 14:1117069. [PMID: 37180390 PMCID: PMC10169729 DOI: 10.3389/fpls.2023.1117069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/15/2023] [Indexed: 05/16/2023]
Abstract
In domesticated apple (Malus x domestica Borkh.) and other woody perennials, floral initiation can be repressed by gibberellins (GAs). The associated mechanism is a major unanswered question in plant physiology, and understanding organismal aspects of GA signaling in apple has important commercial applications. In plants, the major mechanism for elimination of GAs and resetting of GA signaling is through catabolism by GA2-oxidases (GA2ox). We found that the GA2ox gene family in apple comprises 16 genes representing eight, clearly defined homeologous pairs, which were named as MdGA2ox1A/1B to MdGA2ox8A/8B. Expression of the genes was analyzed in the various structures of the spur, where flowers are initiated, as well as in various structures of seedlings over one diurnal cycle and in response to water-deficit and salt stress. Among the results, we found that MdGA2ox2A/2B dominated expression in the shoot apex and were strongly upregulated in the apex after treatment with exogenous GA3, suggesting potential involvement in repression of flowering. Several MdGA2ox genes also showed preferential expression in the leaf petiole, fruit pedicel, and the seed coat of developing seeds, potentially representing mechanisms to limit diffusion of GAs across these structures. In all contexts studied, we documented both concerted and distinct expression of individual homeologs. This work introduces an accessible woody plant model for studies of GA signaling, GA2ox gene regulation, and conservation/divergence of expression of homeologous genes, and should find application in development of new cultivars of apple and other tree fruits.
Collapse
Affiliation(s)
| | | | - Steve van Nocker
- Department of Horticulture and Graduate Program in Plant Breeding, Genetics and Biotechnology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
19
|
Ouellette L, Anh Tuan P, Toora PK, Yamaguchi S, Ayele BT. Heterologous functional analysis and expression patterns of gibberellin 2-oxidase genes of barley (Hordeum vulgare L.). Gene 2023; 861:147255. [PMID: 36746354 DOI: 10.1016/j.gene.2023.147255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
The level of bioactive gibberellins (GAs) in plants is regulated partly by their inactivation, mainly by the action of GA 2-oxidases (GA2oxs). This study identified three new GA2ox genes in barley: HvGA2ox1, HvGA2ox3 and HvGA2ox6. Analysis of their nucleotide and putative amino acid sequences revealed that they share high sequence identity with other plant GA2oxs and their corresponding proteins. Phylogenetic analysis revealed the HvGA2ox1, HvGA2ox3 and HvGA2ox6 belong to GA2ox structural classes II, I, and III, respectively. Feeding the HvGA2ox1 and HvGA2ox3 recombinant proteins with the C19-GAs, GA1 and GA20, resulted in the production of GA8 and GA29, respectively, with no product detected when they were fed with the C20-GA, GA12. Whereas the HvGA2ox6 recombinant protein was able to convert GA12 to GA110, and no product was detected when it was fed with GA1 or GA20. HvGA2ox1 and HvGA2ox3 were highly expressed in internodes and the endosperm of maturing seeds while HvGA2ox6 was predominantly expressed in the embryos. Salinity stress upregulated the expression of all three genes in seedling tissues. Our results indicate that HvGA2ox1, HvGA2ox3 and HvGA2ox6 encode functional GA2oxs that can regulate GA levels, and therefore growth and development of a barley plant, and its interaction with environment.
Collapse
Affiliation(s)
- Luc Ouellette
- Department of Plant Science, 222 Agriculture Building, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Pham Anh Tuan
- Department of Plant Science, 222 Agriculture Building, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Parneet K Toora
- Department of Plant Science, 222 Agriculture Building, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Shinjiro Yamaguchi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Belay T Ayele
- Department of Plant Science, 222 Agriculture Building, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada.
| |
Collapse
|
20
|
Lv Z, Yu L, Zhan H, Li J, Wang C, Huang L, Wang S. Shoot differentiation from Dendrocalamus brandisii callus and the related physiological roles of sugar and hormones during shoot differentiation. TREE PHYSIOLOGY 2023:tpad039. [PMID: 36988419 DOI: 10.1093/treephys/tpad039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/20/2023] [Indexed: 06/19/2023]
Abstract
Only a few calli regeneration systems of bamboos were successfully established, which limited the research on physiological mechanism of callus differentiation. In this study, we successfully established the callus differentiation systems of Dendrocalamus brandisii via seeds. The results showed that the best medium for callus induction of D. brandisii seeds was basal MS media amended with 5.0 mg L-1 2,4-D and 0.5 mg L-1 KT, and the optimal medium for shoot differentiation was the basal MS media supplemented with 4.0 mg L-1 BA and 0.5 mg L-1 NAA. Callus tissues had apparent polarity in cell arrangement, and developed their own meristematic cell layers. α-amylase, STP and SUSY played a dominant role in carbohydrates degradation in callus during shoot differentiation. PPP and TCA pathways up-regulated in the shoot-differentiated calli. The dynamics of BA and KT contents in calli was consistent with their concentrations applied in medium. IAA synthesis and the related signal transduction were down-regulated, while the endogenous CTKs contents were up-regulated by the exogenous CTKs application in shoot-differentiated calli, and their related synthesis, transport and signal transduction pathways were also up-regulated. The downregulated signal transduction pathways of IAA and ABA revealed that they did not play the key role in shoot differentiation of bamboos. GAs also played a role in shoot differentiation based on the down-regulation of DELLA and the up-regulation of PIF4 genes. The overexpression of DbSNRK2 and DbFIF4 genes further confirmed the negative role of ABA and the positive role of GAs in shoot differentiation.
Collapse
Affiliation(s)
- Zhuo Lv
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
| | - Lixia Yu
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
- Faculty of Bamboo and Rattan, Southwest Forestry University, Kunming, China
| | - Hui Zhan
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
- Faculty of Bamboo and Rattan, Southwest Forestry University, Kunming, China
| | - Juan Li
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
- Faculty of Bamboo and Rattan, Southwest Forestry University, Kunming, China
| | - Changming Wang
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
- Faculty of Bamboo and Rattan, Southwest Forestry University, Kunming, China
| | - Ling Huang
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
| | - Shuguang Wang
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
- Faculty of Bamboo and Rattan, Southwest Forestry University, Kunming, China
| |
Collapse
|
21
|
Wu CJ, Yuan DY, Liu ZZ, Xu X, Wei L, Cai XW, Su YN, Li L, Chen S, He XJ. Conserved and plant-specific histone acetyltransferase complexes cooperate to regulate gene transcription and plant development. NATURE PLANTS 2023; 9:442-459. [PMID: 36879016 DOI: 10.1038/s41477-023-01359-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 01/30/2023] [Indexed: 05/18/2023]
Abstract
Although a conserved SAGA complex containing the histone acetyltransferase GCN5 is known to mediate histone acetylation and transcriptional activation in eukaryotes, how to maintain different levels of histone acetylation and transcription at the whole-genome level remains to be determined. Here we identify and characterize a plant-specific GCN5-containing complex, which we term PAGA, in Arabidopsis thaliana and Oryza sativa. In Arabidopsis, the PAGA complex consists of two conserved subunits (GCN5 and ADA2A) and four plant-specific subunits (SPC, ING1, SDRL and EAF6). We find that PAGA and SAGA can independently mediate moderate and high levels of histone acetylation, respectively, thereby promoting transcriptional activation. Moreover, PAGA and SAGA can also repress gene transcription via the antagonistic effect between PAGA and SAGA. Unlike SAGA, which regulates multiple biological processes, PAGA is specifically involved in plant height and branch growth by regulating the transcription of hormone biosynthesis and response related genes. These results reveal how PAGA and SAGA cooperate to regulate histone acetylation, transcription and development. Given that the PAGA mutants show semi-dwarf and increased branching phenotypes without reduction in seed yield, the PAGA mutations could potentially be used for crop improvement.
