1
|
Kadiyala K, Konjengbam NS, M J, Rai M, Tyagi W, Mahato AK. Molecular signatures that translate across omics layers and crops under high aluminium and low phosphorus stress facilitate the identification of reliable molecular targets for genotyping in lentil. Funct Integr Genomics 2025; 25:52. [PMID: 40042647 DOI: 10.1007/s10142-025-01542-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/31/2024] [Accepted: 01/20/2025] [Indexed: 05/13/2025]
Abstract
Aluminium toxicity and phosphorus deficiency are co-existing characteristics of low pH stress that significantly affect the grain yield of crops. The increasing acidity of Indian soils potentially limits the cultivable area for lentil (Lens culinaris), the third most widely consumed pulse. Breeding for tolerance requires an understanding of interdependent biological responses, but the molecular characterization of integrated tolerance remains elusive. Therefore, this study aimed to integrate high aluminium and low phosphorus stress responsive associations across the genomics, transcriptomics, proteomics, and metabolomics of multiple crop species. The overlapping molecular signatures were fine mapped to 23 candidates that serve multiple regulatory roles crucial for cellular homeostasis. Most of these genes have not been adequately discussed in the context of soil acidity tolerance. Thus, a multi-omics guided regulatory framework was developed to provide new insights into tolerance mechanisms. In silico genotyping of 29 lentil genotypes across 588 genes related to transomics loci yielded seven nonsynonymous and three synonymous variants likely associated with their differential response to stress. The results suggest comprehensive genotyping of multi-omics specific targets to identify potential candidates for marker-trait association studies. In conclusion, data-driven exploratory analysis of multi-omics variants highlights potential biomarkers as targets for genetically improving complex biological traits.
Collapse
Affiliation(s)
- Kavya Kadiyala
- School of Crop Improvement, College of Post Graduate Studies in Agricultural Sciences (CPGSAS), Central Agricultural University (Imphal), Umiam, Meghalaya, 793103, India.
| | - Noren Singh Konjengbam
- School of Crop Improvement, College of Post Graduate Studies in Agricultural Sciences (CPGSAS), Central Agricultural University (Imphal), Umiam, Meghalaya, 793103, India
| | - James M
- School of Crop Improvement, College of Post Graduate Studies in Agricultural Sciences (CPGSAS), Central Agricultural University (Imphal), Umiam, Meghalaya, 793103, India
| | - Mayank Rai
- School of Crop Improvement, College of Post Graduate Studies in Agricultural Sciences (CPGSAS), Central Agricultural University (Imphal), Umiam, Meghalaya, 793103, India
- Post Graduate College of Agriculture, Dr. Rajendra Prasad Central Agricultural University (RPCAU), Pusa, Samastipur, Bihar, 848125, India
| | - Wricha Tyagi
- School of Crop Improvement, College of Post Graduate Studies in Agricultural Sciences (CPGSAS), Central Agricultural University (Imphal), Umiam, Meghalaya, 793103, India
- Research Program- Accelerated Crop Improvement (ACI), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, 502324, India
| | - Ajay Kumar Mahato
- Genome informatics, The Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad, Telangana, 500039, India
| |
Collapse
|
2
|
Huang CF, Ma Y. Aluminum resistance in plants: A critical review focusing on STOP1. PLANT COMMUNICATIONS 2025; 6:101200. [PMID: 39628052 PMCID: PMC11897453 DOI: 10.1016/j.xplc.2024.101200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/02/2024] [Accepted: 12/02/2024] [Indexed: 01/26/2025]
Abstract
Aluminum (Al) toxicity poses a significant challenge for plant production on acidic soils, which constitute approximately 30% of the world's ice-free land. To combat Al toxicity, plants have evolved both external and internal detoxification mechanisms. The zinc-finger transcription factor STOP1 (SENSITIVE TO PROTON RHIZOTOXICITY 1) plays a critical and conserved role in Al resistance by inducing genes involved in both external exclusion and internal detoxification mechanisms. Recent studies have uncovered multiple layers of post-transcriptional regulation of STOP1 and have elucidated mechanisms by which plants sense Al and activate signaling cascades that regulate STOP1 function. This review offers a comprehensive overview of the mechanisms through which STOP1 and its homologs confer Al resistance in plants, with a particular focus on Arabidopsis thaliana and rice. Additionally, we discuss recent advances and future perspectives in understanding the post-transcriptional regulation of STOP1, as well as the Al sensing and signaling pathways upstream of STOP1.
Collapse
Affiliation(s)
- Chao-Feng Huang
- Key Laboratory of Plant Design, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| | - Yingtang Ma
- Key Laboratory of Plant Design, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Cao S, Peng L, Yu J, Li Z, Wang Z, Ma D, Sun X, Zheng H, Zhang B, Chen X, Chen Z, Xia J. Overexpression of OsGASR1 promotes Al tolerance in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112294. [PMID: 39414150 DOI: 10.1016/j.plantsci.2024.112294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/30/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
Aluminum (Al) toxicity in acid soils poses a significant threat to rice, which exhibits highly complex genetic mechanisms for both external detoxification and internal tolerance among cereal crops. Although several genes involved Al tolerance have been identified, the molecular mechanisms underlying Al tolerance in rice remain to be fully explored. Here, we functionally characterized the gibberellin-stimulated transcription gene OsGASR1, which encodes a small cysteine-rich peptide localized to the nucleus and cytoplasm and plays a significant role in Al tolerance in rice. The expression of OsGASR1 is rapidly up-regulated by Al in rice root tips but not in the shoots. Its expression is not regulated by the central regulator Aluminum Resistance Transcription Factor 1 (ART1), indicating that OsGASR1 functions as a novel gene in rice Al resistance independent of ART1. Knockout of OsGASR1 reduced root length but did not affect Al tolerance in rice, whereas overexpression of OsGASR1 enhanced Al tolerance without affecting Al distribution and accumulation and promoted the accumulation of reactive oxygen species (ROS) in the root tips. RNA-seq analysis revealed that overexpression of OsGASR1 upregulated the expression of genes associated with cell wall modification, oxidative stress, and Al tolerance. Collectively, these findings suggest that OsGASR1 is involved in Al tolerance in rice independently of ART1, and the up-regulation of this gene is necessary for rice Al tolerance.
Collapse
Affiliation(s)
- Shuling Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Liyun Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jinyu Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Ziheng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Zhigang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Dan Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Xiaoqian Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Huawei Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Baolei Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Xingxiang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Zhufeng Chen
- Center for Biological Science and Technology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, ZhuhaiMacao Biotechnology Joint Laboratory, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai 519087, China.
| | - Jixing Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
4
|
Yang C, Lu X, Du D, Liang Z, Li C, Hu K, Wang H, Cheng Y, Lian T, Nian H, Ma Q. GsMYB10 encoding a MYB-CC transcription factor enhances the tolerance to acidic aluminum stress in soybean. BMC PLANT BIOLOGY 2024; 24:1251. [PMID: 39725892 DOI: 10.1186/s12870-024-06004-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND MYB transcription factors (TFs) play crucial roles in the response to diverse abiotic and biotic stress factors in plants. In this study, the GsMYB10 gene encoding a MYB-CC transcription factor was cloned from wild soybean BW69 line. However, there is less report on the aluminum (Al)-tolerant gene in this subfamily. RESULTS The GsMYB10 gene was up-regulated by acidic aluminum stress and rich in the roots with a constitutive expression pattern in soybean. It was found that GsMYB10 protein contains the MYB and coiled-coil (CC) domains, localizes in the nucleus and holds transcriptional activity. The analysis of the transgenic phenotype revealed that the taproot length and root fresh weights of the GsMYB10-OE plants were greater than those of the wild type when subjected to AlCl3 treatments. While the accumulation of Al3+ in root tip of GsMYB10 transgenic plants (59.37 ± 3.59 µg/g) significantly reduced compared with that of wild type (80.40 ± 3.16 µg/g) which were shallowly stained by hematoxylin under the treatments of AlCl3. Physiological indexes showed that the proline content significantly increased 39-45% and the malondialdehyde content significantly reduced 37-42% in GsMYB10-OE plants compared with that of wild type. Transcriptomic analysis showed that overexpression of GsMYB10 induced a large number of differentially expressed genes (DEGs) with Al-treatment, which were related to wall modification related genes included PGs (such as Glyma.19g006200, Glyma.05g005800), XTHs (such as Glyma.12g080100, Glyma.12g101800, Glyma.08g093900 and Glyma.13g322500), NRAMPs and ABCs. CONCLUSIONS In summary, the data presented in this paper indicate that GsMYB10, as a new soybean MYB-CC TF, is a positive regulator and increases the adaptability of soybeans to acidic aluminum stress. The findings will contribute to the understanding of soybean response to acidic aluminum stress.
Collapse
Affiliation(s)
- Ce Yang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Xiang Lu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Dan Du
- Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Zhongyi Liang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Cheng Li
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Kang Hu
- Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Hongjie Wang
- Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Yanbo Cheng
- Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Tengxiang Lian
- Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| | - Qibin Ma
- Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
- Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| |
Collapse
|
5
|
Liu G, Li D, Mai H, Lin X, Lu X, Chen K, Wang R, Riaz M, Tian J, Liang C. GmSTOP1-3 regulates flavonoid synthesis to reduce ROS accumulation and enhance aluminum tolerance in soybean. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136074. [PMID: 39383698 DOI: 10.1016/j.jhazmat.2024.136074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
Aluminum (Al) toxicity is a significant limiting factor for crop production in acid soils. The functions and regulatory mechanisms of transcription factor STOP1 (Sensitive to Proton Rhizotoxicity 1) family genes in Al-tolerance have been widely studied in many plant species, except for soybean. Here, expression of GmSTOP1-3 was significantly enhanced by Al stress in soybean roots. Overexpression of GmSTOP1-3 resulted in enhanced root elongation and decreased Al content, which was accompanied by increased antioxidant capacity under Al treatment. Furthermore, RNA-seq identified 498 downstream genes of GmSTOP1-3, including genes involved in flavonoid biosynthesis. Among them, the expression of chalcone synthase (GmCHS) and isoflavone synthase (GmIFS) were highly enhanced by GmSTOP1-3 overexpression. Further quantitative flavonoid metabolome analysis showed that overexpression of GmSTOP1-3 significantly increased the content of naringenin chalcone, naringenin, and genistein in soybean roots under Al treatment, which positively correlated with the expression level of the genes relative to flavonoid biosynthesis. Notably, genistein had a significant positive correlation with the expression levels of GmIFS. Combination of Dual Luciferase Complementation (LUC) and Electrophoretic Mobility Shift Assays (EMSA) revealed that GmSTOP1-3 directly bound to the promoters of GmCHS/GmIFS and activated both genes' transcription. Taken together, these results suggest that GmSTOP1-3 enhances soybean Al tolerance partially through regulating the flavonoid synthesis.
Collapse
Affiliation(s)
- Guoxuan Liu
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China.
| | - Dongqian Li
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China.
| | - Huafu Mai
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China.
| | - Xiaoying Lin
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China.
| | - Xing Lu
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China.
| | - Kang Chen
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China.
| | - Ruotong Wang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China.
| | - Muhammad Riaz
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, PR China.
| | - Jiang Tian
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China.
| | - Cuiyue Liang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
6
|
Zhu H, Chen W, Yang Z, Zeng C, Fan W, Yang J. SlSTOP1-regulated SlHAK5 expression confers Al tolerance in tomato by facilitating citrate secretion from roots. HORTICULTURE RESEARCH 2024; 11:uhae282. [PMID: 39545040 PMCID: PMC11561044 DOI: 10.1093/hr/uhae282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/22/2024] [Indexed: 11/17/2024]
Abstract
SENSITIVE TO PROTON RHIZOTOXICITY 1 (STOP1) is a core transcription factor that regulates the expression of aluminum (Al) resistance genes to manage Al toxicity in plants. However, the genome-wide roles of SlSTOP1 in the Al stress response of tomato (Solanum lycopersicum) remain largely unknown. Here, we report that SlSTOP1 is crucial for Al tolerance in tomato, as loss-of-function mutants of SlSTOP1 displayed hypersensitivity to Al stress. Aluminum stress had no effect on SlSTOP1 mRNA expression, but promoted accumulation of SlSTOP1 protein in the nucleus. Through integrated DNA affinity purification sequencing and RNA sequencing analysis, we identified 39 SlSTOP1-targeted Al-responsive genes, some of which are homologous to known Al resistance genes in other plant species, suggesting that these SlSTOP1-targeted genes play essential roles in Al resistance in tomato. Furthermore, using peak enrichment analysis of SlSTOP1-targeted sequences, we identified a cis-acting element bound by SlSTOP1 and validated this finding via dual-luciferase reporter and electrophoretic mobility shift assay (EMSA). Additionally, we demonstrated SlHAK5 is one of direct targets of SlSTOP1 and functionally characterized it in terms of Al stress tolerance. Compared with wild-type plants, Slhak5 mutants developed by CRISPR/Cas9 technology presented increased sensitivity to Al stress, which was associated with reduced citrate secretion from the roots. Together, our findings demonstrate that SlSTOP1 directly interacts with cis-acting elements located in the promoters of target genes involved in diverse pathways contributing to Al resistance in tomato.
Collapse
Affiliation(s)
- Huihui Zhu
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, No. 452, Fengyuan Road, Panlong District, Kunming 650201, China
- State Key Laboratory of Plant Physiology and Biochemistry, Institute of Plant Biology, College of Life Sciences, Zhejiang University, No. 866, Yuhangtang Road, Xihu District, Hangzhou 310058, China
| | - Weiwei Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, No. 2318, Yuhangtang Road, Xihu District, Hangzhou 311121, China
| | - Zheng’an Yang
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, No. 452, Fengyuan Road, Panlong District, Kunming 650201, China
| | - Congfang Zeng
- Agricultural and Rural Service Center, Huangguayuan Town, Yuanmou County 651308, Chuxiong Yi Autonomous Prefecture, China
| | - Wei Fan
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, No. 452, Fengyuan Road, Panlong District, Kunming 650201, China
| | - Jianli Yang
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, No. 452, Fengyuan Road, Panlong District, Kunming 650201, China
| |
Collapse
|
7
|
Zhu XF, Shen RF. Towards sustainable use of acidic soils: Deciphering aluminum-resistant mechanisms in plants. FUNDAMENTAL RESEARCH 2024; 4:1533-1541. [PMID: 39734518 PMCID: PMC11670695 DOI: 10.1016/j.fmre.2023.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 12/31/2024] Open
Abstract
The widespread occurrence of acidic soils presents a major challenge for agriculture, as it hampers productivity via a combination of mineral toxicity, nutrient deficiency, and poor water uptake. Conventional remediation methods, such as amending the soil with lime, magnesium, or calcium, are expensive and not environmentally friendly. The most effective method to mitigate soil acidity is the cultivation of acid-tolerant cultivars. The ability of plants to tolerate acidic soils varies significantly, and a key factor influencing this tolerance is aluminum (Al) toxicity. Therefore, understanding the physiological, molecular, and genetic underpinnings of Al tolerance is essential for the successful breeding of acid-tolerant crops. Different tolerance mechanisms are regulated by various genes and quantitative trait loci in various plant species, and molecular markers have been developed to facilitate gene cloning and to support marker-assisted selection for breeding Al-tolerant cultivars. This study provides a comprehensive review of the current developments in understanding the physiological and molecular mechanisms underlying Al resistance. Through the application of genome-wide association methods, it is expected that new Al-resistant genes can be identified and utilized to cultivate Al-resistant varieties through intercrossing, backcrossing, and molecular marker-assisted selection, promoting the sustainable use of acidic soils.
