1
|
Zheng J, Wang X, Huang R, Xian P, Cui J, Amo A, Chen L, Han Y, Hou S, Yang Y. Integration of comparative cytology, ionome, transcriptome and metabolome provide a basic framework for the response of foxtail millet to Cd stress. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137684. [PMID: 40007366 DOI: 10.1016/j.jhazmat.2025.137684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/28/2024] [Accepted: 02/19/2025] [Indexed: 02/27/2025]
Abstract
Apart from directly affecting the growth and development of crops, Cd in the soil can easily enter the human body through the food chain and pose a threat to human health. Therefore, understanding the toxicity of Cd to specific crops and the molecular mechanisms of their response to Cd is essential. In this study, hydroponic experiments were utilized to study the response of foxtail millet to Cd stress through phenotypic investigation, enzyme activity determination, ultrastructure, ionome, transcriptome and metabolome. With the increase in cadmium concentration, both the growth and photosynthetic capacity of foxtail millet seedlings are severely inhibited. The ultrastructure of cells is damaged, cells are deformed, chloroplasts swell and disappear, and cell walls thicken. Cd stress affects the absorption, transport, and redistribution of beneficial metal ions in the seedlings. Multi-omics analysis reveals the crucial roles of glycolysis, glutathione metabolism and phenylpropanoid and lignin biosynthesis pathways in Cd detoxification via energy metabolism, the antioxidant system and cell wall changes. Finally, a schematic diagram of foxtail millet in response to Cd stress was we preliminarily drew. This work provides a basic framework for further revealing the molecular mechanism of Cd tolerance in foxtail millet.
Collapse
Affiliation(s)
- Jie Zheng
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi 030031, China.
| | - Xinyue Wang
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi 030031, China.
| | - Rong Huang
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi 030031, China.
| | - Peiyu Xian
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi 030031, China.
| | - Jian Cui
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi 030031, China.
| | - Aduragbemi Amo
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, USA.
| | - Liang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China.
| | - Yuanhuai Han
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi 030031, China.
| | - Siyu Hou
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi 030031, China.
| | - Yang Yang
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi 030031, China.
| |
Collapse
|
2
|
Ernst E, Abramson B, Acosta K, Hoang PTN, Mateo-Elizalde C, Schubert V, Pasaribu B, Albert PS, Hartwick N, Colt K, Aylward A, Ramu U, Birchler JA, Schubert I, Lam E, Michael TP, Martienssen RA. Duckweed genomes and epigenomes underlie triploid hybridization and clonal reproduction. Curr Biol 2025; 35:1828-1847.e9. [PMID: 40174586 PMCID: PMC12015598 DOI: 10.1016/j.cub.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/03/2025] [Accepted: 03/11/2025] [Indexed: 04/04/2025]
Abstract
The Lemnaceae (duckweeds) are the world's smallest but fastest-growing flowering plants. Prolific clonal propagation facilitates continuous micro-cropping for plant-based protein and starch production and holds tremendous promise for sequestration of atmospheric CO2. Here, we present chromosomal assemblies, annotations, and phylogenomic analysis of Lemna genomes that uncover candidate genes responsible for the unique metabolic and developmental traits of the family, such as anatomical reduction, adaxial stomata, lack of stomatal closure, and carbon sequestration via crystalline calcium oxalate. Lemnaceae have selectively lost genes required for RNA interference, including Argonaute genes required for reproductive isolation (the triploid block) and haploid gamete formation. Triploid hybrids arise commonly among Lemna, and we have found mutations in highly conserved meiotic crossover genes that could support polyploid meiosis. Further, mapping centromeres by chromatin immunoprecipitation suggests their epigenetic origin despite divergence of underlying tandem repeats and centromeric retrotransposons. Syntenic comparisons with Wolffia and Spirodela reveal that diversification of these genera coincided with the "Azolla event" in the mid-Eocene, during which aquatic macrophytes reduced high atmospheric CO2 levels to those of the current ice age. Facile regeneration of transgenic fronds from tissue culture, aided by reduced epigenetic silencing, makes Lemna a powerful biotechnological platform, as exemplified by recent engineering of high-oil Lemna that outperforms oil-seed crops.
Collapse
Affiliation(s)
- Evan Ernst
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA
| | - Bradley Abramson
- Plant Molecular and Cellular Biology Laboratory, the Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Kenneth Acosta
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA
| | - Phuong T N Hoang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Corrensstraße 3, D-06466 Stadt Seeland, Germany; Biology Faculty, Dalat University, 1 Phu Dong Thien Vuong, Dalat City 670000, Vietnam
| | - Cristian Mateo-Elizalde
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Corrensstraße 3, D-06466 Stadt Seeland, Germany
| | - Buntora Pasaribu
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA; Department of Marine Sciences, Faculty of Fisheries and Marine Sciences, Universitas Padjadjaran, Bandung Sumedang Highway KM 21, Jatinangor 40600, Indonesia
| | - Patrice S Albert
- Biological Sciences, University of Missouri, Columbia, 105 Tucker Hall, Columbia, MO 65211, USA
| | - Nolan Hartwick
- Plant Molecular and Cellular Biology Laboratory, the Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Kelly Colt
- Plant Molecular and Cellular Biology Laboratory, the Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Anthony Aylward
- Plant Molecular and Cellular Biology Laboratory, the Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Umamaheswari Ramu
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA
| | - James A Birchler
- Biological Sciences, University of Missouri, Columbia, 105 Tucker Hall, Columbia, MO 65211, USA
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Corrensstraße 3, D-06466 Stadt Seeland, Germany
| | - Eric Lam
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA.
| | - Todd P Michael
- Plant Molecular and Cellular Biology Laboratory, the Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA.
| | - Robert A Martienssen
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
3
|
Wang Y, Tong L, Liu H, Li B, Zhang R. Integrated metabolome and transcriptome analysis of maize roots response to different degrees of drought stress. BMC PLANT BIOLOGY 2025; 25:505. [PMID: 40259225 PMCID: PMC12013163 DOI: 10.1186/s12870-025-06505-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 04/02/2025] [Indexed: 04/23/2025]
Abstract
BACKGROUND Plants in arid environments can regulate the generation of specialized metabolites to enhance their adaptability. Roots serve as the first defense line, responding directly to drought situations; however, the knowledge regarding the molecular mechanisms of metabolite changes to drought in maize roots remain largely limited. Here, we employed RNA-seq and UPLC-MS/MS methods to examine changes in the root metabolome and transcriptome of maize seedlings subjected to moderate drought (MD) and severe drought (SD) conditions by controlling water supply. RESULTS Compared to the untreated control group, 460 differentially accumulated metabolites were detected in roots under MD and SD conditions. Among these metabolites, lignin compounds emerged as the primary response to drought. Most lignin metabolites, including caffealdehyde, sinapyl alcohol, coniferaldehyde, p-coumaryl alcohol, and p-coumaric acid, showed a significant increase under MD but decreased under SD. Transcriptional profiling identified 903 and 5306 differential genes in roots treated with MD and SD, respectively. The majority of these genes were associated with lignin biosynthesis, hormone synthesis and signal transduction, and defense response processes. These metabolites and genes play crucial roles in lignin biosynthesis, antioxidant capacity, hormone balance, and root growth, particularly under MD conditions, which aligns with the results from morpho-physiological studies. Further, a conjoint omics analysis highlighted the significant regulatory roles of hormone-associated genes in lignin formation. CONCLUSION Our results suggest that the co-regulation of the lignin biosynthesis pathway and hormone signals significantly enhances root performance, helping maize maintain growth under MD conditions. This study leads to a better understanding of the regulatory mechanisms involved in maize root adaptation to drought environments.
Collapse
Affiliation(s)
- Yifan Wang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Xinjiang Key Laboratory of Cotton Genetic Improvement and Intelligent Production, Xinjiang Uyghur Autonomous Region Academy of Agricultural Sciences, Wulumuqi, 830091, Xinjiang, China
| | - Luoluo Tong
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Huiling Liu
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Binyan Li
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Renhe Zhang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
4
|
Yu J, Zhang R, Ma X, Jia Z, Li X, Li Y, Liu H. Physiological mechanism of lodging resistance of oat stalk and analysis of transcriptome differences. FRONTIERS IN PLANT SCIENCE 2025; 16:1532216. [PMID: 40241823 PMCID: PMC12000040 DOI: 10.3389/fpls.2025.1532216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/14/2025] [Indexed: 04/18/2025]
Abstract
Introduction Lodging has become an important factor limiting oats production. Methods To understand the relationship between oat lodging and stem growth, we selected three oat cultivars with different lodging resistance traits and conducted a detailed analysis of their stem physicochemical properties, and transcriptome sequencing on them at different growth stages were performed. Results Important plant characteristics like: length of the second stem internode, stem wall thickness, breaking force, mechanical strength, soluble sugar, starch, lignin, and silicon content were closely related to oat lodging performance. With the growth of the second stem internode at the base of oats, the number of coexpressed differentially expressed genes (DEGs) increased. And DEGs were specifically enriched in starch and sucrose metabolism, phenylpropanoidbiosynthesis, MAPK signaling pathway-plant and carbon metabolism. There were many TF family types among the different comparison groups, and p450, Myb_DNA-binding, WRKY, and AP2 families accounted for the most. Additionally, there was a specific high expression of genes related to the synthesis of cellulose(CesA9, CesA7, and CesA4) and lignin (CCR1, 4CL8, and 4CL3) in lodgingresistant cultivar and middle lodging-resistant cultivar. WGCNA analysis identified genes closely related to lodging resistance, namely MBF1c, SKP1, and CAND1, which were specifically up-regulated on the 35th day of growth in the second stem internode of the highly resistant 'LENA'. These genes can all serve as positive regulatory factors for oat lodging. Discussion Ultimately, our work analyzed the transcriptional network regulatory relationships, laying the foundation for elucidating the physiological and genetic mechanisms of oat lodging resistance, and providing excellent genetic resources for oat and other crop breeding.
Collapse
Affiliation(s)
- Jiangdi Yu
- Institute of Ecological Protection and Restoration, Chinese Academy of Forestry, Beijing, China
| | - Ran Zhang
- Institute of Ecological Protection and Restoration, Chinese Academy of Forestry, Beijing, China
| | - Xiang Ma
- Academy of Animal Sciences and Veterinary, Qinghai University, Xining, China
| | - Zhifeng Jia
- Academy of Animal Sciences and Veterinary, Qinghai University, Xining, China
| | - Xiaoxia Li
- Institute of Ecological Protection and Restoration, Chinese Academy of Forestry, Beijing, China
| | - Yuzhu Li
- Key Laboratory of Grassland Ecosystem, College of Pratacultural Science, Gansu Agricultural University, Lanzhou, China
| | - Huan Liu
- Key Laboratory of Grassland Ecosystem, College of Pratacultural Science, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
5
|
Li T, Chen H, Ma N, Jiang D, Wu J, Zhang X, Li H, Su J, Chen P, Liu Q, Guan Y, Zhu X, Lin J, Zhang J, Wang Q, Guo H, Zhu F. Specificity landscapes of 40 R2R3-MYBs reveal how paralogs target different cis-elements by homodimeric binding. IMETA 2025; 4:e70009. [PMID: 40236784 PMCID: PMC11995187 DOI: 10.1002/imt2.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/11/2025] [Accepted: 02/17/2025] [Indexed: 04/17/2025]
Abstract
Paralogous transcription factors (TFs) frequently recognize highly similar DNA motifs. Homodimerization can help distinguish them according to their different dimeric configurations. Here, by studying R2R3-MYB TFs, we show that homodimerization can also directly change the recognized DNA motifs to distinguish between similar TFs. By high-throughput SELEX, we profiled the specificity landscape for 40 R2R3-MYBs of subfamily VIII and curated 833 motif models. The dimeric models show that homodimeric binding has evoked specificity changes for AtMYBs. Focusing on AtMYB2 as an example, we show that homodimerization has modified its specificity and allowed it to recognize additional cis-regulatory sequences that are different from the closely related CCWAA-box AtMYBs and are unique among all AtMYBs. Genomic sites described by the modified dimeric specificities of AtMYB2 are conserved in evolution and involved in AtMYB2-specific transcriptional activation. Collectively, this study provides rich data on sequence preferences of VIII R2R3-MYBs and suggests an alternative mechanism that guides closely related TFs to respective cis-regulatory sites.
Collapse
Affiliation(s)
- Tian Li
- Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, College of JUNCAO Science and Ecology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Hao Chen
- Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, College of JUNCAO Science and Ecology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Nana Ma
- Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, College of JUNCAO Science and Ecology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
- College of Life ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Dingkun Jiang
- Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, College of JUNCAO Science and Ecology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
- College of Life ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jiacheng Wu
- Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, College of JUNCAO Science and Ecology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xinfeng Zhang
- Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, College of JUNCAO Science and Ecology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Hao Li
- Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, College of JUNCAO Science and Ecology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
- College of Life ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jiaqing Su
- College of Resources and EnvironmentFujian Agriculture and Forestry UniversityFuzhouChina
| | - Piaojuan Chen
- Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, College of JUNCAO Science and Ecology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Qing Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
| | - Yuefeng Guan
- College of Resources and EnvironmentFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xiaoyue Zhu
- Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, College of JUNCAO Science and Ecology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Juncheng Lin
- Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, College of JUNCAO Science and Ecology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jilin Zhang
- Department of Biomedical SciencesCity University of Hong KongHong KongChina
- Tung Biomedical Sciences CentreCity University of Hong KongHong KongChina
- Department of Precision Diagnostic and Therapeutic TechnologyThe City University of Hong Kong Shenzhen Futian Research InstituteShenzhenChina
| | - Qin Wang
- Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, College of JUNCAO Science and Ecology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Honghong Guo
- Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, College of JUNCAO Science and Ecology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
- College of Life ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Fangjie Zhu
- Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, College of JUNCAO Science and Ecology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
6
|
Jang JH, Bayaraa U, Lee JH, Lee OR. Overexpression of the patatin-related phospholipase A gene, PgpPLAIIIβ, in ginseng adventitious roots reduces lignin and ginsenoside content while increasing fatty acid content. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109602. [PMID: 39922022 DOI: 10.1016/j.plaphy.2025.109602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/10/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
The patatin-related phospholipase AIII (pPLAIII) gene family plays a crucial role in regulating cell elongation, cell wall composition, and lipid metabolism in plants, making it a promising target for agricultural and commercial innovations. This study provides a comprehensive functional analysis of PgpPLAIIIβ in Panax ginseng, a medicinal plant of substantial economic importance. Overexpression of PgpPLAIIIβ led to significant morphological changes, including shorter, thicker roots, and an 8% reduction in lignin content, while cellulose levels remained unaffected. The reduced lignification was attributed to the downregulation of key lignin biosynthetic genes and decreased hydrogen peroxide accumulation. A yeast two-hybrid assay identified a CCCH-type zinc finger protein as a potential PgpPLAIIIβ interactor, pointing to a mechanism that may underlie the changes in root structure and lignin deposition. Metabolite analysis revealed a 7.6% increase in total free fatty acid content, with notable increases in palmitic and linoleic acids, alongside a 28% reduction in ginsenoside levels, linked to the downregulation of triterpenoid biosynthetic genes. These findings demonstrate that PgpPLAIIIβ is a key regulator of root architecture, lignin composition, and secondary metabolite balance in ginseng. The metabolic engineering of PgpPLAIIIβ could be a powerful strategy to improve root traits, optimize lignin deposition, and enhance metabolite profiles, ultimately boosting the commercial and medicinal value of ginseng.