Collapse
Affiliation(s)
- Chan-Juan Wu
- National Institute of Biological Sciences, Beijing, China
| | - Dan-Yang Yuan
- National Institute of Biological Sciences, Beijing, China
| | - Zhen-Zhen Liu
- National Institute of Biological Sciences, Beijing, China
| | - Xin Xu
- National Institute of Biological Sciences, Beijing, China
| | - Long Wei
- National Institute of Biological Sciences, Beijing, China
| | - Xue-Wei Cai
- National Institute of Biological Sciences, Beijing, China
| | - Yin-Na Su
- National Institute of Biological Sciences, Beijing, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| |
Collapse
|
22
|
Miranda S, Piazza S, Nuzzo F, Li M, Lagrèze J, Mithöfer A, Cestaro A, Tarkowska D, Espley R, Dare A, Malnoy M, Martens S. CRISPR/Cas9 genome-editing applied to MdPGT1 in apple results in reduced foliar phloridzin without impacting plant growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:92-105. [PMID: 36401738 DOI: 10.1111/tpj.16036] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 11/05/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Phloridzin is the most abundant polyphenolic compound in apple (Malus × domestica Borkh.), which results from the action of a key phloretin-specific UDP-2'-O-glucosyltransferase (MdPGT1). Here, we simultaneously assessed the effects of targeting MdPGT1 by conventional transgenesis and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated genome editing. To this end, we conducted transcriptomic and metabolic analyses of MdPGT1 RNA interference knockdown and genome-edited lines. Knockdown lines exhibited characteristic impairment of plant growth and leaf morphology, whereas genome-edited lines exhibited normal growth despite reduced foliar phloridzin. RNA-sequencing analysis identified a common core of regulated genes, involved in phenylpropanoid and flavonoid pathways. However, we identified genes and processes differentially modulated in stunted and genome-edited lines, including key transcription factors and genes involved in phytohormone signalling. Therefore, we conducted a phytohormone profiling to obtain insight into their role in the phenotypes observed. We found that salicylic and jasmonic acid were increased in dwarf lines, whereas auxin and ABA showed no correlation with the growth phenotype. Furthermore, bioactive brassinosteroids were commonly up-regulated, whereas gibberellin GA4 was distinctively altered, showing a sharp decrease in RNA interference knockdown lines. Expression analysis by reverse transcriptase-quantitative polymerase chain reaction expression analysis further confirmed transcriptional regulation of key factors involved in brassinosteroid and gibberellin interaction. These findings suggest that a differential modulation of phytohormones may be involved in the contrasting effects on growth following phloridzin reduction. The present study also illustrates how CRISPR/Cas9 genome editing can be applied to dissect the contribution of genes involved in phloridzin biosynthesis in apple.
Collapse
Affiliation(s)
- Simón Miranda
- Research and Innovation Centre, Edmund Mach Foundation, Via Edmund Mach 1, San Michele all'Adige, 38098, Italy
- C3A Center Agriculture Food Environment, University of Trento, Via Edmund Mach 1, San Michele all'Adige, 38098, Italy
- The New Zealand Institute for Plant and Food Research Limited, 120 Mt Albert Road, Auckland, 1025, New Zealand
| | - Stefano Piazza
- Research and Innovation Centre, Edmund Mach Foundation, Via Edmund Mach 1, San Michele all'Adige, 38098, Italy
| | - Floriana Nuzzo
- Research and Innovation Centre, Edmund Mach Foundation, Via Edmund Mach 1, San Michele all'Adige, 38098, Italy
| | - Mingai Li
- Research and Innovation Centre, Edmund Mach Foundation, Via Edmund Mach 1, San Michele all'Adige, 38098, Italy
| | - Jorge Lagrèze
- Research and Innovation Centre, Edmund Mach Foundation, Via Edmund Mach 1, San Michele all'Adige, 38098, Italy
- C3A Center Agriculture Food Environment, University of Trento, Via Edmund Mach 1, San Michele all'Adige, 38098, Italy
| | - Axel Mithöfer
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, 07745, Germany
| | - Alessandro Cestaro
- Research and Innovation Centre, Edmund Mach Foundation, Via Edmund Mach 1, San Michele all'Adige, 38098, Italy
| | - Danuše Tarkowska
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences and Palacky University, Slechtitelu 19, Olomouc, CZ-783 71, Czech Republic
| | - Richard Espley
- The New Zealand Institute for Plant and Food Research Limited, 120 Mt Albert Road, Auckland, 1025, New Zealand
| | - Andrew Dare
- The New Zealand Institute for Plant and Food Research Limited, 120 Mt Albert Road, Auckland, 1025, New Zealand
| | - Mickael Malnoy
- Research and Innovation Centre, Edmund Mach Foundation, Via Edmund Mach 1, San Michele all'Adige, 38098, Italy
| | - Stefan Martens
- Research and Innovation Centre, Edmund Mach Foundation, Via Edmund Mach 1, San Michele all'Adige, 38098, Italy
| |
Collapse
|
23
|
Tahir MS, Karagiannis J, Tian L. HD2A and HD2C co-regulate drought stress response by modulating stomatal closure and root growth in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:1062722. [PMID: 36507458 PMCID: PMC9727301 DOI: 10.3389/fpls.2022.1062722] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Histone deacetylase 2 (HD2) is a unique family of histone deacetylases (HDACs) in plants. Despite evidence that certain HD2 family HDACs play an important role in plant growth and stress response, the coordination of HD2s in these processes remains largely unknown. We found that HD2-type, HD2A and HD2C coordinate to play a role in drought stress response in Arabidopsis. We showed that the hd2a.hd2c double mutant (Mac16) exhibit decreased drought survival and increased water loss as compared to the single mutants, hd2a and hd2c. Gene expression analysis showed that the ABI1 and ABI2 genes were upregulated and SLAC1 was downregulated which led to the modified stomatal functioning in the Mac16 as compared to the single mutants. Overexpression of HD2A and HD2C showed enhanced drought survival and decreased water loss. We also showed that the GA2ox1 and GA2ox2 genes, which are involved in the catabolism of bioactive gibberellic acids, were upregulated in the Mac16 as compared to the single mutants, which led to a decreased root growth in the Mac16. Furthermore, we showed that HD2A and HD2C can physically interact and increased genome-wide H3K9 acetylation was observed in the Mac16, compared to the single mutants. Overall, our investigation revealed that HD2A and HD2C coordinate to play a cumulative role in drought stress response and root growth in Arabidopsis.
Collapse
Affiliation(s)
- Muhammad Sufyan Tahir
- Department of Biology, University of Western Ontario, London, ON, Canada
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Jim Karagiannis
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Lining Tian
- Department of Biology, University of Western Ontario, London, ON, Canada
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| |
Collapse
|
24
|
Zhang M, Ma Y, Zheng X, Tan B, Ye X, Wang W, Zhang L, Li J, Li Z, Cheng J, Feng J. The distribution of bioactive gibberellins along peach annual shoots is closely associated with PpGA20ox and PpGA2ox expression profiles. BMC Genomics 2022; 23:730. [PMID: 36307759 PMCID: PMC9615383 DOI: 10.1186/s12864-022-08943-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 10/07/2022] [Indexed: 11/10/2022] Open
Abstract
Background The rapid growth of annual shoots is detrimental to peach production. While gibberellin (GA) promotes the rapid growth of peach shoots, there is limited information on the identity and expression profiles of GA-metabolism genes for this species. Results All six GA biosynthetic gene families were identified in the peach genome, and the expression profiles of these family members were determined in peach shoots. The upstream biosynthetic gene families have only one or two members (1 CPS, 2 KSs, and 1 KO), while the downstream gene families have multiple members (7 KAOs, 6 GA20oxs, and 5 GA3oxs). Between the two KS genes, PpKS1 showed a relatively high transcript level in shoots, while PpKS2 was undetectable. Among the seven KAO genes, PpKAO2 was highly expressed in shoots, while PpKAO1 and − 6 were weakly expressed. For the six GA20ox genes, both PpGA20ox1 and − 2 were expressed in shoots, but PpGA20ox1 levels were higher than PpGA20ox2. For the five GA3ox genes, only PpGA3ox1 was highly expressed in shoots. Among these biosynthesis genes, PpGA20ox1 and PpGA3ox1 showed a gradual decrease in transcript level along shoots from top to bottom, and a similar trend was observed in bioactive GA1 and GA4 distribution. Among the GA-deactivation genes, PpGA2ox6 was highly expressed in peach shoots. PpGA2ox1 and − 5 transcripts were relatively lower and showed a similar pattern to PpGA20ox1 and PpGA3ox1 in peach shoots. Overexpression of PpGA20ox1, − 2, or PpGA2ox6 in Arabidopsis or tobacco promoted or depressed the plant growth, respectively, while PpGA3ox1 did not affect plant height. Transient expression of PpGA20ox1 in peach leaves significantly increased bioactive GA1 content. Conclusions Our results suggest that PpGA20ox and PpGA2ox expression are closely associated with the distribution of active GA1 and GA4 in peach annual shoots. Our research lays a foundation for future studies into ways to effectively repress the rapid growth of peach shoot. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08943-5.
Collapse
|
25
|
Farooq M, Khan MA, Zhao DD, Asif S, Kim EG, Jang YH, Park JR, Lee IJ, Kim KM. Extrinsic role of gibberellin mitigating salinity effect in different rice genotypes. FRONTIERS IN PLANT SCIENCE 2022; 13:1041181. [PMID: 36388489 PMCID: PMC9641126 DOI: 10.3389/fpls.2022.1041181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
The overall effects of gibberellic acid (GA3) with NaCl on different rice genotypes are inadequately understood. The present study determines the effect of different GA3 (50 and 100 µM) concentrations on the morphophysiological, molecular and biochemical effects of 120 mM NaCl salt stress in rice seedlings. Salt stress reduced germination percentages and seedling growth and decreased bioactive GA content. It also downregulated the relative expression of α-amylase-related genes - OsAmy1A, OsAmy1C, and OsAmy3C in the salt-sensitive IR28 cultivar. Salt stress differentially regulated the expression of GA biosynthetic genes. Salt stress increased antioxidant activity in all rice genotypes tested, except in IR28. GA3 mitigates the effect of salt stress, rescuing seed germination and growth attributes. GA3 significantly increased bioactive GA content in Nagdong and pokkali (50 µM) and Cheongcheong and IR28 (100 µM) cultivars. The α-amylase genes were also significantly upregulated by GA3. Similarly, GA3 upregulated OsGA2ox1 and OsGA2ox9 expression in the Cheongcheong and salt-sensitive IR28 cultivars. The present study demonstrated that salt stress inactivates bioactive GA - inhibiting germination and seedlings growth - and decreases bioactive GA content and GSH activity in IR28 and Pokkali cultivars. Further, GA3 significantly reversed the effects of 120 mM NaCl salt stress in different rice genotypes. The current study suggested that the known coastal area salinity concentration can be significantly recovered with the application of exogenous GA3. Thus, it could be possible to grow eco-friendly rice close to the coastal zone in order to reduce the damage caused by salinity.