Collapse
Affiliation(s)
- Xiao Fang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100839, China
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100839, China
| |
Collapse
|
8
|
Wu L, Chen J, Yan T, Fu B, Wu D, Kuang L. Multi-omics analysis unveils early molecular responses to aluminum toxicity in barley root tip. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109209. [PMID: 39437666 DOI: 10.1016/j.plaphy.2024.109209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Barley (Hordeum vulgare L.) is widely cultivated across diverse soil types, including acidic soils where aluminum (Al) toxicity is the major limiting factor. The relative Al sensitivity of barley highlights the need for a deeper understanding of early molecular responses in root tip (the primary target of Al toxicity) to develop Al-tolerant cultivars. Integrative N6-methyladenosine (m6A) modification, transcriptomic, and metabolomic analyses revealed that elevated auxin and jasmonic acid (JA) levels modulated Al-induced root growth inhibition by repressing genes involved in cell elongation and proliferation. Additionally, these pathways promoted pectin demethylation via up-regulation of genes encoding pectin methylesterases (PMEs). The up-regulation of citrate efflux transporter genes including Al-activated citrate transporter 1 (HvAACT1), and ATP-binding cassette (ABC) transporters like HvABCB25, facilitated Al exclusion and vacuolar sequestration. Enhanced activity within the phenylpropanoid pathway supported antioxidant defenses and internal chelation through the production of specific flavonoids and altered cell wall composition via lignin unit modulation. Notably, several Al-responsive genes, including HvABCB25 and transcription factors (TFs), exhibited m6A modification changes, with two microtubule associated protein 65 (MAP65) members displaying opposing regulatory patterns at both transcriptional and m6A levels, underscoring the crucial role of m6A modification in gene expression regulation. This comprehensive study provides valuable insights into the epitranscriptomic regulation of gene expression and metabolite accumulation in barley root tip under Al stress.
Collapse
Affiliation(s)
- Liyuan Wu
- Department of Architectural Engineering, Yuanpei College, Shaoxing University, Shaoxing, 312000, China
| | - Jian Chen
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Tao Yan
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Baixiang Fu
- Department of Architectural Engineering, Yuanpei College, Shaoxing University, Shaoxing, 312000, China
| | - Dezhi Wu
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Liuhui Kuang
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
9
|
Chowra UK, Regon P, Kobayashi Y, Koyama H, Panda SK. Characterization of Al 3+-toxicity responses and molecular mechanisms underlying organic acid efflux in Vigna mungo (L.) Hepper. PLANTA 2024; 260:116. [PMID: 39400747 DOI: 10.1007/s00425-024-04547-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024]
Abstract
Aluminium (Al3+) toxicity in acidic soils poses a significant challenge for crop cultivation and reduces crop productivity. The primary defense mechanism against Al3+ toxicity involves the activation of organic acid secretion. In this study, responses of 9 Vigna mungo cultivars to Al3+ toxicity were investigated, with a particular emphasis on the root system and crucial genes involved in Al3+ tolerance using molecular cloning and expression analysis. Sensitive blackgram-KM2 cultivars exposed to 100-µM Al3+ toxicity for 72 h exhibited a root-growth inhibition of approximately 66.17%. Significant loss of membrane integrity and structural deformative roots were found to be the primary symptoms of Al3+ toxicity in blackgram. MATE (Multidrug and Toxic Compound Extrusion) and ALS3 (Aluminium Sensitive 3) genes were successfully cloned from a sensitive blackgram cv KM2 with phylogenetic analysis revealing their evolutionary relationship to Vigna radiata and Glycine max. The MATE gene is mainly localized in the plasma membrane, and highly expressed under Al3+, thus suggesting its role in transports of citrate-Al3+ complexes, and detoxifying Al3+ within plant cells. In addition, ALS3 was also induced under Al3+ toxicity, which codes the UDP-glucose transporter and is required for the maintenance of ions homeostasis. In summary, this study highlights the understanding of Al3+ toxicity and underlying molecular mechanisms linked to the efflux of organic acid in blackgram, ultimately aiding the framework for the development of strategies to enhance the resilience of blackgram and other pulse crops in Al-rich soils.
Collapse
Affiliation(s)
| | - Preetom Regon
- Department of Entomology, Agricultural Research Organization, The Volcani Institute, 7505101, Rishon LeZion, Israel
| | - Yuriko Kobayashi
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Hiroyuki Koyama
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Sanjib Kumar Panda
- Plant Functional Genomics and Molecular Biology Laboratory, Department of Biochemistry, Central University of Rajasthan, Ajmer, Bandarsindri, Rajasthan, 305817, India.
| |
Collapse
|
10
|
Fan N, Li X, Xie W, Wei X, Fang Q, Xu J, Huang CF. Modulation of external and internal aluminum resistance by ALS3-dependent STAR1-mediated promotion of STOP1 degradation. THE NEW PHYTOLOGIST 2024; 244:511-527. [PMID: 39060950 DOI: 10.1111/nph.19985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024]
Abstract
The ALMT1 transporter aids malate secretion, chelating Al3+ ions to form nontoxic Al-malate complexes, believed to exclude Al from the roots. However, the extent to which malate secreted by ALMT1 is solely used for the exclusion of Al3+ or can be reutilized by plant roots for internal Al tolerance remains uncertain. In our investigation, we explored the impact of malate secretion on both external and internal Al resistance in Arabidopsis thaliana. Additionally, we delved into the mechanism by which the tonoplast-localized bacterial-type ATP-binding cassette (ABC) transporter complex STAR1/ALS3 promotes the degradation of the Al resistance transcription factor STOP1 to regulate ALMT1 expression. Our study demonstrates that the level of secreted malate influences whether the Al-malate complex is excluded from the roots or transported into root cells. The nodulin 26-like intrinsic protein (NIP) subfamily members NIP1;1 and NIP1;2, located in the plasma membrane, coordinate with STAR1/ALS3 to facilitate Al-malate transport from root apoplasm to the symplasm and eventually to the vacuoles for the internal Al detoxification. ALS3-dependent STAR1 interacts with and promotes the degradation of STOP1, regulating malate exudation. Our findings demonstrate the dual roles of malate exudation in external Al exclusion and Al absorption for internal Al detoxification.
Collapse
Affiliation(s)
- Ni Fan
- National Key Laboratory of Plant Molecular Genetics, Key Laboratory of Plant Design, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinbo Li
- National Key Laboratory of Plant Molecular Genetics, Key Laboratory of Plant Design, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenxiang Xie
- National Key Laboratory of Plant Molecular Genetics, Key Laboratory of Plant Design, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiang Wei
- National Key Laboratory of Plant Molecular Genetics, Key Laboratory of Plant Design, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Qiu Fang
- National Key Laboratory of Plant Molecular Genetics, Key Laboratory of Plant Design, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jingyi Xu
- National Key Laboratory of Plant Molecular Genetics, Key Laboratory of Plant Design, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Chao-Feng Huang
- National Key Laboratory of Plant Molecular Genetics, Key Laboratory of Plant Design, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
11
|
Fang C, Wu J, Liang W. Systematic Investigation of Aluminum Stress-Related Genes and Their Critical Roles in Plants. Int J Mol Sci 2024; 25:9045. [PMID: 39201731 PMCID: PMC11354972 DOI: 10.3390/ijms25169045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Aluminum (Al) stress is a dominant obstacle for plant growth in acidic soil, which accounts for approximately 40-50% of the world's potential arable land. The identification and characterization of Al stress response (Al-SR) genes in Arabidopsis, rice, and other plants have deepened our understanding of Al's molecular mechanisms. However, as a crop sensitive to acidic soil, only eight Al-SR genes have been identified and functionally characterized in maize. In this review, we summarize the Al-SR genes in plants, including their classifications, subcellular localizations, expression organs, functions, and primarily molecular regulatory networks. Moreover, we predict 166 putative Al-SR genes in maize based on orthologue analyses, facilitating a comprehensive understanding of the impact of Al stress on maize growth and development. Finally, we highlight the potential applications of alleviating Al toxicity in crop production. This review deepens our understanding of the Al response in plants and provides a blueprint for alleviating Al toxicity in crop production.
Collapse
Affiliation(s)
- Chaowei Fang
- College of Life Science, Henan Normal University, Xinxiang 453007, China;
| | - Jiajing Wu
- Xinxiang Academy of Agricultural Sciences, Xinxiang 453000, China;
| | - Weihong Liang
- College of Life Science, Henan Normal University, Xinxiang 453007, China;
| |
Collapse
|
12
|
Lou H, Zheng S, Chen W, Yu W, Jiang H, Farag MA, Xiao J, Wu J, Song L. Transcriptome-referenced association study provides insights into the regulation of oil and fatty acid biosynthesis in Torreya grandis kernel. J Adv Res 2024; 62:1-14. [PMID: 36639025 PMCID: PMC11331172 DOI: 10.1016/j.jare.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/21/2022] [Accepted: 01/08/2023] [Indexed: 01/12/2023] Open
Abstract
INTRODUCTION Torreya grandis is a gymnosperm belonging to Taxodiaceae. As an economically important tree, its kernels are edible and rich in oil with high unsaturated fatty acids, such as sciadonic acid. However, the kernels from different T. grandis landraces exhibit fatty acid and oil content variations. OBJECTIVES As a gymnosperm, does T. grandis have special regulation mechanisms for oil biosynthesis? The aim of this study was to dissect the genetic architecture of fatty acid and oil content and the underlying mechanism in T. grandis. METHODS We constructed a high integrity reference sequence of expressed regions of the genome in T. grandis and performed transcriptome-referenced association study (TRAS) for 10 fatty acid and oil traits of kernels in the 170 diverse T. grandis landraces. To confirm the TRAS result, we performed functional validation and molecular biology experiments for oil significantly associated genes. RESULTS We identified 41 SNPs from 34 transcripts significantly associated with 7 traits by TRAS (-log10 (P) greater than 6.0). Results showed that LOB domain-containing protein 40 (LBD40) and surfeit locus protein 1 (SURF1) may be indirectly involved in the regulation of oil and sciadonic acid biosynthesis, respectively. Moreover, overexpression of TgLBD40 significantly increased seed oil content. The nonsynonymous variant in the TgLBD40 coding region discovered by TRAS could alter the oil content in plants. Pearson's correlation analysis and dual-luciferase assay indicated that TgLBD40 positively enhanced oil accumulation by affecting oil biosynthesis pathway genes, such as TgDGAT1. CONCLUSION Our study provides new insights into the genetic basis of oil biosynthesis in T. grandis and demonstrates that integrating RNA sequencing and TRAS is a powerful strategy to perform association study independent of a reference genome for dissecting important traits in T. grandis.
Collapse
Affiliation(s)
- Heqiang Lou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; NFGA Engineering Research Center for Torreya grandis 'Merrillii', Zhejiang A&F University, Hangzhou 311300, China
| | - Shan Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Wenchao Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Weiwu Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Huifeng Jiang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini st., Cairo P.B. 11562, Egypt
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain.
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; NFGA Engineering Research Center for Torreya grandis 'Merrillii', Zhejiang A&F University, Hangzhou 311300, China.
| | - Lili Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; NFGA Engineering Research Center for Torreya grandis 'Merrillii', Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
13
|
Cao H, Zhang M, Zhu X, Bai Z, Ma Y, Huang CF, Yang ZB. The RAE1-STOP1-GL2-RHD6 module regulates the ALMT1-dependent aluminum resistance in Arabidopsis. Nat Commun 2024; 15:6294. [PMID: 39060273 PMCID: PMC11282296 DOI: 10.1038/s41467-024-50784-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Aluminum (Al) toxicity is one of the major constraints for crop production in acid soils, Al-ACTIVATED MALATE TRANSPORTER1 (ALMT1)-dependent malate exudation from roots is essential for Al resistance in Arabidopsis, in which the C2H2-type transcription factor SENSITIVE TO PROTONRHIZOTOXICITY1 (STOP1) play a critical role. In this study, we reveal that the RAE1-GL2-STOP1-RHD6 protein module regulated the ALMT1-mediated Al resistance. GL2, STOP1 and RHD6 directly target the promoter of ALMT1 to suppress or activate its transcriptional expression, respectively, and mutually influence their action on the promoter of ALMT1 by forming a protein complex. STOP1 mediates the expression of RHD6 and RHD6-regulated root growth inhibition, while GL2 and STOP1 suppress each other's expression at the transcriptional and translational level and regulate Al-inhibited root growth. F-box protein RAE1 degrades RHD6 via the 26S proteasome, leading to suppressed activity of the ALMT1 promoter. RHD6 inhibits the transcriptional expression of RAE1 by directly targeting its promoter. Unlike RHD6, RAE1 promotes the GL2 expression at the protein level and GL2 activates the expression of RAE1 at the transcriptional level by directly targeting its promoter. The study provides insights into the transcriptional regulation of ALMT1, revealing its significance in Al resistance and highlighting the crucial role of the STOP1-associated regulatory networks.