Collapse
Affiliation(s)
- Jin Hoon Jang
- Department of Applied Plant Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Unenzaya Bayaraa
- Department of Applied Plant Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jae Hyun Lee
- Department of Applied Plant Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Ok Ran Lee
- Department of Applied Plant Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea; Institute of Synthetic Biology for Carbon Neutralization, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
7
|
Wen X, Lee CW, Kim S, Hwang JU, Choi YH, Han SK, Lee E, Yoon TH, Cha DG, Lee S, Son H, Son J, Jung SH, Lee J, Lim H, Chen H, Kim JK, Kwak JM. MYB74 transcription factor guides de novo specification of epidermal cells in the abscission zone of Arabidopsis. NATURE PLANTS 2025; 11:849-860. [PMID: 40181105 DOI: 10.1038/s41477-025-01976-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 03/04/2025] [Indexed: 04/05/2025]
Abstract
The waxy cuticle layer is crucial for plant defence, growth and survival, and is produced by epidermal cells, which were thought to be specified only during embryogenesis. New surface cells are exposed during abscission, by which leaves, fruits, flowers and seeds are shed. Recent work has shown that nonepidermal residuum cells (RECs) can accumulate a protective cuticle layer after abscission, implying the potential de novo specification of epidermal cells by transdifferentiation. However, it remains unknown how this process occurs and what advantage this mechanism may offer over the other surface protection alternative, the wound healing pathways. Here we followed this transdifferentiation process with single-cell RNA sequencing analysis of RECs, showing that nonepidermal RECs transdifferentiate into epidermal cells through three distinct stages. During this vulnerable process, which involves a transient period when the protective layer is not yet formed, stress genes that protect the plant from environmental exposure are expressed before epidermis formation, ultimately facilitating cuticle development. We identify a central role for the transcription factor MYB74 in directing the transdifferentiation. In contrast to alternative protective mechanisms, our results suggest that de novo epidermal specification supports the subsequent growth of fruit at the abscission site. Altogether, we reveal a developmental programme by which plants use a transdifferentiation pathway to protect the plant while promoting growth.
Collapse
Affiliation(s)
- Xiaohong Wen
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Chan Woong Lee
- Department of Life Science, POSTECH, Pohang, Republic of Korea
| | - Seonghwan Kim
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Jae-Ung Hwang
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Yoon Ha Choi
- Department of Life Science, POSTECH, Pohang, Republic of Korea
| | - Soon-Ki Han
- Department of Biological Science, Ajou University, Suwon, Republic of Korea
| | - Eunmin Lee
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Taek-Han Yoon
- Department of New Biology, DGIST, Daegu, Republic of Korea
- Aptamer Sciences Inc., Seongnam, Republic of Korea
| | - Dong Gon Cha
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Seulbee Lee
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Heejeong Son
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Jiwon Son
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Su Hyun Jung
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Jiyoun Lee
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Heejin Lim
- Department of New Biology, DGIST, Daegu, Republic of Korea
- Center for Scientific Instrumentation, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Huize Chen
- Department of New Biology, DGIST, Daegu, Republic of Korea
- Shanxi Key Laboratory of Plant Macromolecules Stress Response, Taiyuan, People's Republic of China
- School of Life Sciences, Shanxi Normal University, Taiyuan, People's Republic of China
| | - Jong Kyoung Kim
- Department of Life Science, POSTECH, Pohang, Republic of Korea.
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, Republic of Korea.
| | - June M Kwak
- Department of New Biology, DGIST, Daegu, Republic of Korea.
- New Biology Research Center, DGIST, Daegu, Republic of Korea.
- Center for Cell Fate Reprogramming and Control, DGIST, Daegu, Republic of Korea.
| |
Collapse
|
8
|
Ibragić S, Dahija S, Karalija E. The Good, the Bad, and the Epigenetic: Stress-Induced Metabolite Regulation and Transgenerational Effects. EPIGENOMES 2025; 9:10. [PMID: 40265377 PMCID: PMC12015926 DOI: 10.3390/epigenomes9020010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/23/2025] [Accepted: 03/28/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Plants face a wide range of environmental stresses that disrupt growth and productivity. To survive and adapt, they undergo complex metabolic reprogramming by redirecting carbon and nitrogen fluxes toward the biosynthesis of protective secondary metabolites such as phenylpropanoids, flavonoids, and lignin. Recent research has revealed that these stress-induced metabolic processes are tightly regulated by epigenetic mechanisms, including DNA methylation, histone modifications, chromatin remodeling, and non-coding RNAs. METHODS This review synthesizes current findings from studies on both model and crop plants, examining the roles of key epigenetic regulators in controlling secondary metabolism under stress. Special focus is placed on dynamic changes in DNA methylation, histone acetylation, and the action of small RNAs such as siRNAs and miRNAs in transcriptional and post-transcriptional regulation. RESULTS Evidence indicates that stress triggers rapid and reversible epigenetic modifications that modulate gene expression linked to secondary metabolic pathways. These modifications not only facilitate immediate metabolic responses but can also contribute to stress memory. In some cases, this memory is retained and transmitted to the next generation, influencing progeny stress responses. However, critical knowledge gaps remain, particularly concerning the temporal dynamics, tissue specificity, and long-term stability of these epigenetic marks in crops. CONCLUSIONS Understanding how epigenetic regulation governs secondary metabolite production offers promising avenues to enhance crop resilience and productivity in the context of climate change. Future research should prioritize dissecting the stability and heritability of these modifications to support the development of epigenetically informed breeding strategies.
Collapse
Affiliation(s)
- Saida Ibragić
- Department of Chemistry, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Sabina Dahija
- Laboratory for Plant Physiology, Department of Biology, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Erna Karalija
- Laboratory for Plant Physiology, Department of Biology, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina;
| |
Collapse
|
9
|
Zhang C, Shen M, Xu Y, Sun Y, Sun L, Fan Y, Li H, Lu H. SCPL48 regulates the vessel cell programmed cell death during xylem development in Arabidopsis thaliana. Int J Biol Macromol 2025; 295:139495. [PMID: 39788248 DOI: 10.1016/j.ijbiomac.2025.139495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/27/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Secondary cell wall (SCW) deposition is tightly coordinated with programmed cell death (PCD) during xylem development and plays a crucial role in plant stress responses. In this study, we characterized a serine carboxypeptidase-like gene, SCPL48, which exhibits xylem cell-specific expression patterns in stem xylem during vascular development. The scpl48 plants exhibited reduced stem xylem cell numbers, particularly vessel cells, accompanied by delayed organelle degradation during PCD and increased secondary wall thickness in xylem vessel cells. In contrast, SCPL48 overexpression resulted in increased vessel cell abundance and accelerated degradation of vessel cell contents, suggesting its critical role in xylem vessel cell differentiation. Notably, SCPL48 expression was significantly up-regulated in response to ABA treatment and drought stress, with SCPL48 overexpression lines demonstrating enhanced drought resistance. Further molecular analyses revealed that SCPL48 was directly targeted and transcriptionally activated by key SCW regulators VND6, and MYB46. Furthermore, the expression of PCD-related protease genes, including XCP1, XSP1, RNS3, MC9, γVPE, and CEP1, showed compensatory changes in both scpl48 mutants and SCPL48 overexpression lines. Collectively, our findings demonstrate that SCPL48 functions as a key regulator in xylem vessel cell differentiation, PCD and drought stress responses.
Collapse
Affiliation(s)
- Chong Zhang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Mengxiao Shen
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yaoming Xu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yu Sun
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Leiqian Sun
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yawei Fan
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Hui Li
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Hai Lu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
10
|
Xu Y, Ni L, Yu C, Hua J, Yin Y, Gu C, Wang Z. Genome-wide study of the R2R3-MYB gene family and analysis of HhMYB111r-induced salt tolerance in Hibiscus hamabo Sieb. et Zucc. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112378. [PMID: 39733861 DOI: 10.1016/j.plantsci.2024.112378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/24/2024] [Accepted: 12/25/2024] [Indexed: 12/31/2024]
Abstract
Hibiscus hamabo Sieb. et Zucc. (H. hamabo) is a semi-mangrove plant with excellent stress tolerance that plays a crucial role in the ecological restoration of saline and alkaline areas. It is an ideal candidate species for studying the mechanisms involved in stress tolerance. Although the MYB gene family has preliminarily been characterized in H. hamabo, the specific functions and action mechanisms of the R2R3-MYB genes in this species have not fully been elucidated. In this study, 190 R2R3-MYB genes were identified at the genomic level using bioinformatics methods. The genes were divided into 26 subgroups based on their evolutionary relationships and found to be distributed randomly on 46 chromosomes. RNA sequencing data and subsequent real-time quantitative PCR analysis of 12 differentially expressed R2R3-HhMYB genes showed HhMYB111r to be highly expressed under various abiotic stress conditions. Self-activation and subcellular localization results showed that the intact HhMYB111r had strong self-activation activity and located in both the nucleus and cytoplasm. Overexpression in Arabidopsis significantly improved salt tolerance, and silencing HhMYB111r reduced the tolerance of H. hamabo to salt stress, indicating that HhMYB111r positively regulates the salt stress response. In this first analysis of the R2R3-MYB gene family in H. hamabo, we identified a key salt stress response gene, HhMYB111r, enriching the understanding of MYB function and laying a foundation for exploring the abiotic stress response of plants.
Collapse
Affiliation(s)
- Yu Xu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Longjie Ni
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Chaoguang Yu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Jianfeng Hua
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Yunlong Yin
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Chunsun Gu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China.
| | - Zhiquan Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China.
| |
Collapse
|
11
|
Jahan T, Huda MN, Zhang K, He Y, Lai D, Dhami N, Quinet M, Ali MA, Kreft I, Woo SH, Georgiev MI, Fernie AR, Zhou M. Plant secondary metabolites against biotic stresses for sustainable crop protection. Biotechnol Adv 2025; 79:108520. [PMID: 39855404 DOI: 10.1016/j.biotechadv.2025.108520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/06/2024] [Accepted: 01/11/2025] [Indexed: 01/27/2025]
Abstract
Sustainable agriculture practices are indispensable for achieving a hunger-free world, especially as the global population continues to expand. Biotic stresses, such as pathogens, insects, and pests, severely threaten global food security and crop productivity. Traditional chemical pesticides, while effective, can lead to environmental degradation and increase pest resistance over time. Plant-derived natural products such as secondary metabolites like alkaloids, terpenoids, phenolics, and phytoalexins offer promising alternatives due to their ability to enhance plant immunity and inhibit pest activity. Recent advances in molecular biology and biotechnology have improved our understanding of how these natural compounds function at the cellular level, activating specific plant defense through complex biochemical pathways regulated by various transcription factors (TFs) such as MYB, WRKY, bHLH, bZIP, NAC, and AP2/ERF. Advancements in multi-omics approaches, including genomics, transcriptomics, proteomics, and metabolomics, have significantly improved the understanding of the regulatory networks that govern PSM synthesis. These integrative approaches have led to the discovery of novel insights into plant responses to biotic stresses, identifying key regulatory genes and pathways involved in plant defense. Advanced technologies like CRISPR/Cas9-mediated gene editing allow precise manipulation of PSM pathways, further enhancing plant resistance. Understanding the complex interaction between PSMs, TFs, and biotic stress responses not only advances our knowledge of plant biology but also provides feasible strategies for developing crops with improved resistance to pests and diseases, contributing to sustainable agriculture and food security. This review emphasizes the crucial role of PSMs, their biosynthetic pathways, the regulatory influence of TFs, and their potential applications in enhancing plant defense and sustainability. It also highlights the astounding potential of multi-omics approaches to discover gene functions and the metabolic engineering of genes associated with secondary metabolite biosynthesis. Taken together, this review provides new insights into research opportunities for enhancing biotic stress tolerance in crops through utilizing plant secondary metabolites.
Collapse
Affiliation(s)
- Tanzim Jahan
- State Key Laboratory for Crop Gene Resources and Breeding/Key Laboratory for Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Md Nurul Huda
- State Key Laboratory for Crop Gene Resources and Breeding/Key Laboratory for Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kaixuan Zhang
- State Key Laboratory for Crop Gene Resources and Breeding/Key Laboratory for Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuqi He
- State Key Laboratory for Crop Gene Resources and Breeding/Key Laboratory for Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dili Lai
- State Key Laboratory for Crop Gene Resources and Breeding/Key Laboratory for Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Namraj Dhami
- School of Health and Allied Sciences, Faculty of Health Sciences, Pokhara University, Dhungepatan, Pokhara-30, Kaski, Nepal
| | - Muriel Quinet
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute-Agronomy (ELI-A), Université catholique de Louvain, Croix du Sud 45, boîte L7.07.13, B-1348 Louvain-la-Neuve, Belgium
| | - Md Arfan Ali
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Ivan Kreft
- Nutrition Institute, Koprska Ulica 98, SI-1000 Ljubljana, Slovenia
| | - Sun-Hee Woo
- Department of Crop Science, Chungbuk National University, Cheong-ju, Republic of Korea
| | - Milen I Georgiev
- Laboratory of Metabolomics, Department of Biotechnology, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd, 4000 Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Center of Plant Systems Biology and Biotechnology, 139 Ruski Blvd, 4000 Plovdiv, Bulgaria; Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Potsdam 14476, Germany
| | - Meiliang Zhou
- State Key Laboratory for Crop Gene Resources and Breeding/Key Laboratory for Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
12
|
Xiong H, He H, Chang Y, Miao B, Liu Z, Wang Q, Dong F, Xiong L. Multiple roles of NAC transcription factors in plant development and stress responses. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:510-538. [PMID: 39950532 DOI: 10.1111/jipb.13854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 03/29/2025]
Abstract
NAC (NAM, ATAF1/2, and CUC2) transcription factors (TFs) are a family of plant-specific TFs that play crucial roles in various aspects of plant development and stress responses. Here, we provide an in-depth review of the structural characteristics, regulatory mechanisms, and functional roles of NACs in different plant species. One of the key features of NACs is their ability to regulate gene expression through a variety of mechanisms, including binding to DNA sequences in the promoter regions of target genes, interacting with other TFs, and modulating chromatin structure. We discuss these mechanisms in detail, providing insights into the complex regulatory networks that govern the activity of NACs. We explore the diverse functions of these TFs in plant growth and development processes, including embryogenesis, seed development, root and shoot development, floral development and fruit ripening, secondary cell wall formation, and senescence. We also discuss the diverse regulatory roles of NACs in response to various stresses, including drought, flooding, heat, cold, salinity, nutrient deficit, and diseases. Lastly, we emphasize the crosstalk role of NACs between developmental processes and stress responses. This integrated perspective highlights how NACs orchestrate plant growth and resilience. Overall, this review provides a comprehensive overview of the pivotal roles of NACs in plant development and stress responses, emphasizing their potential for engineering stress-resistant crops and enhancing agricultural productivity.
Collapse
Affiliation(s)
- Haiyan Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haidong He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu Chang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Binbin Miao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiwei Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qianqian Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Faming Dong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
13
|
Zhu Z, Zhou Y, Liu X, Meng F, Xu C, Chen M. Integrated transcriptomic and metabolomic analyses uncover the key pathways of Limonium bicolor in response to salt stress. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:715-730. [PMID: 39636615 PMCID: PMC11869187 DOI: 10.1111/pbi.14534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
Salinity significantly inhibits plant growth and development. While the recretohalophyte Limonium bicolor can reduce its ion content by secreting salt, the metabolic pathways it employs to adapt to high salt stress remain unclear. This study aims to unravel this enigma through integrated transcriptomic and metabolomic analyses of L. bicolor under salt stress conditions. The results showed that compared to the control (S0), low salt treatment (S1) led to a significant increase in plant growth, photosynthesis efficiency and antioxidant enzyme activity but caused no significant changes in organic soluble substance and ROS contents. However, high salt treatments (S3 and S4) led to a significant decrease in plant growth, photosynthesis efficiency and antioxidant enzyme activity, accompanied by a significant increase in organic soluble substance and ROS contents. A significant increase in phenolic compounds, such as caffeoyl shikimic acid and coniferin, upon the treatments of S1, S3 and S4, and a decrease and increase in flavonoids upon the treatments of S1 and S3 were also observed, respectively. This study also demonstrated that the expression patterns of key genes responsible for the biosynthesis of these metabolites are consistent with the observed trends in their accumulation levels. These results suggest that under low salt stress conditions, the halophyte L. bicolor experiences minimal osmotic and oxidative stress. However, under high salt stress conditions, it suffers severe osmotic and oxidative stress, and the increase in organic soluble substances and flavonoids serves as a key response to these stresses and also represents a good strategy for the alleviation of them.
