1
|
Zhao Y, Zhang J, Fang Y, Zhang P, Chen H. The plant SMC5/6 complex: DNA repair, developmental regulation, and immune responses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109267. [PMID: 39515004 DOI: 10.1016/j.plaphy.2024.109267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
The Structural Maintenance of Chromosomes 5/6 (SMC5/6) complex plays a pivotal role in safeguarding the structural integrity and morphology of chromosomes, thereby contributing to genomic stability-a cornerstone for normal growth and development across organisms. Beyond its fundamental role in eukaryotic DNA damage repair, recent research has broadened our understanding of SMC5/6's multifaceted functions. It has emerged as a crucial regulator not only of the cell cycle but also in developmental processes, plant immunity, and meiotic DNA damage repair. In this review, we highlight its novel roles in modulating plant growth, development, and immunity, providing fresh perspectives on how this complex might help combat DNA damage stress and orchestrate growth strategies. Furthermore, we emphasize that SMC5/6 offers a unique window into the intricate mechanisms underlying genomic maintenance, development, and stress responses, with profound implications for crop improvement.
Collapse
Affiliation(s)
- Yan Zhao
- College of Life Sciences & Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jian Zhang
- College of Life Sciences & Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yiru Fang
- College of Life Sciences & Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Pingxian Zhang
- College of Life Sciences & Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, 518120, China.
| | - Hanchen Chen
- College of Life Sciences & Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Yazhouwan National Laboratory, Sanya, Hainan, 572000, China.
| |
Collapse
|
2
|
Liu P. From the archives: On DNA maintenance-SWI/SNF chromatin remodeling complexes, DNA damage repair, and transposon excision repair mechanisms. THE PLANT CELL 2024; 36:2449-2450. [PMID: 38652706 PMCID: PMC11218769 DOI: 10.1093/plcell/koae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Affiliation(s)
- Peng Liu
- Assistant Features Editor, The Plant Cell, American Society of Plant Biologists
- Donald Danforth Plant Science Center, Saint Louis, MO 63146, USA
| |
Collapse
|
3
|
Herbst J, Li QQ, De Veylder L. Mechanistic insights into DNA damage recognition and checkpoint control in plants. NATURE PLANTS 2024; 10:539-550. [PMID: 38503962 DOI: 10.1038/s41477-024-01652-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/18/2024] [Indexed: 03/21/2024]
Abstract
The plant DNA damage response (DDR) pathway safeguards genomic integrity by rapid recognition and repair of DNA lesions that, if unrepaired, may cause genome instability. Most frequently, DNA repair goes hand in hand with a transient cell cycle arrest, which allows cells to repair the DNA lesions before engaging in a mitotic event, but consequently also affects plant growth and yield. Through the identification of DDR proteins and cell cycle regulators that react to DNA double-strand breaks or replication defects, it has become clear that these proteins and regulators form highly interconnected networks. These networks operate at both the transcriptional and post-transcriptional levels and include liquid-liquid phase separation and epigenetic mechanisms. Strikingly, whereas the upstream DDR sensors and signalling components are well conserved across eukaryotes, some of the more downstream effectors are diverged in plants, probably to suit unique lifestyle features. Additionally, DDR components display functional diversity across ancient plant species, dicots and monocots. The observed resistance of DDR mutants towards aluminium toxicity, phosphate limitation and seed ageing indicates that gaining knowledge about the plant DDR may offer solutions to combat the effects of climate change and the associated risk for food security.
Collapse
Affiliation(s)
- Josephine Herbst
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Qian-Qian Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium.
- Center for Plant Systems Biology, VIB, Gent, Belgium.
| |
Collapse
|
4
|
Odiba AS, Liao G, Ezechukwu CS, Zhang L, Hong Y, Fang W, Jin C, Gartner A, Wang B. Caenorhabditis elegans NSE3 homolog (MAGE-1) is involved in genome stability and acts in inter-sister recombination during meiosis. Genetics 2023; 225:iyad149. [PMID: 37579186 PMCID: PMC10691751 DOI: 10.1093/genetics/iyad149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 08/16/2023] Open
Abstract
Melanoma antigen (MAGE) genes encode for a family of proteins that share a common MAGE homology domain. These genes are conserved in eukaryotes and have been linked to a variety of cellular and developmental processes including ubiquitination and oncogenesis in cancer. Current knowledge on the MAGE family of proteins mainly comes from the analysis of yeast and human cell lines, and their functions have not been reported at an organismal level in animals. Caenorhabditis elegans only encodes 1 known MAGE gene member, mage-1 (NSE3 in yeast), forming part of the SMC-5/6 complex. Here, we characterize the role of mage-1/nse-3 in mitosis and meiosis in C. elegans. mage-1/nse-3 has a role in inter-sister recombination repair during meiotic recombination and for preserving chromosomal integrity upon treatment with a variety of DNA-damaging agents. MAGE-1 directly interacts with NSE-1 and NSE-4. In contrast to smc-5, smc-6, and nse-4 mutants which cause the loss of NSE-1 nuclear localization and strong cytoplasmic accumulation, mage-1/nse-3 mutants have a reduced level of NSE-1::GFP, remnant NSE-1::GFP being partially nuclear but largely cytoplasmic. Our data suggest that MAGE-1 is essential for NSE-1 stability and the proper functioning of the SMC-5/6 complex.
Collapse
Affiliation(s)
- Arome Solomon Odiba
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guiyan Liao
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Chiemekam Samuel Ezechukwu
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Lanlan Zhang
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Ye Hong
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Wenxia Fang
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Cheng Jin
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Anton Gartner
- IBS Center for Genomic Integrity, Department for Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea
| | - Bin Wang
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China
| |
Collapse
|
5
|
Lelkes E, Jemelková J, Holá M, Štefanovie B, Kolesár P, Vágnerová R, Dvořák Tomaštíková E, Pecinka A, Angelis KJ, Paleček JJ. Characterization of the conserved features of the NSE6 subunit of the Physcomitrium patens SMC5/6 complex. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1084-1099. [PMID: 37191775 DOI: 10.1111/tpj.16282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/17/2023]
Abstract
Structural maintenance of chromosomes (SMC) complexes are molecular machines ensuring chromatin organization at higher levels. They play direct roles in cohesion, condensation, replication, transcription, and DNA repair. Their cores are composed of long-armed SMC, kleisin, and kleisin-associated subunits. Additional factors, like NSE6 within SMC5/6, bind to SMC core complexes and regulate their activities. In the human HsNSE6/SLF2, we recently identified a new CANIN domain. Here we tracked down its sequence homology to lower plants, selected the bryophyte Physcomitrium patens, and analyzed PpNSE6 protein-protein interactions to explore its conservation in detail. We identified a previously unrecognized core sequence motif conserved from yeasts to humans within the NSE6 CANIN domain. This motif mediates the interaction between NSE6 and its NSE5 partner in yeasts and plants. In addition, the CANIN domain and its preceding PpNSE6 sequences bind both PpSMC5 and PpSMC6 arms. Interestingly, we mapped the PpNSE6-binding site at the PpSMC5 arm right next to the PpNSE2-binding surface. The position of NSE6 at SMC arms suggests its role in the regulation of SMC5/6 dynamics. Consistent with the regulatory role of NSE6 subunits, Ppnse6 mutant lines were viable and sensitive to the DNA-damaging drug bleomycin and lost a large portion of rDNA copies. These moss mutants also exhibited reduced growth and developmental aberrations. Altogether, our data showed the conserved function of the NSE6 subunit and architecture of the SMC5/6 complex across species.
Collapse
Affiliation(s)
- Edit Lelkes
- National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Jitka Jemelková
- National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Marcela Holá
- Institute of Experimental Botany, Czech Academy of Sciences, Na Karlovce 1, 16000, Prague, Czech Republic
| | - Barbora Štefanovie
- National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Peter Kolesár
- National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Radka Vágnerová
- Institute of Experimental Botany, Czech Academy of Sciences, Na Karlovce 1, 16000, Prague, Czech Republic
| | - Eva Dvořák Tomaštíková
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany, Czech Academy of Sciences, Šlechtitelů 31, 77900, Olomouc, Czech Republic
| | - Ales Pecinka
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany, Czech Academy of Sciences, Šlechtitelů 31, 77900, Olomouc, Czech Republic
| | - Karel J Angelis
- Institute of Experimental Botany, Czech Academy of Sciences, Na Karlovce 1, 16000, Prague, Czech Republic
| | - Jan J Paleček
- National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| |
Collapse
|
6
|
Guo T, Liu M, Chen L, Liu Y, Li L, Li Y, Cao X, Mao Z, Wang W, Yang HQ. Photoexcited cryptochromes interact with ADA2b and SMC5 to promote the repair of DNA double-strand breaks in Arabidopsis. NATURE PLANTS 2023; 9:1280-1290. [PMID: 37488265 DOI: 10.1038/s41477-023-01461-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/20/2023] [Indexed: 07/26/2023]
Abstract
Cryptochromes (CRYs) act as blue-light photoreceptors that regulate development and circadian rhythms in plants and animals and as navigating magnetoreceptors in migratory birds. DNA double-strand breaks (DSBs) are the most serious type of DNA damage and threaten genome stability in all organisms. Although CRYs have been shown to respond to DNA damage, whether and how they participate in DSB repair is not well understood. Here we report that Arabidopsis CRYs promote the repair of DSBs through direct interactions with ADA2b and SMC5 in a blue-light-dependent manner to enhance their interaction. Mutations in CRYs and in ADA2b lead to similar enhanced DNA damage accumulation. In response to DNA damage, CRYs are localized at DSBs, and the recruitment of SMC5 to DSBs is dependent on CRYs. These results suggest that CRY-enhanced ADA2b-SMC5 interaction promotes ADA2b-mediated recruitment of SMC5 to DSBs, leading to DSB repair.
Collapse
Affiliation(s)
- Tongtong Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Minqing Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Li Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yao Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Ling Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yupeng Li
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xiaoli Cao
- School of Life Sciences, Fudan University, Shanghai, China
| | - Zhilei Mao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Wenxiu Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Hong-Quan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China.
| |
Collapse
|
7
|
Rafiei N, Ronceret A. Crossover interference mechanism: New lessons from plants. Front Cell Dev Biol 2023; 11:1156766. [PMID: 37274744 PMCID: PMC10236007 DOI: 10.3389/fcell.2023.1156766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/17/2023] [Indexed: 06/06/2023] Open
Abstract
Plants are the source of our understanding of several fundamental biological principles. It is well known that Gregor Mendel discovered the laws of Genetics in peas and that maize was used for the discovery of transposons by Barbara McClintock. Plant models are still useful for the understanding of general key biological concepts. In this article, we will focus on discussing the recent plant studies that have shed new light on the mysterious mechanisms of meiotic crossover (CO) interference, heterochiasmy, obligatory CO, and CO homeostasis. Obligatory CO is necessary for the equilibrated segregation of homologous chromosomes during meiosis. The tight control of the different male and female CO rates (heterochiasmy) enables both the maximization and minimization of genome shuffling. An integrative model can now predict these observed aspects of CO patterning in plants. The mechanism proposed considers the Synaptonemal Complex as a canalizing structure that allows the diffusion of a class I CO limiting factor linearly on synapsed bivalents. The coarsening of this limiting factor along the SC explains the interfering spacing between COs. The model explains the observed coordinated processes between synapsis, CO interference, CO insurance, and CO homeostasis. It also easily explains heterochiasmy just considering the different male and female SC lengths. This mechanism is expected to be conserved in other species.