Collapse
Affiliation(s)
- Hongrui Cao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University (Qingdao), Qingdao, 266237, P. R. China
| | - Meng Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University (Qingdao), Qingdao, 266237, P. R. China
| | - Xue Zhu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University (Qingdao), Qingdao, 266237, P. R. China
| | - Zhimin Bai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University (Qingdao), Qingdao, 266237, P. R. China
| | - Yanqi Ma
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University (Qingdao), Qingdao, 266237, P. R. China
| | - Chao-Feng Huang
- Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhong-Bao Yang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University (Qingdao), Qingdao, 266237, P. R. China.
| |
Collapse
|
14
|
Li H, Chang L, Liu H, Li Y. Diverse factors influence the amounts of carbon input to soils via rhizodeposition in plants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174858. [PMID: 39034011 DOI: 10.1016/j.scitotenv.2024.174858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Rhizodeposition encompasses the intricate processes through which plants generate organic compounds via photosynthesis, store these compounds within aboveground biomass and roots through top-down transport, and subsequently release this organic matter into the soil. Rhizodeposition represents one of the carbon (C) cycle in soils that can achieve long-term organic C sequestration. This function holds significant implications for mitigating the climate change that partly stems from the greenhouse effect associated with increased atmospheric carbon dioxide levels. Therefore, it is essential to further understand how the process of rhizodeposition allocates the photosynthetic C that plants create via photosynthesis. While many studies have explored the basic principles of rhizodeposition, along with the associated impact on soil C storage, there is a palpable absence of comprehensive reviews that summarize the various factors influencing this process. This paper compiles and analyzes the literature on plant rhizodeposition to describe how rhizodeposition influences soil C storage. Moreover, the review summarizes the impacts of soil physicochemical, microbial, and environmental characteristics on plant rhizodeposition and priming effects, and concludes with recommendations for future research.
Collapse
Affiliation(s)
- Haoye Li
- College of Earth Sciences, Jilin University, Changchun 130061, China
| | - Lei Chang
- College of Earth Sciences, Jilin University, Changchun 130061, China
| | - Huijia Liu
- College of Earth Sciences, Jilin University, Changchun 130061, China
| | - Yuefen Li
- College of Earth Sciences, Jilin University, Changchun 130061, China.
| |
Collapse
|
15
|
Yamamoto T, Kashihara K, Furuta T, Zhang Q, Yu E, Ma JF. Genetic background influences mineral accumulation in rice straw and grains under different soil pH conditions. Sci Rep 2024; 14:15139. [PMID: 38956423 PMCID: PMC11220084 DOI: 10.1038/s41598-024-66036-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
Mineral element accumulation in plants is influenced by soil conditions and varietal factors. We investigated the dynamic accumulation of 12 elements in straw at the flowering stage and in grains at the mature stage in eight rice varieties with different genetic backgrounds (Japonica, Indica, and admixture) and flowering times (early, middle, and late) grown in soil with various pH levels. In straw, Cd, As, Mn, Zn, Ca, Mg, and Cu accumulation was influenced by both soil pH and varietal factors, whereas P, Mo, and K accumulation was influenced by pH, and Fe and Ni accumulation was affected by varietal factors. In grains, Cd, As, Mn, Cu, Ni, Mo, Ca, and Mg accumulation was influenced by both pH and varietal factors, whereas Zn, Fe, and P accumulation was affected by varietal factors, and K accumulation was not altered. Only As, Mn, Ca and Mg showed similar trends in the straw and grains, whereas the pH responses of Zn, P, K, and Ni differed between them. pH and flowering time had synergistic effects on Cd, Zn, and Mn in straw and on Cd, Ni, Mo, and Mn in grains. Soil pH is a major factor influencing mineral uptake in rice straw and grains, and genetic factors, flowering stage factors, and their interaction with soil pH contribute in a combined manner.
Collapse
Affiliation(s)
- Toshio Yamamoto
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan.
| | - Kazunari Kashihara
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
| | - Tomoyuki Furuta
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
| | - Qian Zhang
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
| | - En Yu
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
- College of Agronomy, Anhui Agriculture University, Hefei, 230036, China
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
| |
Collapse
|
16
|
Su C, Wang J, Feng J, Jiang S, Man F, Jiang L, Zhao M. OsAlR3 regulates aluminum tolerance through promoting the secretion of organic acids and the expression of antioxidant genes in rice. BMC PLANT BIOLOGY 2024; 24:618. [PMID: 38937693 PMCID: PMC11212236 DOI: 10.1186/s12870-024-05298-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024]
Abstract
In acidic soils, aluminum (Al) toxicity inhibits the growth and development of plant roots and affects nutrient and water absorption, leading to reduced yield and quality. Therefore, it is crucial to investigate and identify candidate genes for Al tolerance and elucidate their physiological and molecular mechanisms under Al stress. In this study, we identified a new gene OsAlR3 regulating Al tolerance, and analyzed its mechanism from physiological, transcriptional and metabolic levels. Compared with the WT, malondialdehyde (MDA) and hydrogen peroxide (H2O2) content were significantly increased, superoxide dismutase (SOD) activity and citric acid (CA) content were significantly decreased in the osalr3 mutant lines when exposed to Al stress. Under Al stress, the osalr3 exhibited decreased expression of antioxidant-related genes and lower organic acid content compared with WT. Integrated transcriptome and metabolome analysis showed the phenylpropanoid biosynthetic pathway plays an important role in OsAlR3-mediated Al tolerance. Exogenous CA and oxalic acid (OA) could increase total root length and enhance the antioxidant capacity in the mutant lines under Al stress. Conclusively, we found a new gene OsAlR3 that positively regulates Al tolerance by promoting the chelation of Al ions through the secretion of organic acids, and increasing the expression of antioxidant genes.
Collapse
Affiliation(s)
- Chang Su
- Rice Research Institute, Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jingbo Wang
- Rice Research Institute, Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jing Feng
- Rice Research Institute, Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang, 110866, China
| | - Sixu Jiang
- Rice Research Institute, Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang, 110866, China
| | - Fuyuan Man
- Rice Research Institute, Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang, 110866, China
| | - Linlin Jiang
- Rice Research Institute, Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Minghui Zhao
- Rice Research Institute, Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
17
|
Chakraborty N, Das A, Pal S, Roy S, Sil SK, Adak MK, Hassanzamman M. Exploring Aluminum Tolerance Mechanisms in Plants with Reference to Rice and Arabidopsis: A Comprehensive Review of Genetic, Metabolic, and Physiological Adaptations in Acidic Soils. PLANTS (BASEL, SWITZERLAND) 2024; 13:1760. [PMID: 38999600 PMCID: PMC11243567 DOI: 10.3390/plants13131760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/15/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024]
Abstract
Aluminum (Al) makes up a third of the Earth's crust and is a widespread toxic contaminant, particularly in acidic soils. It impacts crops at multiple levels, from cellular to whole plant systems. This review delves into Al's reactivity, including its cellular transport, involvement in oxidative redox reactions, and development of specific metabolites, as well as the influence of genes on the production of membrane channels and transporters, alongside its role in triggering senescence. It discusses the involvement of channel proteins in calcium influx, vacuolar proton pumping, the suppression of mitochondrial respiration, and the initiation of programmed cell death. At the cellular nucleus level, the effects of Al on gene regulation through alterations in nucleic acid modifications, such as methylation and histone acetylation, are examined. In addition, this review outlines the pathways of Al-induced metabolic disruption, specifically citric acid metabolism, the regulation of proton excretion, the induction of specific transcription factors, the modulation of Al-responsive proteins, changes in citrate and nucleotide glucose transporters, and overall metal detoxification pathways in tolerant genotypes. It also considers the expression of phenolic oxidases in response to oxidative stress, their regulatory feedback on mitochondrial cytochrome proteins, and their consequences on root development. Ultimately, this review focuses on the selective metabolic pathways that facilitate Al exclusion and tolerance, emphasizing compartmentalization, antioxidative defense mechanisms, and the control of programmed cell death to manage metal toxicity.
Collapse
Affiliation(s)
- Nilakshi Chakraborty
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Abir Das
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Sayan Pal
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Soumita Roy
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Sudipta Kumar Sil
- Department of Botany, University of Gour Banga, Malda 732103, West Bengal, India
| | - Malay Kumar Adak
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Mirza Hassanzamman
- Department of Agronomy, Faculty of Agriculture, Shar-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
18
|
Wei Y, Han R, Yu Y. GmMYB183, a R2R3-MYB Transcription Factor in Tamba Black Soybean ( Glycine max. cv. Tamba), Conferred Aluminum Tolerance in Arabidopsis and Soybean. Biomolecules 2024; 14:724. [PMID: 38927127 PMCID: PMC11202213 DOI: 10.3390/biom14060724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Aluminum (Al) toxicity is one of the environmental stress factors that affects crop growth, development, and productivity. MYB transcription factors play crucial roles in responding to biotic or abiotic stresses. However, the roles of MYB transcription factors in Al tolerance have not been clearly elucidated. Here, we found that GmMYB183, a gene encoding a R2R3 MYB transcription factor, is involved in Al tolerance. Subcellular localization studies revealed that GmMYB183 protein is located in the nucleus, cytoplasm and cell membrane. Overexpression of GmMYB183 in Arabidopsis and soybean hairy roots enhanced plant tolerance towards Al stress compared to the wild type, with higher citrate secretion and less Al accumulation. Furthermore, we showed that GmMYB183 binds the GmMATE75 gene promoter encoding for a plasma-membrane-localized citrate transporter. Through a dual-luciferase reporter system and yeast one hybrid, the GmMYB183 protein was shown to directly activate the transcription of GmMATE75. Furthermore, the expression of GmMATE75 may depend on phosphorylation of Ser36 residues in GmMYB183 and two MYB sites in P3 segment of the GmMATE75 promoter. In conclusion, GmMYB183 conferred Al tolerance by promoting the secretion of citrate, which provides a scientific basis for further elucidating the mechanism of plant Al resistance.
Collapse
Affiliation(s)
- Yunmin Wei
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China;
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China;
| | - Rongrong Han
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China;
- Chongqing College of Traditional Chinese Medicine, Chongqing 402760, China
| | - Yongxiong Yu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China;
| |
Collapse
|
19
|
Singh D, Maithreyi S, Taunk J, Singh MP. Physiological and proteomic characterization revealed the response mechanisms underlying aluminium tolerance in lentil (Lens culinaris Medikus). PHYSIOLOGIA PLANTARUM 2024; 176:e14298. [PMID: 38685770 DOI: 10.1111/ppl.14298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 05/02/2024]
Abstract
Aluminium (Al) toxicity causes major plant distress, affecting root growth, nutrient uptake and, ultimately, agricultural productivity. Lentil, which is a cheap source of vegetarian protein, is recognized to be sensitive to Al toxicity. Therefore, it is important to dissect the physiological and molecular mechanisms of Al tolerance in lentil. To understand the physiological system and proteome composition underlying Al tolerance, two genotypes [L-4602 (Al-tolerant) and BM-4 (Al-sensitive)] were studied at the seedling stage. L-4602 maintained a significantly higher root tolerance index and malate secretion with reduced Al accumulation than BM-4. Also, label-free proteomic analysis using ultra-performance liquid chromatography-tandem mass spectrometer exhibited significant regulation of Al-responsive proteins associated with antioxidants, signal transduction, calcium homeostasis, and regulation of glycolysis in L-4602 as compared to BM-4. Functional annotation suggested that transporter proteins (transmembrane protein, adenosine triphosphate-binding cassette transport-related protein and multi drug resistance protein), antioxidants associated proteins (nicotinamide adenine dinucleotide dependent oxidoreductase, oxidoreductase molybdopterin binding protein & peroxidases), kinases (calmodulin-domain kinase & protein kinase), and carbohydrate metabolism associated proteins (dihydrolipoamide acetyltransferase) were found to be abundant in tolerant genotype providing protection against Al toxicity. Overall, the root proteome uncovered in this study at seedling stage, along with the physiological parameters measured, allow a greater understanding of Al tolerance mechanism in lentil, thereby assisting in future crop improvement programmes.
Collapse
Affiliation(s)
- Dharmendra Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Shubhra Maithreyi
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Jyoti Taunk
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Madan Pal Singh
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
20
|
Ding ZJ, Xu C, Yan JY, Wang YX, Cui MQ, Yuan JJ, Wang YN, Li GX, Wu JX, Wu YR, Xu JM, Li CX, Shi YZ, Mao CZ, Guo JT, Zhou JM, Benhamed M, Harberd NP, Zheng SJ. The LRR receptor-like kinase ALR1 is a plant aluminum ion sensor. Cell Res 2024; 34:281-294. [PMID: 38200278 PMCID: PMC10978910 DOI: 10.1038/s41422-023-00915-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024] Open
Abstract
Plant survival requires an ability to adapt to differing concentrations of nutrient and toxic soil ions, yet ion sensors and associated signaling pathways are mostly unknown. Aluminum (Al) ions are highly phytotoxic, and cause severe crop yield loss and forest decline on acidic soils which represent ∼30% of land areas worldwide. Here we found an Arabidopsis mutant hypersensitive to Al. The gene encoding a leucine-rich-repeat receptor-like kinase, was named Al Resistance1 (ALR1). Al ions binding to ALR1 cytoplasmic domain recruits BAK1 co-receptor kinase and promotes ALR1-dependent phosphorylation of the NADPH oxidase RbohD, thereby enhancing reactive oxygen species (ROS) generation. ROS in turn oxidatively modify the RAE1 F-box protein to inhibit RAE1-dependent proteolysis of the central regulator STOP1, thus activating organic acid anion secretion to detoxify Al. These findings establish ALR1 as an Al ion receptor that confers resistance through an integrated Al-triggered signaling pathway, providing novel insights into ion-sensing mechanisms in living organisms, and enabling future molecular breeding of acid-soil-tolerant crops and trees, with huge potential for enhancing both global food security and forest restoration.
Collapse
Affiliation(s)
- Zhong Jie Ding
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chen Xu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jing Ying Yan
- Agricultural Experimental Station, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu Xuan Wang
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Meng Qi Cui
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jun Jie Yuan
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ya Nan Wang
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Gui Xin Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jian Xiang Wu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yun Rong Wu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ji Ming Xu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chun Xiao Li
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuan Zhi Shi
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Chuan Zao Mao
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiang Tao Guo
- Medical School, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jian Min Zhou
- Center for Genome Biology and State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Moussa Benhamed
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Nicholas P Harberd
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Biology, University of Oxford, Oxford, UK
| | - Shao Jian Zheng
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong, China.