Collapse
Affiliation(s)
- Zhihui Zhu
- Shandong Provincial Key Laboratory of Plant StressCollege of Life Sciences, Shandong Normal UniversityJi'nanChina
- National Center of Technology Innovation for Comprehensive Utilization of Saline‐Alkali LandAgricultural High‐Tech Industrial Demonstration Area of the Yellow River Delta of Shandong ProvinceDongyingChina
- Dongying Institute, Shandong Normal UniversityDongyingChina
| | - Yuqing Zhou
- Shandong Provincial Key Laboratory of Plant StressCollege of Life Sciences, Shandong Normal UniversityJi'nanChina
- National Center of Technology Innovation for Comprehensive Utilization of Saline‐Alkali LandAgricultural High‐Tech Industrial Demonstration Area of the Yellow River Delta of Shandong ProvinceDongyingChina
| | - Xiuyue Liu
- Shandong Provincial Key Laboratory of Plant StressCollege of Life Sciences, Shandong Normal UniversityJi'nanChina
- National Center of Technology Innovation for Comprehensive Utilization of Saline‐Alkali LandAgricultural High‐Tech Industrial Demonstration Area of the Yellow River Delta of Shandong ProvinceDongyingChina
| | - Fanxia Meng
- Shandong Provincial Key Laboratory of Plant StressCollege of Life Sciences, Shandong Normal UniversityJi'nanChina
- National Center of Technology Innovation for Comprehensive Utilization of Saline‐Alkali LandAgricultural High‐Tech Industrial Demonstration Area of the Yellow River Delta of Shandong ProvinceDongyingChina
| | - Chenhan Xu
- Shandong Provincial Key Laboratory of Plant StressCollege of Life Sciences, Shandong Normal UniversityJi'nanChina
- National Center of Technology Innovation for Comprehensive Utilization of Saline‐Alkali LandAgricultural High‐Tech Industrial Demonstration Area of the Yellow River Delta of Shandong ProvinceDongyingChina
| | - Min Chen
- Shandong Provincial Key Laboratory of Plant StressCollege of Life Sciences, Shandong Normal UniversityJi'nanChina
- National Center of Technology Innovation for Comprehensive Utilization of Saline‐Alkali LandAgricultural High‐Tech Industrial Demonstration Area of the Yellow River Delta of Shandong ProvinceDongyingChina
- Dongying Institute, Shandong Normal UniversityDongyingChina
| |
Collapse
|
14
|
Miao C, Hu Z, Liu X, Ye H, Jiang H, Tan J, Chen J. Transcriptome analysis of nitrate enhanced tobacco resistance to aphid infestation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109514. [PMID: 39874668 DOI: 10.1016/j.plaphy.2025.109514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/26/2024] [Accepted: 01/13/2025] [Indexed: 01/30/2025]
Abstract
Tobacco is an economic crop that primarily relies on nitrate (NO3-) as its nitrogen source, and tobacco aphid is one of the significant pests that harm its growth. However, the impact of NO3- supply on the resistance of tobacco to aphids remains unclear. Present study investigated the effects of different NO3- concentrations supply on the reproductive capacity of tobacco aphids, impact of aphid infestation on tobacco growth, secondary metabolic and transcription changes. Physiological experiments were performed to verity the transcription analysis. The results indicated that aphids preferred tobacco treated with higher concentration of nitrate, showing greater reproductive capacity under high nitrate supply. From the results of transcriptome analysis, it can be seen that the gene expression of the shoot changed significantly after aphid and NO3- treatment. GO analysis showed that the pathways associated with cell wall biosynthesis were enriched in different groups. At the same time, RNA-seq analysis revealed several genes related to the pathway of aphid damage in tobacco, as well as some transcription factors associated with insect resistance. Inoculating tobacco with aphids under different NO3- concentration increased the levels of soluble sugars, free amino acids, jasmonic acid, and salicylic acid in shoot of tobacco. Additionally, it was observed that the cell wall development of leaves from low NO3- supply was incomplete, and the cell wall from high NO3- supply concentration is notably thicker. The lignin content was lower under lower NO3- supply, regardless of aphid inoculation. The trends of transcription levels in genes related to cell wall and lignin biosynthesis were consistent with the lignin contents. Collectively, our findings not only shed light on the physiological and biochemical responses of tobacco plants to NO3- treatment, but also offer novel perspectives for optimizing tobacco cultivation practices and enhancing insect resistance.
Collapse
Affiliation(s)
- Changjian Miao
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
| | - Zhi Hu
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
| | - Xintong Liu
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
| | - Huijing Ye
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
| | - Hongzhen Jiang
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
| | - Jinfang Tan
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
| | - Jingguang Chen
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
15
|
Zhang D, Zhou H, Zhang Y, Zhao Y, Zhang Y, Feng X, Lin H. Diverse roles of MYB transcription factors in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:539-562. [PMID: 40013511 DOI: 10.1111/jipb.13869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 01/25/2025] [Indexed: 02/28/2025]
Abstract
MYB transcription factors (TFs), one of the largest TF families in plants, are involved in various plant-specific processes as the central regulators, such as in phenylpropanoid metabolism, cell cycle, formation of root hair and trichome, phytohormones responses, reproductive growth and abiotic or biotic stress responses. Here we summarized multiple roles and explained the molecular mechanisms of MYB TFs in plant development and stress adaptation. The exploration of MYB TFs contributes to a better comprehension of molecular regulation in plant development and environmental adaptability.
Collapse
Affiliation(s)
- Dawei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Huapeng Zhou
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Yang Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Yuqing Zhao
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Yiyi Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Xixian Feng
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Honghui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, PR China
| |
Collapse
|
16
|
Liao Y, Zeng Z, Lin K, Jiang W, Wang J, Duan L, Liang X, Huang Y, Han Z, Hu H, Xu ZF, Ni J. Gibberellin promotes xylem expansion and cell lignification by regulating sugar accumulation and the expression of JcMYB43 and JcMYB63 in the woody plant Jatropha curcas. Int J Biol Macromol 2025; 294:139434. [PMID: 39756755 DOI: 10.1016/j.ijbiomac.2024.139434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/28/2024] [Accepted: 12/31/2024] [Indexed: 01/07/2025]
Abstract
Gibberellins (GAs) are a group of diterpene plant hormones that regulate various plant developmental processes, including wood formation. Nevertheless, the regulatory pattern and the downstream targets of GA in the regulation of xylem expansion and cell lignification in woody plants remain unclear. In transgenic Jatropha curcas with significantly increased or decreased bioactive GA content via separate overexpression of JcGA20ox1 or JcGA2ox6, comparative transcriptomic, metabolomic and physiological investigations were conducted on the young stems. Lignin quantification and ultrastructural investigations of the young stems at different development stages revealed that JcGA20ox1 plants presented much faster lignin deposition and xylem expansion even at early development stages. The transcriptomic results revealed that the majority of the differentially expressed genes (DEGs) in the JcGA20ox1 and JcGA2ox6 plants were mainly related to metabolic pathways. Analysis of the DEGs and the gene regulatory network revealed that the increased lignification in JcGA20ox1 plants was due to the activated expression of several key transcription factors and the structural genes in the lignin biosynthesis pathway, which was confirmed by the significantly increased precursors of lignin identified via metabolomic analysis. Interestingly, a total of 15 sugar-related metabolites were differentially regulated, most of which were increased in the xylem of JcGA20ox1, but decreased in JcGA2ox6 plants. Importantly, two key GA-responsive transcription factors JcMYB43 and JcMYB63 were identified to play dual roles in promoting both xylem expansion and cell lignification. Conclusively, this study provides novel insights into the molecular mechanisms of GA-regulated xylem development in the woody plants.
Collapse
Affiliation(s)
- Yuwu Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Zhiyu Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Kai Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Weixin Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Jianzhong Wang
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China; Guangxi Dongmen Forest Farm, Chongzuo 532108, China
| | - Lanjuan Duan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Xiuqing Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Yunkai Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Zeiwei Han
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Hao Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Zeng-Fu Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China.
| | - Jun Ni
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China.
| |
Collapse
|
17
|
Gao Z, Su Y, Jiao G, Lou Z, Chang L, Yu R, Xu C, Han X, Wang Z, Li J, Deng XW, He H. Cell-Type Specific miRNA Regulatory Network Responses to ABA Stress Revealed by Time Series Transcriptional Atlases in Arabidopsis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415083. [PMID: 39792694 PMCID: PMC11884551 DOI: 10.1002/advs.202415083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Indexed: 01/12/2025]
Abstract
In plants, microRNAs (miRNAs) participate in complex gene regulatory networks together with the transcription factors (TFs) in response to biotic and abiotic stresses. To date, analyses of miRNAs-induced transcriptome remodeling are at the whole plant or tissue levels. Here, Arabidopsis's ABA-induced single-cell RNA-seq (scRNA-seq) is performed at different stages of time points-early, middle, and late. Single-cell level primary miRNAs (pri-miRNAs) atlas supported the rapid, dynamic, and cell-type specific miRNA responses under ABA treatment. MiRNAs respond rapidly and prior to target gene expression dynamics, and these rapid response miRNAs are highly cell-type specific, especially in mesophyll and vascular cells. MiRNA-TF-mRNA regulation modules are identified by identifying miRNA-contained feed-forward loops (M-FFLs) in the regulatory network, and regulatory networks with M-FFLs have higher co-expression and clustering coefficient (CC) values than those without M-FFLs, suggesting the hub role of miRNAs in regulatory networks. The cell-type-specific M-FFLs are regulated by these hub miRNAs rather than TFs through sc-RNA-seq network analysis. MiR858a-FBH3-MYB module inhibited the expression of MYB63 and MYB20, which related to the formation of plant secondary wall and the production of lignin, through M-FFL specifically in vascular. These results can provide prominent insights into miRNAs' dynamic and cell-type-specific roles in plant development and stress responses.
Collapse
Affiliation(s)
- Zhaoxu Gao
- School of Advanced Agriculture Sciences and School of Life SciencesState Key Laboratory of Protein and Plant Gene ResearchPeking UniversityBeijing100871China
- Institute of Crop ScienceChinese Academy of Agricultural Sciences (CAAS)Beijing100081China
| | - Yanning Su
- School of Advanced Agriculture Sciences and School of Life SciencesState Key Laboratory of Protein and Plant Gene ResearchPeking UniversityBeijing100871China
| | - Guanzhong Jiao
- School of Advanced Agriculture Sciences and School of Life SciencesState Key Laboratory of Protein and Plant Gene ResearchPeking UniversityBeijing100871China
| | - Zhiying Lou
- Peking University Institute of Advanced Agricultural SciencesShandong Laboratory of Advanced Agricultural Sciences in WeifangShandong261325China
| | - Le Chang
- School of Advanced Agriculture Sciences and School of Life SciencesState Key Laboratory of Protein and Plant Gene ResearchPeking UniversityBeijing100871China
| | - Renbo Yu
- Tropical Crops Genetic Resources InstituteChinese Academy of Tropical Agricultural SciencesHaikou571101China
| | - Chao Xu
- School of Advanced Agriculture Sciences and School of Life SciencesState Key Laboratory of Protein and Plant Gene ResearchPeking UniversityBeijing100871China
| | - Xue Han
- Peking University Institute of Advanced Agricultural SciencesShandong Laboratory of Advanced Agricultural Sciences in WeifangShandong261325China
| | - Zejia Wang
- School of Advanced Agriculture Sciences and School of Life SciencesState Key Laboratory of Protein and Plant Gene ResearchPeking UniversityBeijing100871China
| | - Jian Li
- Peking University Institute of Advanced Agricultural SciencesShandong Laboratory of Advanced Agricultural Sciences in WeifangShandong261325China
| | - Xing Wang Deng
- School of Advanced Agriculture Sciences and School of Life SciencesState Key Laboratory of Protein and Plant Gene ResearchPeking UniversityBeijing100871China
- Peking University Institute of Advanced Agricultural SciencesShandong Laboratory of Advanced Agricultural Sciences in WeifangShandong261325China
| | - Hang He
- School of Advanced Agriculture Sciences and School of Life SciencesState Key Laboratory of Protein and Plant Gene ResearchPeking UniversityBeijing100871China
- Peking University Institute of Advanced Agricultural SciencesShandong Laboratory of Advanced Agricultural Sciences in WeifangShandong261325China
| |
Collapse
|
18
|
Low PM, Kong Q, Blaschek L, Ma Z, Lim PK, Yang Y, Quek T, Lim CJR, Singh SK, Crocoll C, Engquist E, Thorsen JS, Pattanaik S, Tee WT, Mutwil M, Miao Y, Yuan L, Xu D, Persson S, Ma W. ZINC FINGER PROTEIN2 suppresses funiculus lignification to ensure seed loading efficiency in Arabidopsis. Dev Cell 2025:S1534-5807(25)00062-0. [PMID: 39999844 DOI: 10.1016/j.devcel.2025.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/07/2024] [Accepted: 01/31/2025] [Indexed: 02/27/2025]
Abstract
The plant funiculus anchors the developing seed to the placenta within the inner dorsal pod strands of the silique wall and directly transports nutrients to the seeds. The lignified vasculature critically supports nutrient transport through the funiculus. However, molecular mechanisms underlying lignified secondary cell wall (SCW) biosynthesis in the funiculus remain elusive. Here, we show that the transcription factor ZINC FINGER PROTEIN2 (ZFP2) represses SCW formation in the cortex cells that surround the vasculature. This function is essential for efficient nutrient loading into the seeds. Notably, ZFP2 directly acts on the SCW transcription factor NAC SECONDARY WALL THICKENING PROMOTING FACTOR1 (NST1) to repress cortex cell lignification, providing a mechanism of how SCW biosynthesis is restricted to the vasculature of the funiculus to ensure proper seed loading in Arabidopsis.