Collapse
Affiliation(s)
- Muhammad Farooq
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Deagu, South Korea
| | - Muhammad Aaqil Khan
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Deagu, South Korea
| | - Dan-Dan Zhao
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Deagu, South Korea
- Crop Foundation Research Division, National Institute of Crop Science, Rural Development Administration, Wanju, South Korea
| | - Saleem Asif
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Deagu, South Korea
| | - Eun-Gyeong Kim
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Deagu, South Korea
| | - Yoon-Hee Jang
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Deagu, South Korea
| | - Jae-Ryoung Park
- Crop Foundation Research Division, National Institute of Crop Science, Rural Development Administration, Wanju, South Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Deagu, South Korea
| | - Kyung-Min Kim
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Deagu, South Korea
| |
Collapse
|
26
|
Xu Y, Wang R, Ma P, Cao J, Cao Y, Zhou Z, Li T, Wu J, Zhang H. A novel maize microRNA negatively regulates resistance to Fusarium verticillioides. MOLECULAR PLANT PATHOLOGY 2022; 23:1446-1460. [PMID: 35700097 PMCID: PMC9452762 DOI: 10.1111/mpp.13240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/02/2022] [Accepted: 05/25/2022] [Indexed: 05/21/2023]
Abstract
Although microRNAs (miRNAs) regulate the defence response against multiple pathogenic fungi in diverse plant species, few efforts have been devoted to deciphering the involvement of miRNA in resistance to Fusarium verticillioides, a major pathogenic fungus affecting maize production. In this study, we discovered a novel F. verticillioides-responsive miRNA designated zma-unmiR4 in maize kernels. The expression of zma-unmiR4 was significantly repressed in the resistant maize line but induced in the susceptible lines upon exposure to F. verticillioides exposure, whereas its target gene ZmGA2ox4 exhibited the opposite pattern of expression. Heterologous overexpression of zma-unmiR4 in Arabidopsis resulted in enhanced growth and compromised resistance to F. verticillioides. By contrast, transgenic plants overexpressing ZmGA2ox4 or the homologue AtGA2ox7 showed impaired growth and enhanced resistance to F. verticillioides. Moreover, zma-unmiR4-mediated suppression of AtGA2ox7 disturbed the accumulation of bioactive gibberellin (GA) in transgenic plants and perturbed the expression of a set of defence-related genes in response to F. verticillioides. Exogenous application of GA or a GA biosynthesis inhibitor modulated F. verticillioides resistance in different plants. Taken together, our results suggest that the zma-unmiR4-ZmGA2ox4 module might act as a major player in balancing growth and resistance to F. verticillioides in maize.
Collapse
Affiliation(s)
- Yufang Xu
- College of Life SciencesHenan Agricultural UniversityZhengzhouChina
| | - Renjie Wang
- College of Life SciencesHenan Agricultural UniversityZhengzhouChina
| | - Peipei Ma
- College of Life SciencesHenan Agricultural UniversityZhengzhouChina
| | - Jiansheng Cao
- College of Life SciencesHenan Agricultural UniversityZhengzhouChina
| | - Yan Cao
- College of Life SciencesHenan Agricultural UniversityZhengzhouChina
| | - Zijian Zhou
- College of Life SciencesHenan Agricultural UniversityZhengzhouChina
| | - Tao Li
- College of Life SciencesHenan Agricultural UniversityZhengzhouChina
| | - Jianyu Wu
- College of Life SciencesHenan Agricultural UniversityZhengzhouChina
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain CropsHenan Agricultural UniversityZhengzhouChina
| | - Huiyong Zhang
- College of Life SciencesHenan Agricultural UniversityZhengzhouChina
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain CropsHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
27
|
Zhang C, Nie X, Kong W, Deng X, Sun T, Liu X, Li Y. Genome-Wide Identification and Evolution Analysis of the Gibberellin Oxidase Gene Family in Six Gramineae Crops. Genes (Basel) 2022; 13:863. [PMID: 35627248 PMCID: PMC9141362 DOI: 10.3390/genes13050863] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022] Open
Abstract
The plant hormones gibberellins (GAs) regulate plant growth and development and are closely related to the yield of cash crops. The GA oxidases (GAoxs), including the GA2ox, GA3ox, and GA20ox subfamilies, play pivotal roles in GAs' biosynthesis and metabolism, but their classification and evolutionary pattern in Gramineae crops remain unclear. We thus conducted a comparative genomic study of GAox genes in six Gramineae representative crops, namely, Setaria italica (Si), Zea mays (Zm), Sorghum bicolor (Sb), Hordeum vulgare (Hv), Brachypodium distachyon (Bd), and Oryza sativa (Os). A total of 105 GAox genes were identified in these six crop genomes, belonging to the C19-GA2ox, C20-GA2ox, GA3ox, and GA20ox subfamilies. Based on orthogroup (OG) analysis, GAox genes were divided into nine OGs and the number of GAox genes in each of the OGs was similar among all tested crops, which indicated that GAox genes may have completed their family differentiations before the species differentiations of the tested species. The motif composition of GAox proteins showed that motifs 1, 2, 4, and 5, forming the 2OG-FeII_Oxy domain, were conserved in all identified GAox protein sequences, while motifs 11, 14, and 15 existed specifically in the GA20ox, C19-GA2ox, and C20-GA2ox protein sequences. Subsequently, the results of gene duplication events suggested that GAox genes mainly expanded in the form of WGD/SD and underwent purification selection and that maize had more GAox genes than other species due to its recent duplication events. The cis-acting elements analysis indicated that GAox genes may respond to growth and development, stress, hormones, and light signals. Moreover, the expression profiles of rice and maize showed that GAox genes were predominantly expressed in the panicles of the above two plants and the expression of several GAox genes was significantly induced by salt or cold stresses. In conclusion, our results provided further insight into GAox genes' evolutionary differences among six representative Gramineae and highlighted GAox genes that may play a role in abiotic stress.
Collapse
Affiliation(s)
- Chenhao Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; (C.Z.); (W.K.); (X.D.); (T.S.); (X.L.)
| | - Xin Nie
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Weilong Kong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; (C.Z.); (W.K.); (X.D.); (T.S.); (X.L.)
- Shenzhen Branch, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xiaoxiao Deng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; (C.Z.); (W.K.); (X.D.); (T.S.); (X.L.)
| | - Tong Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; (C.Z.); (W.K.); (X.D.); (T.S.); (X.L.)
| | - Xuhui Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; (C.Z.); (W.K.); (X.D.); (T.S.); (X.L.)
| | - Yangsheng Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; (C.Z.); (W.K.); (X.D.); (T.S.); (X.L.)
| |
Collapse
|
28
|
Transcriptome Profiling Provides New Insights into the Molecular Mechanism Underlying the Sensitivity of Cotton Varieties to Mepiquat Chloride. Int J Mol Sci 2022; 23:ijms23095043. [PMID: 35563437 PMCID: PMC9105546 DOI: 10.3390/ijms23095043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/17/2022] [Accepted: 04/27/2022] [Indexed: 11/21/2022] Open
Abstract
Mepiquat chloride (MC) is a plant growth regulator widely used in cotton production to control vegetative overgrowth of cotton plants to achieve ideal plant architecture required for high yielding. Cotton varieties respond differently to MC application, but there is little information about the molecular mechanisms underlying the varietal difference. In this study, comparative transcriptome analysis was conducted by using two Upland cotton varieties with different sensitivity (XLZ74, insensitive; SD1068, sensitive) to MC treatment, aiming to understand the molecular mechanisms responsible for varietal difference of MC sensitivity. RNA-seq data were generated from the two varieties treated with MC or water at three time points, 1, 3 and 6 days post-spray (dps). Genes differentially expressed between the MC and mock treatments of XLZ74 (6252) and SD1068 (6163) were subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses to compare the enriched GO terms and KEGG pathways between the two varieties. Signal transduction of phytohormones, biosynthesis of gibberellins (GAs) and brassinosteroids (BRs) and profiles of transcription factors (TFs) seemed to be differentially affected by MC in the two varieties. The transcriptomic results were further consolidated with the content changes of phytohormones in young stem. Several GA catabolic genes, GA2ox, were highly induced by MC in both varieties especially in SD1068, consistent with a more significant decrease in GA4 in SD1068. Several AUX/IAA and SAUR genes and CKX genes were induced by MC in both varieties, but with a more profound effect observed in SD1068 that showed a significant reduction in indole-3-acetic acid (IAA) and a significant increase in cytokinin (CTK) at 6 days post-spray (dps). BR biosynthesis-related genes were downregulated in SD1068, but not in XLZ74. Additionally, more downregulated TFs were observed in MC-treated SD1068 than in MC-treated XLZ74, and the two varieties had very different profiles of genes involved in starch and sucrose metabolism, with those of SD1068 and XLZ74 being downregulated and upregulated by MC treatment, respectively. Together, these results indicate that although the same or similar biological pathways are affected by MC treatment in cotton varieties showing different MC sensitivity, the extent of effect is variable, leading to their different phenotypic outcomes. How the quantitative effect of MC on the biological processes associated with growth retardation is regulated is still an open question.