- Institute of Ecological Civilization, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
21
|
Parra-Almuna L, Pontigo S, Ruiz A, González F, Ferrol N, Mora MDLL, Cartes P. Dissecting the Roles of Phosphorus Use Efficiency, Organic Acid Anions, and Aluminum-Responsive Genes under Aluminum Toxicity and Phosphorus Deficiency in Ryegrass Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:929. [PMID: 38611459 PMCID: PMC11013041 DOI: 10.3390/plants13070929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/10/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024]
Abstract
Aluminum (Al) toxicity and phosphorus (P) deficiency are widely recognized as major constraints to agricultural productivity in acidic soils. Under this scenario, the development of ryegrass plants with enhanced P use efficiency and Al resistance is a promising approach by which to maintain pasture production. In this study, we assessed the contribution of growth traits, P efficiency, organic acid anion (OA) exudation, and the expression of Al-responsive genes in improving tolerance to concurrent low-P and Al stress in ryegrass (Lolium perenne L.). Ryegrass plants were hydroponically grown under optimal (0.1 mM) or low-P (0.01 mM) conditions for 21 days, and further supplied with Al (0 and 0.2 mM) for 3 h, 24 h and 7 days. Accordingly, higher Al accumulation in the roots and lower Al translocation to the shoots were found in ryegrass exposed to both stresses. Aluminum toxicity and P limitation did not change the OA exudation pattern exhibited by roots. However, an improvement in the root growth traits and P accumulation was found, suggesting an enhancement in Al tolerance and P efficiency under combined Al and low-P stress. Al-responsive genes were highly upregulated by Al stress and P limitation, and also closely related to P utilization efficiency. Overall, our results provide evidence of the specific strategies used by ryegrass to co-adapt to multiple stresses in acid soils.
Collapse
Affiliation(s)
- Leyla Parra-Almuna
- Center of Plant Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, P.O. Box 54-D, Temuco 4811230, Chile; (L.P.-A.); (S.P.)
| | - Sofía Pontigo
- Center of Plant Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, P.O. Box 54-D, Temuco 4811230, Chile; (L.P.-A.); (S.P.)
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, P.O. Box 54-D, Temuco 4811230, Chile;
| | - Antonieta Ruiz
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, P.O. Box 54-D, Temuco 4811230, Chile;
| | - Felipe González
- Programa de Doctorado en Ciencias Mención Biología Celular y Molecular Aplicada, Universidad de La Frontera, P.O. Box 54-D, Temuco 4811230, Chile;
| | - Nuria Ferrol
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008 Granada, Spain;
| | - María de la Luz Mora
- Center of Plant Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, P.O. Box 54-D, Temuco 4811230, Chile; (L.P.-A.); (S.P.)
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, P.O. Box 54-D, Temuco 4811230, Chile;
| | - Paula Cartes
- Center of Plant Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, P.O. Box 54-D, Temuco 4811230, Chile; (L.P.-A.); (S.P.)
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, P.O. Box 54-D, Temuco 4811230, Chile;
| |
Collapse
|
22
|
Lu L, Chen X, Tan Q, Li W, Sun Y, Zhang Z, Song Y, Zeng R. Gibberellin-Mediated Sensitivity of Rice Roots to Aluminum Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:543. [PMID: 38498546 PMCID: PMC10892994 DOI: 10.3390/plants13040543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 03/20/2024]
Abstract
Aluminum toxicity poses a significant constraint on crop production in acidic soils. While phytohormones are recognized for their pivotal role in mediating plant responses to aluminum stress, the specific involvement of gibberellin (GA) in regulating aluminum tolerance remains unexplored. In this study, we demonstrate that external GA exacerbates the inhibitory impact of aluminum stress on root growth of rice seedlings, concurrently promoting reactive oxygen species (ROS) accumulation. Furthermore, rice plants overexpressing the GA synthesis gene SD1 exhibit enhanced sensitivity to aluminum stress. In contrast, the slr1 gain-of-function mutant, characterized by impeded GA signaling, displays enhanced tolerance to aluminum stress, suggesting the negative regulatory role of GA in rice resistance to aluminum-induced toxicity. We also reveal that GA application suppresses the expression of crucial aluminum tolerance genes in rice, including Al resistance transcription factor 1 (ART1), Nramp aluminum transporter 1 (OsNramp4), and Sensitive to Aluminum 1 (SAL1). Conversely, the slr1 mutant exhibits up-regulated expression of these genes compared to the wild type. In summary, our results shed light on the inhibitory effect of GA in rice resistance to aluminum stress, contributing to a theoretical foundation for unraveling the intricate mechanisms of plant hormones in regulating aluminum tolerance.
Collapse
Affiliation(s)
- Long Lu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (X.C.); (Q.T.); (W.L.); (Y.S.); (Z.Z.)
- Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinyu Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (X.C.); (Q.T.); (W.L.); (Y.S.); (Z.Z.)
- Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qinyan Tan
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (X.C.); (Q.T.); (W.L.); (Y.S.); (Z.Z.)
| | - Wenqian Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (X.C.); (Q.T.); (W.L.); (Y.S.); (Z.Z.)
| | - Yanyan Sun
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (X.C.); (Q.T.); (W.L.); (Y.S.); (Z.Z.)
| | - Zaoli Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (X.C.); (Q.T.); (W.L.); (Y.S.); (Z.Z.)
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (X.C.); (Q.T.); (W.L.); (Y.S.); (Z.Z.)
- Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (X.C.); (Q.T.); (W.L.); (Y.S.); (Z.Z.)
- Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
23
|
Qiu CW, Ma Y, Gao ZF, Sreesaeng J, Zhang S, Liu W, Ahmed IM, Cai S, Wang Y, Zhang G, Wu F. Genome-wide profiling of genetic variations reveals the molecular basis of aluminum stress adaptation in Tibetan wild barley. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132541. [PMID: 37716271 DOI: 10.1016/j.jhazmat.2023.132541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/17/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Aluminum (Al) toxicity in acidic soil is a major factor affecting crop productivity. The extensive genetic diversity found in Tibetan wild barley germplasms offers a valuable reservoir of alleles associated with aluminum tolerance. Here, resequencing of two Al-tolerant barley genotypes (Tibetan wild barley accession XZ16 and cultivated barley Dayton) identified a total of 19,826,182 and 16,287,277 single nucleotide polymorphisms (SNPs), 1628,052 and 1386,973 insertions/deletions (InDels), 61,532 and 57,937 structural variations (SVs), 248,768 and 240,723 copy number variations (CNVs) in XZ16 and Dayton, respectively, and uncovered approximately 600 genes highly related to Al tolerance in barley. Comparative genomic analyses unveiled 71 key genes that contain unique genetic variants in XZ16 and are predominantly associated with organic acid exudation, Al sequestration, auxin response, and transcriptional regulation. Manipulation of these key genes at the genetic and transcriptional level is a promising strategy for developing optimal haplotype combinations and new barley cultivars with improved Al tolerance. This study represents the first comprehensive examination of genetic variation in Al-tolerant Tibetan wild barley through genome-wide profiling. The obtained results make the deep insight into the mechanisms underlying barley adaptation to Al toxicity, and identified the candidate genes useful for improvement of Al tolerance in barley.
Collapse
Affiliation(s)
- Cheng-Wei Qiu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Yue Ma
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Zi-Feng Gao
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Jakkrit Sreesaeng
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Shuo Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Wenxing Liu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Imrul Mosaddek Ahmed
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; Plant Biotechnology Laboratory, Center for Viticulture & Small Fruit Research, Florida A&M University, FL 32317, USA
| | - Shengguan Cai
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Yizhou Wang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
24
|
Luo D, Xian C, Zhang W, Qin Y, Li Q, Usman M, Sun S, Xing Y, Dong D. Physiological and Transcriptomic Analyses Reveal Commonalities and Specificities in Wheat in Response to Aluminum and Manganese. Curr Issues Mol Biol 2024; 46:367-397. [PMID: 38248326 PMCID: PMC10814679 DOI: 10.3390/cimb46010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Aluminum (Al) and manganese (Mn) toxicity are the top two constraints of crop production in acid soil. Crops have evolved common and specific mechanisms to tolerate the two stresses. In the present study, the responses (toxicity and tolerance) of near-isogenic wheat lines (ET8 and ES8) and their parents (Carazinho and Egret) to Al and Mn were compared by determining the physiological parameters and conducting transcriptome profiling of the roots. The results showed the following: (1) Carazinho and ET8 exhibited dual tolerance to Al and Mn compared to Egret and ES8, indicated by higher relative root elongation and SPAD. (2) After entering the roots, Al was mainly distributed in the roots and fixed in the cell wall, while Mn was mainly distributed in the cell sap and then transported to the leaves. Both Al and Mn stresses decreased the contents of Ca, Mg, and Zn; Mn stress also inhibited the accumulation of Fe, while Al showed an opposite effect. (3) A transcriptomic analysis identified 5581 differentially expressed genes (DEGs) under Al stress and 4165 DEGs under Mn stress. Among these, 2774 DEGs were regulated by both Al and Mn stresses, while 2280 and 1957 DEGs were exclusively regulated by Al stress and Mn stress, respectively. GO and KEGG analyses indicated that cell wall metabolism responds exclusively to Al, while nicotianamine synthesis exclusively responds to Mn. Pathways such as signaling, phenylpropanoid metabolism, and metal ion transport showed commonality and specificity to Al and Mn. Transcription factors (TFs), such as MYB, WRKY, and AP2 families, were also regulated by Al and Mn, and a weighted gene co-expression network analysis (WGCNA) identified PODP7, VATB2, and ABCC3 as the hub genes for Al tolerance and NAS for Mn tolerance. The identified genes and pathways can be used as targets for pyramiding genes and breeding multi-tolerant varieties.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dengfeng Dong
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China; (D.L.); (C.X.); (W.Z.); (Y.Q.); (Q.L.); (M.U.); (S.S.); (Y.X.)
| |
Collapse
|
25
|
Agrahari RK, Kobayashi Y, Enomoto T, Miyachi T, Sakuma M, Fujita M, Ogata T, Fujita Y, Iuchi S, Kobayashi M, Yamamoto YY, Koyama H. STOP1-regulated SMALL AUXIN UP RNA55 ( SAUR55) is involved in proton/malate co-secretion for Al tolerance in Arabidopsis. PLANT DIRECT 2024; 8:e557. [PMID: 38161730 PMCID: PMC10755337 DOI: 10.1002/pld3.557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/25/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024]
Abstract
Proton (H+) release is linked to aluminum (Al)-enhanced organic acids (OAs) excretion from the roots under Al rhizotoxicity in plants. It is well-reported that the Al-enhanced organic acid excretion mechanism is regulated by SENSITIVE TO PROTON RHIZOTOXICITY1 (STOP1), a zinc-finger TF that regulates major Al tolerance genes. However, the mechanism of H+ release linked to OAs excretion under Al stress has not been fully elucidated. Recent physiological and molecular-genetic studies have implicated the involvement of SMALL AUXIN UP RNAs (SAURs) in the activation of plasma membrane H+-ATPases for stress responses in plants. We hypothesized that STOP1 is involved in the regulation of Al-responsive SAURs, which may contribute to the co-secretion of protons and malate under Al stress conditions. In our transcriptome analysis of the roots of the stop1 (sensitive to proton rhizotoxicity1) mutant, we found that STOP1 regulates the transcription of one of the SAURs, namely SAUR55. Furthermore, we observed that the expression of SAUR55 was induced by Al and repressed in the STOP1 T-DNA insertion knockout (KO) mutant (STOP1-KO). Through in silico analysis, we identified a functional STOP1-binding site in the promoter of SAUR55. Subsequent in vitro and in vivo studies confirmed that STOP1 directly binds to the promoter of SAUR55. This suggests that STOP1 directly regulates the expression of SAUR55 under Al stress. We next examined proton release in the rhizosphere and malate excretion in the T-DNA insertion KO mutant of SAUR55 (saur55), in conjunction with STOP1-KO. Both saur55 and STOP1-KO suppressed rhizosphere acidification and malate release under Al stress. Additionally, the root growth of saur55 was sensitive to Al-containing media. In contrast, the overexpressed line of SAUR55 enhanced rhizosphere acidification and malate release, leading to increased Al tolerance. These associations with Al tolerance were also observed in natural variations of Arabidopsis. These findings demonstrate that transcriptional regulation of SAUR55 by STOP1 positively regulates H+ excretion via PM H+-ATPase 2 which enhances Al tolerance by malate secretion from the roots of Arabidopsis. The activation of PM H+-ATPase 2 by SAUR55 was suggested to be due to PP2C.D2/D5 inhibition by interaction on the plasma membrane with its phosphatase. Furthermore, RNAi-suppression of NtSTOP1 in tobacco shows suppression of rhizosphere acidification under Al stress, which was associated with the suppression of SAUR55 orthologs, which are inducible by Al in tobacco. It suggests that transcriptional regulation of Al-inducible SAURs by STOP1 plays a critical role in OAs excretion in several plant species as an Al tolerance mechanism.
Collapse
Affiliation(s)
| | | | - Takuo Enomoto
- Faculty of Applied Biological SciencesGifu UniversityGifuJapan
| | - Tasuku Miyachi
- Faculty of Applied Biological SciencesGifu UniversityGifuJapan
| | - Marie Sakuma
- Mass Spectrometry and Microscopy UnitRIKEN Center for Sustainable Resource ScienceTsukubaIbarakiJapan
| | - Miki Fujita
- Mass Spectrometry and Microscopy UnitRIKEN Center for Sustainable Resource ScienceTsukubaIbarakiJapan
| | - Takuya Ogata
- Biological Resources and Post‐harvest DivisionJapan International Research Center for Agricultural Sciences (JIRCAS)TsukubaIbarakiJapan
| | - Yasunari Fujita
- Biological Resources and Post‐harvest DivisionJapan International Research Center for Agricultural Sciences (JIRCAS)TsukubaIbarakiJapan
- Graduate School of Life and Environmental SciencesUniversity of TsukubaTsukubaIbarakiJapan
| | - Satoshi Iuchi
- Experimental Plant DivisionRIKEN BioResource Research CenterTsukubaIbarakiJapan
| | - Masatomo Kobayashi
- Experimental Plant DivisionRIKEN BioResource Research CenterTsukubaIbarakiJapan
| | | | - Hiroyuki Koyama
- Faculty of Applied Biological SciencesGifu UniversityGifuJapan
| |
Collapse
|
26
|
Zhan M, Gao J, You J, Guan K, Zheng M, Meng X, Li H, Yang Z. The transcription factor SbHY5 mediates light to promote aluminum tolerance by activating SbMATE and SbSTOP1s expression. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108197. [PMID: 37995579 DOI: 10.1016/j.plaphy.2023.108197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/24/2023] [Accepted: 11/12/2023] [Indexed: 11/25/2023]
Abstract
Aluminum (Al) toxicity is a major factor limiting crop yields in acid soils. Sweet sorghum (Sorghum bicolor L.) is a high-efficient energy crop widely grown in tropical and subtropical regions of the world, where acid soil is common and Al toxicity is widespread. Here, we characterized a transcription factor SbHY5 in sweet sorghum, which mediated light to promote plant Al stress adaptation. The expression of SbHY5 was induced by Al stress and increasing light intensity. The overexpression of SbHY5 improved Al tolerance in transgenic plants, which was associated with increased citrate secretion and reduced Al content in roots. Meanwhile, SbHY5 was found to localize to the nucleus and displayed transcriptional activity. SbHY5 directly activated the expression of SbMATE, indicating that a HY5-MATE-dependent citrate secretion pathway is involved in Al tolerance in plants. SbSTOP1 was reported as a key transcription factor, regulating several Al tolerance genes. Here, inspiringly, we found that SbHY5 directly promoted the transcription of SbSTOP1, implying the existence of HY5-STOP1-Al tolerance genes-mediated regulatory pathways. Besides, SbHY5 positively regulated its own transcription. Our findings revealed a novel regulatory network in which a light signaling factor, SbHY5, confers Al tolerance in plants by modulating the expression of Al stress response genes.