Collapse
Affiliation(s)
- Pui Man Low
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Que Kong
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Leonard Blaschek
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Zhiming Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Peng Ken Lim
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Yuzhou Yang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Trisha Quek
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Cuithbert J R Lim
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Sanjay K Singh
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Christoph Crocoll
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Ellen Engquist
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Jakob S Thorsen
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Sitakanta Pattanaik
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Wan Ting Tee
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Ling Yuan
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Deyang Xu
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Staffan Persson
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark; Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Wei Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| |
Collapse
|
19
|
Ye H, Gao H, Li J, Lu L, Zheng S, Wu C, Jin Y, Cao C, Zhu H, Liu S, Zhong F. Mitigating Response of SlCSE06 Induced by 2-Ethylfuran to Botrytis cinerea Infection. PLANTS (BASEL, SWITZERLAND) 2025; 14:575. [PMID: 40006834 PMCID: PMC11859901 DOI: 10.3390/plants14040575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025]
Abstract
Tomato (Solanum lycopersicum L.) is a major economic vegetable crop globally, yet it is prone to gray mold disease caused by Botrytis cinerea infection during cultivation. Caffeoyl shikimate esterase (CSE) is a crucial component of the lignin biosynthesis pathway, which significantly contributes to plant stress resistance. Therefore, investigating the expression patterns of SlCSE after Botrytis cinerea infection may offer a theoretical foundation for breeding resistant tomato varieties. In this study, 11 SlCSE family members were identified from the tomato genome using bioinformatics analyses. Public transcriptome databases and RT-qPCR experiments were used to analyze gene expression in tomato tissues, responses to Botrytis cinerea infection, and the temporal characteristics of the response to 2-ethylfuran treatment during infection. These experiments resulted in the identification of the key gene SlCSE06. Transgenic tomato lines that overexpressed SlCSE06 were constructed to examine their resistance levels to gray mold disease. Many SlCSE genes were upregulated when tomato fruit were infected with Botrytis cinerea during the ripening stage. Furthermore, 24 h after treatment with 2-ethylfuran, most SlCSE genes exhibited increased expression levels compared with the control group, but they exhibited significantly lower levels at other time points. Thus, 2-ethylfuran treatment may enhance the responsiveness of SlCSEs. Based on this research, SlCSE06 was identified as the key gene involved in the response to Botrytis cinerea infection. The SlCSE06-overexpressing (OE6) tomato plants exhibited a 197.94% increase in expression levels compared to the wild type (WT). Furthermore, the lignin content in OE6 was significantly higher than in WT, suggesting that the overexpression of SlCSE06 enhanced lignin formation in tomato plants. At 5 days post-inoculation with Botrytis cinerea, the lesion diameter in OE6 decreased by 31.88% relative to the WT, whereas the lignin content increased by 370.90%. Furthermore, the expression level of SlCSE06 was significantly upregulated, showing a 17.08-fold increase compared with the WT. These findings suggest that 2-ethylfuran enhances the activation of the critical tomato disease resistance gene SlCSE06 in response to gray mold stress, thereby promoting lignin deposition to mitigate further infection by Botrytis cinerea.
Collapse
Affiliation(s)
- Huilan Ye
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (H.G.); (J.L.); (L.L.); (S.Z.); (C.W.); (Y.J.); (C.C.); (H.Z.)
- Fuzhou Smart Agriculture (Seed Industry) Industry Innovation Center, Fuzhou 350002, China
- Key Laboratory of Crop Biological Breeding in Fujian and Taiwan, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Hongdou Gao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (H.G.); (J.L.); (L.L.); (S.Z.); (C.W.); (Y.J.); (C.C.); (H.Z.)
- Fuzhou Smart Agriculture (Seed Industry) Industry Innovation Center, Fuzhou 350002, China
- Key Laboratory of Crop Biological Breeding in Fujian and Taiwan, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Jinnian Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (H.G.); (J.L.); (L.L.); (S.Z.); (C.W.); (Y.J.); (C.C.); (H.Z.)
- Fuzhou Smart Agriculture (Seed Industry) Industry Innovation Center, Fuzhou 350002, China
- Key Laboratory of Crop Biological Breeding in Fujian and Taiwan, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Linye Lu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (H.G.); (J.L.); (L.L.); (S.Z.); (C.W.); (Y.J.); (C.C.); (H.Z.)
- Fuzhou Smart Agriculture (Seed Industry) Industry Innovation Center, Fuzhou 350002, China
- Key Laboratory of Crop Biological Breeding in Fujian and Taiwan, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Shilan Zheng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (H.G.); (J.L.); (L.L.); (S.Z.); (C.W.); (Y.J.); (C.C.); (H.Z.)
- Fuzhou Smart Agriculture (Seed Industry) Industry Innovation Center, Fuzhou 350002, China
- Key Laboratory of Crop Biological Breeding in Fujian and Taiwan, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Chengxin Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (H.G.); (J.L.); (L.L.); (S.Z.); (C.W.); (Y.J.); (C.C.); (H.Z.)
- Fuzhou Smart Agriculture (Seed Industry) Industry Innovation Center, Fuzhou 350002, China
- Key Laboratory of Crop Biological Breeding in Fujian and Taiwan, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Youliang Jin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (H.G.); (J.L.); (L.L.); (S.Z.); (C.W.); (Y.J.); (C.C.); (H.Z.)
- Fuzhou Smart Agriculture (Seed Industry) Industry Innovation Center, Fuzhou 350002, China
- Key Laboratory of Crop Biological Breeding in Fujian and Taiwan, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Chengjuan Cao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (H.G.); (J.L.); (L.L.); (S.Z.); (C.W.); (Y.J.); (C.C.); (H.Z.)
| | - Haisheng Zhu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (H.G.); (J.L.); (L.L.); (S.Z.); (C.W.); (Y.J.); (C.C.); (H.Z.)
| | - Shuang Liu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (H.G.); (J.L.); (L.L.); (S.Z.); (C.W.); (Y.J.); (C.C.); (H.Z.)
- Fuzhou Smart Agriculture (Seed Industry) Industry Innovation Center, Fuzhou 350002, China
- Key Laboratory of Crop Biological Breeding in Fujian and Taiwan, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Fenglin Zhong
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (H.G.); (J.L.); (L.L.); (S.Z.); (C.W.); (Y.J.); (C.C.); (H.Z.)
- Fuzhou Smart Agriculture (Seed Industry) Industry Innovation Center, Fuzhou 350002, China
- Key Laboratory of Crop Biological Breeding in Fujian and Taiwan, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| |
Collapse
|
20
|
Yao C, Fei Y, Yan Z, Wu C, Xiao Y, Hu J, Liu B, Wang R, Li S, Zhang M, Wang N, Ma W, Lu N, Wang J. Cbuhdz34, a Homeodomain Leucine Zipper Transcription Factor, Positively Regulates Tension Wood Formation and Xylem Fibre Cell Elongation in Catalpa bungei. PLANT, CELL & ENVIRONMENT 2025. [PMID: 39934964 DOI: 10.1111/pce.15428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/22/2025] [Accepted: 01/28/2025] [Indexed: 02/13/2025]
Abstract
Catalpa bungei is a highly valued timber species renowned for its superior wood properties. However, the development of tension wood (TW) induced by wind and other mechanical stresses during the growing season significantly reduces its economic value. Although Homeodomain Leucine Zipper (HD-Zip), a plant-specific transcription factor family, has been reported to play various roles in plant growth, development, and stress resistance, a systematic characterisation of the HD-Zip gene family in C. bungei, particularly regarding the regulatory mechanisms involved in TW formation, is still lacking. Here, we identified a total of 48 HD-Zip genes (Cbuhdzs) in C. bungei and analysed their phylogeny, structure, and expression profiles. In particular, Cbuhdz34, a member of the HD-Zip I subfamily, was specifically upregulated during TW formation. To further explore its function, we overexpressed Cbuhdz34 (OE-Cbuhdz34) in poplar '84 K', which led to noticeable changes in plant growth and fibre cell length. Moreover, compared with wild-type plants, the OE-Cbuhdz34 plants presented increased TW formation under bending stress, as indicated by increased TW width, gelatinous layer width, and eccentric growth rate, suggesting a positive regulatory role in TW formation. Additionally, hierarchical genetic regulatory network analysis revealed the direct targets of Cbuhdz34, including CbuMYB63 and three genes involved in cell wall synthesis (CbuGATL1, CbuFLA17, and CbuLRR14). Further, yeast one-hybrid and dual-luciferase reporter assays confirmed the activation of these targets by Cbuhdz34. In conclusion, our results provide insights into the molecular mechanisms by which Cbuhdz34 regulates TW formation and lay a genetic foundation for the potential improvement of wood quality in C. bungei.
Collapse
Affiliation(s)
- Chengcheng Yao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yue Fei
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Zhenfan Yan
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Chuangye Wu
- Wenxian Forestry Science Research Institute, Jiaozuo, China
| | - Yao Xiao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Jiwen Hu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Bingyang Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Rui Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Shaofeng Li
- State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing, China
| | - Miaomiao Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Nan Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Wenjun Ma
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Nan Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
21
|
Zhang B, Wei X, Xi L, Qiao Y, Chang M, Deng B, Liu J. Genome-wide identification of the MYB gene family and FfMYB13 regulation analysis in cell wall synthesis underlying tissue toughening process of yellow Flammulina filiformis stipes. Int J Biol Macromol 2025; 288:138660. [PMID: 39672422 DOI: 10.1016/j.ijbiomac.2024.138660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/12/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
MYB transcription factors (TFs) play important roles in fungal growth, development, stress response, and secondary metabolism. Cell wall glycan remodeling induced by oxidative damage levels is vital for stipe quality during mature stage of yellow Flammulina filiformis fruiting bodies. In this study, we identified 15 F. filiformis MYB (FfMYB) that are ranging from 28.43 kDa-172.3 kDa, with an average of 73.51 kDa. These FfMYB genes were unevenly distributed among six chromosomes. Phylogenetic analysis indicated that 15 FfMYBs were closely related to existing model fungi, while they were more distant from Arabidopsis thaliana. Based on expression analysis, a MYB TF termed FfMYB13 were isolated and identified as a potential regulator binding the promoter of Ff-FeSOD1, which was negatively correlated with tissue toughening of yellow F. filiformis stipes. The data of DAP-seq analysis suggested that the downstream target genes of FfMYB13 were significantly enriched in cell wall metabolism. The result of EMSA and dual luciferase report experiments demonstrated that FfMYB13 served as an upstream transcriptional regulatory factor that activates four cell wall synthesis metabolism related genes, FfKRE6, Ffgas1, FfHYD-1, and FfGFA1. Moreover, FfMYB13 might negatively influence tissue toughening in the inhibition of oxidative damage by activating Ff-FeSOD1.
Collapse
Affiliation(s)
- Benfeng Zhang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China; Key Laboratory of Shanxi Province for Loess Plateau Edible Fungi, Taigu 030801, Shanxi, China
| | - Xuyang Wei
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Linhao Xi
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Yingli Qiao
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Mingchang Chang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China; Shanxi Engineering Research Center of Edible Fungi, Taigu 030801, Shanxi, China
| | - Bing Deng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China; Key Laboratory of Shanxi Province for Loess Plateau Edible Fungi, Taigu 030801, Shanxi, China.
| | - Jingyu Liu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China; Key Laboratory of Shanxi Province for Loess Plateau Edible Fungi, Taigu 030801, Shanxi, China.
| |
Collapse
|
22
|
Sonkar K, Singh A. Metabolic and physiological functions of Patatin-like phospholipase-A in plants. Int J Biol Macromol 2025; 287:138474. [PMID: 39645102 DOI: 10.1016/j.ijbiomac.2024.138474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/24/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Patatin-like phospholipase-A (pPLA) is a class of lipid acyl hydrolase enzymes found in both, the animal and plant kingdoms. Plant pPLAs are related to the potato tuber storage protein patatin in solanaceous plants. Despite extensive investigation of pPLA functions in the animal system, the mechanistic functional details and regulatory roles of pPLA are poorly understood in plants. In recent years, research pertaining to pPLAs has gain some momentum as some of the key members of pPLA family have been characterized functionally. These findings have provided key insights into the structural features, biochemical activities, and functional roles of plant pPLAs. In this review, we are presenting a holistic overview of pPLAs in plants and providing the latest updates on pPLA research. We have highlighted the genomic diversity and structural features of pPLAs in plants. Importantly, we have discussed the role of pPLAs in lipid metabolism, including sphingolipid metabolism, lignin and cellulose accumulation, lipid breakdown and seed oil content enhancement. Moreover, regulatory roles of pPLAs in physiological processes, such as plant stress response, plant-pathogen interactions and plant development have been discussed. This information will be critical in the biotechnological programs for crop improvement.
Collapse
Affiliation(s)
- Kamankshi Sonkar
- National Institute of Plant genome Research, New Delhi 110067, India
| | - Amarjeet Singh
- National Institute of Plant genome Research, New Delhi 110067, India.
| |
Collapse
|
23
|
Song S, Guo W, Guo Y, Chao E, Sun S, Zhao L, Zhao Y, Zhang H. Transcription factor PdMYB118 in poplar regulates lignin deposition and xylem differentiation in addition to anthocyanin synthesis through suppressing the expression of PagKNAT2/6b gene. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112277. [PMID: 39389317 DOI: 10.1016/j.plantsci.2024.112277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/11/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
R2R3-MYB transcription factors function as the master regulators of the phenylpropanoid pathway in which both lignin and anthocyanin are produced. In poplar, R2R3-MYB transcription factor PdMYB118 positively regulates anthocyanin production to change leaf color. However, the molecular mechanism by which it controls different branches of the phenylpropanoid pathway still remains poorly understood. Here, we reported that in addition to anthocyanin synthesis, lignin deposition and xylem differentiation were regulated by PdMYB118 through inhibiting PagKNAT2/6b gene expression. The transgenic poplar plants overexpressing PdMYB118 accumulated more xylem, lignin and anthocyanin. Transcriptome and reverse transcription quantitative PCR analyses revealed that the expression of PagKNAT2/6b gene which inhibited lignin deposition and xylem differentiation was significantly down-regulated in transgenic poplar plants. Subsequent dual-luciferase reporter and yeast-one-hybrid assays demonstrated that PdMYB118 directly inhibited the transcription of PagKNAT2/6b by binding to the AC elements in its promoter region. Further experiments with transgenic poplar plants overexpressing PagKNAT2/6b demonstrated that overexpression of PagKNAT2/6b in the PdMYB118 overexpression background rescued lignin accumulation and xylem width to the same level of wild type plants. The findings in this work suggest that PdMYB118 is involved in the lignin deposition and xylem differentiation via modulating the expression of PagKNAT2/6b, and the PdMYB118- PagKNAT2/6b model can be used for the genetic breeding of new woody tree with high lignin production.
Collapse
Affiliation(s)
- Shuo Song
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong 264025, China; The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in the Universities of Shandong, Ludong University, 186 Hongqizhong Road, Yantai 264025, China.
| | - Wei Guo
- Taishan Academy of Forestry Sciences, Luohanya Road, Taian, Shandong 27100, China.
| | - Yu Guo
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong 264025, China.
| | - Erkun Chao
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong 264025, China; The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in the Universities of Shandong, Ludong University, 186 Hongqizhong Road, Yantai 264025, China.
| | - Sujie Sun
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong 264025, China; The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in the Universities of Shandong, Ludong University, 186 Hongqizhong Road, Yantai 264025, China.
| | - Lizi Zhao
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong 264025, China; The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in the Universities of Shandong, Ludong University, 186 Hongqizhong Road, Yantai 264025, China; Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd, North of Beiyuanzhuang village, Fushan County, Zhaoyuan, Shandong 265400, China; Yantai Technology Center of Characteristic Plant Gene Editing and Germplasm Innovation, Yantai 2640014, China.
| | - Yanqiu Zhao
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong 264025, China; The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in the Universities of Shandong, Ludong University, 186 Hongqizhong Road, Yantai 264025, China; Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd, North of Beiyuanzhuang village, Fushan County, Zhaoyuan, Shandong 265400, China; Yantai Technology Center of Characteristic Plant Gene Editing and Germplasm Innovation, Yantai 2640014, China.