Collapse
|
29
|
Ambros S, Kotewitsch M, Wittig PR, Bammer B, Mustroph A. Transcriptional Response of Two Brassica napus Cultivars to Short-Term Hypoxia in the Root Zone. FRONTIERS IN PLANT SCIENCE 2022; 13:897673. [PMID: 35574097 PMCID: PMC9100894 DOI: 10.3389/fpls.2022.897673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/11/2022] [Indexed: 06/02/2023]
Abstract
Waterlogging is one major stress for crops and causes multiple problems for plants, for example low gas diffusion, changes in redox potential and accumulation of toxic metabolites. Brassica napus is an important oil crop with high waterlogging sensitivity, which may cause severe yield losses. Its reactions to the stress are not fully understood. In this work the transcriptional response of rapeseed to one aspect of waterlogging, hypoxia in the root zone, was analyzed by RNAseq, including two rapeseed cultivars from different origin, Avatar from Europe and Zhongshuang 9 from Asia. Both cultivars showed a high number of differentially expressed genes in roots after 4 and 24 h of hypoxia. The response included many well-known hypoxia-induced genes such as genes coding for glycolytic and fermentative enzymes, and strongly resembled the hypoxia response of the model organism Arabidopsis thaliana. The carbohydrate status of roots, however, was minimally affected by root hypoxia, with a tendency of carbohydrate accumulation rather than a carbon starvation. Leaves did not respond to the root stress after a 24-h treatment. In agreement with the gene expression data, subsequent experiments with soil waterlogging for up to 14 days revealed no differences in response or tolerance to waterlogging between the two genotypes used in this study. Interestingly, using a 0.1% starch solution for waterlogging, which caused a lowered soil redox potential, resulted in much stronger effects of the stress treatment than using pure water suggesting a new screening method for rapeseed cultivars in future experiments.
Collapse
Affiliation(s)
| | | | | | | | - Angelika Mustroph
- Department of Plant Physiology, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
30
|
Dietz N, Chan YO, Scaboo A, Graef G, Hyten D, Happ M, Diers B, Lorenz A, Wang D, Joshi T, Bilyeu K. Candidate Genes Modulating Reproductive Timing in Elite US Soybean Lines Identified in Soybean Alleles of Arabidopsis Flowering Orthologs With Divergent Latitude Distribution. FRONTIERS IN PLANT SCIENCE 2022; 13:889066. [PMID: 35574141 PMCID: PMC9100572 DOI: 10.3389/fpls.2022.889066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/08/2022] [Indexed: 05/30/2023]
Abstract
Adaptation of soybean cultivars to the photoperiod in which they are grown is critical for optimizing plant yield. However, despite its importance, only the major loci conferring variation in flowering time and maturity of US soybean have been isolated. By contrast, over 200 genes contributing to floral induction in the model organism Arabidopsis thaliana have been described. In this work, putative alleles of a library of soybean orthologs of these Arabidopsis flowering genes were tested for their latitudinal distribution among elite US soybean lines developed in the United States. Furthermore, variants comprising the alleles of genes with significant differences in latitudinal distribution were assessed for amino acid conservation across disparate genera to infer their impact on gene function. From these efforts, several candidate genes from various biological pathways were identified that are likely being exploited toward adaptation of US soybean to various maturity groups.
Collapse
Affiliation(s)
- Nicholas Dietz
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Yen On Chan
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- MU Data Science and Informatics Institute, University of Missouri, Columbia, MO, United States
| | - Andrew Scaboo
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - George Graef
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, United States
| | - David Hyten
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, United States
| | - Mary Happ
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, United States
| | - Brian Diers
- Department of Crop Sciences, University of Illinois, Urbana, IL, United States
| | - Aaron Lorenz
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, United States
| | - Dechun Wang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Trupti Joshi
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- MU Data Science and Informatics Institute, University of Missouri, Columbia, MO, United States
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, United States
- Department of Health Management and Informatics, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Kristin Bilyeu
- USDA/ARS Plant Genetics Research Unit, Columbia, MO, United States
| |
Collapse
|
31
|
Tian X, Niu X, Chang Z, Zhang X, Wang R, Yang Q, Li G. DUF1005 Family Identification, Evolution Analysis in Plants, and Primary Root Elongation Regulation of CiDUF1005 From Caragana intermedia. Front Genet 2022; 13:807293. [PMID: 35422842 PMCID: PMC9001952 DOI: 10.3389/fgene.2022.807293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
Proteins with a domain of unknown function (DUF) represent a number of gene families that encode functionally uncharacterized proteins in eukaryotes. In particular, members of the DUF1005 family in plants have a 411-amino-acid conserved domain, and this family has not been described previously. In this study, a total of 302 high-confidence DUF1005 family members were identified from 58 plant species, and none were found in the four algae that were selected. Thus, this result showed that DUF1005s might belong to a kind of plant-specific gene family, and this family has not been evolutionarily expanded. Phylogenetic analysis showed that the DUF1005 family genes could be classified into four subgroups in 58 plant species. The earliest group to emerge was Group I, including a total of 100 gene sequences, and this group was present in almost all selected species spanning from mosses to seed plants. Group II and Group III, with 69 and 74 members, respectively, belong to angiosperms. Finally, with 59 members, Group IV was the last batch of genes to emerge, and this group is unique to dicotyledons. Expression pattern analysis of the CiDUF1005, a member of the DUF1005 family from Caragana intermedia, showed that CiDUF1005 genes were differentially regulated under various treatments. Compared to the wild type, transgenic lines with heterologous CiDUF1005 expression in Arabidopsis thaliana had longer primary roots and more lateral roots. These results expanded our knowledge of the evolution of the DUF1005 family in plants and will contribute to elucidating biological functions of the DUF1005 family in the future.
Collapse
Affiliation(s)
- Xiaona Tian
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiaocui Niu
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, China
| | - Ziru Chang
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiujuan Zhang
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, China
| | - Ruigang Wang
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, China
| | - Qi Yang
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, China
| | - Guojing Li
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, China.,Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China.,Key Laboratory of Grassland Resources, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
32
|
Interactions of Gibberellins with Phytohormones and Their Role in Stress Responses. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030241] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Gibberellins are amongst the main plant growth regulators. Discovered over a century ago, the interest in gibberellins research is growing due to their current and potential applications in crop production and their role in the responses to environmental stresses. In the present review, the current knowledge on gibberellins’ homeostasis and modes of action is outlined. Besides this, the complex interrelations between gibberellins and other plant growth regulators are also described, providing an intricate network of interactions that ultimately drives towards precise and specific gene expression. Thus, genes and proteins identified as being involved in gibberellin responses in model and non-model species are highlighted. Furthermore, the molecular mechanisms governing the gibberellins’ relation to stress responses are also depicted. This review aims to provide a comprehensive picture of the state-of-the-art of the current perceptions of the interactions of gibberellins with other phytohormones, and their responses to plant stresses, thus allowing for the identification of the specific mechanisms involved. This knowledge will help us to improve our understanding of gibberellins’ biology, and might help increase the biotechnological toolbox needed to refine plant resilience, particularly under a climate change scenario.
Collapse
|
33
|
Basnet P, Um T, Roy NS, Cho WS, Park SC, Park KC, Choi IY. Identification and Characterization of Key Genes Responsible for Weedy and Cultivar Growth Types in Soybean. Front Genet 2022; 13:805347. [PMID: 35281824 PMCID: PMC8907156 DOI: 10.3389/fgene.2022.805347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
In cultivated plants, shoot morphology is an important factor that influences crop economic value. However, the effects of gene expression patterns on shoot morphology are not clearly understood. In this study, the molecular mechanism behind shoot morphology (including leaf, stem, and node) was analyzed using RNA sequencing to compare weedy (creeper) and cultivar (stand) growth types obtained in F7 derived from a cross of wild and cultivated soybeans. A total of 12,513 (in leaves), 14,255 (in stems), and 11,850 (in nodes) differentially expressed genes were identified among weedy and cultivar soybeans. Comparative transcriptome and expression analyses revealed 22 phytohormone-responsive genes. We found that GIBBERELLIN 2-OXIDASE 8 (GA2ox), SPINDLY (SPY), FERONIA (FER), AUXIN RESPONSE FACTOR 8 (ARF8), CYTOKININ DEHYDROGENASE-1 (CKX1), and ARABIDOPSIS HISTIDINE KINASE-3 (AHK3), which are crucial phytohormone response genes, were mainly regulated in the shoot of weedy and cultivar types. These results indicate that interactions between phytohormone signaling genes regulate shoot morphology in weedy and cultivar growth type plants. Our study provides insights that are useful for breeding and improving crops to generate high-yield soybean varieties.