Collapse
Affiliation(s)
- Meiqi Zhan
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Jie Gao
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Jiangfeng You
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Kexing Guan
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Meihui Zheng
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Xiangxiang Meng
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - He Li
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China.
| | - Zhenming Yang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China.
| |
Collapse
|
27
|
Liu F, Ma D, Yu J, Meng R, Wang Z, Zhang B, Chen X, Zhang L, Peng L, Xia J. Overexpression of an ART1-Interacting Gene OsNAC016 Improves Al Tolerance in Rice. Int J Mol Sci 2023; 24:17036. [PMID: 38069359 PMCID: PMC10706868 DOI: 10.3390/ijms242317036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Rice (Oryza sativa) exhibits tremendous aluminum (Al)-tolerance. The C2H2-transcription factor (TF) ART1 critically regulates rice Al tolerance via modulation of specific gene expression. However, little is known about the posttranscriptional ART1 regulation. Here, we identified an ART1-interacted gene OsNAC016 via a yeast two-hybrid (Y2H) assay. OsNAC016 was primarily expressed in roots and weakly induced by Al. Immunostaining showed that OsNAC016 was a nuclear protein and localized in all root cells. Knockout of OsNAC016 did not alter Al sensitivity. Overexpression of OsNAC016 resulted in less Al aggregation within roots and enhanced Al tolerance in rice. Based on transcriptomic and qRT-PCR evaluations, certain cell-wall-related or ART-regulated gene expressions such as OsMYB30 and OsFRDL4 were altered in OsNAC016-overexpressing plants. These results indicated that OsNAC016 interacts with ART1 to cooperatively regulate some Al-tolerance genes and is a critical regulatory factor in rice Al tolerance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jixing Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China; (F.L.); (D.M.); (J.Y.); (R.M.); (Z.W.); (B.Z.); (X.C.); (L.Z.); (L.P.)
| |
Collapse
|
28
|
Liu C, Hu X, Zang L, Liu X, Wei Y, Wang X, Jin X, Du C, Yu Y, He W, Zhang S. Overexpression of ZmSTOP1-A Enhances Aluminum Tolerance in Arabidopsis by Stimulating Organic Acid Secretion and Reactive Oxygen Species Scavenging. Int J Mol Sci 2023; 24:15669. [PMID: 37958653 PMCID: PMC10649276 DOI: 10.3390/ijms242115669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/14/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Aluminum (Al) toxicity and low pH are major factors limiting plant growth in acidic soils. Sensitive to Proton Rhizotoxicity 1 (STOP1) transcription factors respond to these stresses by regulating the expression of multiple Al- or low pH-responsive genes. ZmSTOP1-A, a STOP1-like protein from maize (Zea mays), was localized to the nucleus and showed transactivation activity. ZmSTOP1-A was expressed moderately in both roots and shoots of maize seedlings, but was not induced by Al stress or low pH. Overexpression of ZmSTOP1-A in Arabidopsis Atstop1 mutant partially restored Al tolerance and improved low pH tolerance with respect to root growth. Regarding Al tolerance, ZmSTOP1-A/Atstop1 plants showed clear upregulation of organic acid transporter genes, leading to increased organic acid secretion and reduced Al accumulation in roots. In addition, the antioxidant enzyme activity in roots and shoots of ZmSTOP1-A/Atstop1 plants was significantly enhanced, ultimately alleviating Al toxicity via scavenging reactive oxygen species. Similarly, ZmSTOP1-A could directly activate ZmMATE1 expression in maize, positively correlated with the number of Al-responsive GGNVS cis-elements in the ZmMATE1 promoter. Our results reveal that ZmSTOP1-A is an important transcription factor conferring Al tolerance by enhancing organic acid secretion and reactive oxygen species scavenging in Arabidopsis.
Collapse
Affiliation(s)
- Chan Liu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.L.); (X.H.); (L.Z.); (X.L.); (Y.W.); (X.W.); (X.J.); (C.D.); (Y.Y.)
| | - Xiaoqi Hu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.L.); (X.H.); (L.Z.); (X.L.); (Y.W.); (X.W.); (X.J.); (C.D.); (Y.Y.)
| | - Lei Zang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.L.); (X.H.); (L.Z.); (X.L.); (Y.W.); (X.W.); (X.J.); (C.D.); (Y.Y.)
| | - Xiaofeng Liu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.L.); (X.H.); (L.Z.); (X.L.); (Y.W.); (X.W.); (X.J.); (C.D.); (Y.Y.)
| | - Yuhui Wei
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.L.); (X.H.); (L.Z.); (X.L.); (Y.W.); (X.W.); (X.J.); (C.D.); (Y.Y.)
| | - Xue Wang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.L.); (X.H.); (L.Z.); (X.L.); (Y.W.); (X.W.); (X.J.); (C.D.); (Y.Y.)
| | - Xinwu Jin
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.L.); (X.H.); (L.Z.); (X.L.); (Y.W.); (X.W.); (X.J.); (C.D.); (Y.Y.)
| | - Chengfeng Du
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.L.); (X.H.); (L.Z.); (X.L.); (Y.W.); (X.W.); (X.J.); (C.D.); (Y.Y.)
| | - Yan Yu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.L.); (X.H.); (L.Z.); (X.L.); (Y.W.); (X.W.); (X.J.); (C.D.); (Y.Y.)
| | - Wenzhu He
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China;
| | - Suzhi Zhang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.L.); (X.H.); (L.Z.); (X.L.); (Y.W.); (X.W.); (X.J.); (C.D.); (Y.Y.)
| |
Collapse
|
29
|
Wang C, Bian C, Li J, Han L, Guo D, Wang T, Sun Z, Ma C, Liu X, Tian Y, Zheng X. Melatonin promotes Al3+ compartmentalization via H+ transport and ion gradients in Malus hupehensis. PLANT PHYSIOLOGY 2023; 193:821-839. [PMID: 37311207 DOI: 10.1093/plphys/kiad339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 06/15/2023]
Abstract
Soil acidification in apple (Malus domestica) orchards results in the release of rhizotoxic aluminum ions (Al3+) into soil. Melatonin (MT) participates in plant responses to abiotic stress; however, its role in AlCl3 stress in apple remains unknown. In this study, root application of MT (1 μM) substantially alleviated AlCl3 stress (300 μM) in Pingyi Tiancha (Malus hupehensis), which was reflected by higher fresh and dry weight, increased photosynthetic capacity, and longer and more roots compared with plants that did not receive MT treatment. MT functioned mainly by regulating vacuolar H+/Al3+ exchange and maintaining H+ homeostasis in the cytoplasm under AlCl3 stress. Transcriptome deep sequencing analysis identified the transcription factor gene SENSITIVE TO PROTON RHIZOTOXICITY 1 (MdSTOP1) was induced by both AlCl3 and MT treatments. Overexpressing MdSTOP1 in apple increased AlCl3 tolerance by enhancing vacuolar H+/Al3+ exchange and H+ efflux to the apoplast. We identified 2 transporter genes, ALUMINUM SENSITIVE 3 (MdALS3) and SODIUM HYDROGEN EXCHANGER 2 (MdNHX2), as downstream targets of MdSTOP1. MdSTOP1 interacted with the transcription factor NAM ATAF and CUC 2 (MdNAC2) to induce MdALS3 expression, which reduced Al toxicity by transferring Al3+ from the cytoplasm to the vacuole. Furthermore, MdSTOP1 and MdNAC2 coregulated MdNHX2 expression to increase H+ efflux from the vacuole to the cytoplasm to promote Al3+ compartmentalization and maintain cation balance in the vacuole. Taken together, our findings reveal an MT-STOP1 + NAC2-NHX2/ALS3-vacuolar H+/Al3+ exchange model for the alleviation of AlCl3 stress in apple, laying a foundation for practical applications of MT in agriculture.
Collapse
Affiliation(s)
- Caihong Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Chuanjie Bian
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Jianyu Li
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Lei Han
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Qingdao Agricultural University, Dongying 257347, China
| | - Dianming Guo
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Tianchao Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhijuan Sun
- Laboratory for Agricultural Molecular Biology, College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Changqing Ma
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaoli Liu
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Yike Tian
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Qingdao Agricultural University, Dongying 257347, China
| | - Xiaodong Zheng
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Qingdao Agricultural University, Dongying 257347, China
| |
Collapse
|
30
|
Rajonandraina T, Ueda Y, Wissuwa M, Kirk GJD, Rakotoson T, Manwaring H, Andriamananjara A, Razafimbelo T. Magnesium supply alleviates iron toxicity-induced leaf bronzing in rice through exclusion and tissue-tolerance mechanisms. FRONTIERS IN PLANT SCIENCE 2023; 14:1213456. [PMID: 37546266 PMCID: PMC10403268 DOI: 10.3389/fpls.2023.1213456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/04/2023] [Indexed: 08/08/2023]
Abstract
Introduction Iron (Fe) toxicity is a widespread nutritional disorder in lowland rice causing growth retardation and leaf symptoms referred to as leaf bronzing. It is partly caused by an imbalance of nutrients other than Fe and supply of these is known to mitigate the toxicity. But the physiological and molecular mechanisms involved are unknown. Methods We investigated the effect of magnesium (Mg) on Fe toxicity tolerance in a field study in the Central Highlands of Madagascar and in hydroponic experiments with excess Fe (300 mg Fe L-1). An RNA-seq analysis was conducted in a hydroponic experiment to elucidate possible mechanisms underlying Mg effects. Results and discussion Addition of Mg consistently decreased leaf bronzing under both field and hydroponic conditions, whereas potassium (K) addition caused minor effects. Plants treated with Mg tended to have smaller shoot Fe concentrations in the field, suggesting enhanced exclusion at the whole-plant level. However, analysis of multiple genotypes showed that Fe toxicity symptoms were also mitigated without a concomitant decrease of Fe concentration, suggesting that increased Mg supply confers tolerance at the tissue level. The hydroponic experiments also suggested that Mg mitigated leaf bronzing without significantly decreasing Fe concentration or oxidative stress as assessed by the content of malondialdehyde, a biomarker for oxidative stress. An RNA-seq analysis revealed that Mg induced more changes in leaves than roots. Subsequent cis-element analysis suggested that NAC transcription factor binding sites were enriched in genes induced by Fe toxicity in leaves. Addition of Mg caused non-significant enrichment of the same binding sites, suggesting that NAC family proteins may mediate the effect of Mg. This study provides clues for mitigating Fe toxicity-induced leaf bronzing in rice.
Collapse
Affiliation(s)
| | - Yoshiaki Ueda
- Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Japan
| | - Matthias Wissuwa
- Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Japan
- PhenoRob Cluster & Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Guy J. D. Kirk
- School of Water, Energy and Environment, Cranfield University, Cranfield, United Kingdom
| | - Tovohery Rakotoson
- Laboratoire des RadioIsotopes (LRI), Université d’Antananarivo, Antananarivo, Madagascar
| | - Hanna Manwaring
- School of Water, Energy and Environment, Cranfield University, Cranfield, United Kingdom
| | - Andry Andriamananjara
- Laboratoire des RadioIsotopes (LRI), Université d’Antananarivo, Antananarivo, Madagascar
| | - Tantely Razafimbelo
- Laboratoire des RadioIsotopes (LRI), Université d’Antananarivo, Antananarivo, Madagascar
| |
Collapse
|
31
|
Hajiboland R, Panda CK, Lastochkina O, Gavassi MA, Habermann G, Pereira JF. Aluminum Toxicity in Plants: Present and Future. JOURNAL OF PLANT GROWTH REGULATION 2023; 42:3967-3999. [DOI: 10.1007/s00344-022-10866-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/26/2022] [Indexed: 06/23/2023]
|
32
|
Li X, Tian Y. STOP1 and STOP1-like proteins, key transcription factors to cope with acid soil syndrome. FRONTIERS IN PLANT SCIENCE 2023; 14:1200139. [PMID: 37416880 PMCID: PMC10321353 DOI: 10.3389/fpls.2023.1200139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/25/2023] [Indexed: 07/08/2023]
Abstract
Acid soil syndrome leads to severe yield reductions in various crops worldwide. In addition to low pH and proton stress, this syndrome includes deficiencies of essential salt-based ions, enrichment of toxic metals such as manganese (Mn) and aluminum (Al), and consequent phosphorus (P) fixation. Plants have evolved mechanisms to cope with soil acidity. In particular, STOP1 (Sensitive to proton rhizotoxicity 1) and its homologs are master transcription factors that have been intensively studied in low pH and Al resistance. Recent studies have identified additional functions of STOP1 in coping with other acid soil barriers: STOP1 regulates plant growth under phosphate (Pi) or potassium (K) limitation, promotes nitrate (NO3 -) uptake, confers anoxic tolerance during flooding, and inhibits drought tolerance, suggesting that STOP1 functions as a node for multiple signaling pathways. STOP1 is evolutionarily conserved in a wide range of plant species. This review summarizes the central role of STOP1 and STOP1-like proteins in regulating coexisting stresses in acid soils, outlines the advances in the regulation of STOP1, and highlights the potential of STOP1 and STOP1-like proteins to improve crop production on acid soils.
