1
|
Tan J, Fahad M, Zhang L, Wu L, Wu X. Microrchidia OsMORC6 Positively Regulates Cadmium Tolerance and Uptake by Mediating DNA Methylation in Rice. RICE (NEW YORK, N.Y.) 2025; 18:25. [PMID: 40202563 PMCID: PMC11981988 DOI: 10.1186/s12284-025-00785-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/28/2025] [Indexed: 04/10/2025]
Abstract
Rice (Oryza sativa) is an extremely important global food crop. However, cadmium (Cd) contamination in paddy fields poses a serious threat to human health worldwide. To generate low-Cd or Cd-free rice germplasms, it is essential to understand the molecular mechanisms involved in Cd tolerance, uptake, and translocation from soil to plant. In this study, we identify three Microrchidia proteins, OsMORC6a, OsMORC6b, and OsMORC6c, that regulate Cd tolerance and accumulation, although they do not alter the translocation of Cd from roots to shoots. Knockout of all three genes results in reducing Cd accumulation and increasing sensitivity to Cd stress. Furthermore, transcriptome analysis reveals 1,127 differentially expressed genes (DEGs) in the morc6abc mutants, which are significantly enriched in 'plant-type cell wall' and 'oxidoreductase activity' pathways. Through an integrating DNA methylome and transcriptome data, we identify 247 hyper-DMR-associated DEGs and 325 hypo-DMR-associated DEGs in morc6abc mutants. Gene Ontology (Go) enrichment analysis reveals that OsMORC6 proteins positively regulate Cd tolerance and uptake by mediating DNA methylation, which regulates the proper expression of genes related to plant cell wall and oxidative stress under Cd stress. Taken together, our findings reveal novel genes that mediate Cd tolerance and accumulation by affecting DNA methylation, offering valuable resource for breeding low-Cd or Cd-free rice germplasms.
Collapse
Affiliation(s)
- Jingai Tan
- Hainan Yazhou Bay Seed Laboratory, Hainan Institute, Zhejiang University, Sanya, Hainan, 572000, China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Muhammad Fahad
- Hainan Yazhou Bay Seed Laboratory, Hainan Institute, Zhejiang University, Sanya, Hainan, 572000, China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lantian Zhang
- Hainan Yazhou Bay Seed Laboratory, Hainan Institute, Zhejiang University, Sanya, Hainan, 572000, China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Liang Wu
- Hainan Yazhou Bay Seed Laboratory, Hainan Institute, Zhejiang University, Sanya, Hainan, 572000, China.
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Xia Wu
- Hainan Yazhou Bay Seed Laboratory, Hainan Institute, Zhejiang University, Sanya, Hainan, 572000, China.
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
2
|
Singla-Rastogi M. The complex immune puzzle: A deeper dive into the MORC1-mediated broad-spectrum defense signaling pathway. THE PLANT CELL 2025; 37:koaf075. [PMID: 40171615 PMCID: PMC12012790 DOI: 10.1093/plcell/koaf075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/04/2025]
Affiliation(s)
- Meenu Singla-Rastogi
- Assistant Features Editor, The Plant Cell, American Society of Plant Biologists
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
3
|
Sun C, Chen Y, Ma A, Wang P, Song Y, Pan J, Zhao T, Tu Z, Liang X, Wang X, Fan J, Bi G, Meng X, Dou D, Xu G. The kinase CPK5 phosphorylates MICRORCHIDIA1 to promote broad-spectrum disease resistance. THE PLANT CELL 2025; 37:koaf051. [PMID: 40085777 PMCID: PMC11952926 DOI: 10.1093/plcell/koaf051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 02/13/2025] [Indexed: 03/16/2025]
Abstract
In Arabidopsis (Arabidopsis thaliana), MICRORCHIDIA 1 (MORC1), a member of the MORC family of evolutionarily conserved GHKL-type ATPases, plays important roles in multiple layers of plant immunity. However, the molecular mechanism by which MORC1 regulates plant immunity remains obscure. Here, we report that the pathogen-responsive kinase CALCIUM-DEPENDENT PROTEIN KINASE 5 (CPK5) directly interacts with and phosphorylates MORC1, thereby promoting its stability and nuclear translocation. In the nucleus, MORC1 associates with the NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1)-TGACG-BINDING FACTOR (TGA) transcriptional complex to upregulate defense-responsive genes and promote plant resistance against several pathogens, such as the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 and fungal pathogen Botrytis cinerea. Therefore, this study uncovers a MORC1-mediated immune signaling pathway, in which the CPK5-MORC1-NPR1-TGA module transduces Ca2+ signals, leading to the upregulation of defense genes involved in plant immunity.