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong 264025, China; The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in the Universities of Shandong, Ludong University, 186 Hongqizhong Road, Yantai 264025, China; Shandong Institute of Sericulture, Shandong Academy of Agricultural Sciences, 21 Zhichubei Road, Yantai 2640014, China; Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd, North of Beiyuanzhuang village, Fushan County, Zhaoyuan, Shandong 265400, China; Yantai Technology Center of Characteristic Plant Gene Editing and Germplasm Innovation, Yantai 2640014, China.
| |
Collapse
|
24
|
Wu J, Deng S, Wang Y, Jia C, Wei J, Zhou M, Zhu D, Li Z, Fayyaz P, Luo ZB, Zhou J, Shi W. The PtobZIP55-PtoMYB170 module regulates the wood anatomical and chemical properties of Populus tomentosa in acclimation to low nitrogen availability. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:117-134. [PMID: 39540795 DOI: 10.1111/jipb.13804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/30/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Poplar plantations are often established on nitrogen-poor land, and poplar growth and wood formation are constrained by low nitrogen (LN) availability. However, the molecular mechanisms by which specific genes regulate wood formation in acclimation to LN availability remain unclear. Here, we report a previously unrecognized module, basic region/leucine zipper 55 (PtobZIP55)-PtoMYB170, which regulates the wood formation of Populus tomentosa in acclimation to LN availability. PtobZIP55 was highly expressed in poplar wood and induced by LN. Altered wood anatomical properties and increased lignification were detected in PtobZIP55-overexpressing poplars, whereas the opposite results were detected in PtobZIP55-knockout poplars. Molecular and transgenic analyses revealed that PtobZIP55 directly binds to the promoter sequence of PtoMYB170 to activate its transcription. The phenotypes of PtoMYB170 transgenic poplars were similar to those of PtobZIP55 transgenic poplars under LN conditions. Further molecular analyses revealed that PtoMYB170 directly bound the promoter sequences of lignin biosynthetic genes to activate their transcription to increase lignin concentrations in LN-treated poplar wood. These results suggest that PtobZIP55 activates PtoMYB170 transcription, which in turn positively regulates lignin biosynthetic genes, increasing lignin deposition in the wood of P. tomentosa in the context of acclimation to LN availability.
Collapse
Affiliation(s)
- Jiangting Wu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Shurong Deng
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yang Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Chenlin Jia
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Jia Wei
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Mengyan Zhou
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Dongyue Zhu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Zhuorong Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Payam Fayyaz
- Forest, Range and Watershed Management Department, Agriculture and Natural Resources Faculty, Yasouj University, Yasuj, 75919 63179, Iran
| | - Zhi-Bin Luo
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, 100091, China
- Comprehensive Experimental Center of Chinese Academy of Forestry in Yellow River Delta, Dongying, 257000, Shandong, China
| | - Jing Zhou
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Wenguang Shi
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| |
Collapse
|
25
|
McGuire ST, Shockey J, Bates PD. The first intron and promoter of Arabidopsis DIACYLGLYCEROL ACYLTRANSFERASE 1 exert synergistic effects on pollen and embryo lipid accumulation. THE NEW PHYTOLOGIST 2025; 245:263-281. [PMID: 39501618 PMCID: PMC11617664 DOI: 10.1111/nph.20244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/17/2024] [Indexed: 12/06/2024]
Abstract
Accumulation of triacylglycerols (TAGs) is crucial during various stages of plant development. In Arabidopsis, two enzymes share overlapping functions to produce TAGs, namely acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) and phospholipid:diacylglycerol acyltransferase 1 (PDAT1). Loss of function of both genes in a dgat1-1/pdat1-2 double mutant is gametophyte lethal. However, the key regulatory elements controlling tissue-specific expression of either gene has not yet been identified. We transformed a dgat1-1/dgat1-1//PDAT1/pdat1-2 parent with transgenic constructs containing the Arabidopsis DGAT1 promoter fused to the AtDGAT1 open reading frame either with or without the first intron. Triple homozygous plants were obtained, however, in the absence of the DGAT1 first intron anthers fail to fill with pollen, seed yield is c. 10% of wild-type, seed oil content remains reduced (similar to dgat1-1/dgat1-1), and non-Mendelian segregation of the PDAT1/pdat1-2 locus occurs. Whereas plants expressing the AtDGAT1pro:AtDGAT1 transgene containing the first intron mostly recover phenotypes to wild-type. This study establishes that a combination of the promoter and first intron of AtDGAT1 provides the proper context for temporal and tissue-specific expression of AtDGAT1 in pollen. Furthermore, we discuss possible mechanisms of intron mediated regulation and how regulatory elements can be used as genetic tools to functionally replace TAG biosynthetic enzymes in Arabidopsis.
Collapse
Affiliation(s)
- Sean T. McGuire
- Institute of Biological ChemistryWashington State UniversityPullmanWA99164USA
| | - Jay Shockey
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Service1100 Allen Toussaint BlvdNew OrleansLA70124USA
| | - Philip D. Bates
- Institute of Biological ChemistryWashington State UniversityPullmanWA99164USA
| |
Collapse
|
26
|
Wang B, Luo C, Li X, Jimenez A, Cai J, Chen J, Li C, Zhang C, Ou L, Pu W, Peng Y, Zhang Z, Cai Y, Valls M, Wu D, Yu F. The FERONIA-RESPONSIVE TO DESICCATION 26 module regulates vascular immunity to Ralstonia solanacearum. THE PLANT CELL 2024; 37:koae302. [PMID: 39535787 DOI: 10.1093/plcell/koae302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/19/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Some pathogens colonize plant leaves, but others invade the roots, including the vasculature, causing severe disease symptoms. Plant innate immunity has been extensively studied in leaf pathosystems; however, the precise regulation of immunity against vascular pathogens remains largely unexplored. We previously demonstrated that loss of function of the receptor kinase FERONIA (FER) increases plant resistance to the typical vascular bacterial pathogen Ralstonia solanacearum. Here, we show that upon infection with R. solanacearum, root xylem cell walls in Arabidopsis thaliana become highly lignified. FER is specifically upregulated in the root xylem in response to R. solanacearum infection, and inhibits lignin biosynthesis and resistance to this pathogen. We determined that FER interacts with and phosphorylates the transcription factor RESPONSIVE TO DESICCATION 26 (RD26), leading to its degradation. Overexpression and knockout of RD26 demonstrated that it positively regulates plant resistance to R. solanacearum by directly activating the expression of lignin-related genes. Tissue-specific expression of RD26 in the root xylem confirmed its role in vascular immunity. We confirmed that the FER-RD26 module regulates lignin biosynthesis and resistance against R. solanacearum in tomato (Solanum lycopersicum). Taken together, our findings unveil that the FER-RD26 cascade governs plant immunity against R. solanacearum in vascular tissues by regulating lignin deposition. This cascade may represent a key defense mechanism against vascular pathogens in plants.
Collapse
Affiliation(s)
- Bingqian Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Cailin Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Xiaoxu Li
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha 410021, China
| | - Alvaro Jimenez
- Department of Genetics, University of Barcelona, Barcelona, Catalonia 08007, Spain
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Catalonia 08193, Spain
| | - Jun Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Jia Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Changsheng Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Chunhui Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Lijun Ou
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Wenxuan Pu
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha 410021, China
| | - Yu Peng
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha 410021, China
| | - Zhenchen Zhang
- Guangdong Key Laboratory for Crops Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangzhou 510640, China
| | - Yong Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
- Yuelushan Laboratory, Changsha 410128, China
| | - Marc Valls
- Department of Genetics, University of Barcelona, Barcelona, Catalonia 08007, Spain
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Catalonia 08193, Spain
| | - Dousheng Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
- Yuelushan Laboratory, Changsha 410128, China
| | - Feng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
- Yuelushan Laboratory, Changsha 410128, China
| |
Collapse
|
27
|
Wang Y, Wang S, Wu Y, Cheng J, Wang H. Dynamic Chromatin Accessibility and Gene Expression Regulation During Maize Leaf Development. Genes (Basel) 2024; 15:1630. [PMID: 39766899 PMCID: PMC11675475 DOI: 10.3390/genes15121630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Chromatin accessibility is closely associated with transcriptional regulation during maize (Zea mays) leaf development. However, its precise role in controlling gene expression at different developmental stages remains poorly understood. This study aimed to investigate the dynamics of chromatin accessibility and its influence on genome-wide gene expression during the BBCH_11, BBCH_13, and BBCH_17 stages of maize leaf development. METHODS Maize leaves were collected at the BBCH_11, BBCH_13, and BBCH_17 developmental stages, and chromatin accessibility was assessed using ATAC-seq. RNA-seq was performed to profile gene expression. Integrated analysis of ATAC-seq and RNA-seq data was conducted to elucidate the relationship between chromatin accessibility and transcriptional regulation. RESULTS A total of 46,808, 38,242, and 41,084 accessible chromatin regions (ACRs) were identified at the BBCH_11, BBCH_13, and BBCH_17 stages, respectively, with 23.4%, 12.2%, and 21.9% of these regions located near transcription start sites (TSSs). Integrated analyses revealed that both the number and intensity of ACRs significantly influence gene expression levels. Motif analysis identified key transcription factors associated with leaf development and potential transcriptional repressors among genes, showing divergent regulation patterns in ATAC-seq and RNA-seq datasets. CONCLUSIONS These findings demonstrate that chromatin accessibility plays a crucial role in regulating the spatial and temporal expression of key genes during maize leaf development by modulating transcription factor binding. This study provides novel insights into the regulatory mechanisms underlying maize leaf development, contributing to a deeper understanding of chromatin-mediated gene expression.
Collapse
|
28
|
Han X, Gai Z, Sun J, Zhai J, Qiu C, Wu Z, Li Z. Multi Characteristic Analysis of Vascular Cambium Cells in Populus euphratica Reveals Its Anti-Aging Strategy. PLANTS (BASEL, SWITZERLAND) 2024; 13:3549. [PMID: 39771247 PMCID: PMC11677677 DOI: 10.3390/plants13243549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
All multicellular organisms undergo senescence, but the continuous division of the vascular cambium in plants enables certain tree species to survive for hundreds or even thousands of years. Previous studies have focused on the development of the vascular cambium, but the mechanisms regulating age-related changes remain poorly understood. This study investigated age-related changes in the vascular cambium of P. euphratica trees aged 50 to 350 years. The number of cambium cells in the 50-year-old tree group was 10 ± 2, while the number of cambium cells in the 200-year-old and 350-year-old tree groups significantly decreased. The thickness of the cambium cells exhibited a similar trend. In addition, the net photosynthetic and transpiration rates continue to increase with age, but no notable differences were found in factors like average leaf area, palisade tissue thickness, and stomatal density. A total of 6491 differentially expressed genes (DEGs) were identified in the vascular cambium of P. euphratica at three distinct ages using RNA sequencing. The expression patterns of DEGs associated with cell division and differentiation, lignin biosynthesis, plant hormones, and transcription factors were analyzed. DEGs related to XTH, EXP, PAL, C4H, ABA, Br, GA, and others are highly expressed in older trees, whilst those encoding expansins, kinases, cyclins, 4CL, Auxin, Eth, SA, and others are more prevalent in younger trees. Gene family members, such as NAC, MYB, HD-ZIP III, WRKY, and GRF, have various regulatory functions in the vascular cambium. The findings offer insights into how ancient P. euphratica trees maintain vitality by balancing growth and aging, providing a foundation for future research on their longevity mechanisms.
Collapse
Affiliation(s)
- Xiaoli Han
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Desert Poplar Research Center of Tarim University, College of Life Science and Technology, Tarim University, Alar 843300, China; (X.H.)
| | - Zhongshuai Gai
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Desert Poplar Research Center of Tarim University, College of Life Science and Technology, Tarim University, Alar 843300, China; (X.H.)
| | - Jianhao Sun
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Desert Poplar Research Center of Tarim University, College of Life Science and Technology, Tarim University, Alar 843300, China; (X.H.)
| | - Juntuan Zhai
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Desert Poplar Research Center of Tarim University, College of Life Science and Technology, Tarim University, Alar 843300, China; (X.H.)
| | - Chen Qiu
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Desert Poplar Research Center of Tarim University, College of Life Science and Technology, Tarim University, Alar 843300, China; (X.H.)
| | - Zhihua Wu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Zhijun Li
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Desert Poplar Research Center of Tarim University, College of Life Science and Technology, Tarim University, Alar 843300, China; (X.H.)
| |
Collapse
|
29
|
Dokka N, Rathinam M, Sreevathsa R. Lignin lite: Boosting plant power through selective downregulation. PLANT, CELL & ENVIRONMENT 2024; 47:4945-4962. [PMID: 39115273 DOI: 10.1111/pce.15060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 11/06/2024]
Abstract
SUMMARY STATEMENTThis article explores the dual benefits of reducing lignin content in plants, which streamlines biofuel production while maintaining robust defence mechanisms. It discusses how plants compensate for lower lignin levels through alternative defence strategies, recent biotechnological advances in lignin modification, and the implications for agriculture and industry.
Collapse
Affiliation(s)
- Narasimham Dokka
- Division of Molecular Biology and Biotechnology, ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Maniraj Rathinam
- Division of Molecular Biology and Biotechnology, ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Rohini Sreevathsa
- Division of Molecular Biology and Biotechnology, ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, India
| |
Collapse
|
30
|
Gong X, Qi K, Zhao L, Xie Z, Pan J, Yan X, Shiratake K, Zhang S, Tao S. PbAGL7-PbNAC47-PbMYB73 complex coordinately regulates PbC3H1 and PbHCT17 to promote the lignin biosynthesis in stone cells of pear fruit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1933-1953. [PMID: 39446773 DOI: 10.1111/tpj.17090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/03/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024]
Abstract
Lignification of the cell wall in pear (Pyrus) fruit results in the formation of stone cells, which affects the texture and quality of the fruit. However, it is still unclear that how different transcription factors (TFs) work together to coordinate the synthesis and deposition of lignin. Here, we examined the transcriptome of pear varieties with different stone cell contents and found a key TF (PbAGL7) that can promote the increase of stone cell contents and secondary cell wall thicknesses. In addition, PbAGL7 can facilitate the expression level of lignin biosynthesis-related genes and accelerate the lignin biosynthesis in pear fruit and Arabidopsis. However, PbAGL7 did not directly bind to the promoters of PbC3H1 and PbHCT17 which are crucial genes involved in lignin biosynthesis. On the other hand, yeast two-hybrid (Y2H) library showed that PbNAC47 and PbMYB73 interacted with PbAGL7 in the nucleus. PbNAC47 and PbMYB73 also increased the stone cell and lignin contents, and upregulated the expressions of PbC3H1 and PbHCT17 by binding to the SNBE and AC elements, respectively. Moreover, PbNAC47 also interacted with PbMYB73 to form PbAGL7-PbNAC47-PbMYB73 complex. This complex significantly activated the expression levels of PbC3H1 and PbHCT17 and promoted lignin biosynthesis to form stone cells in pear fruit. Overall, our study provides new insights into the molecular mechanism of TFs that coordinately regulate the stone cell formation in pear fruit and extend our knowledge to understand cell wall lignification in plants.