Collapse
Affiliation(s)
- Prakash Basnet
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, South Korea
| | - Taeyoung Um
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, South Korea
| | - Neha Samir Roy
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, South Korea
| | - Woo Suk Cho
- Department of Agricultural Biotechnology/National Academy of Agricultural Science, Rural Development Administration, Jeonju, South Korea
| | - Soo Chul Park
- Department of Agricultural Biotechnology/National Academy of Agricultural Science, Rural Development Administration, Jeonju, South Korea
| | - Kyong-Cheul Park
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, South Korea
| | - Ik-Young Choi
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, South Korea
- *Correspondence: Ik-Young Choi,
| |
Collapse
|
34
|
Dong S, Tarkowska D, Sedaghatmehr M, Welsch M, Gupta S, Mueller-Roeber B, Balazadeh S. The HB40-JUB1 transcriptional regulatory network controls gibberellin homeostasis in Arabidopsis. MOLECULAR PLANT 2022; 15:322-339. [PMID: 34728415 DOI: 10.1016/j.molp.2021.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 10/11/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
The gibberellins (GAs) are phytohormones that play fundamental roles in almost every aspect of plant growth and development. Although GA biosynthetic and signaling pathways are well understood, the mechanisms that control GA homeostasis remain largely unclear in plants. Here, we demonstrate that the homeobox transcription factor (TF) HB40 of the HD-Zip family regulates GA content at two additive control levels in Arabidopsis thaliana. We show that HB40 expression is induced by GA and in turn reduces the levels of endogenous bioactive GAs by simultaneously reducing GA biosynthesis and increasing GA deactivation. Consistently, HB40 overexpression leads to typical GA-deficiency traits, such as small rosettes, reduced plant height, delayed flowering, and male sterility. By contrast, a loss-of-function hb40 mutation enhances GA-controlled growth. Genome-wide RNA sequencing combined with molecular-genetic analyses revealed that HB40 directly activates the transcription of JUNGBRUNNEN1 (JUB1), a key TF that represses growth by suppressing GA biosynthesis and signaling. HB40 also activates genes encoding GA 2-oxidases (GA2oxs), which are major GA-catabolic enzymes. The effect of HB40 on plant growth is ultimately mediated through the induction of nuclear growth-repressing DELLA proteins. Collectively, our results reveal the important role of the HB40-JUB1 regulatory network in controlling GA homeostasis during plant growth.
Collapse
Affiliation(s)
- Shuchao Dong
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Danuse Tarkowska
- Laboratory of Growth Regulators, Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Mastoureh Sedaghatmehr
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Maryna Welsch
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany
| | - Saurabh Gupta
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany
| | - Bernd Mueller-Roeber
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany
| | - Salma Balazadeh
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.
| |
Collapse
|
35
|
Shtin M, Dello Ioio R, Del Bianco M. It's Time for a Change: The Role of Gibberellin in Root Meristem Development. FRONTIERS IN PLANT SCIENCE 2022; 13:882517. [PMID: 35592570 PMCID: PMC9112047 DOI: 10.3389/fpls.2022.882517] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/14/2022] [Indexed: 05/21/2023]
Abstract
One of the most amazing characteristics of plants is their ability to grow and adapt their development to environmental changes. This fascinating feature is possible thanks to the activity of meristems, tissues that contain lasting self-renewal stem cells. Because of its simple and symmetric structure, the root meristem emerged as a potent system to uncover the developmental mechanisms behind the development of the meristems. The root meristem is formed during embryogenesis and sustains root growth for all the plant's lifetime. In the last decade, gibberellins have emerged as a key regulator for root meristem development. This phytohormone functions as a molecular clock for root development. This mini review discusses the latest advances in understanding the role of gibberellin in root development and highlights the central role of this hormone as developmental timer.
Collapse
Affiliation(s)
- Margaryta Shtin
- Department of Biology and Biotechnology “C. Darwin”, Laboratory of Functional Genomics and Proteomics of Model Systems, University of Rome “Sapienza”, Rome, Italy
| | - Raffaele Dello Ioio
- Department of Biology and Biotechnology “C. Darwin”, Laboratory of Functional Genomics and Proteomics of Model Systems, University of Rome “Sapienza”, Rome, Italy
- *Correspondence: Raffaele Dello Ioio,
| | | |
Collapse
|
36
|
Camut L, Gallova B, Jilli L, Sirlin-Josserand M, Carrera E, Sakvarelidze-Achard L, Ruffel S, Krouk G, Thomas SG, Hedden P, Phillips AL, Davière JM, Achard P. Nitrate signaling promotes plant growth by upregulating gibberellin biosynthesis and destabilization of DELLA proteins. Curr Biol 2021; 31:4971-4982.e4. [PMID: 34614391 DOI: 10.1016/j.cub.2021.09.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 08/13/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
Nitrate, one of the main nitrogen (N) sources for crops, acts as a nutrient and key signaling molecule coordinating gene expression, metabolism, and various growth processes throughout the plant life cycle. It is widely accepted that nitrate-triggered developmental programs cooperate with hormone synthesis and transport to finely adapt plant architecture to N availability. Here, we report that nitrate, acting through its signaling pathway, promotes growth in Arabidopsis and wheat, in part by modulating the accumulation of gibberellin (GA)-regulated DELLA growth repressors. We show that nitrate reduces the abundance of DELLAs by increasing GA contents through activation of GA metabolism gene expression. Consistently, the growth restraint conferred by nitrate deficiency is partially rescued in global-DELLA mutant that lacks all DELLAs. At the cellular level, we show that nitrate enhances both cell proliferation and elongation in a DELLA-dependent and -independent manner, respectively. Our findings establish a connection between nitrate and GA signaling pathways that allow plants to adapt their growth to nitrate availability.
Collapse
Affiliation(s)
- Lucie Camut
- Institut de Biologie Moléculaire des Plantes, CNRS, University of Strasbourg, 67084 Strasbourg, France
| | - Barbora Gallova
- Plant Science Department, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Lucas Jilli
- Institut de Biologie Moléculaire des Plantes, CNRS, University of Strasbourg, 67084 Strasbourg, France
| | - Mathilde Sirlin-Josserand
- Institut de Biologie Moléculaire des Plantes, CNRS, University of Strasbourg, 67084 Strasbourg, France
| | - Esther Carrera
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, 46022 Valencia, Spain
| | - Lali Sakvarelidze-Achard
- Institut de Biologie Moléculaire des Plantes, CNRS, University of Strasbourg, 67084 Strasbourg, France
| | - Sandrine Ruffel
- BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier, France
| | - Gabriel Krouk
- BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier, France
| | - Stephen G Thomas
- Plant Science Department, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Peter Hedden
- Plant Science Department, Rothamsted Research, Harpenden AL5 2JQ, UK; Laboratory of Growth Regulators, Institute of Experimental Botany and Palacky University, 78371 Olomouc, Czech Republic
| | - Andrew L Phillips
- Plant Science Department, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Jean-Michel Davière
- Institut de Biologie Moléculaire des Plantes, CNRS, University of Strasbourg, 67084 Strasbourg, France
| | - Patrick Achard
- Institut de Biologie Moléculaire des Plantes, CNRS, University of Strasbourg, 67084 Strasbourg, France.
| |
Collapse
|
37
|
Fang X, Bo C, Wang M, Yuan H, Li W, Chen H, Ma Q, Cai R. Overexpression of the maize WRKY114 gene in transgenic rice reduce plant height by regulating the biosynthesis of GA. PLANT SIGNALING & BEHAVIOR 2021; 16:1967635. [PMID: 34498544 PMCID: PMC8525977 DOI: 10.1080/15592324.2021.1967635] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 05/30/2023]
Abstract
WRKYs represent an important family of transcription factors that are widely involved in plant development, defense regulation and stress response. Transgenic rice that constitutively expressed ZmWRKY114 had shorter plant height and showed less sensitivity to gibberellic acid (GA3). Further investigation proved that transgenic rice accumulated lower levels of bioactive GAs than that in wild-type plants. Application of exogenous GA3 fully rescued the semi-dwarf phenotype of ZmWRKY114 transgenic plants. Transcriptome and qRT-PCR analyses indicated that the expression of OsGA2ox4, encoding the repressor of GA biosynthesis, was markedly increased. Electrophoretic mobility shift assay and dual-luciferase reporter assay indicated that ZmWRKY114 directly binds to a W-box motif in the OsGA2ox4 promoter. Taken together, these results confirm that ZmWRKY114 is a GA-responsive gene and is participated in the regulation of plant height in rice.