Collapse
|
8
|
Xun Q, Song Y, Mei M, Ding Y, Ding C. The SMC5/6 complex subunit MMS21 regulates stem cell proliferation in rice. PLANT CELL REPORTS 2023:10.1007/s00299-023-03030-9. [PMID: 37178216 DOI: 10.1007/s00299-023-03030-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
KEY MESSAGE SMC5/6 complex subunit OsMMS21 is involved in cell cycle and hormone signaling and required for stem cell proliferation during shoot and root development in rice. The structural maintenance of chromosome (SMC)5/6 complex is required for nucleolar integrity and DNA metabolism. Moreover, METHYL METHANESULFONATE SENSITIVITY GENE 21 (MMS21), a SUMO E3 ligase that is part of the SMC5/6 complex, is essential for the root stem cell niche and cell cycle transition in Arabidopsis. However, its specific role in rice remains unclear. Here, OsSMC5 and OsSMC6 single heterozygous mutants were generated using CRISPR/Cas9 technology to elucidate the function of SMC5/6 subunits, including OsSMC5, OsSMC6, and OsMMS21, in cell proliferation in rice. ossmc5/ + and ossmc6/ + heterozygous single mutants did not yield homozygous mutants in their progeny, indicating that OsSMC5 and OsSMC6 both play necessary roles during embryo formation. Loss of OsMMS21 caused severe defects in both the shoot and roots in rice. Transcriptome analysis showed a significant decrease in the expression of genes involved in auxin signaling in the roots of osmms21 mutants. Moreover, the expression levels of the cycB2-1 and MCM genes, which are involved the cell cycle, were significantly lower in the shoots of the mutants, indicating that OsMMS21 was involved in both hormone signaling pathways and the cell cycle. Overall, these findings indicate that the SUMO E3 ligase OsMMS21 is required for both shoot and root stem cell niches, improving the understanding of the function of the SMC5/6 complex in rice.
Collapse
Affiliation(s)
- Qian Xun
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ye Song
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Min Mei
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanfeng Ding
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing, 210095, China
| | - Chengqiang Ding
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing, 210095, China.
- Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing, 210095, China.
| |
Collapse
|
9
|
Dvořák Tomaštíková E, Prochazkova K, Yang F, Jemelkova J, Finke A, Dorn A, Said M, Puchta H, Pecinka A. SMC5/6 complex-mediated SUMOylation stimulates DNA-protein cross-link repair in Arabidopsis. THE PLANT CELL 2023; 35:1532-1547. [PMID: 36705512 PMCID: PMC10118267 DOI: 10.1093/plcell/koad020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 11/23/2022] [Accepted: 01/23/2023] [Indexed: 05/10/2023]
Abstract
DNA-protein cross-links (DPCs) are highly toxic DNA lesions consisting of proteins covalently attached to chromosomal DNA. Unrepaired DPCs physically block DNA replication and transcription. Three DPC repair pathways have been identified in Arabidopsis (Arabidopsis thaliana) to date: the endonucleolytic cleavage of DNA by the structure-specific endonuclease MUS81; proteolytic degradation of the crosslinked protein by the metalloprotease WSS1A; and cleavage of the cross-link phosphodiester bonds by the tyrosyl phosphodiesterases TDP1 and TDP2. Here we describe the evolutionary conserved STRUCTURAL MAINTENANCE OF CHROMOSOMEs SMC5/6 complex as a crucial component involved in DPC repair. We identified multiple alleles of the SMC5/6 complex core subunit gene SMC6B via a forward-directed genetic screen designed to identify the factors involved in the repair of DPCs induced by the cytidine analog zebularine. We monitored plant growth and cell death in response to DPC-inducing chemicals, which revealed that the SMC5/6 complex is essential for the repair of several types of DPCs. Genetic interaction and sensitivity assays showed that the SMC5/6 complex works in parallel to the endonucleolytic and proteolytic pathways. The repair of zebularine-induced DPCs was associated with SMC5/6-dependent SUMOylation of the damage sites. Thus, we present the SMC5/6 complex as an important factor in plant DPC repair.
Collapse
Affiliation(s)
| | - Klara Prochazkova
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 77900 Olomouc, Czech Republic
| | - Fen Yang
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 77900 Olomouc, Czech Republic
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 77900 Olomouc, Czech Republic
| | - Jitka Jemelkova
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 77900 Olomouc, Czech Republic
- Functional Genomics and Proteomics, National Centre for Biomolecular Research (NCBR), Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | | | - Annika Dorn
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Mahmoud Said
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 77900 Olomouc, Czech Republic
- Field Crops Research Institute, Agricultural Research Centre, 9 Gamma Street, Giza, 12619, Cairo, Egypt
| | - Holger Puchta
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | | |
Collapse
|
10
|
Jiang J, Ou X, Han D, He Z, Liu S, Mao N, Zhang Z, Peng CL, Lai J, Yang C. A diRNA-protein scaffold module mediates SMC5/6 recruitment in plant DNA repair. THE PLANT CELL 2022; 34:3899-3914. [PMID: 35775944 PMCID: PMC9516202 DOI: 10.1093/plcell/koac191] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/21/2022] [Indexed: 06/06/2023]
Abstract
In eukaryotes, the STRUCTURAL MAINTENANCE OF CHROMOSOME 5/6 (SMC5/6) complex is critical to maintaining chromosomal structures around double-strand breaks (DSBs) in DNA damage repair. However, the recruitment mechanism of this conserved complex at DSBs remains unclear. In this study, using Arabidopsis thaliana as a model, we found that SMC5/6 localization at DSBs is dependent on the protein scaffold containing INVOLVED IN DE NOVO 2 (IDN2), CELL DIVISION CYCLE 5 (CDC5), and ALTERATION/DEFICIENCY IN ACTIVATION 2B (ADA2b), whose recruitment is further mediated by DNA-damage-induced RNAs (diRNAs) generated from DNA regions around DSBs. The physical interactions of protein components including SMC5-ADA2b, ADA2b-CDC5, and CDC5-IDN2 result in formation of the protein scaffold. Further analysis indicated that the DSB localization of IDN2 requires its RNA-binding activity and ARGONAUTE 2 (AGO2), indicating a role for the AGO2-diRNA complex in this process. Given that most of the components in the scaffold are conserved, the mechanism presented here, which connects SMC5/6 recruitment and small RNAs, will improve our understanding of DNA repair mechanisms in eukaryotes.
Collapse
Affiliation(s)
- Jieming Jiang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Xiaolin Ou
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Danlu Han
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Zhipeng He
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Song Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Ning Mao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Zhonghui Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Chang-Lian Peng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jianbin Lai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
11
|
Wang Y, Habekuß A, Jayakodi M, Mascher M, Snowdon RJ, Stahl A, Fuß J, Ordon F, Perovic D. High-Resolution Mapping of Barley mild mosaic virus Resistance Gene rym15. FRONTIERS IN PLANT SCIENCE 2022; 13:908170. [PMID: 35720548 PMCID: PMC9201720 DOI: 10.3389/fpls.2022.908170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Barley yellow mosaic virus (BaYMV) and Barley mild mosaic virus (BaMMV), which are transmitted by the soil-borne plasmodiophorid Polymyxa graminis, cause high yield losses in barley. In previous studies, the recessive BaMMV resistance gene rym15, derived from the Japanese landrace Chikurin Ibaraki 1, was mapped on chromosome 6HS of Hordeum vulgare. In this study, 423 F4 segmental recombinant inbred lines (RILs) were developed from crosses of Chikurin Ibaraki 1 with two BaMMV-susceptible cultivars, Igri (139 RILs) and Uschi (284 RILs). A set of 32 competitive allele-specific PCR (KASP) assays, designed using single nucleotide polymorphisms (SNPs) from the barley 50 K Illumina Infinium iSelect SNP chip, genotyping by sequencing (GBS) and whole-genome sequencing (WGS), was used as a backbone for construction of two high-resolution maps. Using this approach, the target locus was narrowed down to 0.161 cM and 0.036 cM in the Igri × Chikurin Ibaraki 1 (I × C) and Chikurin Ibaraki 1 × Uschi (C × U) populations, respectively. Corresponding physical intervals of 11.3 Mbp and 0.281 Mbp were calculated for I × C and C × U, respectively, according to the Morex v3 genome sequence. In the 0.281 Mbp target region, six high confidence (HC) and two low confidence (LC) genes were identified. Genome assemblies of BaMMV-susceptible cultivars Igri and Golden Promise from the barley pan-genome, and a HiFi assembly of Chikurin Ibaraki 1 together with re-sequencing data for the six HC and two LC genes in susceptible parental cultivar Uschi revealed functional SNPs between resistant and susceptible genotypes only in two of the HC genes. These SNPs are the most promising candidates for the development of functional markers and the two genes represent promising candidates for functional analysis.
Collapse
Affiliation(s)
- Yaping Wang
- Institute for Resistance Research and Stress Tolerance, Federal Research Centre for Cultivated Plants, Julius Kuehn-Institute (JKI), Quedlinburg, Germany
| | - Antje Habekuß
- Institute for Resistance Research and Stress Tolerance, Federal Research Centre for Cultivated Plants, Julius Kuehn-Institute (JKI), Quedlinburg, Germany
| | - Murukarthick Jayakodi
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Martin Mascher
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Rod J. Snowdon
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Andreas Stahl
- Institute for Resistance Research and Stress Tolerance, Federal Research Centre for Cultivated Plants, Julius Kuehn-Institute (JKI), Quedlinburg, Germany
| | - Janina Fuß
- Institute for Clinical Molecular Biology, Competence Centre for Genomic Analysis (CCGA), Kiel University, Kiel, Germany
| | - Frank Ordon
- Institute for Resistance Research and Stress Tolerance, Federal Research Centre for Cultivated Plants, Julius Kuehn-Institute (JKI), Quedlinburg, Germany
| | - Dragan Perovic
- Institute for Resistance Research and Stress Tolerance, Federal Research Centre for Cultivated Plants, Julius Kuehn-Institute (JKI), Quedlinburg, Germany
| |
Collapse
|
12
|
Yang F, Pecinka A. Multiple Roles of SMC5/6 Complex during Plant Sexual Reproduction. Int J Mol Sci 2022; 23:ijms23094503. [PMID: 35562893 PMCID: PMC9099584 DOI: 10.3390/ijms23094503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/06/2022] [Accepted: 04/13/2022] [Indexed: 12/01/2022] Open
Abstract
Chromatin-based processes are essential for cellular functions. Structural maintenance of chromosomes (SMCs) are evolutionarily conserved molecular machines that organize chromosomes throughout the cell cycle, mediate chromosome compaction, promote DNA repair, or control sister chromatid attachment. The SMC5/6 complex is known for its pivotal role during the maintenance of genome stability. However, a dozen recent plant studies expanded the repertoire of SMC5/6 complex functions to the entire plant sexual reproductive phase. The SMC5/6 complex is essential in meiosis, where its activity must be precisely regulated to allow for normal meiocyte development. Initially, it is attenuated by the recombinase RAD51 to allow for efficient strand invasion by the meiosis-specific recombinase DMC1. At later stages, it is essential for the normal ratio of interfering and non-interfering crossovers, detoxifying aberrant joint molecules, preventing chromosome fragmentation, and ensuring normal chromosome/sister chromatid segregation. The latter meiotic defects lead to the production of diploid male gametes in Arabidopsis SMC5/6 complex mutants, increased seed abortion, and production of triploid offspring. The SMC5/6 complex is directly involved in controlling normal embryo and endosperm cell divisions, and pioneer studies show that the SMC5/6 complex is also important for seed development and normal plant growth in cereals.
Collapse
Affiliation(s)
- Fen Yang
- Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), Institute of Experimental Botany (IEB), Czech Academy of Sciences, 77900 Olomouc, Czech Republic;
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, 77900 Olomouc, Czech Republic
| | - Ales Pecinka
- Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), Institute of Experimental Botany (IEB), Czech Academy of Sciences, 77900 Olomouc, Czech Republic;
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, 77900 Olomouc, Czech Republic
- Correspondence:
| |
Collapse
|
13
|
All Ways Lead to Rome—Meiotic Stabilization Can Take Many Routes in Nascent Polyploid Plants. Genes (Basel) 2022; 13:genes13010147. [PMID: 35052487 PMCID: PMC8775444 DOI: 10.3390/genes13010147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 02/01/2023] Open
Abstract
Newly formed polyploids often show extensive meiotic defects, resulting in aneuploid gametes, and thus reduced fertility. However, while many neopolyploids are meiotically unstable, polyploid lineages that survive in nature are generally stable and fertile; thus, those lineages that survive are those that are able to overcome these challenges. Several genes that promote polyploid stabilization are now known in plants, allowing speculation on the evolutionary origin of these meiotic adjustments. Here, I discuss results that show that meiotic stability can be achieved through the differentiation of certain alleles of certain genes between ploidies. These alleles, at least sometimes, seem to arise by novel mutation, while standing variation in either ancestral diploids or related polyploids, from which alleles can introgress, may also contribute. Growing evidence also suggests that the coevolution of multiple interacting genes has contributed to polyploid stabilization, and in allopolyploids, the return of duplicated genes to single copies (genome fractionation) may also play a role in meiotic stabilization. There is also some evidence that epigenetic regulation may be important, which can help explain why some polyploid lineages can partly stabilize quite rapidly.