Collapse
Affiliation(s)
- Xin Gong
- Sanya Institute, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- College of Horticulture, Xinjiang Agricultural University, Urumqi, China
| | - Kaijie Qi
- Sanya Institute, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Liangyi Zhao
- Sanya Institute, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhihua Xie
- Sanya Institute, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jiahui Pan
- Sanya Institute, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xin Yan
- Sanya Institute, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | | | - Shaoling Zhang
- Sanya Institute, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Shutian Tao
- Sanya Institute, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- College of Horticulture, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
31
|
Li G, Manzoor MA, Ren X, Huang S, Wei Y, Zhang S, Sun Y, Cai Y, Zhang M, Song C. Functional analysis of two caffeoyl-coenzyme 3 a-o-methyltransferase involved in pear lignin metabolism. Gene 2024; 928:148810. [PMID: 39089530 DOI: 10.1016/j.gene.2024.148810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Caffeoyl-coenzyme 3 A-O-methyltransferase (CCoAOMT) plays a crucial role in the lignin synthesis in many higher plants. In this study, nine PbCCoAOMT genes in total were identified from pear, and classified into six categories. We treated pear fruits with hormones abscisic acid (ABA) and methyl jasmonate (MeJA) and salicylic acid (SA) and observed differential expression levels of these genes. Through qRT-PCR, we also preliminarily identified candidate PbCCoAOMT gene, potentially involved in lignin synthesis in pear fruits. Additionally, the overexpression of PbCCoAOMT1/2 in Arabidopsis and pear fruits increased in lignin content. Enzymatic assays showed that recombinant PbCCoAOMT1/2 proteins have similar enzymatic activity in vitro. The Y1H (Yeast one-hybrid) and dual luciferase (dual-LUC) experiments demonstrated that PbMYB25 can bind to the AC elements in the promoter region of the PbCCoAOMT1 gene. Our findings suggested that the PbCCoAOMT1 and PbCCoAOMT2 genes may contribute to the synthesis of lignin and provide insights into the mechanism of lignin biosynthesis and stone cell development in pear fruits.
Collapse
Affiliation(s)
- Guohui Li
- Anhui Provincial Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, China
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Ren
- Anhui Agricultural University, Hefei 230036, China
| | - Shiping Huang
- Anhui Provincial Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, China
| | - Yuxin Wei
- Anhui Provincial Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, China
| | - Shuo Zhang
- Anhui Provincial Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, China
| | - Yanming Sun
- Anhui Agricultural University, Hefei 230036, China
| | - Yongping Cai
- Anhui Agricultural University, Hefei 230036, China
| | - Ming Zhang
- Anhui Provincial Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, China.
| | - Cheng Song
- Anhui Provincial Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, China.
| |
Collapse
|
32
|
Kong J, Xiong R, Qiu K, Lin X, Li D, Lu L, Zhou J, Zhu S, Liu M, Sun Q. Genome-Wide Identification and Characterization of the Laccase Gene Family in Fragaria vesca and Its Potential Roles in Response to Salt and Drought Stresses. PLANTS (BASEL, SWITZERLAND) 2024; 13:3366. [PMID: 39683159 DOI: 10.3390/plants13233366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/18/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024]
Abstract
Laccase (LAC, EC 1.10.3.2) is integral to the formation of lignin synthesis, flavonoid production, and responses to both biotic and abiotic stresses. While recent studies have characterized numerous LAC gene families and their functions across various plants, information regarding LAC genes in woodland strawberry (Fragaria vesca) remains limited. In this study, we identified a total of 57 FvLAC genes in the Fragaria vesca genome, which were phylogenetically categorized into five distinct groups. Analysis of the gene structures revealed a uniformity in the exon-intron structure among the subgroups, while conserved motifs identified unique motifs specific to certain subgroups, suggesting functional variations. Chromosomal localization studies indicated that FvLACs are distributed across seven chromosomes, and collinearity analysis demonstrated that FvLACs exhibit collinearity within the species. Additionally, cis-acting element analysis suggested that FvLAC genes are involved in stress responses, hormone responses, light responses, and the growth and development of plants. qRT-PCR demonstrated that FvLACs responded to salt, drought, and hormone stresses, with the expression levels of FvLAC24, FvLAC32, and FvLAC51 continuously increasing under these stress conditions. Furthermore, transgenic yeast experiments revealed that FvLAC51 enhanced yeast tolerance to both salt and drought stresses, while FvLAC24 and FvLAC32 negatively regulated yeast tolerance under these same conditions. These findings provide a theoretical foundation for further investigation into the functions of FvLAC genes in woodland strawberry.
Collapse
Affiliation(s)
- Jingjing Kong
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Institute of Horticultural, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Hefei 230001, China
| | - Rui Xiong
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Institute of Horticultural, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Hefei 230001, China
| | - Keli Qiu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Xinle Lin
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, Anhui Agricultural University, Hefei 230036, China
| | - Debao Li
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Institute of Horticultural, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Hefei 230001, China
| | - Lijuan Lu
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Institute of Horticultural, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Hefei 230001, China
| | - Junyong Zhou
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Institute of Horticultural, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Hefei 230001, China
| | - Shufang Zhu
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Institute of Horticultural, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Hefei 230001, China
| | - Mao Liu
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Institute of Horticultural, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Hefei 230001, China
| | - Qibao Sun
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Institute of Horticultural, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Hefei 230001, China
| |
Collapse
|
33
|
Liao R, Yao J, Zhang Y, Liu Y, Pan H, Han B, Song C. MYB transcription factors in Peucedanum Praeruptorum Dunn: the diverse roles of the R2R3-MYB subfamily in mediating coumarin biosynthesis. BMC PLANT BIOLOGY 2024; 24:1135. [PMID: 39604839 PMCID: PMC11604020 DOI: 10.1186/s12870-024-05864-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND The MYB superfamily (v-myb avian myeloblastosis viral oncogene homolog) plays a role in plant growth and development, environmental stress defense, and synthesis of secondary metabolites. Little is known about the regulatory function of MYB genes in Peucedanum praeruptorum Dunn, although many MYB family members, especially R2R3-MYB genes, have been extensively studied in model plants. RESULTS A total of 157 R2R3-MYB transcription factors from P. praeruptorum were identified using bioinformatics analysis. Comprehensive analyses including chromosome location, microsynteny, gene structure, conserved motif, phylogenetic tree, and conserved domain were further performed. The length of the 157 transcription factors ranged from 120 to 1,688 amino acids (molecular weight between 14.21 and 182.69 kDa). All proteins were hydrophilic. Subcellular localization predictions showed that 155 PpMYB proteins were localized in the nucleus, with PpMYB12 and PpMYB157 localized in the chloroplasts and mitochondria, respectively. Ten conserved motifs were identified in the PpMYBs, all of which contained typical MYB domains. Transcriptome analysis identified 47,902 unigenes. Kyoto Encyclopedia of Genes and Genomes analysis revealed 136 pathways, of which 524 genes were associated with the phenylpropanoid pathway. Differential expressed genes (DEGs) before and after bolting showed that 11 genes were enriched in the phenylpropanoid pathway. Moreover, the expression patterns of transcription genes were further verified by qRT-PCR. With high-performance liquid chromatography (HPLC), 8 coumarins were quantified from the root, stem, and leaf tissue samples of P. praeruptorum at different stages. Praeruptorin A was found in both roots and leaves before bolting, whereas praeruptorin B was mainly concentrated in the roots, and the content of both decreased in the roots and stems after bolting. Praeruptorin E content was highest in the leaves and increased with plant growth. The correlation analysis between transcription factors and coumarin content showed that the expression patterns of PpMYB3 and PpMYB103 in roots align with the accumulation trends of praeruptorin A, praeruptorin B, praeruptorin E, scopoletin, and isoscopoletin, which declined in content after bolting, suggesting that these genes may positively regulate the biosynthesis of coumarins. Eleven distinct metabolites and 48 DEGs were identified. Correlation analysis revealed that the expression of all DEGs were significantly related to the accumulation of coumarin metabolites, indicating that these genes are involved in the regulation of coumarin biosynthesis. CONCLUSIONS R2R3-MYB transcription factors may be involved in the synthesis of coumarin. Our findings provide basic data and a rationale for future an in-depth studies on the role of R2R3-MYB transcription factors in the growth and regulation of coumarin synthesis.
Collapse
Affiliation(s)
- Ranran Liao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Jinzhuo Yao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Yingyu Zhang
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, China
| | - Yuxian Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Haoyu Pan
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Bangxing Han
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China.
| | - Cheng Song
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China.
| |
Collapse
|
34
|
Luan Y, Tao J, Zhao D. Synergistic actions of 3 MYB transcription factors underpin blotch formation in tree peony. PLANT PHYSIOLOGY 2024; 196:1869-1886. [PMID: 39140769 DOI: 10.1093/plphys/kiae420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/24/2024] [Accepted: 06/29/2024] [Indexed: 08/15/2024]
Abstract
Blotches in floral organs attract pollinators and promote pollination success. Tree peony (Paeonia suffruticosa Andr.) is an internationally renowned cut flower with extremely high ornamental and economic value. Blotch formation on P. suffruticosa petals is predominantly attributed to anthocyanin accumulation. However, the endogenous regulation of blotch formation in P. suffruticosa remains elusive. Here, we identified the regulatory modules governing anthocyanin-mediated blotch formation in P. suffruticosa petals, which involves the transcription factors PsMYB308, PsMYBPA2, and PsMYB21. PsMYBPA2 activated PsF3H expression to provide sufficient precursor substrate for anthocyanin biosynthesis. PsMYB21 activated both PsF3H and PsFLS expressions and promoted flavonol biosynthesis. The significantly high expression of PsMYB21 in nonblotch regions inhibited blotch formation by competing for anthocyanin biosynthesis substrates, while conversely, its low expression in the blotch region promoted blotch formation. PsMYB308 inhibited PsDFR and PsMYBPA2 expressions to directly prevent anthocyanin-mediated blotch formation. Notably, a smaller blotch area, decreased anthocyanin content, and inhibition of anthocyanin structural gene expression were observed in PsMYBPA2-silenced petals, while the opposite phenotypes were observed in PsMYB308-silenced and PsMYB21-silenced petals. Additionally, PsMYBPA2 and PsMYB308 interacted with PsbHLH1-3, and their regulatory intensity on target genes was synergistically regulated by the PsMYBPA2-PsbHLH1-3 and PsMYB308-PsbHLH1-3 complexes. PsMYB308 also competitively bound to PsbHLH1-3 with PsMYBPA2 to fine-tune the regulatory network to prevent overaccumulation of anthocyanin in blotch regions. Overall, our study uncovers a complex R2R3-MYB transcriptional regulatory network that governs anthocyanin-mediated blotch formation in P. suffruticosa petals, providing insights into the molecular mechanisms underlying blotch formation in P. suffruticosa.
Collapse
Affiliation(s)
- Yuting Luan
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Jun Tao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Daqiu Zhao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, Jiangsu, China
| |
Collapse
|
35
|
Liu H, Zhang J, Wang J, Fan Z, Qu X, Yan M, Zhang C, Yang K, Zou J, Le J. The rice R2R3 MYB transcription factor FOUR LIPS connects brassinosteroid signaling to lignin deposition and leaf angle. THE PLANT CELL 2024; 36:4768-4785. [PMID: 39259275 PMCID: PMC11530771 DOI: 10.1093/plcell/koae251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/03/2024] [Accepted: 08/26/2024] [Indexed: 09/12/2024]
Abstract
Leaf angle is an important agronomic trait for crop architecture and yield. In rice (Oryza sativa), the lamina joint is a unique structure connecting the leaf blade and sheath that determines leaf angle. Brassinosteroid (BR) signaling involving GLYCOGEN SYNTHASE KINASE-3 (GSK3)/SHAGGY-like kinases and BRASSINAZOLE-RESISTANT1 (BZR1) has a central role in regulating leaf angle in rice. In this study, we identified the atypical R2R3-MYB transcription factor FOUR LIPS (OsFLP), the rice homolog of Arabidopsis (Arabidopsis thaliana) AtFLP, as a participant in BR-regulated leaf angle formation. The spatiotemporal specificity of OsFLP expression in the lamina joint was closely associated with lignin deposition in vascular bundles and sclerenchyma cells. OsFLP mutation caused loose plant architecture with droopy flag leaves and hypersensitivity to BRs. OsBZR1 directly targeted OsFLP, and OsFLP transduced BR signals to lignin deposition in the lamina joint. Moreover, OsFLP promoted the transcription of the phenylalanine ammonia-lyase family genes OsPAL4 and OsPAL6. Intriguingly, OsFLP feedback regulated OsGSK1 transcription and OsBZR1 phosphorylation status. In addition, an Ala-to-Thr substitution within the OsFLP R3 helix-turn-helix domain, an equivalent mutation to that in Osflp-1, affected the DNA-binding ability and transcriptional activity of OsFLP. Our results reveal that OsFLP functions with OsGSK1 and OsBZR1 in BR signaling to maintain optimal leaf angle by modulating the lignin deposition in mechanical tissues of the lamina joint.
Collapse
Affiliation(s)
- Huichao Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- International College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- International College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junxue Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- International College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhibin Fan
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- International College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxiao Qu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- International College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Yan
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- International College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunxia Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Kezhen Yang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Junjie Zou
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jie Le
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- International College, University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing 10093, China
| |
Collapse
|
36
|
Wang D, Li C, Liu H, Song W, Shi C, Li Q. Sweetpotato sucrose transporter IbSUT1 alters storage roots formation by regulating sucrose transport and lignin biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:950-965. [PMID: 39283988 DOI: 10.1111/tpj.17029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/25/2024] [Accepted: 09/03/2024] [Indexed: 11/01/2024]
Abstract
The formation and development of storage roots is the most important physiological process in sweetpotato production. Sucrose transporters (SUTs) regulate sucrose transport from source to sink organs and play important roles in growth and development of plants. However, whether SUTs involved in sweetpotato storage roots formation is so far unknown. In this study, we show that IbSUT1, a SUT, is localized to the plasma membrane. Overexpression of IbSUT1 in sweetpotato promotes the sucrose efflux rate from leaves, leading to increased sucrose levels in roots, thus induces lignin deposition in the stele, which inhibits the storage roots formation and compromises the yield. Heterologous expression of IbSUT1 in Arabidopsis significantly increases the sucrose accumulation and promotes lignification in the inflorescence stems. RNA-seq and biochemical analysis further demonstrated that IbMYB1 negatively regulates the expression of IbSUT1. Overexpression of IbMYB1 in Arabidopsis reduces the sucrose accumulation and lignification degree in the inflorescence stems. Moreover, co-overexpression of IbMYB1 and IbSUT1 restores the phenotype of lignin over-deposition in Arabidopsis. Collectively, our results reveal that IbSUT1 regulates source-sink sucrose transport and participates in the formation of sweetpotato storage roots and highlight the potential application of IbSUT1 in improving sweetpotato yield in the future.
Collapse
Affiliation(s)
- Dandan Wang
- Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Ministry of Agriculture and Rural Affairs, Sweetpotato Research Institute, CAAS, Xuzhou, 221131, Jiangsu, China
| | - Chengyang Li
- Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Ministry of Agriculture and Rural Affairs, Sweetpotato Research Institute, CAAS, Xuzhou, 221131, Jiangsu, China
| | - Hongjuan Liu
- State Key Laboratory of Crop Biology, College of Agronomic Science, Shandong Agricultural University, Tai'an, 271018, China
| | - Weihan Song
- Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Ministry of Agriculture and Rural Affairs, Sweetpotato Research Institute, CAAS, Xuzhou, 221131, Jiangsu, China
| | - Chunyu Shi
- State Key Laboratory of Crop Biology, College of Agronomic Science, Shandong Agricultural University, Tai'an, 271018, China
| | - Qiang Li
- Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Ministry of Agriculture and Rural Affairs, Sweetpotato Research Institute, CAAS, Xuzhou, 221131, Jiangsu, China
| |
Collapse
|
37
|
Xiao S, Ming Y, Zhou S, Dong X, Liu S, Zhang X, Zhang X, Hu Q, Zhu L. A GhLac1-centered transcriptional regulatory cascade mediates cotton resistance to Verticillium dahliae through the lignin biosynthesis pathway. Int J Biol Macromol 2024; 279:135042. [PMID: 39182876 DOI: 10.1016/j.ijbiomac.2024.135042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/01/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
The lignin biosynthesis pathway plays a crucial role in the defense response against V. dahliae in cotton, and it is essential to identify the key regulators in this pathway for disease-resistant breeding. In a previous study, the cotton laccase gene GhLac1 was identified as mediating plant broad-spectrum biotic stress tolerance by manipulating phenylpropanoid metabolism. However, the upstream master regulators and regulatory mechanism of lignin are still largely unknown. This study aims to identify the upstream regulators of GhLac1 and explore the molecular mechanism underlying cotton's disease resistance response to V. dahliae. Through the study, three WRKY, three MYB, and one APETALA2/ETHYLENE RESPONSIVE FACTOR (ERF) TFs were identified as differentially responding to V. dahliae infection in cotton. Among these TFs, GhWRKY30, GhWRKY41, GhMYB42, and GhTINY2 were found to directly bind to the GhLac1 promoter and activate its expression. Transient overexpression of these four TFs in cotton led to increased expression of GhLac1 and other the laccase family members, while knockdown of these TFs resulted in reduced lignin accumulation and increased susceptibility to V. dahliae. Additionally, GhWRKY30 and GhWRKY41 were observed to interact with themselves and with each other, synergistically transactivating the GhLac1 promoter. This study reveals a GhLac1-centered transcriptional regulatory cascade of lignin synthesis that contributes to cotton's defense response by modulating lignin metabolism.