Collapse
Affiliation(s)
- Xiu Fang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Chen Bo
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Mengjie Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Haotian Yuan
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Wei Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Haowei Chen
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Qing Ma
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Engineering Research Center for Maize of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Ronghao Cai
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Engineering Research Center for Maize of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, China
| |
Collapse
|
38
|
Nasim Z, Fahim M, Hwang H, Susila H, Jin S, Youn G, Ahn JH. Nonsense-mediated mRNA decay modulates Arabidopsis flowering time via the SET DOMAIN GROUP 40-FLOWERING LOCUS C module. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7049-7066. [PMID: 34270724 DOI: 10.1093/jxb/erab331] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
The nonsense-mediated mRNA decay (NMD) surveillance system clears aberrant mRNAs from the cell, thus preventing the accumulation of truncated proteins. Although loss of the core NMD proteins UP-FRAMESHIFT1 (UPF1) and UPF3 leads to late flowering in Arabidopsis, the underlying mechanism remains elusive. Here, we showed that mutations in UPF1 and UPF3 cause temperature- and photoperiod-independent late flowering. Expression analyses revealed high FLOWERING LOCUS C (FLC) mRNA levels in upf mutants; in agreement with this, the flc mutation strongly suppressed the late flowering of upf mutants. Vernalization accelerated flowering of upf mutants in a temperature-independent manner. FLC transcript levels rose in wild-type plants upon NMD inhibition. In upf mutants, we observed increased enrichment of H3K4me3 and reduced enrichment of H3K27me3 in FLC chromatin. Transcriptome analyses showed that SET DOMAIN GROUP 40 (SDG40) mRNA levels increased in upf mutants, and the SDG40 transcript underwent NMD-coupled alternative splicing, suggesting that SDG40 affects flowering time in upf mutants. Furthermore, NMD directly regulated SDG40 transcript stability. The sdg40 mutants showed decreased H3K4me3 and increased H3K27me3 levels in FLC chromatin, flowered early, and rescued the late flowering of upf mutants. Taken together, these results suggest that NMD epigenetically regulates FLC through SDG40 to modulate flowering time in Arabidopsis.
Collapse
Affiliation(s)
- Zeeshan Nasim
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Muhammad Fahim
- Centre for Omic Sciences, Islamia College Peshawar, Pakistan
| | - Hocheol Hwang
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Hendry Susila
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Suhyun Jin
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Geummin Youn
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Ji Hoon Ahn
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| |
Collapse
|
39
|
Li Y, Shan X, Jiang Z, Zhao L, Jin F. Genome-wide identification and expression analysis of the GA2ox gene family in maize (Zea mays L.) under various abiotic stress conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:621-633. [PMID: 34192648 DOI: 10.1016/j.plaphy.2021.06.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
GA 2-oxidases (GA2oxs) are a class of enzymes that inhibit the biosynthesis of bioactive GAs in plants. Although GA2oxs have clear roles in the development and defence responses in Arabidopsis, rice, and wheat, their potential effects on maize remain unclear. This study identified thirteen ZmGA2ox genes in maize and further characterized them using phylogenetic, gene structure, genomic locus, expression pattern analyses and GA content determination. Phylogenetic relationship analysis clearly divided the ZmGA2ox family into three groups-seven in C19-GA2ox class I, three in C19-GA2ox class II, and three in C20-GA2ox class. Evolutionary analysis suggested that ZmGA2ox1;1 and ZmGA2ox1;2, ZmGA2ox3;1 and ZmGA2ox3;2, and ZmGA2ox7;1 and ZmGA2ox7;2 are three pairs of segmental duplicated genes. Prediction of cis-regulatory elements in promoters suggested that ZmGA2ox genes were mainly associated with growth, development, hormones, and biotic/abiotic stress. Therefore, their spatial and temporal expression patterns and responses to various stress treatments were analysed on the basis of published RNA-seq data. Moreover, the changes of ZmGA2ox expression in leaves and roots of maize seedlings was detected under salt, alkali, dehydration, and cold stresses by qRT-PCR. The ZmGA2oxs exhibited obvious expression tendencies or characteristics in various organs under different abiotic stresses. The variations in the expression of three ZmGA2ox genes in the C20-GA2ox class in maize seedling roots showed significant regularity and a clear negative correlation with bioactive GA contents under cold and drought conditions, indicating that these three genes might exert key effects on the regulation of GA synthesis and the response to drought and cold stress. Taken together, this study is useful for further dissection of the effect of ZmGA2oxs on abiotic stress responses and might provide potential targets for the genetic improvement of maize.
Collapse
Affiliation(s)
- Yidan Li
- Agro-Biotechnology Research Institute, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| | - Xiaohui Shan
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Zhilei Jiang
- Agro-Biotechnology Research Institute, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Lei Zhao
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Fengxue Jin
- Agro-Biotechnology Research Institute, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| |
Collapse
|
40
|
Liu X, Wan Y, An J, Zhang X, Cao Y, Li Z, Liu X, Ma H. Morphological, Physiological, and Molecular Responses of Sweetly Fragrant Luculia gratissima During the Floral Transition Stage Induced by Short-Day Photoperiod. FRONTIERS IN PLANT SCIENCE 2021; 12:715683. [PMID: 34456954 PMCID: PMC8385556 DOI: 10.3389/fpls.2021.715683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Photoperiod-regulated floral transition is vital to the flowering plant. Luculia gratissima "Xiangfei" is a flowering ornamental plant with high development potential economically and is a short-day woody perennial. However, the genetic regulation of short-day-induced floral transition in L. gratissima is unclear. To systematically research the responses of L. gratissima during this process, dynamic changes in morphology, physiology, and transcript levels were observed and identified in different developmental stages of long-day- and short-day-treated L. gratissima plants. We found that floral transition in L. gratissima occurred 10 d after short-day induction, but flower bud differentiation did not occur at any stage under long-day conditions. A total of 1,226 differentially expressed genes were identified, of which 146 genes were associated with flowering pathways of sugar, phytohormones, photoperiod, ambient temperature, and aging signals, as well as floral integrator and meristem identity genes. The trehalose-6-phosphate signal positively modulated floral transition by interacting with SQUAMOSA PROMOTER-BINDING-LIKE PROTEIN 4 (SPL4) in the aging pathway. Endogenous gibberellin, abscisic acid, cytokinin, and jasmonic acid promoted floral transition, whereas strigolactone inhibited it. In the photoperiod pathway, FD, CONSTANS-LIKE 12, and nuclear factors Y positively controlled floral transition, whereas PSEUDO-RESPONSE REGULATOR 7, FLAVIN-BINDING KELCH REPEAT F-BOX PROTEIN 1, and LUX negatively regulated it. SPL4 and pEARLI1 positively affected floral transition. Suppressor of Overexpression of Constans 1 and AGAMOUSLIKE24 integrated multiple flowering signals to modulate the expression of FRUITFULL/AGL8, AP1, LEAFY, SEPALLATAs, SHORT VEGETATIVE PHASE, and TERMINAL FLOWER 1, thereby regulating floral transition. Finally, we propose a regulatory network model for short-day-induced floral transition in L. gratissima. This study improves our understanding of flowering time regulation in L. gratissima and provides knowledge for its production and commercialization.
Collapse
Affiliation(s)
- Xiongfang Liu
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Youming Wan
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, China
| | - Jing An
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, China
| | - Xiujiao Zhang
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, China
| | - Yurong Cao
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, China
| | - Zhenghong Li
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, China
| | - Xiuxian Liu
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, China
| | - Hong Ma
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, China
| |
Collapse
|
41
|
Differential biosynthesis and cellular permeability explain longitudinal gibberellin gradients in growing roots. Proc Natl Acad Sci U S A 2021; 118:1921960118. [PMID: 33602804 PMCID: PMC7923382 DOI: 10.1073/pnas.1921960118] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Growth hormones are mobile chemicals that exert considerable influence over how multicellular organisms like animals and plants take on their shape and form. Of particular interest is the distribution of such hormones across cells and tissues. In plants, one of these hormones, gibberellin (GA), is known to regulate cell multiplication and cell expansion to increase the rate at which roots grow. In this work, biosensor measurements were combined with theoretical models to elucidate the biochemical mechanisms that direct GA distribution and how these patterns relate to root growth. Our detailed understanding of how GA distributions are controlled in roots should prove a valuable model for understanding the makings of the many other hormone distributions that influence how plants grow. Control over cell growth by mobile regulators underlies much of eukaryotic morphogenesis. In plant roots, cell division and elongation are separated into distinct longitudinal zones and both division and elongation are influenced by the growth regulatory hormone gibberellin (GA). Previously, a multicellular mathematical model predicted a GA maximum at the border of the meristematic and elongation zones. However, GA in roots was recently measured using a genetically encoded fluorescent biosensor, nlsGPS1, and found to be low in the meristematic zone grading to a maximum at the end of the elongation zone. Furthermore, the accumulation rate of exogenous GA was also found to be higher in the elongation zone. It was still unknown which biochemical activities were responsible for these mobile small molecule gradients and whether the spatiotemporal correlation between GA levels and cell length is important for root cell division and elongation patterns. Using a mathematical modeling approach in combination with high-resolution GA measurements in vivo, we now show how differentials in several biosynthetic enzyme steps contribute to the endogenous GA gradient and how differential cellular permeability contributes to an accumulation gradient of exogenous GA. We also analyzed the effects of altered GA distribution in roots and did not find significant phenotypes resulting from increased GA levels or signaling. We did find a substantial temporal delay between complementation of GA distribution and cell division and elongation phenotypes in a GA deficient mutant. Together, our results provide models of how GA gradients are directed and in turn direct root growth.