Collapse
Affiliation(s)
- Xinbo Li
- Hainan Yazhou Bay Seed Lab, Sanya, Hainan, China
- Center for Advanced Bioindustry Technologies, and Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yifu Tian
- Hainan Yazhou Bay Seed Lab, Sanya, Hainan, China
- Center for Advanced Bioindustry Technologies, and Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
33
|
Guan K, Yang Z, Zhan M, Zheng M, You J, Meng X, Li H, Gao J. Two Sweet Sorghum ( Sorghum bicolor L.) WRKY Transcription Factors Promote Aluminum Tolerance via the Reduction in Callose Deposition. Int J Mol Sci 2023; 24:10288. [PMID: 37373435 DOI: 10.3390/ijms241210288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Aluminum (Al) toxicity is a primary limiting factor for crop production in acidic soils. The WRKY transcription factors play important roles in regulating plant growth and stress resistance. In this study, we identified and characterized two WRKY transcription factors, SbWRKY22 and SbWRKY65, in sweet sorghum (Sorghum bicolor L.). Al induced the transcription of SbWRKY22 and SbWRKY65 in the root apices of sweet sorghum. These two WRKY proteins were localized in the nucleus and exhibited transcriptional activity. SbWRKY22 showed the significant transcriptional regulation of SbMATE, SbGlu1, SbSTAR1, SbSTAR2a, and SbSTAR2b, which are major known Al tolerance genes in sorghum. Interestingly, SbWRKY65 had almost no effect on the aforementioned genes, but it significantly regulated the transcription of SbWRKY22. Therefore, it is speculated that SbWRKY65 might indirectly regulate Al-tolerance genes mediated by SbWRKY22. The heterologous expression of SbWRKY22 and SbWRKY65 greatly improved the Al tolerance of transgenic plants. The enhanced Al tolerance phenotype of transgenic plants is associated with reduced callose deposition in their roots. These findings suggest the existence of SbWRKY22- and SbWRKY65-mediated Al tolerance regulation pathways in sweet sorghum. This study extends our understanding of the complex regulatory mechanisms of WRKY transcription factors in response to Al toxicity.
Collapse
Affiliation(s)
- Kexing Guan
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China
| | - Zhenming Yang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China
| | - Meiqi Zhan
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China
| | - Meihui Zheng
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China
| | - Jiangfeng You
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China
| | - Xiangxiang Meng
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China
| | - He Li
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China
| | - Jie Gao
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China
| |
Collapse
|
34
|
Xie W, Liu S, Gao H, Wu J, Liu D, Kinoshita T, Huang CF. PP2C.D phosphatase SAL1 positively regulates aluminum resistance via restriction of aluminum uptake in rice. PLANT PHYSIOLOGY 2023; 192:1498-1516. [PMID: 36823690 PMCID: PMC10231357 DOI: 10.1093/plphys/kiad122] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 06/01/2023]
Abstract
Aluminum (Al) toxicity represents a primary constraint for crop production in acidic soils. Rice (Oryza sativa) is a highly Al-resistant species; however, the molecular mechanisms underlying its high Al resistance are still not fully understood. Here, we identified SAL1 (SENSITIVE TO ALUMINUM 1), which encodes a plasma membrane (PM)-localized PP2C.D phosphatase, as a crucial regulator of Al resistance using a forward genetic screen. SAL1 was found to interact with and inhibit the activity of PM H+-ATPases, and mutation of SAL1 increased PM H+-ATPase activity and Al uptake, causing hypersensitivity to internal Al toxicity. Furthermore, knockout of NRAT1 (NRAMP ALUMINUM TRANSPORTER 1) encoding an Al uptake transporter in a sal1 background rescued the Al-sensitive phenotype of sal1, revealing that coordination of Al accumulation in the cell, wall and symplasm is critical for Al resistance in rice. By contrast, we found that mutations of PP2C.D phosphatase-encoding genes in Arabidopsis (Arabidopsis thaliana) enhanced Al resistance, which was attributed to increased malate secretion. Our results reveal the importance of PP2C.D phosphatases in Al resistance and the different strategies used by rice and Arabidopsis to defend against Al toxicity.
Collapse
Affiliation(s)
- Wenxiang Xie
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shuo Liu
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Huiling Gao
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jun Wu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Dilin Liu
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Toshinori Kinoshita
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Chao-Feng Huang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
35
|
Gao LJ, Liu XP, Gao KK, Cui MQ, Zhu HH, Li GX, Yan JY, Wu YR, Ding ZJ, Chen XW, Ma JF, Harberd NP, Zheng SJ. ART1 and putrescine contribute to rice aluminum resistance via OsMYB30 in cell wall modification. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:934-949. [PMID: 36515424 DOI: 10.1111/jipb.13429] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Cell wall is the first physical barrier to aluminum (Al) toxicity. Modification of cell wall properties to change its binding capacity to Al is one of the major strategies for plant Al resistance; nevertheless, how it is regulated in rice remains largely unknown. In this study, we show that exogenous application of putrescines (Put) could significantly restore the Al resistance of art1, a rice mutant lacking the central regulator Al RESISTANCE TRANSCRIPTION FACTOR 1 (ART1), and reduce its Al accumulation particularly in the cell wall of root tips. Based on RNA-sequencing, yeast-one-hybrid and electrophoresis mobility shift assays, we identified an R2R3 MYB transcription factor OsMYB30 as the novel target in both ART1-dependent and Put-promoted Al resistance. Furthermore, transient dual-luciferase assay showed that ART1 directly inhibited the expression of OsMYB30, and in turn repressed Os4CL5-dependent 4-coumaric acid accumulation, hence reducing the Al-binding capacity of cell wall and enhancing Al resistance. Additionally, Put repressed OsMYB30 expression by eliminating Al-induced H2 O2 accumulation, while exogenous H2 O2 promoted OsMYB30 expression. We concluded that ART1 confers Put-promoted Al resistance via repression of OsMYB30-regulated modification of cell wall properties in rice.
Collapse
Affiliation(s)
- Li Jun Gao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 5100642, China
| | - Xiang Pei Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Ke Ke Gao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Meng Qi Cui
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hui Hui Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Gui Xin Li
- College of Agronomy and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jing Ying Yan
- Agricultural Experimental Station, Zhejiang University, Hangzhou, 310058, China
| | - Yun Rong Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhong Jie Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xue Wei Chen
- Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, 611130, China
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Nicholas P Harberd
- Department of Plant Science, University of Oxford, Oxford, OX1 3RB, United Kingdom
| | - Shao Jian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 5100642, China
| |
Collapse
|
36
|
Zhou F, Singh S, Zhang J, Fang Q, Li C, Wang J, Zhao C, Wang P, Huang CF. The MEKK1-MKK1/2-MPK4 cascade phosphorylates and stabilizes STOP1 to confer aluminum resistance in Arabidopsis. MOLECULAR PLANT 2023; 16:337-353. [PMID: 36419357 DOI: 10.1016/j.molp.2022.11.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/09/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Aluminum (Al) toxicity can seriously restrict crop production on acidic soils, which comprise 40% of the world's potentially arable land. The zinc finger transcription factor STOP1 has a conserved and essential function in mediating plant Al resistance. Al stress induces STOP1 accumulation via post-transcriptional regulatory mechanisms. However, the upstream signaling pathway involved in Al-triggered STOP1 accumulation remains unclear. Here, we report that the MEKK1-MKK1/2-MPK4 cascade positively regulates STOP1 phosphorylation and stability. Mutations of MEKK1, MKK1/2, or MPK4 lead to decreased STOP1 stability and Al resistance. Al stress induces the kinase activity of MPK4, which interacts with and phosphorylates STOP1. The phosphorylation of STOP1 reduces its interaction with the F-box protein RAE1 that mediates STOP1 degradation, thereby leading to enhanced STOP1 stability and Al resistance. Taken together, our results suggest that the MEKK1-MKK1/2-MPK4 cascade is important for Al signaling and confers Al resistance through phosphorylation-mediated enhancement of STOP1 accumulation in Arabidopsis.
Collapse
Affiliation(s)
- Fanglin Zhou
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Somesh Singh
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jie Zhang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qiu Fang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chongyang Li
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jiawen Wang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chunzhao Zhao
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Pengcheng Wang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chao-Feng Huang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
37
|
Ofoe R, Thomas RH, Asiedu SK, Wang-Pruski G, Fofana B, Abbey L. Aluminum in plant: Benefits, toxicity and tolerance mechanisms. FRONTIERS IN PLANT SCIENCE 2023; 13:1085998. [PMID: 36714730 PMCID: PMC9880555 DOI: 10.3389/fpls.2022.1085998] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Aluminum (Al) is the third most ubiquitous metal in the earth's crust. A decrease in soil pH below 5 increases its solubility and availability. However, its impact on plants depends largely on concentration, exposure time, plant species, developmental age, and growing conditions. Although Al can be beneficial to plants by stimulating growth and mitigating biotic and abiotic stresses, it remains unknown how Al mediates these effects since its biological significance in cellular systems is still unidentified. Al is considered a major limiting factor restricting plant growth and productivity in acidic soils. It instigates a series of phytotoxic symptoms in several Al-sensitive crops with inhibition of root growth and restriction of water and nutrient uptake as the obvious symptoms. This review explores advances in Al benefits, toxicity and tolerance mechanisms employed by plants on acidic soils. These insights will provide directions and future prospects for potential crop improvement.
Collapse
Affiliation(s)
- Raphael Ofoe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Bible Hill, NS, Canada
| | - Raymond H. Thomas
- School of Science and the Environment, Memorial University of Newfoundland, Grenfell Campus, Corner Brook, NL, Canada
| | - Samuel K. Asiedu
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Bible Hill, NS, Canada
| | - Gefu Wang-Pruski
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Bible Hill, NS, Canada
| | - Bourlaye Fofana
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Bible Hill, NS, Canada
- Charlottetown Research and Development Centre, Agriculture and Agri-Food Canada, Charlottetown, PE, Canada
| | - Lord Abbey
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Bible Hill, NS, Canada
| |
Collapse
|
38
|
Wang J, Su C, Cui Z, Huang L, Gu S, Jiang S, Feng J, Xu H, Zhang W, Jiang L, Zhao M. Transcriptomics and metabolomics reveal tolerance new mechanism of rice roots to Al stress. Front Genet 2023; 13:1063984. [PMID: 36704350 PMCID: PMC9871393 DOI: 10.3389/fgene.2022.1063984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/15/2022] [Indexed: 01/12/2023] Open
Abstract
The prevalence of soluble aluminum (Al) ions is one of the major limitations to crop production worldwide on acid soils. Therefore, understanding the Al tolerance mechanism of rice and applying Al tolerance functional genes in sensitive plants can significantly improve Al stress resistance. In this study, transcriptomics and metabolomics analyses were performed to reveal the mechanism of Al tolerance differences between two rice landraces (Al-tolerant genotype Shibanzhan (KR) and Al-sensitive genotype Hekedanuo (MR) with different Al tolerance. The results showed that DEG related to phenylpropanoid biosynthesis was highly enriched in KR and MR after Al stress, indicating that phenylpropanoid biosynthesis may be closely related to Al tolerance. E1.11.1.7 (peroxidase) was the most significant enzyme of phenylpropanoid biosynthesis in KR and MR under Al stress and is regulated by multiple genes. We further identified that two candidate genes Os02g0770800 and Os06g0521900 may be involved in the regulation of Al tolerance in rice. Our results not only reveal the resistance mechanism of rice to Al stress to some extent, but also provide a useful reference for the molecular mechanism of different effects of Al poisoning on plants.
Collapse
|
39
|
Barrero LS, Willmann MR, Craft EJ, Akther KM, Harrington SE, Garzon‐Martinez GA, Glahn RP, Piñeros MA, McCouch SR. Identifying genes associated with abiotic stress tolerance suitable for CRISPR/Cas9 editing in upland rice cultivars adapted to acid soils. PLANT DIRECT 2022; 6:e469. [PMID: 36514785 PMCID: PMC9737570 DOI: 10.1002/pld3.469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
Five genes of large phenotypic effect known to confer abiotic stress tolerance in rice were selected to characterize allelic variation in commercial Colombian tropical japonica upland rice cultivars adapted to drought-prone acid soil environments (cv. Llanura11 and Porvenir12). Allelic variants of the genes ART1, DRO1, SUB1A, PSTOL1, and SPDT were characterized by PCR and/or Sanger sequencing in the two upland cultivars and compared with the Nipponbare and other reference genomes. Two genes were identified as possible targets for gene editing: SUB1A (Submergence 1A), to improve tolerance to flooding, and SPDT (SULTR3;4) (SULTR-like Phosphorus Distribution Transporter), to improve phosphorus utilization efficiency and grain quality. Based on technical and regulatory considerations, SPDT was targeted for editing. The two upland cultivars were shown to carry the SPDT wild-type (nondesirable) allele based on sequencing, RNA expression, and phenotypic evaluations under hydroponic and greenhouse conditions. A gene deletion was designed using the CRISPR/Cas9 system, and specialized reagents were developed for SPDT editing, including vectors targeting the gene and a protoplast transfection transient assay. The desired edits were confirmed in protoplasts and serve as the basis for ongoing plant transformation experiments aiming to improve the P-use efficiency of upland rice grown in acidic soils.