Collapse
|
14
|
Rempfer C, Wiedemann G, Schween G, Kerres KL, Lucht JM, Horres R, Decker EL, Reski R. Autopolyploidization affects transcript patterns and gene targeting frequencies in Physcomitrella. PLANT CELL REPORTS 2022; 41:153-173. [PMID: 34636965 PMCID: PMC8803787 DOI: 10.1007/s00299-021-02794-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
In Physcomitrella, whole-genome duplications affected the expression of about 3.7% of the protein-encoding genes, some of them relevant for DNA repair, resulting in a massively reduced gene-targeting frequency. Qualitative changes in gene expression after an autopolyploidization event, a pure duplication of the whole genome (WGD), might be relevant for a different regulation of molecular mechanisms between angiosperms growing in a life cycle with a dominant diploid sporophytic stage and the haploid-dominant mosses. Whereas angiosperms repair DNA double-strand breaks (DSB) preferentially via non-homologous end joining (NHEJ), in the moss Physcomitrella homologous recombination (HR) is the main DNA-DSB repair pathway. HR facilitates the precise integration of foreign DNA into the genome via gene targeting (GT). Here, we studied the influence of ploidy on gene expression patterns and GT efficiency in Physcomitrella using haploid plants and autodiploid plants, generated via an artificial WGD. Single cells (protoplasts) were transfected with a GT construct and material from different time-points after transfection was analysed by microarrays and SuperSAGE sequencing. In the SuperSAGE data, we detected 3.7% of the Physcomitrella genes as differentially expressed in response to the WGD event. Among the differentially expressed genes involved in DNA-DSB repair was an upregulated gene encoding the X-ray repair cross-complementing protein 4 (XRCC4), a key player in NHEJ. Analysing the GT efficiency, we observed that autodiploid plants were significantly GT suppressed (p < 0.001) attaining only one third of the expected GT rates. Hence, an alteration of global transcript patterns, including genes related to DNA repair, in autodiploid Physcomitrella plants correlated with a drastic suppression of HR.
Collapse
Affiliation(s)
- Christine Rempfer
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104, Freiburg, Germany
| | - Gertrud Wiedemann
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
| | - Gabriele Schween
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
- Corteva Agriscience, Pioneer Hi-Bred Northern Europe, Münstertäler Strasse 26, 79427, Eschbach, Germany
| | - Klaus L Kerres
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Jan M Lucht
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
- Scienceindustries, Nordstrasse 15, 8006, Zurich, Switzerland
| | - Ralf Horres
- GenXPro GmbH, Altenhöferallee 3, 60438, Frankfurt am Main, Germany
| | - Eva L Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany.
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104, Freiburg, Germany.
- Signalling Research Centres BIOSS and CIBSS, Schaenzlestr. 18, 79104, Freiburg, Germany.
| |
Collapse
|
15
|
Yang F, Fernández-Jiménez N, Tučková M, Vrána J, Cápal P, Díaz M, Pradillo M, Pecinka A. Defects in meiotic chromosome segregation lead to unreduced male gametes in Arabidopsis SMC5/6 complex mutants. THE PLANT CELL 2021; 33:3104-3119. [PMID: 34240187 PMCID: PMC8462810 DOI: 10.1093/plcell/koab178] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/27/2021] [Indexed: 05/21/2023]
Abstract
Structural maintenance of chromosome 5/6 (SMC5/6) complex is a crucial factor for preserving genome stability. Here, we show that mutants for several Arabidopsis (Arabidopsis thaliana) SMC5/6 complex subunits produce triploid offspring. This phenotype is caused by a meiotic defect leading to the production of unreduced male gametes. The SMC5/6 complex mutants show an absence of chromosome segregation during the first and/or the second meiotic division, as well as a partially disorganized microtubule network. Importantly, although the SMC5/6 complex is partly required for the repair of SPO11-induced DNA double-strand breaks, the nonreduction described here is SPO11-independent. The measured high rate of ovule abortion suggests that, if produced, such defects are maternally lethal. Upon fertilization with an unreduced pollen, the unbalanced maternal and paternal genome dosage in the endosperm most likely causes seed abortion observed in several SMC5/6 complex mutants. In conclusion, we describe the function of the SMC5/6 complex in the maintenance of gametophytic ploidy in Arabidopsis.
Collapse
Affiliation(s)
- Fen Yang
- Institute of Experimental Botany, Czech Academy of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Olomouc, Czech Republic
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Nadia Fernández-Jiménez
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Martina Tučková
- Institute of Experimental Botany, Czech Academy of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Jan Vrána
- Institute of Experimental Botany, Czech Academy of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Petr Cápal
- Institute of Experimental Botany, Czech Academy of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Mariana Díaz
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Mónica Pradillo
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Ales Pecinka
- Institute of Experimental Botany, Czech Academy of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Author for correspondence:
| |
Collapse
|
16
|
Mahapatra K, Banerjee S, De S, Mitra M, Roy P, Roy S. An Insight Into the Mechanism of Plant Organelle Genome Maintenance and Implications of Organelle Genome in Crop Improvement: An Update. Front Cell Dev Biol 2021; 9:671698. [PMID: 34447743 PMCID: PMC8383295 DOI: 10.3389/fcell.2021.671698] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/21/2021] [Indexed: 12/19/2022] Open
Abstract
Besides the nuclear genome, plants possess two small extra chromosomal genomes in mitochondria and chloroplast, respectively, which contribute a small fraction of the organelles’ proteome. Both mitochondrial and chloroplast DNA have originated endosymbiotically and most of their prokaryotic genes were either lost or transferred to the nuclear genome through endosymbiotic gene transfer during the course of evolution. Due to their immobile nature, plant nuclear and organellar genomes face continuous threat from diverse exogenous agents as well as some reactive by-products or intermediates released from various endogenous metabolic pathways. These factors eventually affect the overall plant growth and development and finally productivity. The detailed mechanism of DNA damage response and repair following accumulation of various forms of DNA lesions, including single and double-strand breaks (SSBs and DSBs) have been well documented for the nuclear genome and now it has been extended to the organelles also. Recently, it has been shown that both mitochondria and chloroplast possess a counterpart of most of the nuclear DNA damage repair pathways and share remarkable similarities with different damage repair proteins present in the nucleus. Among various repair pathways, homologous recombination (HR) is crucial for the repair as well as the evolution of organellar genomes. Along with the repair pathways, various other factors, such as the MSH1 and WHIRLY family proteins, WHY1, WHY2, and WHY3 are also known to be involved in maintaining low mutation rates and structural integrity of mitochondrial and chloroplast genome. SOG1, the central regulator in DNA damage response in plants, has also been found to mediate endoreduplication and cell-cycle progression through chloroplast to nucleus retrograde signaling in response to chloroplast genome instability. Various proteins associated with the maintenance of genome stability are targeted to both nuclear and organellar compartments, establishing communication between organelles as well as organelles and nucleus. Therefore, understanding the mechanism of DNA damage repair and inter compartmental crosstalk mechanism in various sub-cellular organelles following induction of DNA damage and identification of key components of such signaling cascades may eventually be translated into strategies for crop improvement under abiotic and genotoxic stress conditions. This review mainly highlights the current understanding as well as the importance of different aspects of organelle genome maintenance mechanisms in higher plants.
Collapse
Affiliation(s)
- Kalyan Mahapatra
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Burdwan, India
| | - Samrat Banerjee
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Burdwan, India
| | - Sayanti De
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Burdwan, India
| | - Mehali Mitra
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Burdwan, India
| | - Pinaki Roy
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Burdwan, India
| | - Sujit Roy
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Burdwan, India
| |
Collapse
|
17
|
Natural variation identifies SNI1, the SMC5/6 component, as a modifier of meiotic crossover in Arabidopsis. Proc Natl Acad Sci U S A 2021; 118:2021970118. [PMID: 34385313 PMCID: PMC8379953 DOI: 10.1073/pnas.2021970118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Meiotic recombination plays a fundamental role in shaping genetic diversity in eukaryotes. Extensive variation in crossover rate exists between populations and species. The identity of modifier loci and their roles in genome evolution remain incompletely understood. We explored natural variation in Arabidopsis crossover and identified SNI1 as the causal gene underlying a major modifier locus. To date, SNI1 had no known role in crossover. SNI1 is a component of the SMC5/6 complex that is closely related to cohesin and condensin. Arabidopsis sni1 and other SMC5/6 mutants show similar effects on the interference-independent crossover pathway. Hence, our findings demonstrate that the SMC5/6 complex, which is known for its role in DNA damage repair, is also important for control of meiotic crossover. The frequency and distribution of meiotic crossovers are tightly controlled; however, variation in this process can be observed both within and between species. Using crosses of two natural Arabidopsis thaliana accessions, Col and Ler, we mapped a crossover modifier locus to semidominant polymorphisms in SUPPRESSOR OF NPR1-1 INDUCIBLE 1 (SNI1), which encodes a component of the SMC5/6 complex. The sni1 mutant exhibits a modified pattern of recombination across the genome with crossovers elevated in chromosome distal regions but reduced in pericentromeres. Mutations in SNI1 result in reduced crossover interference and can partially restore the fertility of a Class I crossover pathway mutant, which suggests that the protein affects noninterfering crossover repair. Therefore, we tested genetic interactions between SNI1 and both RECQ4 and FANCM DNA helicases, which showed that additional Class II crossovers observed in the sni1 mutant are FANCM independent. Furthermore, genetic analysis of other SMC5/6 mutants confirms the observations of crossover redistribution made for SNI1. The study reveals the importance of the SMC5/6 complex in ensuring the proper progress of meiotic recombination in plants.
Collapse
|
18
|
Gieroń Ż, Sitko K, Małkowski E. The Different Faces of Arabidopsis arenosa-A Plant Species for a Special Purpose. PLANTS (BASEL, SWITZERLAND) 2021; 10:1342. [PMID: 34209450 PMCID: PMC8309363 DOI: 10.3390/plants10071342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/01/2022]
Abstract
The following review article collects information on the plant species Arabidopsis arenosa. Thus far, A. arenosa has been known as a model species for autotetraploidy studies because, apart from diploid individuals, there are also tetraploid populations, which is a unique feature of this Arabidopsis species. In addition, A arenosa has often been reported in heavy metal-contaminated sites, where it occurs together with a closely related species A. halleri, a model plant hyperaccumulator of Cd and Zn. Recent studies have shown that several populations of A. arenosa also exhibit Cd and Zn hyperaccumulation. However, it is assumed that the mechanism of hyperaccumulation differs between these two Arabidopsis species. Nevertheless, this phenomenon is still not fully understood, and thorough research is needed. In this paper, we summarize the current state of knowledge regarding research on A. arenosa.
Collapse
Affiliation(s)
| | - Krzysztof Sitko
- Plant Ecophysiology Team, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellońska Str., 40-032 Katowice, Poland;
| | - Eugeniusz Małkowski
- Plant Ecophysiology Team, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellońska Str., 40-032 Katowice, Poland;
| |
Collapse
|
19
|
Zou W, Li G, Jian L, Qian J, Liu Y, Zhao J. Arabidopsis SMC6A and SMC6B have redundant function in seed and gametophyte development. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4871-4887. [PMID: 33909904 DOI: 10.1093/jxb/erab181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/25/2021] [Indexed: 05/21/2023]
Abstract
Reproductive development is a crucial process during plant growth. The structural maintenance of chromosome (SMC) 5/6 complex has been studied in various species. However, there are few studies on the biological function of SMC6 in plant development, especially during reproduction. In this study, knocking out of both AtSMC6A and AtSMC6B led to severe defects in Arabidopsis seed development, and expression of AtSMC6A or AtSMC6B could completely restore seed abortion in the smc6a-/-smc6b-/-double mutant. Knocking down AtSMC6A in the smc6b-/- mutant led to defects in female and male development and decreased fertility. The double mutation also resulted in loss of cell viability, and caused embryo and endosperm cell death through vacuolar cell death and necrosis. Furthermore, the expression of genes involved in embryo patterning, endosperm cellularisation, DNA damage repair, cell cycle regulation, and DNA replication were significantly changed in the albino seeds of the double mutant. Moreover, we found that the SMC5/6 complex may participate in the SOG1 (SUPPRESSOR OF GAMMA RESPONSE1)-dependent DNA damage repair pathway. These findings suggest that both AtSMC6A and AtSMC6B are functionally redundant and play important roles in seed and gametophyte development through maintaining chromosome stability in Arabidopsis.