Collapse
|
42
|
Hsieh KT, Chen YT, Hu TJ, Lin SM, Hsieh CH, Liu SH, Shiue SY, Lo SF, Wang IW, Tseng CS, Chen LJ. Comparisons within the Rice GA 2-Oxidase Gene Family Revealed Three Dominant Paralogs and a Functional Attenuated Gene that Led to the Identification of Four Amino Acid Variants Associated with GA Deactivation Capability. RICE (NEW YORK, N.Y.) 2021; 14:70. [PMID: 34322729 PMCID: PMC8319247 DOI: 10.1186/s12284-021-00499-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/03/2021] [Indexed: 05/16/2023]
Abstract
BACKGROUND GA 2-oxidases (GA2oxs) are involved in regulating GA homeostasis in plants by inactivating bioactive GAs through 2β-hydroxylation. Rice GA2oxs are encoded by a family of 10 genes; some of them have been characterized, but no comprehensive comparisons for all these genes have been conducted. RESULTS Rice plants with nine functional GA2oxs were demonstrated in the present study, and these genes not only were differentially expressed but also revealed various capabilities for GA deactivation based on their height-reducing effects in transgenic plants. Compared to that of wild-type plants, the relative plant height (RPH) of transgenic plants was scored to estimate their reducing effects, and 8.3% to 59.5% RPH was observed. Phylogenetic analysis of class I GA2ox genes revealed two functionally distinct clades in the Poaceae. The OsGA2ox3, 4, and 8 genes belonging to clade A showed the most severe effect (8.3% to 8.7% RPH) on plant height reduction, whereas the OsGA2ox7 gene belonging to clade B showed the least severe effect (59.5% RPH). The clade A OsGA2ox3 gene contained two conserved C186/C194 amino acids that were crucial for enzymatic activity. In the present study, these amino acids were replaced with OsGA2ox7-conserved arginine (C186R) and proline (C194P), respectively, or simultaneously (C186R/C194P) to demonstrate their importance in planta. Another two amino acids, Q220 and Y274, conserved in OsGA2ox3 were substituted with glutamic acid (E) and phenylalanine (F), respectively, or simultaneously to show their significance in planta. In addition, through sequence divergence, RNA expression profile and GA deactivation capability analyses, we proposed that OsGA2ox1, OsGA2ox3 and OsGA2ox6 function as the predominant paralogs in each of their respective classes. CONCLUSIONS This study demonstrates rice has nine functional GA2oxs and the class I GA2ox genes are divided into two functionally distinct clades. Among them, the OsGA2ox7 of clade B is a functional attenuated gene and the OsGA2ox1, OsGA2ox3 and OsGA2ox6 are the three predominant paralogs in the family.
Collapse
Affiliation(s)
- Kun-Ting Hsieh
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Yi-Ting Chen
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Ting-Jen Hu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Shih-Min Lin
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Chih-Hung Hsieh
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Su-Hui Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Shiau-Yu Shiue
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Shuen-Fang Lo
- Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan
| | - I-Wen Wang
- Division of Biotechnology, Taiwan Agriculture Research Institute, Taichung, 41362, Taiwan
| | - Ching-Shan Tseng
- Division of Biotechnology, Taiwan Agriculture Research Institute, Taichung, 41362, Taiwan
| | - Liang-Jwu Chen
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan.
- Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
43
|
Overexpression of Ginkgo biloba Hydroxy-2-methyl-2-( E)-butenyl 4-diphosphate reductase 2 gene ( GbHDR2) in Nicotiana tabacum cv. Xanthi. 3 Biotech 2021; 11:337. [PMID: 34221808 DOI: 10.1007/s13205-021-02887-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/06/2021] [Indexed: 10/21/2022] Open
Abstract
2-C-Methyl-d-erythrol-4-phosphate (MEP) pathway in plant supplies isoprene building blocks for carotenoids and chlorophylls essential in photosynthesis as well as plant hormones such as gibberellin and abscisic acid. To assess the effect of overexpression of the terminal enzyme of the MEP pathway, 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate reductase (HDR), transgenic Nicotiana tabacum overexpressing class 2 HDR from Ginkgo biloba (GbHDR2) under the control of 35S promoter was constructed. Contents of chlorophylls a and b in transgenic tobacco were enhanced by 19 and 7%, respectively, compared to those of the wild type. The carotenoid level was also 18% higher than that in the control plant. As a result, photosynthetic rate of the transgenic tobacco was increased by up to 51%. Diterepenoid duvatrienediol content of transgenic tobacco was also elevated by at least sixfold. To explore the molecular basis of the enhanced isoprenoid accumulation, transcript levels of the key genes involved in the isoprenoid biosynthesis were measured. Transcript levels of geranylgeranyl diphosphate synthase (GGPP), kaurene synthase (KS), gibberellic acid 20 oxidase (GA20ox), and phytoene desaturase (PD) genes in the transgenic tobacco leaves were about twofold higher compared to the wild type. Therefore, upregulation of down-stream genes involved in biosynthesis of di- and tetraterpenoids due to GbHDR2 overexpression was responsible for elevated production of isoprenoids and enhanced photosynthetic rate. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02887-5.
Collapse
|
44
|
Zhang H, Hu Z, Yang Y, Liu X, Lv H, Song BH, An YQC, Li Z, Zhang D. Transcriptome profiling reveals the spatial-temporal dynamics of gene expression essential for soybean seed development. BMC Genomics 2021; 22:453. [PMID: 34134624 PMCID: PMC8207594 DOI: 10.1186/s12864-021-07783-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Seeds are the economic basis of oilseed crops, especially soybeans, the most widely cultivated oilseed crop worldwide. Seed development is accompanied by a multitude of diverse cellular processes, and revealing the underlying regulatory activities is critical for seed improvement. RESULTS In this study, we profiled the transcriptomes of developing seeds at 20, 25, 30, and 40 days after flowering (DAF), as these stages represent critical time points of seed development from early to full development. We identified a set of highly abundant genes and highlighted the importance of these genes in supporting nutrient accumulation and transcriptional regulation for seed development. We identified 8925 differentially expressed genes (DEGs) that exhibited temporal expression patterns over the course and expression specificities in distinct tissues, including seeds and nonseed tissues (roots, stems, and leaves). Genes specific to nonseed tissues might have tissue-associated roles, with relatively low transcript abundance in developing seeds, suggesting their spatially supportive roles in seed development. Coexpression network analysis identified several underexplored genes in soybeans that bridge tissue-specific gene modules. CONCLUSIONS Our study provides a global view of gene activities and biological processes critical for seed formation in soybeans and prioritizes a set of genes for further study. The results of this study help to elucidate the mechanism controlling seed development and storage reserves.
Collapse
Affiliation(s)
- Hengyou Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Zhenbin Hu
- Department of Biology, Saint Louis University, St. Louis, MO, USA
| | - Yuming Yang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiaoqian Liu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Haiyan Lv
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Bao-Hua Song
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Yong-Qiang Charles An
- US Department of Agriculture, Agricultural Research Service, Midwest Area, Plant Genetics Research Unit at Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Zhimin Li
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Dan Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
45
|
Oluwasanya D, Esan O, Hyde PT, Kulakow P, Setter TL. Flower Development in Cassava Is Feminized by Cytokinin, While Proliferation Is Stimulated by Anti-Ethylene and Pruning: Transcriptome Responses. FRONTIERS IN PLANT SCIENCE 2021; 12:666266. [PMID: 34122486 PMCID: PMC8194492 DOI: 10.3389/fpls.2021.666266] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/30/2021] [Indexed: 06/08/2023]
Abstract
Cassava, a tropical storage-root crop, is a major source of food security for millions in the tropics. Cassava breeding, however, is hindered by the poor development of flowers and a low ratio of female flowers to male flowers. To advance the understanding of the mechanistic factors regulating cassava flowering, combinations of plant growth regulators (PGRs) and pruning treatments were examined for their effectiveness in improving flower production and fruit set in field conditions. Pruning the fork-type branches, which arise at the shoot apex immediately below newly formed inflorescences, stimulated inflorescence and floral development. The anti-ethylene PGR silver thiosulfate (STS) also increased flower abundance. Both pruning and STS increased flower numbers while having minimal influence on sex ratios. In contrast, the cytokinin benzyladenine (BA) feminized flowers without increasing flower abundance. Combining pruning and STS treatments led to an additive increase in flower abundance; with the addition of BA, over 80% of flowers were females. This three-way treatment combination of pruning+STS+BA also led to an increase in fruit number. Transcriptomic analysis of gene expression in tissues of the apical region and developing inflorescence revealed that the enhancement of flower development by STS+BA was accompanied by downregulation of several genes associated with repression of flowering, including homologs of TEMPRANILLO1 (TEM1), GA receptor GID1b, and ABA signaling genes ABI1 and PP2CA. We conclude that flower-enhancing treatments with pruning, STS, and BA create widespread changes in the network of hormone signaling and regulatory factors beyond ethylene and cytokinin.