Collapse
Affiliation(s)
- Luz S. Barrero
- Corporacion Colombiana de Investigacion AgropecuariaAGROSAVIAMosqueraColombia
- Plant Breeding & Genetics Section, School of Integrative Plant ScienceCornell UniversityIthacaNew YorkUSA
| | - Matthew R. Willmann
- Plant Transformation Facility, School of Integrative Plant ScienceCornell UniversityIthacaNew YorkUSA
- Present address:
USDA‐ARS, Robert W. Holley CenterIthacaNew YorkUSA
| | - Eric J. Craft
- Present address:
USDA‐ARS, Robert W. Holley CenterIthacaNew YorkUSA
| | - Kazi M. Akther
- Plant Breeding & Genetics Section, School of Integrative Plant ScienceCornell UniversityIthacaNew YorkUSA
| | - Sandra E. Harrington
- Plant Breeding & Genetics Section, School of Integrative Plant ScienceCornell UniversityIthacaNew YorkUSA
| | | | - Raymond P. Glahn
- Present address:
USDA‐ARS, Robert W. Holley CenterIthacaNew YorkUSA
| | | | - Susan R. McCouch
- Plant Breeding & Genetics Section, School of Integrative Plant ScienceCornell UniversityIthacaNew YorkUSA
| |
Collapse
|
40
|
Zhang L, Dong D, Wang J, Wang Z, Zhang J, Bai RY, Wang X, Rubio Wilhelmi MDM, Blumwald E, Zhang N, Guo YD. A zinc finger protein SlSZP1 protects SlSTOP1 from SlRAE1-mediated degradation to modulate aluminum resistance. THE NEW PHYTOLOGIST 2022; 236:165-181. [PMID: 35739643 DOI: 10.1111/nph.18336] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
In acidic soils, aluminum (Al) toxicity is the main factor inhibiting plant root development and reducing crops yield. STOP1 (SENSITIVE TO PROTON RHIZOTOXICITY 1) was a critical factor in detoxifying Al stress. Under Al stress, STOP1 expression was not induced, although STOP1 protein accumulated, even in the presence of RAE1 (STOP1 DEGRADATION E3-LIGASE). How the Al stress triggers and stabilises the accumulation of STOP1 is still unknown. Here, we characterised SlSTOP1-interacting zinc finger protein (SlSZP1) using a yeast-two-hybrid screening, and generated slstop1, slszp1 and slstop1/slszp1 knockout mutants using clustered regularly interspaced short palindromic repeats (CRISPR) in tomato. SlSZP1 is induced by Al stress but it is not regulated by SlSTOP1. The slstop1, slszp1 and slstop1/slszp1 knockout mutants exhibited hypersensitivity to Al stress. The expression of SlSTOP1-targeted genes, such as SlRAE1 and SlASR2 (ALUMINUM SENSITIVE), was inhibited in both slstop1 and slszp1 mutants, but not directly regulated by SlSZP1. Furthermore, the degradation of SlSTOP1 by SlRAE1 was prevented by SlSZP1. Al stress increased the accumulation of SlSTOP1 in wild-type (WT) but not in slszp1 mutants. The overexpression of either SlSTOP1 or SlSZP1 did not enhance plant Al resistance. Altogether, our results show that SlSZP1 is an important factor for protecting SlSTOP1 from SlRAE1-mediated degradation.
Collapse
Affiliation(s)
- Lei Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Danhui Dong
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jinfang Wang
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Zhirong Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jiaojiao Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Ru-Yue Bai
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xuewei Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | | | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Na Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572000, China
| | - Yang-Dong Guo
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
41
|
Yang Y, Mei J, Chen J, Yang Y, Gu Y, Tang X, Lu H, Yang K, Sharma A, Wang X, Yan D, Wu R, Zheng B, Yuan H. Expression analysis of PIN family genes in Chinese hickory reveals their potential roles during grafting and salt stress. FRONTIERS IN PLANT SCIENCE 2022; 13:999990. [PMID: 36247577 PMCID: PMC9557188 DOI: 10.3389/fpls.2022.999990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Grafting is an effective way to improve Chinese hickory while salt stress has caused great damage to the Chinese hickory industry. Grafting and salt stress have been regarded as the main abiotic stress types for Chinese hickory. However, how Chinese hickory responds to grafting and salt stress is less studied. Auxin has been proved to play an essential role in the stress response through its re-distribution regulation mediated by polar auxin transporters, including PIN-formed (PIN) proteins. In this study, the PIN gene family in Chinese hickory (CcPINs) was identified and structurally characterized for the first time. The expression profiles of the genes in response to grafting and salt stress were determined. A total of 11 CcPINs with the open reading frames (ORFs) of 1,026-1,983 bp were identified. Transient transformation in tobacco leaves demonstrated that CcPIN1a, CcPIN3, and CcPIN4 were localized in the plasma membrane. There were varying phylogenetic relationships between CcPINs and homologous genes in different species, but the closest relationships were with those in Carya illinoinensis and Juglans regia. Conserved N- and C-terminal transmembrane regions as well as sites controlling the functions of CcPINs were detected in CcPINs. Five types of cis-acting elements, including hormone- and stress-responsive elements, were detected on the promoters of CcPINs. CcPINs exhibited different expression profiles in different tissues, indicating their varied roles during growth and development. The 11 CcPINs responded differently to grafting and salt stress treatment. CcPIN1a might be involved in the regulation of the grafting process, while CcPIN1a and CcPIN8a were related to the regulation of salt stress in Chinese hickory. Our results will lay the foundation for understanding the potential regulatory functions of CcPIN genes during grafting and under salt stress treatment in Chinese hickory.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Jiaqi Mei
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Juanjuan Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Ying Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Yujie Gu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Xiaoyu Tang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Huijie Lu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Kangbiao Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Xiaofei Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Daoliang Yan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Rongling Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Huwei Yuan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
42
|
Du H, Raman H, Kawasaki A, Perera G, Diffey S, Snowdon R, Raman R, Ryan PR. A genome-wide association study (GWAS) identifies multiple loci linked with the natural variation for Al 3+ resistance in Brassica napus. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:845-860. [PMID: 35753342 DOI: 10.1071/fp22073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Acid soils limit yields of many important crops including canola (Brassica napus ), Australia's third largest crop. Aluminium (Al3+ ) stress is the main cause of this limitation primarily because the toxic Al3+ present inhibits root growth. Breeding programmes do not target acid-soil tolerance in B. napus because genetic variation and convincing quantitative trait loci have not been reported. We conducted a genome-wide association study (GWAS) using the BnASSYST diversity panel of B. napus genotyped with 35 729 high-quality DArTseq markers. We screened 352 B. napus accessions in hydroponics with and without a toxic concentration of AlCl3 (12μM, pH 4.3) for 12days and measured shoot biomass, root biomass, and root length. By accounting for both population structure and kinship matrices, five significant quantitative trait loci for different measures of resistance were identified using incremental Al3+ resistance indices. Within these quantitative trait locus regions of B. napus , 40 Arabidopsis thaliana gene orthologues were identified, including some previously linked with Al3+ resistance. GWAS analysis indicated that multiple genes are responsible for the natural variation in Al3+ resistance in B. napus . The results provide new genetic resources and markers to enhance that Al3+ resistance of B. napus germplasm via genomic and marker-assisted selection.
Collapse
Affiliation(s)
- Hanmei Du
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia; and Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Harsh Raman
- NSW Department of Primary Industries, Wagga Wagga, NSW 2650, Australia
| | - Akitomo Kawasaki
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia; and NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Advanced Gene Technology Centre, Menangle, NSW 2568, Australia
| | - Geetha Perera
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | | | - Rod Snowdon
- Justus Liebig University, Department of Plant Breeding Institute, Giessen 35391, Germany
| | - Rosy Raman
- NSW Department of Primary Industries, Wagga Wagga, NSW 2650, Australia
| | - Peter R Ryan
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| |
Collapse
|
43
|
Verma PK, Verma S, Pandey N. Root system architecture in rice: impacts of genes, phytohormones and root microbiota. 3 Biotech 2022; 12:239. [PMID: 36016841 PMCID: PMC9395555 DOI: 10.1007/s13205-022-03299-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/01/2022] [Indexed: 11/28/2022] Open
Abstract
To feed the continuously expanding world's population, new crop varieties have been generated, which significantly contribute to the world's food security. However, the growth of these improved plant varieties relies primarily on synthetic fertilizers, which negatively affect the environment and human health; therefore, continuous improvement is needed for sustainable agriculture. Several plants, including cereal crops, have the adaptive capability to combat adverse environmental changes by altering physiological and molecular mechanisms and modifying their root system to improve nutrient uptake efficiency. These plants operate distinct pathways at various developmental stages to optimally establish their root system. These processes include changes in the expression profile of genes, changes in phytohormone level, and microbiome-induced root system architecture (RSA) modification. Several studies have been performed to understand microbial colonization and their involvement in RSA improvement through changes in phytohormone and transcriptomic levels. This review highlights the impact of genes, phytohormones, and particularly root microbiota in influencing RSA and provides new insights resulting from recent studies on rice root as a model system and summarizes the current knowledge about biochemical and central molecular mechanisms.
Collapse
Affiliation(s)
- Pankaj Kumar Verma
- Department of Botany, University of Lucknow, Lucknow, India
- Present Address: French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Shikha Verma
- Present Address: French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Nalini Pandey
- Department of Botany, University of Lucknow, Lucknow, India
| |
Collapse
|
44
|
Jia Y, Pradeep K, Vance WH, Zhang X, Weir B, Wei H, Deng Z, Zhang Y, Xu X, Zhao C, Berger JD, Bell RW, Li C. Identification of two chickpea multidrug and toxic compound extrusion transporter genes transcriptionally upregulated upon aluminum treatment in root tips. FRONTIERS IN PLANT SCIENCE 2022; 13:909045. [PMID: 35991422 PMCID: PMC9389367 DOI: 10.3389/fpls.2022.909045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Aluminum (Al) toxicity poses a significant challenge for the yield improvement of chickpea, which is an economically important legume crop with high nutritional value in human diets. The genetic basis of Al-tolerance in chickpea remains unclear. Here, we assessed the Al-tolerance of 8 wild Cicer and one cultivated chickpea (PBA Pistol) accessions by measuring the root elongation in solution culture under control (0 μM Al3+) and Al treatments (15, 30 μM Al3+). Compared to PBA Pistol, the wild Cicer accessions displayed both tolerant and sensitive phenotypes, supporting wild Cicer as a potential genetic pool for Al-tolerance improvement. To identify potential genes related to Al-tolerance in chickpea, genome-wide screening of multidrug and toxic compound extrusion (MATE) encoding genes was performed. Fifty-six MATE genes were identified in total, which can be divided into 4 major phylogenetic groups. Four chickpea MATE genes (CaMATE1-4) were clustered with the previously characterized citrate transporters MtMATE66 and MtMATE69 in Medicago truncatula. Transcriptome data showed that CaMATE1-4 have diverse expression profiles, with CaMATE2 being root-specific. qRT-PCR analyses confirmed that CaMATE2 and CaMATE4 were highly expressed in root tips and were up-regulated upon Al treatment in all chickpea lines. Further measurement of carboxylic acids showed that malonic acid, instead of malate or citrate, is the major extruded acid by Cicer spp. root. Protein structural modeling analyses revealed that CaMATE2 has a divergent substrate-binding cavity from Arabidopsis AtFRD3, which may explain the different acid-secretion profile for chickpea. Pangenome survey showed that CaMATE1-4 have much higher genetic diversity in wild Cicer than that in cultivated chickpea. This first identification of CaMATE2 and CaMATE4 responsive to Al3+ treatment in Cicer paves the way for future functional characterization of MATE genes in Cicer spp., and to facilitate future design of gene-specific markers for Al-tolerant line selection in chickpea breeding programs.
Collapse
Affiliation(s)
- Yong Jia
- Western Crop Genetic Alliance, Murdoch University, Perth, WA, Australia
- State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Department of Primary Industry and Regional Development, Government of Western Australia, Perth, WA, Australia
| | - Karthika Pradeep
- Centre for Sustainable Farming Systems, Future Foods Institute, Murdoch University, Perth, WA, Australia
| | - Wendy H. Vance
- Centre for Sustainable Farming Systems, Future Foods Institute, Murdoch University, Perth, WA, Australia
| | - Xia Zhang
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Brayden Weir
- State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Hongru Wei
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Zhiwei Deng
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Yujuan Zhang
- State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Xuexin Xu
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Changxing Zhao
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | | | - Richard William Bell
- Centre for Sustainable Farming Systems, Future Foods Institute, Murdoch University, Perth, WA, Australia
| | - Chengdao Li
- Western Crop Genetic Alliance, Murdoch University, Perth, WA, Australia
- State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Department of Primary Industry and Regional Development, Government of Western Australia, Perth, WA, Australia
| |
Collapse
|
45
|
Liu XP, Gao LJ, She BT, Li GX, Wu YR, Xu JM, Ding ZJ, Ma JF, Zheng SJ. A novel kinase subverts aluminium resistance by boosting ornithine decarboxylase-dependent putrescine biosynthesis. PLANT, CELL & ENVIRONMENT 2022; 45:2520-2532. [PMID: 35656839 DOI: 10.1111/pce.14371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/11/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Rice, as one of the most aluminium (Al)-resistant cereal crops, has developed more complicated Al resistance mechanisms than others. By using forward genetic screening from a rice ethyl methanesulfonate mutant library, we obtained a mutant showing specifically high sensitivity to Al. Through MutMap analysis followed by a complementation test, we identified the causal gene, Al-related Protein Kinase (ArPK) for Al-sensitivity. ArPK expression was induced by a relatively longer exposure to high Al concentration in the roots. The result of RNA-sequencing indicated the functional disorder in arginine metabolism pathway with downregulation of N-acetylornithine deacetylase (NAOD) expression and upregulation of Ornithine decarboxylase1 (ODC1) expression in arpk mutant. Al specifically and rapidly upregulated ODC1 expression and causes overaccumulation of putrescine (Put), whereas the ODC inhibitor difluoromethylornithine reverted Al-sensitive phenotype of arpk, suggesting that overaccumulation of endogenous Put might be harmful for root growth, and that ArPK seems to act as an endogenous inhibitor of ODC1 action to maintain suitable endogenous Put level under Al treatment. Overall, we identified ArPK and its putative repressive role in controlling a novel ODC-dependent Put biosynthesis pathway specifically affecting rice Al resistance, thus enriching the fundamental understanding of plant Al resistance.