Collapse
Affiliation(s)
- Wenxuan Zou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Gang Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Liufang Jian
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jie Qian
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yantong Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jie Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
20
|
Čermák T. Sequence modification on demand: search and replace tools for precise gene editing in plants. Transgenic Res 2021; 30:353-379. [PMID: 34086167 DOI: 10.1007/s11248-021-00253-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/05/2021] [Indexed: 12/26/2022]
Abstract
Until recently, our ability to generate allelic diversity in plants was limited to introduction of variants from domesticated and wild species by breeding via uncontrolled recombination or the use of chemical and physical mutagens-processes that are lengthy and costly or lack specificity, respectively. Gene editing provides a faster and more precise way to create new variation, although its application in plants has been dominated by the creation of short insertion and deletion mutations leading to loss of gene function, mostly due to the dependence of editing outcomes on DNA repair pathway choices intrinsic to higher eukaryotes. Other types of edits such as point mutations and precise and pre-designed targeted sequence insertions have rarely been implemented, despite providing means to modulate the expression of target genes or to engineer the function and stability of their protein products. Several advancements have been developed in recent years to facilitate custom editing by regulation of repair pathway choices or by taking advantage of alternative types of DNA repair. We have seen the advent of novel gene editing tools that are independent of DNA double-strand break repair, and methods completely independent of host DNA repair processes are being increasingly explored. With the aim to provide a comprehensive review of the state-of-the-art methodology for allele replacement in plants, I discuss the adoption of these improvements for plant genome engineering.
Collapse
|
21
|
Bolaños-Villegas P. The Role of Structural Maintenance of Chromosomes Complexes in Meiosis and Genome Maintenance: Translating Biomedical and Model Plant Research Into Crop Breeding Opportunities. FRONTIERS IN PLANT SCIENCE 2021; 12:659558. [PMID: 33868354 PMCID: PMC8044525 DOI: 10.3389/fpls.2021.659558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/15/2021] [Indexed: 06/06/2023]
Abstract
Cohesin is a multi-unit protein complex from the structural maintenance of chromosomes (SMC) family, required for holding sister chromatids together during mitosis and meiosis. In yeast, the cohesin complex entraps sister DNAs within tripartite rings created by pairwise interactions between the central ring units SMC1 and SMC3 and subunits such as the α-kleisin SCC1 (REC8/SYN1 in meiosis). The complex is an indispensable regulator of meiotic recombination in eukaryotes. In Arabidopsis and maize, the SMC1/SMC3 heterodimer is a key determinant of meiosis. In Arabidopsis, several kleisin proteins are also essential: SYN1/REC8 is meiosis-specific and is essential for double-strand break repair, whereas AtSCC2 is a subunit of the cohesin SCC2/SCC4 loading complex that is important for synapsis and segregation. Other important meiotic subunits are the cohesin EXTRA SPINDLE POLES (AESP1) separase, the acetylase ESTABLISHMENT OF COHESION 1/CHROMOSOME TRANSMISSION FIDELITY 7 (ECO1/CTF7), the cohesion release factor WINGS APART-LIKE PROTEIN 1 (WAPL) in Arabidopsis (AtWAPL1/AtWAPL2), and the WAPL antagonist AtSWITCH1/DYAD (AtSWI1). Other important complexes are the SMC5/SMC6 complex, which is required for homologous DNA recombination during the S-phase and for proper meiotic synapsis, and the condensin complexes, featuring SMC2/SMC4 that regulate proper clustering of rDNA arrays during interphase. Meiotic recombination is the key to enrich desirable traits in commercial plant breeding. In this review, I highlight critical advances in understanding plant chromatid cohesion in the model plant Arabidopsis and crop plants and suggest how manipulation of crossover formation during meiosis, somatic DNA repair and chromosome folding may facilitate transmission of desirable alleles, tolerance to radiation, and enhanced transcription of alleles that regulate sexual development. I hope that these findings highlight opportunities for crop breeding.
Collapse
Affiliation(s)
- Pablo Bolaños-Villegas
- Fabio Baudrit Agricultural Research Station, University of Costa Rica, Alajuela, Costa Rica
- Lankester Botanical Garden, University of Costa Rica, Cartago, Costa Rica
| |
Collapse
|
22
|
Yang F, Fernández Jiménez N, Majka J, Pradillo M, Pecinka A. Structural Maintenance of Chromosomes 5/6 Complex Is Necessary for Tetraploid Genome Stability in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2021; 12:748252. [PMID: 34675953 PMCID: PMC8525318 DOI: 10.3389/fpls.2021.748252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/06/2021] [Indexed: 05/04/2023]
Abstract
Polyploidization is a common phenomenon in the evolution of flowering plants. However, only a few genes controlling polyploid genome stability, fitness, and reproductive success are known. Here, we studied the effects of loss-of-function mutations in NSE2 and NSE4A subunits of the Structural Maintenance of Chromosomes 5/6 (SMC5/6) complex in autotetraploid Arabidopsis thaliana plants. The diploid nse2 and nse4a plants show partially reduced fertility and produce about 10% triploid offspring with two paternal and one maternal genome copies. In contrast, the autotetraploid nse2 and nse4a plants were almost sterile and produced hexaploid and aneuploid progeny with the extra genome copies or chromosomes coming from both parents. In addition, tetraploid mutants had more severe meiotic defects, possibly due to the presence of four homologous chromosomes instead of two. Overall, our study suggests that the SMC5/6 complex is an important player in the maintenance of tetraploid genome stability and that autotetraploid Arabidopsis plants have a generally higher frequency of but also higher tolerance for aneuploidy compared to diploids.
Collapse
Affiliation(s)
- Fen Yang
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
- Department of Cell Biology and Genetics, Faculty of Natural Sciences, Palacký University, Olomouc, Czechia
| | - Nadia Fernández Jiménez
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Universidad Complutense de Madrid, Madrid, Spain
| | - Joanna Majka
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Mónica Pradillo
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Universidad Complutense de Madrid, Madrid, Spain
| | - Ales Pecinka
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
- *Correspondence: Ales Pecinka,
| |
Collapse
|
23
|
Nowicka A, Tokarz B, Zwyrtková J, Dvořák Tomaštíková E, Procházková K, Ercan U, Finke A, Rozhon W, Poppenberger B, Otmar M, Niezgodzki I, Krečmerová M, Schubert I, Pecinka A. Comparative analysis of epigenetic inhibitors reveals different degrees of interference with transcriptional gene silencing and induction of DNA damage. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:68-84. [PMID: 31733119 DOI: 10.1111/tpj.14612] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/25/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Repetitive DNA sequences and some genes are epigenetically repressed by transcriptional gene silencing (TGS). When genetic mutants are not available or problematic to use, TGS can be suppressed by chemical inhibitors. However, informed use of epigenetic inhibitors is partially hampered by the absence of any systematic comparison. In addition, there is emerging evidence that epigenetic inhibitors cause genomic instability, but the nature of this damage and its repair remain unclear. To bridge these gaps, we compared the effects of 5-azacytidine (AC), 2'-deoxy-5-azacytidine (DAC), zebularine and 3-deazaneplanocin A (DZNep) on TGS and DNA damage repair. The most effective inhibitor of TGS was DAC, followed by DZNep, zebularine and AC. We confirmed that all inhibitors induce DNA damage and suggest that this damage is repaired by multiple pathways with a critical role of homologous recombination and of the SMC5/6 complex. A strong positive link between the degree of cytidine analog-induced DNA demethylation and the amount of DNA damage suggests that DNA damage is an integral part of cytidine analog-induced DNA demethylation. This helps us to understand the function of DNA methylation in plants and opens the possibility of using epigenetic inhibitors in biotechnology.
Collapse
Affiliation(s)
- Anna Nowicka
- Institute of Experimental Botany (IEB), Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), CZ-779 00, Olomouc, Czech Republic
- Max Planck Institute for Plant Breeding Research (MPIPZ), DE-50829, Cologne, Germany
- The Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, PL-30 239, Krakow, Poland
| | - Barbara Tokarz
- Institute of Experimental Botany (IEB), Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), CZ-779 00, Olomouc, Czech Republic
- Unit of Botany and Plant Physiology, Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. 29 Listopada 54, PL-31 425, Krakow, Poland
| | - Jana Zwyrtková
- Institute of Experimental Botany (IEB), Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), CZ-779 00, Olomouc, Czech Republic
| | - Eva Dvořák Tomaštíková
- Institute of Experimental Botany (IEB), Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), CZ-779 00, Olomouc, Czech Republic
| | - Klára Procházková
- Institute of Experimental Botany (IEB), Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), CZ-779 00, Olomouc, Czech Republic
| | - Ugur Ercan
- Max Planck Institute for Plant Breeding Research (MPIPZ), DE-50829, Cologne, Germany
| | - Andreas Finke
- Max Planck Institute for Plant Breeding Research (MPIPZ), DE-50829, Cologne, Germany
| | - Wilfried Rozhon
- Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Liesel-Beckmann-Straße 1, DE-85354, Freising, Germany
| | - Brigitte Poppenberger
- Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Liesel-Beckmann-Straße 1, DE-85354, Freising, Germany
| | - Miroslav Otmar
- Institute of Organic Chemistry and Biochemistry, CZ-166 10, Praha 6, Czech Republic
| | - Igor Niezgodzki
- Biogeosystem Modelling Group, ING PAN - Institute of Geological Sciences Polish Academy of Sciences, Research Center in Krakow, Senacka 1, PL-31 002, Krakow, Poland
| | - Marcela Krečmerová
- Institute of Organic Chemistry and Biochemistry, CZ-166 10, Praha 6, Czech Republic
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research, Stadt Seeland, DE-06466, Gatersleben, OT, Germany
| | - Ales Pecinka
- Institute of Experimental Botany (IEB), Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), CZ-779 00, Olomouc, Czech Republic
- Max Planck Institute for Plant Breeding Research (MPIPZ), DE-50829, Cologne, Germany
| |
Collapse
|
24
|
Stavrinides AK, Dussert S, Combes MC, Fock-Bastide I, Severac D, Minier J, Bastos-Siqueira A, Demolombe V, Hem S, Lashermes P, Joët T. Seed comparative genomics in three coffee species identify desiccation tolerance mechanisms in intermediate seeds. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1418-1433. [PMID: 31790120 PMCID: PMC7031068 DOI: 10.1093/jxb/erz508] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 11/10/2019] [Indexed: 05/13/2023]
Abstract
In contrast to desiccation-tolerant 'orthodox' seeds, so-called 'intermediate' seeds cannot survive complete drying and are short-lived. All species of the genus Coffea produce intermediate seeds, but they show a considerable variability in seed desiccation tolerance (DT), which may help to decipher the molecular basis of seed DT in plants. We performed a comparative transcriptome analysis of developing seeds in three coffee species with contrasting desiccation tolerance. Seeds of all species shared a major transcriptional switch during late maturation that governs a general slow-down of metabolism. However, numerous key stress-related genes, including those coding for the late embryogenesis abundant protein EM6 and the osmosensitive calcium channel ERD4, were up-regulated during DT acquisition in the two species with high seed DT, C. arabica and C. eugenioides. By contrast, we detected up-regulation of numerous genes involved in the metabolism, transport, and perception of auxin in C. canephora seeds with low DT. Moreover, species with high DT showed a stronger down-regulation of the mitochondrial machinery dedicated to the tricarboxylic acid cycle and oxidative phosphorylation. Accordingly, respiration measurements during seed dehydration demonstrated that intermediate seeds with the highest DT are better prepared to cease respiration and avoid oxidative stresses.