Collapse
Affiliation(s)
- Shenghua Xiao
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, College of Agriculture, Guangxi University, Nanning 530005, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430000, Hubei, China.
| | - Yuqing Ming
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430000, Hubei, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430000, Hubei, China
| | - Shaoli Zhou
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, College of Agriculture, Guangxi University, Nanning 530005, China
| | - Xianman Dong
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, College of Agriculture, Guangxi University, Nanning 530005, China
| | - Shiming Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430000, Hubei, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430000, Hubei, China
| | - Xiaojun Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430000, Hubei, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430000, Hubei, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430000, Hubei, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430000, Hubei, China
| | - Qin Hu
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, College of Agriculture, Guangxi University, Nanning 530005, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430000, Hubei, China.
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430000, Hubei, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430000, Hubei, China.
| |
Collapse
|
38
|
Saddique MAB, Guan G, Hu B, Khan M, Amjad MD, Abbas S, Hussain Z, Maqsood MFK, Luo X, Ren M. Genome-wide computational analysis of the dirigent gene family in Solanum lycopersicum. Proteome Sci 2024; 22:10. [PMID: 39449003 PMCID: PMC11515309 DOI: 10.1186/s12953-024-00233-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Dirigent (DIR) genes play a key role in the development of organic products in plants. They confer conformational influence on processes that lack stereoselectivity and regioselectivity through processes that are mostly understood. They are required to produce lignans, which are a unique and widely distributed family of plant secondary metabolites with intriguing pharmacological characteristics and potential role in plant development. DIR genes are implicated in the process of lignification and protect plants from environmental stresses, including biotic and abiotic stresses. Nevertheless, no research has been performed on the DIR gene family in Solanum lycopersicum. This study provides detailed information on the DIR gene family in S. lycopersicum. METHODS AND RESULTS The conserved domain analysis, phylogenetic analysis, evolutionary adaptation, cis-acting elements, proteomic analysis, signal peptide detection, transmembrane potential analysis, sequence identity and similarity analysis, gene assembly, genomic localization, duplication of gene analysis, and evolutionary linkage of 31 potential DIR genes were studied. All these analyses provide a deep understanding of DIR genes in the S. lycopersicum genome that will provide a useful reference for further functional analysis of the DIR genes in S. lycopersicum. CONCLUSION This research provides an in-depth and comprehensive explanation of the detailed process and structural characterization of DIR genes in the genome of S. lycopersicum, laying the groundwork for future plant genetic engineering and crop development exploration. This work will provide valuable information for identifying DIR genes in higher plants and support future research on the DIR gene family.
Collapse
Affiliation(s)
- Muhammad Abu Bakar Saddique
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural2Science and Technology Center, Chengdu, 610213, China
- Department of Plant Biotechnology, National University of Sciences and Technology, Islamabad, Pakistan
| | - Ge Guan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural2Science and Technology Center, Chengdu, 610213, China
- School of Agricultural Science, Zhengzhou University, Zhengzhou, 450001, China
| | - Beibei Hu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural2Science and Technology Center, Chengdu, 610213, China
- School of Agricultural Science, Zhengzhou University, Zhengzhou, 450001, China
| | - Mudassir Khan
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, 20122, Milan, Italy
| | - Muhammad Dawood Amjad
- Department of Medical, Oral and Biotechnological Sciences, Università degli Studi 'G. d'Annunzio' Chieti - Pescara, Chieti, Italy
| | - Sana Abbas
- Department of Mathematics & Statistics, Pir Mehr Ali Shah Arid Agriculture University - PMAS AAUR, Rawalpindi, Pakistan
| | - Zahid Hussain
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural2Science and Technology Center, Chengdu, 610213, China
| | | | - Xiumei Luo
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural2Science and Technology Center, Chengdu, 610213, China.
- School of Agricultural Science, Zhengzhou University, Zhengzhou, 450001, China.
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural2Science and Technology Center, Chengdu, 610213, China.
- School of Agricultural Science, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
39
|
Du K, Xu Y, Wang N, Qin L, Tao J. Transcriptomic Remodeling Occurs During Cambium Activation and Xylem Cell Development in Taxodium ascendens. Curr Issues Mol Biol 2024; 46:11927-11941. [PMID: 39590302 PMCID: PMC11592639 DOI: 10.3390/cimb46110708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
Taxodium ascendens has been extensively cultivated in the wetlands of the Yangtze River in south China and has significantly contributed to ecology and timber production. Until now, research on T. ascendens genomics has yet to be conducted due to its large and complex genome, which hinders the development of T. ascendens genomic resources. Combined with the microstructural changes during cambium cell differentiation across various growth periods, we investigate the transcriptome expression and regulatory mechanisms governing cambium activity in T. ascendens. Using RNA sequencing (RNA-Seq) technology, we identified the genes involved in the cambium development of cells at three stages (dormancy, reactivation, and activity). These genes encode the regulatory and control factors associated with the cambial activity, cell division, cell expansion, and biosynthesis of cell wall components. Blast comparison revealed that three genes (TR_DN69961_c0_g1, TRINITY_DN17100_c1_g1, TRINITY_DN111727_c0_g1) from the MYB and NAC families might regulate transcription during lignin formation in wood thickening. These results illustrate the dynamic changes in the transcriptional network during vascular cambium development. Additionally, they shed light on the genetic regulation mechanism of secondary growth in T. ascendens and guide further elucidation of the candidate genes involved in regulating cambium differentiation and wood formation.
Collapse
Affiliation(s)
| | - Youming Xu
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China; (K.D.); (N.W.); (L.Q.); (J.T.)
| | | | | | | |
Collapse
|
40
|
Peng Q, Shrestha A, Zhang Y, Fan J, Yu F, Wang G. How lignin biosynthesis responds to nitrogen in plants: a scoping review. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:881-895. [PMID: 39032003 DOI: 10.1111/plb.13627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/31/2024] [Indexed: 07/22/2024]
Abstract
Nitrogen (N) plays a critical role in the functioning of key amino acids and synthetic enzymes responsible for the various stages of lignin biosynthesis. However, the precise mechanisms through which N influences lignin biosynthesis have not been fully elucidated. This scoping review explores how lignin biosynthesis responds to N in plants. A systematic search of the literature in several databases was conducted using relevant keywords. Only 44 of the 1842 selected studies contained a range of plant species, experimental conditions, and research approaches. Lignin content, structure, and biosynthetic pathways in response to N are discussed, and possible response mechanisms of lignin under low N are proposed. Among the selected studies, 64.52% of the studies reter to lignin content found a negative correlation between N availability and lignin content. Usually, high N decreases the lignin content, delays cell lignification, increases p-hydroxyphenyl propane (H) monomer content, and regulates lignin synthesis through the expression of key genes (PAL, 4CL, CCR, CAD, COMT, LAC, and POD) encoding miRNAs and transcription factors (e.g., MYB, bHLH). N deficiency enhances lignin synthesis through the accumulation of phenylpropanoids, phenolics, and soluble carbohydrates, and indirect changes in phytohormones, secondary metabolites, etc. This review provides new insights and important references for future studies on the regulation of lignin biosynthesis.
Collapse
Affiliation(s)
- Q Peng
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
- Department of Forest Resources Management, Faculty of Forestry, The University of British Columbia, Vancouver, BC, Canada
| | - A Shrestha
- Department of Forest Resources Management, Faculty of Forestry, The University of British Columbia, Vancouver, BC, Canada
| | - Y Zhang
- Department of Forest Resources Management, Faculty of Forestry, The University of British Columbia, Vancouver, BC, Canada
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - J Fan
- College of Horticulture, Jinling Institute of Technology, Nanjing, Jiangsu, China
| | - F Yu
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - G Wang
- Department of Forest Resources Management, Faculty of Forestry, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
41
|
Ranade SS, García-Gil MR. Lignin biosynthesis pathway repressors in gymnosperms: differential repressor domains as compared to angiosperms. FORESTRY RESEARCH 2024; 4:e031. [PMID: 39524426 PMCID: PMC11524278 DOI: 10.48130/forres-0024-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/08/2024] [Accepted: 08/26/2024] [Indexed: 11/16/2024]
Abstract
Lignin is a polyphenolic polymer present in the cell walls of specialized plant cell types in vascular plants that provides structural support and plays a major role in plant protection. The lignin biosynthesis pathway is regulated by transcription factors from the MYB (myeloblastosis) family. While several MYB members positively regulate lignin synthesis, only a few negatively regulate lignin synthesis. These lignin suppressors are well characterized in model plant species; however, their role has not been fully explored in gymnosperms. Lignin forms one of the major hurdles for the forest-based industry e.g. paper, pulp, and biofuel production. Therefore, the detailed mechanisms involved in the regulation of lignin synthesis are valuable, especially in conifers that form the major source of softwood for timber and paper production. In this review, the potential and differential domains present in the MYB suppressors in gymnosperms are discussed, along with their phylogenetic analysis. Sequence analysis revealed that the N-terminal regions of the MYB suppressor members were found to be conserved among the gymnosperms and angiosperms containing the R2, R3, and bHLH domains, while the C-terminal regions were found to be highly variable. The typical repressor motifs like the LxLxL-type EAR motif and the TLLLFR motif were absent from the C-terminal regions of MYB suppressors from most gymnosperms. However, although the gymnosperms lacked the characteristic repressor domains, a R2R3-type MYB member from Ginkgo was reported to repress the lignin biosynthetic pathway. It is proposed that gymnosperms possess unique kinds of repressors that need further functional validation.
Collapse
Affiliation(s)
- Sonali Sachin Ranade
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - María Rosario García-Gil
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| |
Collapse
|
42
|
Wang Z, Luo Z, Li Z, Liu P, He S, Yu S, Zhao H, Yang J, Zhang Z, Cao P, Jin S, Yang Y, Yang J. NtMYB27 acts downstream of NtBES1 to modulate flavonoids accumulation in response to UV-B radiation in tobacco. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2867-2884. [PMID: 39133822 DOI: 10.1111/tpj.16958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 06/18/2024] [Accepted: 07/13/2024] [Indexed: 11/15/2024]
Abstract
UV-B radiation can induce the accumulation of many secondary metabolites, including flavonoids, in plants to protect them from oxidative damage. BRI1-EMS-SUPPRESSOR1 (BES1) has been shown to mediate the biosynthesis of flavonoids in response to UV-B. However, the detailed mechanism by which it acts still needs to be further elucidated. Here, we revealed that UV-B significantly inhibited the transcription of multiple transcription factor genes in tobacco, including NtMYB27, which was subsequently shown to be a repressor of flavonoids synthesis in tobacco. We further demonstrated that NtBES1 directly binds to the E-box motifs present in the promoter of NtMYB27 to mediate its transcriptional repression upon UV-B exposure. The UV-B-repressed NtMYB27 could bind to the ACCT-containing element (ACE) in the promoters of Nt4CL and NtCHS and served as a modulator that promoted the biosynthesis of lignin and chlorogenic acid (CGA) but inhibited the accumulation of flavonoids in tobacco. The expression of NtMYB27 was also significantly repressed by heat stress, suggesting its putative roles in regulating heat-induced flavonoids accumulation. Taken together, our results revealed the role of NtBES1 and NtMYB27 in regulating the synthesis of flavonoids during the plant response to UV-B radiation in tobacco.
Collapse
Affiliation(s)
- Zhong Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy (BLSA), Beijing, 102209, China
| | - Zhaopeng Luo
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy (BLSA), Beijing, 102209, China
| | - Zefeng Li
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy (BLSA), Beijing, 102209, China
| | - Pingping Liu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy (BLSA), Beijing, 102209, China
| | - Shun He
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy (BLSA), Beijing, 102209, China
| | - Shizhou Yu
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, 550081, China
| | - Huina Zhao
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, 550081, China
| | - Jinchu Yang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, 450000, China
| | - Zhan Zhang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, 450000, China
| | - Peijian Cao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy (BLSA), Beijing, 102209, China
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongfeng Yang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, 450000, China
| | - Jun Yang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy (BLSA), Beijing, 102209, China
| |
Collapse
|
43
|
Li P, Xiang Q, Wang Y, Dong X. Characterizing seed dormancy in Epimedium brevicornu Maxim.: Development of novel chill models and determination of dormancy release mechanisms by transcriptomics. BMC PLANT BIOLOGY 2024; 24:757. [PMID: 39112934 PMCID: PMC11308244 DOI: 10.1186/s12870-024-05471-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
PURPOSE Epimedium brevicornu Maxim. is a perennial persistent C3 plant of the genus Epimedium Linn. in the family Berberaceae that exhibits severe physiological and morphological seed dormancy.We placed mature E. brevicornu seeds under nine stratification treatment conditions and explored the mechanisms of influence by combining seed embryo growth status assessment with related metabolic pathways and gene co-expression analysis. RESULTS We identified 3.9 °C as the optimum cold-stratification temperature of E. brevicornu seeds via a chilling unit (CU) model. The best treatment was variable-temperature stratification (10/20 °C, 12/12 h) for 4 months followed by low-temperature stratification (4 °C) for 3 months (4-3). A total of 63801 differentially expressed genes were annotated to 2587 transcription factors (TFs) in 17 clusters in nine treatments (0-0, 0-3, 1-3, 2-3, 3-3, 4-3, 4-2, 4-1, 4-0). Genes specifically highly expressed in the dormancy release treatment group were significantly enriched in embryo development ending in seed dormancy and fatty acid degradation, indicating the importance of these two processes. Coexpression analysis implied that the TF GRF had the most reciprocal relationships with genes, and multiple interactions centred on zf-HD and YABBY as well as on MYB, GRF, and TCP were observed. CONCLUSION In this study, analyses of plant hormone signal pathways and fatty acid degradation pathways revealed changes in key genes during the dormancy release of E. brevicornu seeds, providing evidence for the filtering of E. brevicornu seed dormancy-related genes.