Collapse
Affiliation(s)
- Deborah Oluwasanya
- Section of Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
- Cassava Breeding Unit, International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Olayemisi Esan
- Cassava Breeding Unit, International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Peter T. Hyde
- Section of Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Peter Kulakow
- Cassava Breeding Unit, International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Tim L. Setter
- Section of Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
46
|
Gómez-Soto D, Ramos-Sánchez JM, Alique D, Conde D, Triozzi PM, Perales M, Allona I. Overexpression of a SOC1-Related Gene Promotes Bud Break in Ecodormant Poplars. FRONTIERS IN PLANT SCIENCE 2021; 12:670497. [PMID: 34113369 PMCID: PMC8185274 DOI: 10.3389/fpls.2021.670497] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/06/2021] [Indexed: 05/04/2023]
Abstract
Perennial species in the boreal and temperate regions are subject to extreme annual variations in light and temperature. They precisely adapt to seasonal changes by synchronizing cycles of growth and dormancy with external cues. Annual dormancy-growth transitions and flowering involve factors that integrate environmental and endogenous signals. MADS-box transcription factors have been extensively described in the regulation of Arabidopsis flowering. However, their participation in annual dormancy-growth transitions in trees is minimal. In this study, we investigate the function of MADS12, a Populus tremula × alba SUPPRESSOR OF CONSTANS OVEREXPRESSION 1 (SOC1)-related gene. Our gene expression analysis reveals that MADS12 displays lower mRNA levels during the winter than during early spring and mid-spring. Moreover, MADS12 activation depends on the fulfillment of the chilling requirement. Hybrid poplars overexpressing MADS12 show no differences in growth cessation and bud set, while ecodormant plants display an early bud break, indicating that MADS12 overexpression promotes bud growth reactivation. Comparative expression analysis of available bud break-promoting genes reveals that MADS12 overexpression downregulates the GIBBERELLINS 2 OXIDASE 4 (GA2ox4), a gene involved in gibberellin catabolism. Moreover, the mid-winter to mid-spring RNAseq profiling indicates that MADS12 and GA2ox4 show antagonistic expression during bud dormancy release. Our results support MADS12 participation in the reactivation of shoot meristem growth during ecodormancy and link MADS12 activation and GA2ox4 downregulation within the temporal events that lead to poplar bud break.
Collapse
Affiliation(s)
- Daniela Gómez-Soto
- Centro de Biotecnología y Genómica de Plantas, Instituto de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Madrid, Spain
| | - José M. Ramos-Sánchez
- Centro de Biotecnología y Genómica de Plantas, Instituto de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Madrid, Spain
| | - Daniel Alique
- Centro de Biotecnología y Genómica de Plantas, Instituto de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Madrid, Spain
| | - Daniel Conde
- Centro de Biotecnología y Genómica de Plantas, Instituto de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Madrid, Spain
| | - Paolo M. Triozzi
- Centro de Biotecnología y Genómica de Plantas, Instituto de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Madrid, Spain
| | - Mariano Perales
- Centro de Biotecnología y Genómica de Plantas, Instituto de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Isabel Allona
- Centro de Biotecnología y Genómica de Plantas, Instituto de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
47
|
Transcriptomic Analysis of Radish ( Raphanus sativus L.) Spontaneous Tumor. PLANTS 2021; 10:plants10050919. [PMID: 34063717 PMCID: PMC8147785 DOI: 10.3390/plants10050919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 11/16/2022]
Abstract
Spontaneous tumors can develop in different organs of various plant species without any pathogen infection and, as a rule, appear in plants with a certain genotype: Mutants, interspecific hybrids, etc. In particular, among the inbred lines of radish (Raphanus sativus L.), lines that form spontaneous tumors on the taproot during the flowering period were obtained many years ago. In this work, we analyzed the differential gene expression in the spontaneous tumors of radish versus the lateral roots using the RNA-seq method. Data were obtained indicating the increased expression of genes associated with cell division and growth (especially genes that regulate G2-M transition and cytokinesis) in the spontaneous tumor. Among genes downregulated in the tumor tissue, genes participating in the response to stress and wounding, mainly involved in the biosynthesis of jasmonic acid and glucosinolates, were enriched. Our data will help elucidate the mechanisms of spontaneous tumor development in higher plants.
Collapse
|
48
|
Ding W, Wang Y, Qi C, Luo Y, Wang C, Xu W, Qu S. Fine mapping identified the gibberellin 2-oxidase gene CpDw leading to a dwarf phenotype in squash (Cucurbita pepo L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 306:110857. [PMID: 33775356 DOI: 10.1016/j.plantsci.2021.110857] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 02/10/2021] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
Dwarfism is an important agronomic trait in pumpkin that can increase yield. In this study, the dwarf Cucurbita pepo L. line X10 exhibited significantly longitudinally shorter cell length in the stem than did the normal-vine line JIN234. The dwarf stature of X10 was recovered with exogenous gibberellin (GA3) application, suggesting that X10 might be sensitive to GA biosynthesis. Genetic analysis revealed that this dwarf trait is controlled by a single completely dominant locus: CpDw (Cucurbita pepo L. Dwarf). Using 1,300 F2 individuals derived from a cross between X10 and JIN234, we mapped the CpDw locus to a region of approximately 24.6 kb on chromosome 10 that contain 5 annotated genes. The high expression level of Cp4.1LG10g05910.1 and high GA2ox enzyme activity in X10 revealed that the GA 2-oxidase gene Cp4.1LG10g05910.1 is a candidate gene for CpDw. Alignment of the Cp4.1LG10g05910.1 gene revealed two nonsynonymous single nucleotide polymorphism (SNP) mutations in the two exons, as well as several SNPs and InDels in the important functional elements of promoter between parental lines. Further allelic diversity analysis of the Cucurbita spp. germplasm resources indicated that Cp4.1LG10g05910.1 may be involved in vine growth during the early developmental stage in C. pepo but not in C. maxima or C. moschata. This study provides an important theoretical basis for the genetic regulation of vine length and crop breeding in pumpkin.
Collapse
Affiliation(s)
- Wenqi Ding
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Yunli Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Cong Qi
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Yusong Luo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Chaojie Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Wenlong Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Shuping Qu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
49
|
Ejaz M, Bencivenga S, Tavares R, Bush M, Sablowski R. ARABIDOPSIS THALIANA HOMEOBOX GENE 1 controls plant architecture by locally restricting environmental responses. Proc Natl Acad Sci U S A 2021; 118:e2018615118. [PMID: 33888582 PMCID: PMC8092594 DOI: 10.1073/pnas.2018615118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The diversity and environmental plasticity of plant growth results from variations of repetitive modules, such as the basic shoot units made of a leaf, axillary bud, and internode. Internode elongation is regulated both developmentally and in response to environmental conditions, such as light quality, but the integration of internal and environmental signals is poorly understood. Here, we show that the compressed rosette growth habit of Arabidopsis is maintained by the convergent activities of the organ boundary gene ARABIDOPSIS THALIANA HOMEOBOX GENE 1 (ATH1) and of the gibberellin-signaling DELLA genes. Combined loss of ATH1 and DELLA function activated stem development during the vegetative phase and changed the growth habit from rosette to caulescent. Chromatin immunoprecipitation high-throughput sequencing and genetic analysis indicated that ATH1 and the DELLA gene REPRESSOR OF GA1-3 (RGA) converge on the regulation of light responses, including the PHYTOCHROME INTERACTING FACTORS (PIF) pathway, and showed that the ATH1 input is mediated in part by direct activation of BLADE ON PETIOLE (BOP1 and BOP2) genes, whose products destabilize PIF proteins. We conclude that an organ-patterning gene converges with hormone signaling to spatially restrict environmental responses and establish a widespread type of plant architecture.
Collapse
Affiliation(s)
- Mahwish Ejaz
- Cell and Developmental Biology Department, John Innes Centre, NR4 7UH Norwich, United Kingdom
| | - Stefano Bencivenga
- Cell and Developmental Biology Department, John Innes Centre, NR4 7UH Norwich, United Kingdom
| | - Rafael Tavares
- Cell and Developmental Biology Department, John Innes Centre, NR4 7UH Norwich, United Kingdom
| | - Max Bush
- Cell and Developmental Biology Department, John Innes Centre, NR4 7UH Norwich, United Kingdom
| | - Robert Sablowski
- Cell and Developmental Biology Department, John Innes Centre, NR4 7UH Norwich, United Kingdom
| |
Collapse
|
50
|
Tai L, Wang HJ, Xu XJ, Sun WH, Ju L, Liu WT, Li WQ, Sun J, Chen KM. Pre-harvest sprouting in cereals: genetic and biochemical mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2857-2876. [PMID: 33471899 DOI: 10.1093/jxb/erab024] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/18/2021] [Indexed: 05/22/2023]
Abstract
With the growth of the global population and the increasing frequency of natural disasters, crop yields must be steadily increased to enhance human adaptability to risks. Pre-harvest sprouting (PHS), a term mainly used to describe the phenomenon in which grains germinate on the mother plant directly before harvest, is a serious global problem for agricultural production. After domestication, the dormancy level of cultivated crops was generally lower than that of their wild ancestors. Although the shortened dormancy period likely improved the industrial performance of cereals such as wheat, barley, rice, and maize, the excessive germination rate has caused frequent PHS in areas with higher rainfall, resulting in great economic losses. Here, we systematically review the causes of PHS and its consequences, the major indicators and methods for PHS assessment, and emphasize the biological significance of PHS in crop production. Wheat quantitative trait loci functioning in the control of PHS are also comprehensively summarized in a meta-analysis. Finally, we use Arabidopsis as a model plant to develop more complete PHS regulatory networks for wheat. The integration of this information is conducive to the development of custom-made cultivated lines suitable for different demands and regions, and is of great significance for improving crop yields and economic benefits.
Collapse
Affiliation(s)
- Li Tai
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hong-Jin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiao-Jing Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wei-Hang Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lan Ju
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wen-Ting Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wen-Qiang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiaqiang Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|