Collapse
Affiliation(s)
| | | | | | | | - Dany Severac
- MGX-Montpellier GenomiX, c/o Institut de Génomique Fonctionnelle, Montpellier Cedex 5, France
| | | | | | - Vincent Demolombe
- BPMP, CNRS, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Sonia Hem
- BPMP, CNRS, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | | | - Thierry Joët
- IRD, Université Montpellier, UMR DIADE, Montpellier, France
| |
Collapse
|
25
|
Li G, Zou W, Jian L, Qian J, Zhao J. AtNSE1 and AtNSE3 are required for embryo pattern formation and maintenance of cell viability during Arabidopsis embryogenesis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6229-6244. [PMID: 31408172 PMCID: PMC6859727 DOI: 10.1093/jxb/erz373] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 08/06/2019] [Indexed: 05/30/2023]
Abstract
Embryogenesis is an essential process during seed development in higher plants. It has previously been shown that mutation of the Arabidopsis non-SMC element genes AtNSE1 or AtNSE3 leads to early embryo abortion, and their proteins can interact with each other directly. However, the crucial regions of these proteins in this interaction and how the proteins are cytologically involved in Arabidopsis embryo development are unknown. In this study, we found that the C-terminal including the Ring-like motif of AtNSE1 can interact with the N-terminal of AtNSE3, and only the Ring-like motif is essential for binding with three α motifs of AtNSE2 (homologous to AtMMS21). Using genetic assays and by analysing molecular markers of cell fate decisions (STM, WOX5, and WOX8) in mutant nse1 and nse3 embryos, we found that AtNSE1 and AtNSE3 work non-redundantly in early embryo development, and that differentiation of the apical meristem and the hypophysis fails in the mutants, which have disrupted auxin transportation and responses. However, the upper cells of the suspensor in the mutants seem to have proper embryo cell identity. Cytological examination showed that cell death occurred from the early embryo stage, and that vacuolar programmed cell death and necrosis in the nse1 and nse3 mutant embryos led to ovule abortion. Thus, AtNSE1 and AtNSE3 are essential for maintaining cell viability and growth during early embryogenesis. Our results improve our understanding of the functions of SMC5/6 complex in early embryogenesis in Arabidopsis.
Collapse
Affiliation(s)
- Gang Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wenxuan Zou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Liufang Jian
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jie Qian
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jie Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
26
|
Abstract
Smc5 and Smc6, together with the kleisin Nse4, form the heart of the enigmatic and poorly understood Smc5/6 complex, which is frequently viewed as a cousin of cohesin and condensin with functions in DNA repair. As novel functions for cohesin and condensin complexes in the organization of long-range chromatin architecture have recently emerged, new unsuspected roles for Smc5/6 have also surfaced. Here, I aim to provide a comprehensive overview of our current knowledge of the Smc5/6 complex, including its long-established function in genome stability, its multiple roles in DNA repair, and its recently discovered connection to the transcription inhibition of hepatitis B virus genomes. In addition, I summarize new research that is beginning to tease out the molecular details of Smc5/6 structure and function, knowledge that will illuminate the nuclear activities of Smc5/6 in the stability and dynamics of eukaryotic genomes.
Collapse
Affiliation(s)
- Luis Aragón
- Cell Cycle Group, MRC London Institute of Medical Sciences, Hammersmith Hospital Campus, London W12 0NN, United Kingdom;
| |
Collapse
|
27
|
A SWI/SNF subunit regulates chromosomal dissociation of structural maintenance complex 5 during DNA repair in plant cells. Proc Natl Acad Sci U S A 2019; 116:15288-15296. [PMID: 31285327 DOI: 10.1073/pnas.1900308116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA damage decreases genome stability and alters genetic information in all organisms. Conserved protein complexes have been evolved for DNA repair in eukaryotes, such as the structural maintenance complex 5/6 (SMC5/6), a chromosomal ATPase involved in DNA double-strand break (DSB) repair. Several factors have been identified for recruitment of SMC5/6 to DSBs, but this complex is also associated with chromosomes under normal conditions; how SMC5/6 dissociates from its original location and moves to DSB sites is completely unknown. In this study, we determined that SWI3B, a subunit of the SWI/SNF complex, is an SMC5-interacting protein in Arabidopsis thialiana Knockdown of SWI3B or SMC5 results in increased DNA damage accumulation. During DNA damage, SWI3B expression is induced, but the SWI3B protein is not localized at DSBs. Notably, either knockdown or overexpression of SWI3B disrupts the DSB recruitment of SMC5 in response to DNA damage. Overexpression of a cotranscriptional activator ADA2b rescues the DSB localization of SMC5 dramatically in the SWI3B-overexpressing cells but only weakly in the SWI3B knockdown cells. Biochemical data confirmed that ADA2b attenuates the interaction between SWI3B and SMC5 and that SWI3B promotes the dissociation of SMC5 from chromosomes. In addition, overexpression of SMC5 reduces DNA damage accumulation in the SWI3B knockdown plants. Collectively, these results indicate that the presence of an appropriate level of SWI3B enhances dissociation of SMC5 from chromosomes for its further recruitment at DSBs during DNA damage in plant cells.
Collapse
|
28
|
Díaz M, Pečinková P, Nowicka A, Baroux C, Sakamoto T, Gandha PY, Jeřábková H, Matsunaga S, Grossniklaus U, Pecinka A. The SMC5/6 Complex Subunit NSE4A Is Involved in DNA Damage Repair and Seed Development. THE PLANT CELL 2019; 31:1579-1597. [PMID: 31036599 PMCID: PMC6635853 DOI: 10.1105/tpc.18.00043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/26/2019] [Accepted: 04/26/2019] [Indexed: 05/04/2023]
Abstract
The maintenance of genome integrity over cell divisions is critical for plant development and the correct transmission of genetic information to the progeny. A key factor involved in this process is the STRUCTURAL MAINTENANCE OF CHROMOSOME5 (SMC5) and SMC6 (SMC5/6) complex, related to the cohesin and condensin complexes that control sister chromatid alignment and chromosome condensation, respectively. Here, we characterize NON-SMC ELEMENT4 (NSE4) paralogs of the SMC5/6 complex in Arabidopsis (Arabidopsis thaliana). NSE4A is expressed in meristems and accumulates during DNA damage repair. Partial loss-of-function nse4a mutants are viable but hypersensitive to DNA damage induced by zebularine. In addition, nse4a mutants produce abnormal seeds, with noncellularized endosperm and embryos that maximally develop to the heart or torpedo stage. This phenotype resembles the defects in cohesin and condensin mutants and suggests a role for all three SMC complexes in differentiation during seed development. By contrast, NSE4B is expressed in only a few cell types, and loss-of-function mutants do not have any obvious abnormal phenotype. In summary, our study shows that the NSE4A subunit of the SMC5-SMC6 complex is essential for DNA damage repair in somatic tissues and plays a role in plant reproduction.
Collapse
Affiliation(s)
- Mariana Díaz
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research (MPIPZ), 50829 Cologne, Germany
- The Czech Academy of Sciences, Institute of Experimental Botany (IEB), Centre of the Region Haná for Biotechnological and Agricultural Research, 77900 Olomouc, Czech Republic
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba 278-8510, Japan
| | - Petra Pečinková
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research (MPIPZ), 50829 Cologne, Germany
| | - Anna Nowicka
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research (MPIPZ), 50829 Cologne, Germany
- The Czech Academy of Sciences, Institute of Experimental Botany (IEB), Centre of the Region Haná for Biotechnological and Agricultural Research, 77900 Olomouc, Czech Republic
- Polish Academy of Sciences, Franciszek Gorski Institute of Plant Physiology, 30-239 Krakow, Poland
| | - Célia Baroux
- Department of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich, 8008 Zürich, Switzerland
| | - Takuya Sakamoto
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba 278-8510, Japan
| | - Priscilla Yuliani Gandha
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research (MPIPZ), 50829 Cologne, Germany
| | - Hana Jeřábková
- The Czech Academy of Sciences, Institute of Experimental Botany (IEB), Centre of the Region Haná for Biotechnological and Agricultural Research, 77900 Olomouc, Czech Republic
| | - Sachihiro Matsunaga
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba 278-8510, Japan
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich, 8008 Zürich, Switzerland
| | - Ales Pecinka
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research (MPIPZ), 50829 Cologne, Germany
- The Czech Academy of Sciences, Institute of Experimental Botany (IEB), Centre of the Region Haná for Biotechnological and Agricultural Research, 77900 Olomouc, Czech Republic
| |
Collapse
|
29
|
Zelkowski M, Zelkowska K, Conrad U, Hesse S, Lermontova I, Marzec M, Meister A, Houben A, Schubert V. Arabidopsis NSE4 Proteins Act in Somatic Nuclei and Meiosis to Ensure Plant Viability and Fertility. FRONTIERS IN PLANT SCIENCE 2019; 10:774. [PMID: 31281325 PMCID: PMC6596448 DOI: 10.3389/fpls.2019.00774] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/28/2019] [Indexed: 05/02/2023]
Abstract
The SMC 5/6 complex together with cohesin and condensin is a member of the structural maintenance of chromosome (SMC) protein family. In non-plant organisms SMC5/6 is engaged in DNA repair, meiotic synapsis, genome organization and stability. In plants, the function of SMC5/6 is still enigmatic. Therefore, we analyzed the crucial δ-kleisin component NSE4 of the SMC5/6 complex in the model plant Arabidopsis thaliana. Two functional conserved Nse4 paralogs (Nse4A and Nse4B) are present in A. thaliana, which may have evolved via gene subfunctionalization. Due to its high expression level, Nse4A seems to be the more essential gene, whereas Nse4B appears to be involved mainly in seed development. The morphological characterization of A. thaliana T-DNA mutants suggests that the NSE4 proteins are essential for plant growth and fertility. Detailed investigations in wild-type and the mutants based on live cell imaging of transgenic GFP lines, fluorescence in situ hybridization (FISH), immunolabeling and super-resolution microscopy suggest that NSE4A acts in several processes during plant development, such as mitosis, meiosis and chromatin organization of differentiated nuclei, and that NSE4A operates in a cell cycle-dependent manner. Differential response of NSE4A and NSE4B mutants after induced DNA double strand breaks (DSBs) suggests their involvement in DNA repair processes.
Collapse
Affiliation(s)
- Mateusz Zelkowski
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Katarzyna Zelkowska
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Udo Conrad
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Susann Hesse
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Inna Lermontova
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
- Plant Cytogenomics Research Group, Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Marek Marzec
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Armin Meister
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| |
Collapse
|
30
|
Hesse S, Zelkowski M, Mikhailova EI, Keijzer CJ, Houben A, Schubert V. Ultrastructure and Dynamics of Synaptonemal Complex Components During Meiotic Pairing and Synapsis of Standard (A) and Accessory (B) Rye Chromosomes. FRONTIERS IN PLANT SCIENCE 2019; 10:773. [PMID: 31281324 PMCID: PMC6596450 DOI: 10.3389/fpls.2019.00773] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 05/03/2023]
Abstract
During prophase I a meiosis-specific proteinaceous tripartite structure, the synaptonemal complex (SC), forms a scaffold to connect homologous chromosomes along their lengths. This process, called synapsis, is required in most organisms to promote recombination between homologs facilitating genetic variability and correct chromosome segregations during anaphase I. Recent studies in various organisms ranging from yeast to mammals identified several proteins involved in SC formation. However, the process of SC disassembly remains largely enigmatic. In this study we determined the structural changes during SC formation and disassembly in rye meiocytes containing accessory (B) chromosomes. The use of electron and super-resolution microscopy (3D-SIM) combined with immunohistochemistry and FISH allowed us to monitor the structural changes during prophase I. Visualization of the proteins ASY1, ZYP1, NSE4A, and HEI10 revealed an extensive SC remodeling during prophase I. The ultrastructural investigations of the dynamics of these four proteins showed that the SC disassembly is accompanied by the retraction of the lateral and axial elements from the central region of the SC. In addition, SC fragmentation and the formation of ball-like SC structures occur at late diakinesis. Moreover, we show that the SC composition of rye B chromosomes does not differ from that of the standard (A) chromosome complement. Our ultrastructural investigations indicate that the dynamic behavior of the studied proteins is involved in SC formation and synapsis. In addition, they fulfill also functions during desynapsis and chromosome condensation to realize proper recombination and homolog separation. We propose a model for the homologous chromosome behavior during prophase I based on the observed dynamics of ASY1, ZYP1, NSE4A, and HEI10.