Collapse
Affiliation(s)
- Pengshu Li
- College of Agronomy and Biotechnology, China Agricultural University, No. 2, Old Summer Palace West Road, Haidian District, Beijing, 100193, China
- College of Agronomy and Biotechnology, Sanya Institute of China Agricultural University, Sanya, 610101, Hainan, China
| | - Qiuyan Xiang
- College of Agronomy and Biotechnology, China Agricultural University, No. 2, Old Summer Palace West Road, Haidian District, Beijing, 100193, China
| | - Yue Wang
- Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China.
| | - Xuehui Dong
- College of Agronomy and Biotechnology, China Agricultural University, No. 2, Old Summer Palace West Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
44
|
Xue JS, Feng YF, Zhang MQ, Xu QL, Xu YM, Shi JQ, Liu LF, Wu XF, Wang S, Yang ZN. The regulatory mechanism of rapid lignification for timely anther dehiscence. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1788-1800. [PMID: 38888227 DOI: 10.1111/jipb.13715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/16/2024] [Indexed: 06/20/2024]
Abstract
Anther dehiscence is a crucial event in plant reproduction, tightly regulated and dependent on the lignification of the anther endothecium. In this study, we investigated the rapid lignification process that ensures timely anther dehiscence in Arabidopsis. Our findings reveal that endothecium lignification can be divided into two distinct phases. During Phase I, lignin precursors are synthesized without polymerization, while Phase II involves simultaneous synthesis of lignin precursors and polymerization. The transcription factors MYB26, NST1/2, and ARF17 specifically regulate the pathway responsible for the synthesis and polymerization of lignin monomers in Phase II. MYB26-NST1/2 is the key regulatory pathway responsible for endothecium lignification, while ARF17 facilitates this process by interacting with MYB26. Interestingly, our results demonstrate that the lignification of the endothecium, which occurs within approximately 26 h, is much faster than that of the vascular tissue. These findings provide valuable insights into the regulation mechanism of rapid lignification in the endothecium, which enables timely anther dehiscence and successful pollen release during plant reproduction.
Collapse
Affiliation(s)
- Jing-Shi Xue
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yi-Feng Feng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming-Qi Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Qin-Lin Xu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Ya-Min Xu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jun-Qin Shi
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Li-Fang Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xiao-Feng Wu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Shui Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhong-Nan Yang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
45
|
Li Q, Fu C, Yang B, Yu H, He H, Xu Q, Miao W, Liu R, Chen W, Zhang Z, Zou X, Hu B, Ou L. Stem lodging Resistance-1 controls stem strength by positively regulating the biosynthesis of cell wall components in Capsicum annuum L. HORTICULTURE RESEARCH 2024; 11:uhae169. [PMID: 39135730 PMCID: PMC11317896 DOI: 10.1093/hr/uhae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/14/2024] [Indexed: 08/15/2024]
Abstract
Lodging presents a significant challenge in cultivating high-yield crops with extensive above-ground biomass, yet the molecular mechanisms underlying this phenomenon in the Solanaceae family remain largely unexplored. In this study, we identified a gene, CaSLR1 (Capsicum annuum Stem Lodging Resistance 1), which encodes a MYELOBLASTOSIS (MYB) family transcription factor, from a lodging-affected C. annuum EMS mutant. The suppression of CaSLR1 expression in pepper led to notable stem lodging, reduced thickness of the secondary cell wall, and decreased stem strength. A similar phenotype was observed in tomato with the knockdown of SlMYB61, the orthologous gene to CaSLR1. Further investigations demonstrated that CaNAC6, a gene involved in secondary cell wall (SCW) formation, is co-expressed with CaSLR1 and acts as a positive regulator of its expression, as confirmed through yeast one-hybrid, dual-luciferase reporter assays, and electrophoretic mobility shift assays. These findings elucidate the CaNAC6-CaSLR1 module that contributes to lodging resistance, emphasizing the critical role of CaSLR1 in the lodging resistance regulatory network.
Collapse
Affiliation(s)
- Qing Li
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Yuelushan Lab, Changsha 410128, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Canfang Fu
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Yuelushan Lab, Changsha 410128, China
| | - Bozhi Yang
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Yuelushan Lab, Changsha 410128, China
| | - Huiyang Yu
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Yuelushan Lab, Changsha 410128, China
| | - Huan He
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Yuelushan Lab, Changsha 410128, China
| | - Qing Xu
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Yuelushan Lab, Changsha 410128, China
| | - Wu Miao
- Hunan Xiangyan Seed Industry Co., Ltd, Changsha, 410100, China
| | - Rongyun Liu
- Hunan Xiangyan Seed Industry Co., Ltd, Changsha, 410100, China
| | - Wenchao Chen
- Vegetable Research Institute, Hunan Academy of Agricultural Science, Changsha, 410125, China
| | - Zhuqing Zhang
- Vegetable Research Institute, Hunan Academy of Agricultural Science, Changsha, 410125, China
| | - Xuexiao Zou
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Yuelushan Lab, Changsha 410128, China
| | - Bowen Hu
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Yuelushan Lab, Changsha 410128, China
| | - Lijun Ou
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Yuelushan Lab, Changsha 410128, China
| |
Collapse
|
46
|
Kim JS, Chae S, Jo JE, Kim KD, Song SI, Park SH, Choi SB, Jun KM, Shim SH, Jeon JS, Lee GS, Kim YK. OsMYB14, an R2R3-MYB transcription factor, regulates plant height through the control of hormone metabolism in rice. Mol Cells 2024; 47:100093. [PMID: 39004308 PMCID: PMC11342784 DOI: 10.1016/j.mocell.2024.100093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024] Open
Abstract
Plant growth must be regulated throughout the plant life cycle. The myeloblastosis (MYB) transcription factor (TF) family is one of the largest TF families and is involved in metabolism, lignin biosynthesis, and developmental processes. Here, we showed that OsMYB14, a rice R2R3-MYB TF, was expressed in leaves and roots, especially in rice culm and panicles, and that it localized to the nucleus. Overexpression of OsMYB14 (OsMYB14-ox) in rice resulted in a 30% reduction in plant height compared to that of the wild type (WT), while the height of the osmyb14-knockout (osmyb14-ko) mutant generated using the CRISPR/Cas9 system was not significantly different. Microscopic observations of the first internode revealed that the cell size did not differ significantly among the lines. RNA sequencing analysis revealed that genes associated with plant development, regulation, lipid metabolism, carbohydrate metabolism, and gibberellin (GA) and auxin metabolic processes were downregulated in the OsMYB14-ox line. Hormone quantitation revealed that inactive GA19 accumulated in OsMYB14-ox but not in the WT or knockout plants, suggesting that GA20 generation was repressed. Indole-3-acetic acid (IAA) and IAA-aspartate accumulated in OsMYB14-ox and osmyb14-ko, respectively. Indeed, real-time PCR analysis revealed that the expression of OsGA20ox1, encoding GA20 oxidase 1, and OsGH3-2, encoding IAA-amido synthetase, was downregulated in OsMYB14-ox and upregulated in osmyb14-ko. A protein-binding microarray revealed the presence of a consensus DNA-binding sequence, the ACCTACC-like motif, in the promoters of the OsGA20ox1 and GA20ox2 genes. These results suggest that OsMYB14 may act as a negative regulator of biological processes affecting plant height in rice by regulating GA biosynthesis and auxin metabolism.
Collapse
Affiliation(s)
- Joung Sug Kim
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Songhwa Chae
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Jae Eun Jo
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Kyung Do Kim
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Sang-Ik Song
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Su Hyun Park
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Sang-Bong Choi
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Kyong Mi Jun
- Genomics Genetics Institute, GreenGene Biotech Inc, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Su-Hyeon Shim
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, Gyeonggi-do 17104, Republic of Korea
| | - Jong-Seong Jeon
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, Gyeonggi-do 17104, Republic of Korea
| | - Gang-Seob Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju, Jeollabuk-do 54875, Republic of Korea
| | - Yeon-Ki Kim
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea.
| |
Collapse
|
47
|
Fan Y, Bai J, Wu S, Zhang M, Li J, Lin R, Hu C, Jing B, Wang J, Xia X, Hu Z, Yu J. The RALF2-FERONIA-MYB63 module orchestrates growth and defense in tomato roots. THE NEW PHYTOLOGIST 2024; 243:1123-1136. [PMID: 38831656 DOI: 10.1111/nph.19865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/23/2024] [Indexed: 06/05/2024]
Abstract
Plant secreted peptides RAPID ALKALINISATION FACTORs (RALFs), which act through the receptor FERONIA (FER), play important roles in plant growth. However, it remains unclear whether and how RALF-FER contributes to the trade-off of plant growth-defense. Here, we used a variety of techniques such as CRISPR/Cas9, protein-protein interaction and transcriptional regulation methods to investigate the role of RALF2 and its receptor FER in regulating lignin deposition, root growth, and defense against Fusarium oxysporum f. sp. lycopersici (Fol) in tomato (Solanum lycopersicum). The ralf2 and fer mutants show reduced primary root length, elevated lignin accumulation, and enhanced resistance against Fol than the wild-type. FER interacts with and phosphorylates MYB63 to promote its degradation. MYB63 serves as an activator of lignin deposition by regulating the transcription of dirigent protein gene DIR19. Mutation of DIR19 suppresses lignin accumulation, and reverses the short root phenotype and Fol resistance in ralf2 or fer mutant. Collectively, our results demonstrate that the RALF2-FER-MYB63 module fine-tunes root growth and resistance against Fol through regulating the deposition of lignin in tomato roots. The study sheds new light on how plants maintain the growth-defense balance via RALF-FER.
Collapse
Affiliation(s)
- Yanfen Fan
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Junyu Bai
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Shaofang Wu
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Min Zhang
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jiajia Li
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Rui Lin
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Chaoyi Hu
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Beiyu Jing
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jiachun Wang
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xiaojian Xia
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Zhangjian Hu
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jingquan Yu
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
48
|
Cheng T, Ren C, Xu J, Wang H, Wen B, Zhao Q, Zhang W, Yu G, Zhang Y. Genome-wide analysis of the common bean (Phaseolus vulgaris) laccase gene family and its functions in response to abiotic stress. BMC PLANT BIOLOGY 2024; 24:688. [PMID: 39026161 PMCID: PMC11264805 DOI: 10.1186/s12870-024-05385-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Laccase (LAC) gene family plays a pivotal role in plant lignin biosynthesis and adaptation to various stresses. Limited research has been conducted on laccase genes in common beans. RESULTS 29 LAC gene family members were identified within the common bean genome, distributed unevenly in 9 chromosomes. These members were divided into 6 distinct subclades by phylogenetic analysis. Further phylogenetic analyses and synteny analyses indicated that considerable gene duplication and loss presented throughout the evolution of the laccase gene family. Purified selection was shown to be the major evolutionary force through Ka / Ks. Transcriptional changes of PvLAC genes under low temperature and salt stress were observed, emphasizing the regulatory function of these genes in such conditions. Regulation by abscisic acid and gibberellins appears to be the case for PvLAC3, PvLAC4, PvLAC7, PvLAC13, PvLAC14, PvLAC18, PvLAC23, and PvLAC26, as indicated by hormone induction experiments. Additionally, the regulation of PvLAC3, PvLAC4, PvLAC7, and PvLAC14 in response to nicosulfuron and low-temperature stress were identified by virus-induced gene silence, which demonstrated inhibition on growth and development in common beans. CONCLUSIONS The research provides valuable genetic resources for improving the resistance of common beans to abiotic stresses and enhance the understanding of the functional roles of the LAC gene family.
Collapse
Affiliation(s)
- Tong Cheng
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
- National Coarse Cereals Engineering Research Center, Daqing, Heilongjiang, China
| | - Chunyuan Ren
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Jinghan Xu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Huamei Wang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
- National Coarse Cereals Engineering Research Center, Daqing, Heilongjiang, China
| | - Bowen Wen
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Qiang Zhao
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
- National Coarse Cereals Engineering Research Center, Daqing, Heilongjiang, China
| | - Wenjie Zhang
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Gaobo Yu
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China.
| | - Yuxian Zhang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China.
- National Coarse Cereals Engineering Research Center, Daqing, Heilongjiang, China.
| |
Collapse
|
49
|
Chen C, Cai Y, He B, Zhang Q, Liang D, Wang Y, Chen H, Yao J. Genome-Wide Identification, Evolution, and Expression Analysis of the DIR Gene Family in Schima superba. Int J Mol Sci 2024; 25:7467. [PMID: 39000574 PMCID: PMC11242867 DOI: 10.3390/ijms25137467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Schima superba, commonly known as the Chinese guger tree, is highly adaptable and tolerant of poor soil conditions. It is one of the primary species forming the evergreen broad-leaved forests in southern China. Dirigent proteins (DIRs) play crucial roles in the synthesis of plant lignin and lignans, secondary metabolism, and response to adversity stress. However, research on the DIR gene family in S. superba is currently limited. This study identified 24 SsDIR genes, categorizing them into three subfamilies. These genes are unevenly distributed across 13 chromosomes, with 83% being intronless. Collinearity analysis indicated that tandem duplication played a more significant role in the expansion of the gene family compared to segmental duplication. Additionally, we analyzed the expression patterns of SsDIRs in different tissues of S. superba. The SsDIR genes exhibited distinct expression patterns across various tissues, with most being specifically expressed in the roots. Further screening identified SsDIR genes that may regulate drought stress, with many showing differential expression under drought stress conditions. In the promoter regions of SsDIRs, various cis-regulatory elements involved in developmental regulation, hormone response, and stress response were identified, which may be closely related to their diverse regulatory functions. This study will contribute to the further functional identification of SsDIR genes, providing insights into the biosynthetic pathways of lignin and lignans and the mechanisms of plant stress resistance.
Collapse
Affiliation(s)
- Changya Chen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Silviculture Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China
| | - Yanling Cai
- Guangdong Provincial Key Laboratory of Silviculture Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China
| | - Boxiang He
- Guangdong Provincial Key Laboratory of Silviculture Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China
| | - Qian Zhang
- Guangdong Provincial Key Laboratory of Silviculture Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China
| | - Dongcheng Liang
- Guangdong Provincial Key Laboratory of Silviculture Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China
| | - Yingli Wang
- Guangdong Provincial Key Laboratory of Silviculture Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China
| | - Hongpeng Chen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jun Yao
- Guangdong Provincial Key Laboratory of Silviculture Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China
| |
Collapse
|
50
|
Yang Z, Wang J, Wang W, Zhang H, Wu Y, Gao X, Gao D, Li X. Physiological, cytological and multi-omics analysis revealed the molecular response of Fritillaria cirrhosa to Cd toxicity in Qinghai-Tibet Plateau. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134611. [PMID: 38754230 DOI: 10.1016/j.jhazmat.2024.134611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/05/2024] [Accepted: 05/11/2024] [Indexed: 05/18/2024]
Abstract
Fritillaria cirrhosa, an endangered plant endemic to plateau regions, faces escalating cadmium (Cd) stress due to pollution in the Qinghai-Tibet Plateau. This study employed physiological, cytological, and multi-omics techniques to investigate the toxic effects of Cd stress and detoxification mechanisms of F. cirrhosa. The results demonstrated that Cd caused severe damage to cell membranes and organelles, leading to significant oxidative damage and reducing photosynthesis, alkaloid and nucleoside contents, and biomass. Cd application increased cell wall thickness by 167.89% in leaves and 445.78% in bulbs, leading to weight percentage of Cd increases of 76.00% and 257.14%, respectively. PER, CESA, PME, and SUS, genes responsible for cell wall thickening, were significantly upregulated. Additionally, the levels of metabolites participating in the scavenging of reactive oxygen species, including oxidized glutathione, D-proline, L-citrulline, and putrescine, were significantly increased under Cd stress. Combined multi-omics analyses revealed that glutathione metabolism and cell wall biosynthesis pathways jointly constituted the detoxification mechanism of F. cirrhosa in response to Cd stress. This study provides a theoretical basis for further screening of new cultivars for Cd tolerance and developing appropriate cultivation strategies to alleviate Cd toxicity.
Collapse
Affiliation(s)
- Zemin Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China.
| | - Jialu Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Wenjun Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China.
| | - Haobo Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Yuhan Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Xusheng Gao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Dan Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Xiwen Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|