Collapse
Affiliation(s)
- Xiang P Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Li J Gao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ben T She
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Gui X Li
- College of Agronomy and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yun R Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ji M Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhong J Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jian F Ma
- Institute of Science and Resources, Okayama University, Kurashiki, Japan
| | - Shao J Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| |
Collapse
|
46
|
Tao Y, Wan JX, Liu YS, Yang XZ, Shen RF, Zhu XF. The NAC transcription factor ANAC017 regulates aluminum tolerance by regulating the cell wall-modifying genes. PLANT PHYSIOLOGY 2022; 189:2517-2534. [PMID: 35512200 PMCID: PMC9342997 DOI: 10.1093/plphys/kiac197] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/28/2022] [Indexed: 05/06/2023]
Abstract
Aluminum (Al) toxicity is one of the key factors limiting crop production in acid soils; however, little is known about its transcriptional regulation in plants. In this study, we characterized the role of a NAM, ATAF1/2, and cup-shaped cotyledon 2 (NAC) transcription factors (TFs), ANAC017, in the regulation of Al tolerance in Arabidopsis (Arabidopsis thaliana). ANAC017 was localized in the nucleus and exhibited constitutive expression in the root, stem, leaf, flower, and silique, although its expression and protein accumulation were repressed by Al stress. Loss of function of ANAC017 enhanced Al tolerance when compared with wild-type Col-0 and was accompanied by lower root and root cell wall Al content. Furthermore, both hemicellulose and xyloglucan content decreased in the anac017 mutants, indicating the possible interaction between ANAC017 and xyloglucan endotransglucosylase/hydrolase (XTH). Interestingly, the expression of XTH31, which is responsible for xyloglucan modification, was downregulated in the anac017 mutants regardless of Al supply, supporting the possible interaction between ANAC017 and XTH31. Yeast one-hybrid, dual-luciferase reporter assay, and chromatin immunoprecipitation-quantitative PCR analysis revealed that ANAC017 positively regulated the expression of XTH31 through directly binding to the XTH31 promoter region, and overexpression of XTH31 in the anac017 mutant background rescued its Al-tolerance phenotype. In conclusion, we identified that the tTF ANAC017 acts upstream of XTH31 to regulate Al tolerance in Arabidopsis.
Collapse
Affiliation(s)
| | | | - Yu Song Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Zheng Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | |
Collapse
|
47
|
ZmNRAMP4 Enhances the Tolerance to Aluminum Stress in Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms23158162. [PMID: 35897738 PMCID: PMC9331102 DOI: 10.3390/ijms23158162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
Aluminum (Al) toxicity causes severe reduction in crop yields in acidic soil. The natural resistance-associated macrophage proteins (NRAMPs) play an important role in the transport of mineral elements in plants. Recently, OsNrat1 and SbNrat1 were reported specifically to transport trivalent Al ions. In this study, we functionally characterized ZmNRAMP4, a gene previously identified from RNA-Seq data from Al-treated maize roots, in response to Al exposure in maize. ZmNRAMP4 was predominantly expressed in root tips and was specifically induced by Al stress. Yeast cells expressing ZmNRAMP4 were hypersensitive to Al, which was associated with Al accumulation in yeast. Furthermore, overexpression of ZmNRAMP4 in Arabidopsis conferred transgenic plants with a significant increase in Al tolerance. However, expression of ZmNRAMP4, either in yeast or in Arabidopsis, had no effect on the response to cadmium stress. Taken together, these results underlined an internal tolerance mechanism involving ZmNRAMP4 to enhance Al tolerance via cytoplasmic sequestration of Al in maize.
Collapse
|
48
|
Xie L, Li H, Zhong Z, Guo J, Hu G, Gao Y, Tong Z, Liu M, Hu S, Tong H, Zhang P. Metabolome Analysis under Aluminum Toxicity between Aluminum-Tolerant and -Sensitive Rice (Oryza sativa L.). PLANTS 2022; 11:plants11131717. [PMID: 35807670 PMCID: PMC9269133 DOI: 10.3390/plants11131717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/05/2022]
Abstract
Aluminum (Al) solubilizes into trivalent ions (Al3+) on acidic soils, inhibiting root growth. Since about 13% of global rice cultivation is grown on acidic soils, improving Al tolerance in rice may significantly increase yields. In the present study, metabolome analysis under Al toxicity between the Al-tolerant variety Nipponbare and the Al-sensitive variety H570 were performed. There were 45 and 83 differential metabolites which were specifically detected in Nipponbare and H570 under Al toxicity, respectively. Furthermore, the results showed that 16 lipids out of 45 total metabolites were down-regulated, and 7 phenolic acids as well as 4 alkaloids of 45 metabolites were up-regulated in Nipponbare, while 12 amino acids and their derivatives were specifically detected in H570, of which 11 amino acids increased, including L-homoserine and L-methionine, which are involved in cysteine synthesis, L-ornithine and L-proline, which are associated with putrescine synthesis, and 1-aminocyclopropane-1-carboxylate, which is associated with ethylene synthesis. The contents of cysteine and s-(methyl) glutathione, which were reported to be related to Al detoxification in rice, decreased significantly. Meanwhile, putrescine was accumulated in H570, while there was no significant change in Nipponbare, so we speculated that it might be an intermediate product of Al detoxification in rice. The differential metabolites detected between Al-tolerant and -sensitive rice variants in the present study might play important roles in Al tolerance. These results provide new insights in the mechanisms of Al tolerance in rice.
Collapse
Affiliation(s)
- Lihua Xie
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.X.); (H.L.); (Z.Z.); (J.G.); (G.H.); (Y.G.); (Z.T.); (M.L.)
- Research Center of Plant Functional Genes and Tissue Culture Technology, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Huijuan Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.X.); (H.L.); (Z.Z.); (J.G.); (G.H.); (Y.G.); (Z.T.); (M.L.)
| | - Zhengzheng Zhong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.X.); (H.L.); (Z.Z.); (J.G.); (G.H.); (Y.G.); (Z.T.); (M.L.)
| | - Junjie Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.X.); (H.L.); (Z.Z.); (J.G.); (G.H.); (Y.G.); (Z.T.); (M.L.)
| | - Guocheng Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.X.); (H.L.); (Z.Z.); (J.G.); (G.H.); (Y.G.); (Z.T.); (M.L.)
| | - Yu Gao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.X.); (H.L.); (Z.Z.); (J.G.); (G.H.); (Y.G.); (Z.T.); (M.L.)
| | - Zhihua Tong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.X.); (H.L.); (Z.Z.); (J.G.); (G.H.); (Y.G.); (Z.T.); (M.L.)
| | - Meilan Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.X.); (H.L.); (Z.Z.); (J.G.); (G.H.); (Y.G.); (Z.T.); (M.L.)
| | - Songping Hu
- Research Center of Plant Functional Genes and Tissue Culture Technology, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
- Correspondence: author: (S.H.); (H.T.); (P.Z.)
| | - Hanhua Tong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.X.); (H.L.); (Z.Z.); (J.G.); (G.H.); (Y.G.); (Z.T.); (M.L.)
- Correspondence: author: (S.H.); (H.T.); (P.Z.)
| | - Peng Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.X.); (H.L.); (Z.Z.); (J.G.); (G.H.); (Y.G.); (Z.T.); (M.L.)
- Correspondence: author: (S.H.); (H.T.); (P.Z.)
| |
Collapse
|
49
|
Li L, Li X, Yang C, Cheng Y, Cai Z, Nian H, Ma Q. GsERF1 enhances Arabidopsis thaliana aluminum tolerance through an ethylene-mediated pathway. BMC PLANT BIOLOGY 2022; 22:258. [PMID: 35610574 PMCID: PMC9128276 DOI: 10.1186/s12870-022-03625-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 05/04/2022] [Indexed: 05/09/2023]
Abstract
Ethylene response factor (ERF) transcription factors constitute a subfamily of the AP2/ERF superfamily in plants and play multiple roles in plant growth and development as well as in stress responses. In this study, the GsERF1 gene from the wild soybean BW69 line (an Al-resistant Glycine soja line) was rapidly induced in response to aluminum stress. Quantitative real-time PCR (qRT-PCR) analysis showed that the GsERF1 gene maintained a constitutive expression pattern and was induced in soybean in response to aluminum stress, with increased amounts of transcripts detected in the roots. The putative GsERF1 protein, which contains an AP2 domain, was located in the nucleus and maintained transactivation activity. In addition, under AlCl3 treatment, GsERF1 overexpression increased the relative growth rate of the roots of Arabidopsis and weakened the hematoxylin staining of hairy roots. Ethylene synthesis-related genes such as ACS4, ACS5 and ACS6 were upregulated in GsERF1 transgenic lines compared with the wild type under AlCl3 treatment. Furthermore, the expression levels of stress/ABA-responsive marker genes, including ABI1, ABI2, ABI4, ABI5 and RD29B, in the GsERF1 transgenic lines were affected by AlCl3 treatment, unlike those in the wild type. Taken together, the results indicated that overexpression of GsERF1 may enhance aluminum tolerance of Arabidopsis through an ethylene-mediated pathway and/or ABA signaling pathway, the findings of which lay a foundation for breeding soybean plants tolerant to aluminum stress.
Collapse
Grants
- 2016ZX08004002-007 the Major Project of New Varieties Cultivation of Genetically Modified Organisms
- 2016ZX08004002-007 the Major Project of New Varieties Cultivation of Genetically Modified Organisms
- 2016ZX08004002-007 the Major Project of New Varieties Cultivation of Genetically Modified Organisms
- 2016ZX08004002-007 the Major Project of New Varieties Cultivation of Genetically Modified Organisms
- 2016ZX08004002-007 the Major Project of New Varieties Cultivation of Genetically Modified Organisms
- 2016ZX08004002-007 the Major Project of New Varieties Cultivation of Genetically Modified Organisms
- 2016ZX08004002-007 the Major Project of New Varieties Cultivation of Genetically Modified Organisms
- 31771816, 31971965 the National Natural Science Foundation of China
- 31771816, 31971965 the National Natural Science Foundation of China
- 31771816, 31971965 the National Natural Science Foundation of China
- 31771816, 31971965 the National Natural Science Foundation of China
- 31771816, 31971965 the National Natural Science Foundation of China
- 31771816, 31971965 the National Natural Science Foundation of China
- 31771816, 31971965 the National Natural Science Foundation of China
- 4100-C17106, 21301091702101 the Special Supervision on Quality and Safety of Agricultural Products of the Ministry of Agriculture and Rural Areas
- 4100-C17106, 21301091702101 the Special Supervision on Quality and Safety of Agricultural Products of the Ministry of Agriculture and Rural Areas
- 4100-C17106, 21301091702101 the Special Supervision on Quality and Safety of Agricultural Products of the Ministry of Agriculture and Rural Areas
- 4100-C17106, 21301091702101 the Special Supervision on Quality and Safety of Agricultural Products of the Ministry of Agriculture and Rural Areas
- 4100-C17106, 21301091702101 the Special Supervision on Quality and Safety of Agricultural Products of the Ministry of Agriculture and Rural Areas
- 4100-C17106, 21301091702101 the Special Supervision on Quality and Safety of Agricultural Products of the Ministry of Agriculture and Rural Areas
- 4100-C17106, 21301091702101 the Special Supervision on Quality and Safety of Agricultural Products of the Ministry of Agriculture and Rural Areas
- 2018YFE0116900 the Key Projects of International Scientific and Technological Innovation Cooperation among Governments under National Key R & D Plan
- 2018YFE0116900 the Key Projects of International Scientific and Technological Innovation Cooperation among Governments under National Key R & D Plan
- 2018YFE0116900 the Key Projects of International Scientific and Technological Innovation Cooperation among Governments under National Key R & D Plan
- 2018YFE0116900 the Key Projects of International Scientific and Technological Innovation Cooperation among Governments under National Key R & D Plan
- 2018YFE0116900 the Key Projects of International Scientific and Technological Innovation Cooperation among Governments under National Key R & D Plan
- 2018YFE0116900 the Key Projects of International Scientific and Technological Innovation Cooperation among Governments under National Key R & D Plan
- 2018YFE0116900 the Key Projects of International Scientific and Technological Innovation Cooperation among Governments under National Key R & D Plan
- CARS-04-PS09 the China Agricultural Research System
- CARS-04-PS09 the China Agricultural Research System
- CARS-04-PS09 the China Agricultural Research System
- CARS-04-PS09 the China Agricultural Research System
- CARS-04-PS09 the China Agricultural Research System
- CARS-04-PS09 the China Agricultural Research System
- CARS-04-PS09 the China Agricultural Research System
- 2020B020220008 the Key-Area Research and Development Program of Guangdong Province
- 2020B020220008 the Key-Area Research and Development Program of Guangdong Province
- 2020B020220008 the Key-Area Research and Development Program of Guangdong Province
- 2020B020220008 the Key-Area Research and Development Program of Guangdong Province
- 2020B020220008 the Key-Area Research and Development Program of Guangdong Province
- 2020B020220008 the Key-Area Research and Development Program of Guangdong Province
- 2020B020220008 the Key-Area Research and Development Program of Guangdong Province
- 201804020015 the Project of Science and Technology of Guangzhou
- 201804020015 the Project of Science and Technology of Guangzhou
- 201804020015 the Project of Science and Technology of Guangzhou
- 201804020015 the Project of Science and Technology of Guangzhou
- 201804020015 the Project of Science and Technology of Guangzhou
- 201804020015 the Project of Science and Technology of Guangzhou
- 201804020015 the Project of Science and Technology of Guangzhou
- the Key Projects of International Scientific and Technological Innovation Cooperation among Governments under National Key R & D Plan
Collapse
Affiliation(s)
- Lu Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Zengcheng Teaching and Research Base, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Xingang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Zengcheng Teaching and Research Base, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Ce Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Zengcheng Teaching and Research Base, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Yanbo Cheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Zengcheng Teaching and Research Base, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Zhandong Cai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Zengcheng Teaching and Research Base, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Hai Nian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.
- Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.
- Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.
- Zengcheng Teaching and Research Base, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.
| | - Qibin Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.
- Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.
- Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.
- Zengcheng Teaching and Research Base, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.
| |
Collapse
|
50
|
Siqueira JA, Silva MF, Wakin T, Nunes-Nesi A, Araújo WL. Metabolic and DNA checkpoints for the enhancement of Al tolerance. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128366. [PMID: 35168102 DOI: 10.1016/j.jhazmat.2022.128366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/04/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Acidic soils are a major limiting factor for food production in many developing countries. High concentrations of soluble Al cations, particularly Al3+, inhibit cell division and root elongation in plants. Al3+ damages several biomolecules, including DNA, impairing gene expression and cell cycle progression. Notably, the loss-of-function mutants of DNA checkpoints may mediate Al tolerance. Furthermore, mitochondrial organic acids play key roles in neutralizing Al3+ within the cell and around the rhizosphere. Here, we provide knowledge synthesis on interactions between checkpoints related to mitochondrial organic acid homeostasis and DNA integrity mediating Al tolerance in land plants. These interactions, coupled with remarkable advances in tools related to metabolism and cell cycle, may facilitate the development of next-generation productive crops under Al toxicity.
Collapse
Affiliation(s)
- João Antonio Siqueira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Marcelle Ferreira Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Thiago Wakin
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil.
| |
Collapse
|