Collapse
Affiliation(s)
- Susann Hesse
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Mateusz Zelkowski
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Elena I. Mikhailova
- N.I.Vavilov Institute of General Genetics, Russian Academy of Sciences, Saint-Petersburg State University, Saint-Petersburg, Russia
| | | | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| |
Collapse
|
31
|
An insight into the folding and stability of Arabidopsis thaliana SOG1 transcription factor under salinity stress in vitro. Biochem Biophys Res Commun 2019; 515:531-537. [PMID: 31176488 DOI: 10.1016/j.bbrc.2019.05.183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 05/30/2019] [Indexed: 11/20/2022]
Abstract
The present study describes the biophysical characterization of Arabidopsis thaliana SOG1 (SUPPRESSOR OF GAMMA RESPONSE 1) protein, a NAC domain transcription factor which plays central role in DNA damage response pathway, under salinity stress in vitro. Tryptophan fluorescence studies using purified recombinant wild type (full length) AtSOG1 and its N-terminal or C-terminal deletion forms (AtSOG1ΔNAC and AtSOG1ΔCT respectively) have revealed high salinity induced conformational change due to removal of the N-terminal NAC domain. Bis-ANS binding assays indicate that removal of the N-terminal NAC domain increases the surface hydrophobic binding sites, while the C-terminal region of SOG1 also plays important role in regulating the surface hydrophobicity aspects following exposure to high salinity. Circular dichroism (CD) spectral studies have indicated that removal of the N-terminal NAC domain affects the structural conformation of the protein under high salt concentration. Urea-induced equilibrium unfolding studies revealed decreased stability of C-terminal region due to removal of the N-terminal NAC domain. In vitro aggregation studies have indicated higher propensity of aggregation of AtSOG1ΔNAC due to salt treatment. Overall, our results provide evidence for the importance of both N-terminal NAC domain and the C-terminal region in regulating the stability of SOG1 protein under salinity stress in vitro.
Collapse
|
32
|
Pond KW, de Renty C, Yagle MK, Ellis NA. Rescue of collapsed replication forks is dependent on NSMCE2 to prevent mitotic DNA damage. PLoS Genet 2019; 15:e1007942. [PMID: 30735491 PMCID: PMC6383951 DOI: 10.1371/journal.pgen.1007942] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 02/21/2019] [Accepted: 01/07/2019] [Indexed: 12/12/2022] Open
Abstract
NSMCE2 is an E3 SUMO ligase and a subunit of the SMC5/6 complex that associates with the replication fork and protects against genomic instability. Here, we study the fate of collapsed replication forks generated by prolonged hydroxyurea treatment in human NSMCE2-deficient cells. Double strand breaks accumulate during rescue by converging forks in normal cells but not in NSMCE2-deficient cells. Un-rescued forks persist into mitosis, leading to increased mitotic DNA damage. Excess RAD51 accumulates and persists at collapsed forks in NSMCE2-deficient cells, possibly due to lack of BLM recruitment to stalled forks. Despite failure of BLM to accumulate at stalled forks, NSMCE2-deficient cells exhibit lower levels of hydroxyurea-induced sister chromatid exchange. In cells deficient in both NSMCE2 and BLM, hydroxyurea-induced double strand breaks and sister chromatid exchange resembled levels found in NSCME2-deficient cells. We conclude that the rescue of collapsed forks by converging forks is dependent on NSMCE2.
Collapse
Affiliation(s)
- Kelvin W. Pond
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Christelle de Renty
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona, United States of America
| | - Mary K. Yagle
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona, United States of America
| | - Nathan A. Ellis
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, United States of America
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
33
|
Schmidt C, Pacher M, Puchta H. DNA Break Repair in Plants and Its Application for Genome Engineering. Methods Mol Biol 2019; 1864:237-266. [PMID: 30415341 DOI: 10.1007/978-1-4939-8778-8_17] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Genome engineering is a biotechnological approach to precisely modify the genetic code of a given organism in order to change the context of an existing sequence or to create new genetic resources, e.g., for obtaining improved traits or performance. Efficient targeted genome alterations are mainly based on the induction of DNA double-strand breaks (DSBs) or adjacent single-strand breaks (SSBs). Naturally, all organisms continuously have to deal with DNA-damaging factors challenging the genetic integrity, and therefore a wide range of DNA repair mechanisms have evolved. A profound understanding of the different repair pathways is a prerequisite to control and enhance targeted gene modifications. DSB repair can take place by nonhomologous end joining (NHEJ) or homology-dependent repair (HDR). As the main outcome of NHEJ-mediated repair is accompanied by small insertions and deletions, it is applicable to specifically knock out genes or to rearrange linkage groups or whole chromosomes. The basic requirement for HDR is the presence of a homologous template; thus this process can be exploited for targeted integration of ectopic sequences into the plant genome. The development of different types of artificial site-specific nucleases allows for targeted DSB induction in the plant genome. Such synthetic nucleases have been used for both qualitatively studying DSB repair in vivo with respect to mechanistic differences and quantitatively in order to determine the role of key factors for NHEJ and HR, respectively. The conclusions drawn from these studies allow for a better understanding of genome evolution and help identifying synergistic or antagonistic genetic interactions while supporting biotechnological applications for transiently modifying the plant DNA repair machinery in favor of targeted genome engineering.
Collapse
Affiliation(s)
- Carla Schmidt
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Michael Pacher
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Holger Puchta
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| |
Collapse
|
34
|
Palecek JJ. SMC5/6: Multifunctional Player in Replication. Genes (Basel) 2018; 10:genes10010007. [PMID: 30583551 PMCID: PMC6356406 DOI: 10.3390/genes10010007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/13/2022] Open
Abstract
The genome replication process is challenged at many levels. Replication must proceed through different problematic sites and obstacles, some of which can pause or even reverse the replication fork (RF). In addition, replication of DNA within chromosomes must deal with their topological constraints and spatial organization. One of the most important factors organizing DNA into higher-order structures are Structural Maintenance of Chromosome (SMC) complexes. In prokaryotes, SMC complexes ensure proper chromosomal partitioning during replication. In eukaryotes, cohesin and SMC5/6 complexes assist in replication. Interestingly, the SMC5/6 complexes seem to be involved in replication in many ways. They stabilize stalled RFs, restrain RF regression, participate in the restart of collapsed RFs, and buffer topological constraints during RF progression. In this (mini) review, I present an overview of these replication-related functions of SMC5/6.
Collapse
Affiliation(s)
- Jan J Palecek
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic.
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic.
| |
Collapse
|
35
|
Bian Y, Yang C, Ou X, Zhang Z, Wang B, Ma W, Gong L, Zhang H, Liu B. Meiotic chromosome stability of a newly formed allohexaploid wheat is facilitated by selection under abiotic stress as a spandrel. THE NEW PHYTOLOGIST 2018; 220:262-277. [PMID: 29916206 DOI: 10.1111/nph.15267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/11/2018] [Indexed: 05/25/2023]
Abstract
Polyploidy is a prominent route to speciation in plants; however, this entails resolving the challenges of meiotic instability facing abrupt doubling of chromosome complement. This issue remains poorly understood. We subjected progenies of a synthetic hexaploid wheat, analogous to natural common wheat, but exhibiting extensive meiotic chromosome instability, to heat or salt stress. We selected stress-tolerant cohorts and generated their progenies under normal condition. We conducted fluorescent in situ hybridization/genomic in situ hybridization-based meiotic/mitotic analysis, RNA-Seq and virus-induced gene silencing (VIGS)-mediated assay of meiosis candidate genes. We show that heritability of stress tolerance concurred with increased euploidy frequency due to enhanced meiosis stability. We identified a set of candidate meiosis genes with altered expression in the stress-tolerant plants vs control, but the expression was similar to that of common wheat (cv Chinese Spring, CS). We demonstrate VIGS-mediated downregulation of individual candidate meiosis genes in CS is sufficient to confer an unstable meiosis phenotype mimicking the synthetic wheat. Our results suggest that heritable regulatory changes of preexisting meiosis genes may be hitchhiked as a spandrel of stress tolerance, which significantly improves meiosis stability in the synthetic wheat. Our findings implicate a plausible scenario that the meiosis machinery in hexaploid wheat may have already started to evolve at its onset stage.
Collapse
Affiliation(s)
- Yao Bian
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Chunwu Yang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xiufang Ou
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Bin Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Weiwei Ma
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Huakun Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Colney, Norwich, NR4 7UH, UK
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
36
|
Dutta S, Mitra M, Agarwal P, Mahapatra K, De S, Sett U, Roy S. Oxidative and genotoxic damages in plants in response to heavy metal stress and maintenance of genome stability. PLANT SIGNALING & BEHAVIOR 2018; 13:e1460048. [PMID: 29621424 PMCID: PMC6149466 DOI: 10.1080/15592324.2018.1460048] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 03/28/2018] [Indexed: 05/17/2023]
Abstract
Plants, being sessile in nature, are constantly exposed to various environmental stresses, such as solar UV radiations, soil salinity, drought and desiccation, rehydration, low and high temperatures and other vast array of air and soil borne chemicals, industrial waste products, metals and metalloids. These agents, either directly or indirectly via the induction of oxidative stress and overproduction of reactive oxygen species (ROS), frequently perturb the chemical or physical structures of DNA and induce both cytotoxic or genotoxic stresses. Such condition, in turn, leads to genome instability and thus eventually severely affecting plant health and crop yield. With the growing industrialization process and non-judicious use of chemical fertilizers, the heavy metal mediated chemical toxicity has become one of the major environmental threats for the plants around the globe. The heavy metal ions cause damage to the structural, enzymatic and non-enzymatic components of plant cell, often resulting in loss of cell viability, thus negatively impacting plant growth and development. Plants have also evolved with an extensive and highly efficient mechanism to respond and adapt under such heavy metal toxicity mediated stress conditions. In addition to morpho-anatomical, hormonal and biochemical responses, at the molecular level, plants respond to heavy metal stress induced oxidative and genotoxic damage via the rapid change in the expression of the responsive genes at the transcriptional level. Various families of transcription factors play crucial role in triggering such responses. Apart from transcriptional response, epigenetic modifications have also been found to be essential for maintenance of plant genome stability under genotoxic stress. This review represents a comprehensive survey of recent advances in our understanding of plant responses to heavy metal mediated toxicity in general with particular emphasis on the transcriptional and epigenetic responses and highlights the importance of understanding the potential targets in the associated pathways for improved stress tolerance in crops.
Collapse
Affiliation(s)
- Subhajit Dutta
- Department of Botany, UGC Centre of Advanced Studies, The University of Burdwan, Golapbag campus, Burdwan – 713104, West Bengal, India
| | - Mehali Mitra
- Department of Botany, UGC Centre of Advanced Studies, The University of Burdwan, Golapbag campus, Burdwan – 713104, West Bengal, India
| | - Puja Agarwal
- Department of Botany, UGC Centre of Advanced Studies, The University of Burdwan, Golapbag campus, Burdwan – 713104, West Bengal, India
| | - Kalyan Mahapatra
- Department of Botany, UGC Centre of Advanced Studies, The University of Burdwan, Golapbag campus, Burdwan – 713104, West Bengal, India
| | - Sayanti De
- Department of Botany, UGC Centre of Advanced Studies, The University of Burdwan, Golapbag campus, Burdwan – 713104, West Bengal, India
| | - Upasana Sett
- Department of Botany, UGC Centre of Advanced Studies, The University of Burdwan, Golapbag campus, Burdwan – 713104, West Bengal, India
| | - Sujit Roy
- Department of Botany, UGC Centre of Advanced Studies, The University of Burdwan, Golapbag campus, Burdwan – 713104, West Bengal, India
| |
Collapse
|
37
|
Lai J, Jiang J, Wu Q, Mao N, Han D, Hu H, Yang C. The Transcriptional Coactivator ADA2b Recruits a Structural Maintenance Protein to Double-Strand Breaks during DNA Repair in Plants. PLANT PHYSIOLOGY 2018; 176:2613-2622. [PMID: 29463775 PMCID: PMC5884601 DOI: 10.1104/pp.18.00123] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 02/12/2018] [Indexed: 06/01/2023]
Abstract
DNA damage occurs in all cells and can hinder chromosome stability and cell viability. Structural Maintenance of Chromosomes5/6 (SMC5/6) is a protein complex that functions as an evolutionarily conserved chromosomal ATPase critical for repairing DNA double-strand breaks (DSBs). However, the mechanisms regulating this complex in plants are poorly understood. Here, we identified the transcriptional coactivator ALTERATION/DEFICIENCY IN ACTIVATION2B (ADA2b) as an interactor of SMC5 in Arabidopsis (Arabidopsis thaliana). ADA2b is a conserved component of the Spt-Ada-Gcn5 acetyltransferase complex, which functions in transcriptional regulation. Characterization of mutant and knockdown Arabidopsis lines showed that disruption of either SMC5 or ADA2b resulted in enhanced DNA damage. Both SMC5 and ADA2b were associated with γ-H2AX, a marker of DSBs, and the recruitment of SMC5 onto DSBs was dependent on ADA2b. In addition, overexpression of SMC5 in the ada2b mutant background stimulated cell death. Collectively, our results show that the interaction between ADA2b and SMC5 mediates DNA repair in plant cells, suggesting a functional association between these conserved proteins and further elucidating mechanisms of DNA damage repair in plants.
Collapse
Affiliation(s)
- Jianbin Lai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jieming Jiang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Qian Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Ning Mao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Danlu Han
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Huan Hu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
38
|
Peng XP, Lim S, Li S, Marjavaara L, Chabes A, Zhao X. Acute Smc5/6 depletion reveals its primary role in rDNA replication by restraining recombination at fork pausing sites. PLoS Genet 2018; 14:e1007129. [PMID: 29360860 PMCID: PMC5779651 DOI: 10.1371/journal.pgen.1007129] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 11/27/2017] [Indexed: 11/18/2022] Open
Abstract
Smc5/6, a member of the conserved SMC family of complexes, is essential for growth in most organisms. Its exact functions in a mitotic cell cycle are controversial, as chronic Smc5/6 loss-of-function alleles produce varying phenotypes. To circumvent this issue, we acutely depleted Smc5/6 in budding yeast and determined the first cell cycle consequences of Smc5/6 removal. We found a striking primary defect in replication of the ribosomal DNA (rDNA) array. Each rDNA repeat contains a programmed replication fork barrier (RFB) established by the Fob1 protein. Fob1 removal improves rDNA replication in Smc5/6 depleted cells, implicating Smc5/6 in the management of programmed fork pausing. A similar improvement is achieved by removing the DNA helicase Mph1 whose recombinogenic activity can be inhibited by Smc5/6 under DNA damage conditions. DNA 2D gel analyses further show that Smc5/6 loss increases recombination structures at RFB regions; moreover, mph1∆ and fob1∆ similarly reduce this accumulation. These findings point to an important mitotic role for Smc5/6 in restraining recombination events when protein barriers in rDNA stall replication forks. As rDNA maintenance influences multiple essential cellular processes, Smc5/6 likely links rDNA stability to overall mitotic growth. Smc5/6 belongs to the SMC (Structural Maintenance of Chromosomes) family of protein complexes, all of which are highly conserved and critical for genome maintenance. To address the roles of Smc5/6 during growth, we rapidly depleted its subunits in yeast and found the main acute effect to be defective ribosomal DNA (rDNA) duplication. The rDNA contains hundreds of sites that can pause replication forks; these must be carefully managed for cells to finish replication. We found that reducing fork pausing improved rDNA replication in cells without Smc5/6. Further analysis suggested that Smc5/6 prevents the DNA helicase Mph1 from turning paused forks into recombination structures, which cannot be processed without Smc5/6. Our findings thus revealed a key role for Smc5/6 in managing endogenous replication fork pausing. As rDNA and its associated nucleolar structure are critical for overall genome maintenance and other cellular processes, rDNA regulation by Smc5/6 would be expected to have multilayered effects on cell physiology and growth.
Collapse
Affiliation(s)
- Xiao P. Peng
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
- Tri-Institutional MD-PhD Program of Weill Cornell Medical School, Rockefeller University, and Sloan-Kettering Cancer Center, New York, NY, United States of America
| | - Shelly Lim
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Shibai Li
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Lisette Marjavaara
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
39
|
Diaz M, Pecinka A. Scaffolding for Repair: Understanding Molecular Functions of the SMC5/6 Complex. Genes (Basel) 2018; 9:genes9010036. [PMID: 29329249 PMCID: PMC5793187 DOI: 10.3390/genes9010036] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 12/17/2022] Open
Abstract
Chromosome organization, dynamics and stability are required for successful passage through cellular generations and transmission of genetic information to offspring. The key components involved are Structural maintenance of chromosomes (SMC) complexes. Cohesin complex ensures proper chromatid alignment, condensin complex chromosome condensation and the SMC5/6 complex is specialized in the maintenance of genome stability. Here we summarize recent knowledge on the composition and molecular functions of SMC5/6 complex. SMC5/6 complex was originally identified based on the sensitivity of its mutants to genotoxic stress but there is increasing number of studies demonstrating its roles in the control of DNA replication, sister chromatid resolution and genomic location-dependent promotion or suppression of homologous recombination. Some of these functions appear to be due to a very dynamic interaction with cohesin or other repair complexes. Studies in Arabidopsis indicate that, besides its canonical function in repair of damaged DNA, the SMC5/6 complex plays important roles in regulating plant development, abiotic stress responses, suppression of autoimmune responses and sexual reproduction.
Collapse
Affiliation(s)
- Mariana Diaz
- Institute of Experimental Botany of the Czech Academy of Sciences (IEB), Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 77900 Olomouc-Holice, Czech Republic.
- Max Planck Institute for Plant Breeding Research (MPIPZ), Carl-von-Linné-Weg 10, 50829 Cologne, Germany.
| | - Ales Pecinka
- Institute of Experimental Botany of the Czech Academy of Sciences (IEB), Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 77900 Olomouc-Holice, Czech Republic.
| |
Collapse
|
40
|
Oliver C, Pradillo M, Jover-Gil S, Cuñado N, Ponce MR, Santos JL. Loss of function of Arabidopsis microRNA-machinery genes impairs fertility, and has effects on homologous recombination and meiotic chromatin dynamics. Sci Rep 2017; 7:9280. [PMID: 28839139 PMCID: PMC5571030 DOI: 10.1038/s41598-017-07702-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/30/2017] [Indexed: 02/03/2023] Open
Abstract
MicroRNAs (miRNAs) are ~22-nt single-stranded noncoding RNAs with regulatory roles in a wide range of cellular functions by repressing eukaryotic gene expression at a post-transcriptional level. Here, we analyzed the effects on meiosis and fertility of hypomorphic or null alleles of the HYL1, HEN1, DCL1, HST and AGO1 genes, which encode miRNA-machinery components in Arabidopsis. Reduced pollen and megaspore mother cell number and fertility were shown by the mutants analyzed. These mutants also exhibited a relaxed chromatin conformation in male meiocytes at the first meiotic division, and increased chiasma frequency, which is likely to be due to increased levels of mRNAs from key genes involved in homologous recombination. The hen1-13 mutant was found to be hypersensitive to gamma irradiation, which mainly causes double-strand breaks susceptible to be repaired by homologous recombination. Our findings uncover a role for miRNA-machinery components in Arabidopsis meiosis, as well as in the repression of key genes required for homologous recombination. These genes seem to be indirect miRNA targets.
Collapse
Affiliation(s)
- Cecilia Oliver
- Departamento de Genética, Facultad de Biología, Universidad Complutense de Madrid, 28040, Madrid, Spain.,Institut de Génétique Humaine UMR9002 CNRS-Université de Montpellier, 34396, Montpellier, cedex 05, France
| | - Mónica Pradillo
- Departamento de Genética, Facultad de Biología, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Sara Jover-Gil
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain
| | - Nieves Cuñado
- Departamento de Genética, Facultad de Biología, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - María Rosa Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain.
| | - Juan Luis Santos
- Departamento de Genética, Facultad de Biología, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| |
Collapse
|
41
|
Vu GTH, Cao HX, Reiss B, Schubert I. Deletion-bias in DNA double-strand break repair differentially contributes to plant genome shrinkage. THE NEW PHYTOLOGIST 2017; 214:1712-1721. [PMID: 28245065 DOI: 10.1111/nph.14490] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/22/2017] [Indexed: 06/06/2023]
Abstract
In order to prevent genome instability, cells need to be protected by a number of repair mechanisms, including DNA double-strand break (DSB) repair. The extent to which DSB repair, biased towards deletions or insertions, contributes to evolutionary diversification of genome size is still under debate. We analyzed mutation spectra in Arabidopsis thaliana and in barley (Hordeum vulgare) by PacBio sequencing of three DSB-targeted loci each, uncovering repair via gene conversion, single strand annealing (SSA) or nonhomologous end-joining (NHEJ). Furthermore, phylogenomic comparisons between A. thaliana and two related species were used to detect naturally occurring deletions during Arabidopsis evolution. Arabidopsis thaliana revealed significantly more and larger deletions after DSB repair than barley, and barley displayed more and larger insertions. Arabidopsis displayed a clear net loss of DNA after DSB repair, mainly via SSA and NHEJ. Barley revealed a very weak net loss of DNA, apparently due to less active break-end resection and easier copying of template sequences into breaks. Comparative phylogenomics revealed several footprints of SSA in the A. thaliana genome. Quantitative assessment of DNA gain and loss through DSB repair processes suggests deletion-biased DSB repair causing ongoing genome shrinking in A. thaliana, whereas genome size in barley remains nearly constant.
Collapse
Affiliation(s)
- Giang T H Vu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466, Gatersleben, Germany
| | - Hieu X Cao
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466, Gatersleben, Germany
| | - Bernd Reiss
- Max Planck Institute for Plant Breeding Research, 50829, Köln, Germany
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466, Gatersleben, Germany
| |
Collapse
|
42
|
Batzenschlager M, Schmit AC, Herzog E, Fuchs J, Schubert V, Houlné G, Chabouté ME. MGO3 and GIP1 act synergistically for the maintenance of centromeric cohesion. Nucleus 2017; 8:98-105. [PMID: 28033038 DOI: 10.1080/19491034.2016.1276142] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The control of genomic maintenance during S phase is crucial in eukaryotes. It involves the establishment of sister chromatid cohesion, ensuring faithful chromosome segregation, as well as proper DNA replication and repair to preserve genetic information. In animals, nuclear periphery proteins - including inner nuclear membrane proteins and nuclear pore-associated components - are key factors which regulate DNA integrity. Corresponding functional homologues are not so well known in plants which may have developed specific mechanisms due to their sessile life. We have already characterized the Gamma-tubulin Complex Protein 3-interacting proteins (GIPs) as essential regulators of centromeric cohesion at the nuclear periphery. GIPs were also shown to interact with TSA1, first described as a partner of the epigenetic regulator MGOUN3 (MGO3)/BRUSHY1 (BRU1)/TONSOKU (TSK) involved in genomic maintenance. Here, using genetic analyses, we show that the mgo3gip1 mutants display an impaired and pleiotropic development including fasciation. We also provide evidence for the contribution of both MGO3 and GIP1 to the regulation of centromeric cohesion in Arabidopsis.
Collapse
Affiliation(s)
- Morgane Batzenschlager
- a Institut de Biologie Moléculaire des Plantes, CNRS , Université de Strasbourg , Strasbourg , France
| | - Anne-Catherine Schmit
- a Institut de Biologie Moléculaire des Plantes, CNRS , Université de Strasbourg , Strasbourg , France
| | - Etienne Herzog
- a Institut de Biologie Moléculaire des Plantes, CNRS , Université de Strasbourg , Strasbourg , France
| | - Joerg Fuchs
- b Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben , Stadt Seeland , Germany
| | - Veit Schubert
- b Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben , Stadt Seeland , Germany
| | - Guy Houlné
- a Institut de Biologie Moléculaire des Plantes, CNRS , Université de Strasbourg , Strasbourg , France
| | - Marie-Edith Chabouté
- a Institut de Biologie Moléculaire des Plantes, CNRS , Université de Strasbourg , Strasbourg , France
| |
Collapse
|
43
|
Li G, Zou W, Jian L, Qian J, Deng Y, Zhao J. Non-SMC elements 1 and 3 are required for early embryo and seedling development in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1039-1054. [PMID: 28207059 PMCID: PMC5441860 DOI: 10.1093/jxb/erx016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Early embryo development from the zygote is an essential stage in the formation of the seed, while seedling development is the beginning of the formation of an individual plant. AtNSE1 and AtNSE3 are subunits of the structural maintenance of chromosomes (SMC) 5/6 complex and have been identified as non-SMC elements, but their functions in Arabidopsis growth and development remain as yet unknown. In this study, we found that loss of function of AtNSE1 and AtNSE3 led to severe defects in early embryo development. Partially complemented mutants showed that the development of mutant seedlings was inhibited, that chromosome fragments occurred during anaphase, and that the cell cycle was delayed at G2/M, which led to the occurrence of endoreduplication. Further, a large number of DNA double-strand breaks (DSBs) occurred in the nse1 and nse3 mutants, and the expression of AtNSE1 and AtNSE3 was up-regulated following treatment of the plants with DSB inducer compounds, suggesting that AtNSE1 and AtNSE3 have a role in DNA damage repair. Therefore, we conclude that AtNSE1 and AtNSE3 facilitate DSB repair and contribute to maintaining genome stability and cell division in mitotic cells. Thus, we think that AtNSE1 and AtNSE3 may be crucial factors for maintaining proper early embryonic and post-embryonic development.
Collapse
Affiliation(s)
- Gang Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wenxuan Zou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Liufang Jian
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jie Qian
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yingtian Deng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jie Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
44
|
Affiliation(s)
- Mariana Diaz
- Institute of Experimental Botany, Centre of the Haná Region for Biotechnological and Agricultural Research
- Max Planck Institute for Plant Breeding Research (MPIPZ)
| | - Ales Pecinka
- Institute of Experimental Botany, Centre of the Haná Region for Biotechnological and Agricultural Research
| |
Collapse
|
45
|
Bolaños-Villegas P, De K, Pradillo M, Liu D, Makaroff CA. In Favor of Establishment: Regulation of Chromatid Cohesion in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:846. [PMID: 28588601 PMCID: PMC5440745 DOI: 10.3389/fpls.2017.00846] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/05/2017] [Indexed: 05/07/2023]
Abstract
In eukaryotic organisms, the correct regulation of sister chromatid cohesion, whereby sister chromatids are paired and held together, is essential for accurate segregation of the sister chromatids and homologous chromosomes into daughter cells during mitosis and meiosis, respectively. Sister chromatid cohesion requires a cohesin complex comprised of structural maintenance of chromosome adenosine triphosphatases and accessory proteins that regulate the association of the complex with chromosomes or that are involved in the establishment or release of cohesion. The cohesin complex also plays important roles in the repair of DNA double-strand breaks, regulation of gene expression and chromosome condensation. In this review, we summarize progress in understanding cohesion dynamics in plants, with the aim of uncovering differences at specific stages. We also highlight dissimilarities between plants and other eukaryotes with respect to the key players involved in the achievement of cohesion, pointing out areas that require further study.
Collapse
Affiliation(s)
- Pablo Bolaños-Villegas
- Laboratory of Molecular and Cell Biology, Fabio Baudrit Agricultural Research Station, University of Costa RicaAlajuela, Costa Rica
- *Correspondence: Christopher A. Makaroff, Pablo Bolaños-Villegas,
| | - Kuntal De
- Department of Radiation Oncology, James Cancer Hospital and Comprehensive Cancer Center, The Ohio State University Wexner School of Medicine, ColumbusOH, United States
| | - Mónica Pradillo
- Departamento de Genética, Facultad de Biología, Universidad Complutense de MadridMadrid, Spain
| | - Desheng Liu
- Hughes Laboratories, Department of Chemistry and Biochemistry, Miami University, OxfordOH, United States
| | - Christopher A. Makaroff
- Hughes Laboratories, Department of Chemistry and Biochemistry, Miami University, OxfordOH, United States
- *Correspondence: Christopher A. Makaroff, Pablo Bolaños-Villegas,
| |
Collapse
|
46
|
Transcriptional changes during ovule development in two genotypes of litchi (Litchi chinensis Sonn.) with contrast in seed size. Sci Rep 2016; 6:36304. [PMID: 27824099 PMCID: PMC5099886 DOI: 10.1038/srep36304] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/13/2016] [Indexed: 11/21/2022] Open
Abstract
Litchi chinensis is a subtropical fruit crop, popular for its nutritional value and taste. Fruits with small seed size and thick aril are desirable in litchi. To gain molecular insight into gene expression that leads to the reduction in the size of seed in Litchi chinensis, transcriptomes of two genetically closely related genotypes, with contrasting seed size were compared in developing ovules. The cDNA library constructed from early developmental stages of ovules (0, 6, and 14 days after anthesis) of bold- and small-seeded litchi genotypes yielded 303,778,968 high quality paired-end reads. These were de-novo assembled into 1,19,939 transcripts with an average length of 865 bp. A total of 10,186 transcripts with contrast in expression were identified in developing ovules between the small- and large- seeded genotypes. A majority of these differences were present in ovules before anthesis, thus suggesting the role of maternal factors in seed development. A number of transcripts indicative of metabolic stress, expressed at higher level in the small seeded genotype. Several differentially expressed transcripts identified in such ovules showed homology with Arabidopsis genes associated with different stages of ovule development and embryogenesis.
Collapse
|
47
|
Steinert J, Schiml S, Puchta H. Homology-based double-strand break-induced genome engineering in plants. PLANT CELL REPORTS 2016; 35:1429-38. [PMID: 27084537 DOI: 10.1007/s00299-016-1981-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/31/2016] [Indexed: 05/19/2023]
Abstract
This review summarises the recent progress in DSB-induced gene targeting by homologous recombination in plants. We are getting closer to efficiently inserting genes or precisely exchanging single amino acids. Although the basic features of double-strand break (DSB)-induced genome engineering were established more than 20 years ago, only in recent years has the technique come into the focus of plant biologists. Today, most scientists apply the recently discovered CRISPR/Cas system for inducing site-specific DSBs in genes of interest to obtain mutations by non-homologous end joining (NHEJ), which is the prevailing and often imprecise mechanism of DSB repair in somatic plant cells. However, predefined changes like the site-specific insertion of foreign genes or an exchange of single amino acids can be achieved by DSB-induced homologous recombination (HR). Although DSB induction drastically enhances the efficiency of HR, the efficiency is still about two orders of magnitude lower than that of NHEJ. Therefore, significant effort have been put forth to improve DSB-induced HR based technologies. This review summarises the previous studies as well as discusses the most recent developments in using the CRISPR/Cas system to improve these processes for plants.
Collapse
Affiliation(s)
- Jeannette Steinert
- Botanical Institute II, Karlsruhe Institute of Technology, POB 6980, 76049, Karlsruhe, Germany
| | - Simon Schiml
- Botanical Institute II, Karlsruhe Institute of Technology, POB 6980, 76049, Karlsruhe, Germany
| | - Holger Puchta
- Botanical Institute II, Karlsruhe Institute of Technology, POB 6980, 76049, Karlsruhe, Germany.
| |
Collapse
|
48
|
Schubert V, Ruban A, Houben A. Chromatin Ring Formation at Plant Centromeres. FRONTIERS IN PLANT SCIENCE 2016; 7:28. [PMID: 26913037 PMCID: PMC4753331 DOI: 10.3389/fpls.2016.00028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/10/2016] [Indexed: 05/11/2023]
Abstract
We observed the formation of chromatin ring structures at centromeres of somatic rye and Arabidopsis chromosomes. To test whether this behavior is present also in other plant species and tissues we analyzed Arabidopsis, rye, wheat, Aegilops and barley centromeres during cell divisions and in interphase nuclei by immunostaining and FISH. Furthermore, structured illumination microscopy (super-resolution) was applied to investigate the ultrastructure of centromere chromatin beyond the classical refraction limit of light. It became obvious, that a ring formation at centromeres may appear during mitosis, meiosis and in interphase nuclei in all species analyzed. However, varying centromere structures, as ring formations or globular organized chromatin fibers, were identified in different tissues of one and the same species. In addition, we found that a chromatin ring formation may also be caused by subtelomeric repeats in barley. Thus, we conclude that the formation of chromatin rings may appear in different plant species and tissues, but that it is not specific for centromere function. Based on our findings we established a model describing the ultrastructure of plant centromeres and discuss it in comparison to previous models proposed for animals and plants.
Collapse
Affiliation(s)
- Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenStadt Seeland, Germany
- *Correspondence: Veit Schubert
| | - Alevtina Ruban
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenStadt Seeland, Germany
- Department of Genetics, Biotechnology, Plant Breeding and Seed Science, Russian State Agrarian University - Moscow Timiryazev Agricultural AcademyMoscow, Russia
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenStadt Seeland, Germany
| |
Collapse
|
49
|
Pradillo M, Knoll A, Oliver C, Varas J, Corredor E, Puchta H, Santos JL. Involvement of the Cohesin Cofactor PDS5 (SPO76) During Meiosis and DNA Repair in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2015; 6:1034. [PMID: 26648949 PMCID: PMC4664637 DOI: 10.3389/fpls.2015.01034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/06/2015] [Indexed: 05/23/2023]
Abstract
Maintenance and precise regulation of sister chromatid cohesion is essential for faithful chromosome segregation during mitosis and meiosis. Cohesin cofactors contribute to cohesin dynamics and interact with cohesin complexes during cell cycle. One of these, PDS5, also known as SPO76, is essential during mitosis and meiosis in several organisms and also plays a role in DNA repair. In yeast, the complex Wapl-Pds5 controls cohesion maintenance and colocalizes with cohesin complexes into chromosomes. In Arabidopsis, AtWAPL proteins are essential during meiosis, however, the role of AtPDS5 remains to be ascertained. Here we have isolated mutants for each of the five AtPDS5 genes (A-E) and obtained, after different crosses between them, double, triple, and even quadruple mutants (Atpds5a Atpds5b Atpds5c Atpds5e). Depletion of AtPDS5 proteins has a weak impact on meiosis, but leads to severe effects on development, fertility, somatic homologous recombination (HR) and DNA repair. Furthermore, this cohesin cofactor could be important for the function of the AtSMC5/AtSMC6 complex. Contrarily to its function in other species, our results suggest that AtPDS5 is dispensable during the meiotic division of Arabidopsis, although it plays an important role in DNA repair by HR.
Collapse
Affiliation(s)
- Mónica Pradillo
- Departamento de Genética, Facultad de Biología, Universidad ComplutenseMadrid, Spain
| | - Alexander Knoll
- Botanical Institute II, Karlsruhe Institute of TechnologyKarlsruhe, Germany
| | - Cecilia Oliver
- Departamento de Genética, Facultad de Biología, Universidad ComplutenseMadrid, Spain
| | - Javier Varas
- Departamento de Genética, Facultad de Biología, Universidad ComplutenseMadrid, Spain
| | - Eduardo Corredor
- Departamento de Genética, Facultad de Biología, Universidad ComplutenseMadrid, Spain
| | - Holger Puchta
- Botanical Institute II, Karlsruhe Institute of TechnologyKarlsruhe, Germany
| | - Juan L. Santos
- Departamento de Genética, Facultad de Biología, Universidad ComplutenseMadrid, Spain
| |
Collapse
|
50
|
Zhang H, Gu Z, Wu Q, Yang L, Liu C, Ma H, Xia Y, Ge X. Arabidopsis PARG1 is the key factor promoting cell survival among the enzymes regulating post-translational poly(ADP-ribosyl)ation. Sci Rep 2015; 5:15892. [PMID: 26516022 PMCID: PMC4626836 DOI: 10.1038/srep15892] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 10/05/2015] [Indexed: 12/28/2022] Open
Abstract
Poly(ADP-ribosyl)ation is a reversible post-translational modification of proteins, characterized by the addition of poly(ADP-ribose) (PAR) to proteins by poly(ADP-ribose) polymerase (PARP), and removal of PAR by poly(ADP-ribose) glycohydrolase (PARG). Three PARPs and two PARGs have been found in Arabidopsis, but their respective roles are not fully understood. In this study, the functions of each PARP and PARG in DNA repair were analyzed based on their mutant phenotypes under genotoxic stresses. Double or triple mutant analysis revealed that PARP1 and PARP2, but not PARP3, play a similar but not critical role in DNA repair in Arabidopsis seedlings. PARG1 and PARG2 play an essential and a minor role, respectively under the same conditions. Mutation of PARG1 results in increased DNA damage level and enhanced cell death in plants after bleomycin treatment. PARG1 expression is induced primarily in root and shoot meristems by bleomycin and induction of PARG1 is dependent on ATM and ATR kinases. PARG1 also antagonistically modulates the DNA repair process by preventing the over-induction of DNA repair genes. Our study determined the contribution of each PARP and PARG member in DNA repair and indicated that PARG1 plays a critical role in this process.
Collapse
Affiliation(s)
- Hailei Zhang
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Department of Biochemistry and Molecular Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Zongying Gu
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Department of Biochemistry and Molecular Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qiao Wu
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Department of Biochemistry and Molecular Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Lifeng Yang
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Department of Biochemistry and Molecular Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Caifeng Liu
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Department of Biochemistry and Molecular Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Department of Biochemistry and Molecular Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yiji Xia
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, China
| | - Xiaochun Ge
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Department of Biochemistry and Molecular Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|