Collapse
Affiliation(s)
- Congcong Sun
- State Key Laboratory of Agricultural and Forestry Biosecurity, Ministry of Agriculture Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yongming Chen
- State Key Laboratory of Agricultural and Forestry Biosecurity, Ministry of Agriculture Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Aifang Ma
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Pan Wang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yingying Song
- State Key Laboratory of Agricultural and Forestry Biosecurity, Ministry of Agriculture Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jiaxin Pan
- State Key Laboratory of Agricultural and Forestry Biosecurity, Ministry of Agriculture Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Tingting Zhao
- State Key Laboratory of Agricultural and Forestry Biosecurity, Ministry of Agriculture Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhipeng Tu
- State Key Laboratory of Agricultural and Forestry Biosecurity, Ministry of Agriculture Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xiangxiu Liang
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiaodan Wang
- State Key Laboratory of Agricultural and Forestry Biosecurity, Ministry of Agriculture Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jun Fan
- State Key Laboratory of Agricultural and Forestry Biosecurity, Ministry of Agriculture Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Guozhi Bi
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiangzong Meng
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Daolong Dou
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Guangyuan Xu
- State Key Laboratory of Agricultural and Forestry Biosecurity, Ministry of Agriculture Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Zhu M, Feng M, Tao X. NLR-mediated antiviral immunity in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:786-800. [PMID: 39777907 DOI: 10.1111/jipb.13821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
Plant viruses cause substantial agricultural devastation and economic losses worldwide. Plant nucleotide-binding domain leucine-rich repeat receptors (NLRs) play a pivotal role in detecting viral infection and activating robust immune responses. Recent advances, including the elucidation of the interaction mechanisms between NLRs and pathogen effectors, the discovery of helper NLRs, and the resolution of the ZAR1 resistosome structure, have significantly deepened our understanding of NLR-mediated immune responses, marking a new era in NLR research. In this scenario, significant progress has been made in the study of NLR-mediated antiviral immunity. This review comprehensively summarizes the progress made in plant antiviral NLR research over the past decades, with a focus on NLR recognition of viral pathogen effectors, NLR activation and regulation, downstream immune signaling, and the engineering of NLRs.
Collapse
Affiliation(s)
- Min Zhu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingfeng Feng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaorong Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
5
|
Nam JC, Bhatt PS, Bonnard A, Pujara D, Kang HG. Arabidopsis MORC1 and MED9 Interact to Regulate Defense Gene Expression and Plant Fitness. THE PLANT PATHOLOGY JOURNAL 2024; 40:438-450. [PMID: 39397299 PMCID: PMC11471927 DOI: 10.5423/ppj.oa.07.2024.0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/09/2024] [Accepted: 08/11/2024] [Indexed: 10/15/2024]
Abstract
Arabidopsis MORC1 (Microrchidia) is required for multiple levels of immunity. We identified 14 MORC1-interacting proteins (MIPs) via yeast two-hybrid screening, eight of which have confirmed or putative nuclear-associated functions. While a few MIP mutants displayed altered bacterial resistance, MIP13 was unusual. The MIP13 mutant was susceptible to Pseudomonas syringae, but when combined with morc1/2, it regained wild-type resistance; notably, morc1/2 is susceptible to the same pathogen. MIP13 encodes MED9, a mediator complex component that interfaces with RNA polymerase II and transcription factors. Expression analysis of defense genes PR1, PR2, and PR5 in response to avirulent P. syringae revealed that morc1/2 med9 expressed these genes in a slow but sustained manner, unlike its lower-order mutants. This expression pattern may explain the restored resistance and suggests that the interplay of MORC1/2 and MED9 might be important in curbing defense responses to maintain fitness. Indeed, repeated challenges with avirulent P. syringae triggered significant growth inhibition in morc1/2 med9, indicating that MED9 and MORC1 may play an important role in balancing defense and growth. Furthermore, the in planta interaction of MED9 and MORC1 occurred 24 h, not 6 h, postinfection, suggesting that the interaction functions late in the defense signaling. Our study reveals a complex interplay between MORC1 and MED9 in maintaining an optimal balance between defense and growth in Arabidopsis.
Collapse
Affiliation(s)
- Ji Chul Nam
- Department of Biology, Texas State University, 600 University Dr., San Marcos, TX 78666, USA
| | - Padam Shekhar Bhatt
- Department of Biology, Texas State University, 600 University Dr., San Marcos, TX 78666, USA
| | | | - Dinesh Pujara
- Department of Biology, Texas State University, 600 University Dr., San Marcos, TX 78666, USA
| | - Hong-Gu Kang
- Department of Biology, Texas State University, 600 University Dr., San Marcos, TX 78666, USA
| |
Collapse
|
6
|
Palukaitis P, Yoon JY. Defense signaling pathways in resistance to plant viruses: Crosstalk and finger pointing. Adv Virus Res 2024; 118:77-212. [PMID: 38461031 DOI: 10.1016/bs.aivir.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
Resistance to infection by plant viruses involves proteins encoded by plant resistance (R) genes, viz., nucleotide-binding leucine-rich repeats (NLRs), immune receptors. These sensor NLRs are activated either directly or indirectly by viral protein effectors, in effector-triggered immunity, leading to induction of defense signaling pathways, resulting in the synthesis of numerous downstream plant effector molecules that inhibit different stages of the infection cycle, as well as the induction of cell death responses mediated by helper NLRs. Early events in this process involve recognition of the activation of the R gene response by various chaperones and the transport of these complexes to the sites of subsequent events. These events include activation of several kinase cascade pathways, and the syntheses of two master transcriptional regulators, EDS1 and NPR1, as well as the phytohormones salicylic acid, jasmonic acid, and ethylene. The phytohormones, which transit from a primed, resting states to active states, regulate the remainder of the defense signaling pathways, both directly and by crosstalk with each other. This regulation results in the turnover of various suppressors of downstream events and the synthesis of various transcription factors that cooperate and/or compete to induce or suppress transcription of either other regulatory proteins, or plant effector molecules. This network of interactions results in the production of defense effectors acting alone or together with cell death in the infected region, with or without the further activation of non-specific, long-distance resistance. Here, we review the current state of knowledge regarding these processes and the components of the local responses, their interactions, regulation, and crosstalk.
Collapse
Affiliation(s)
- Peter Palukaitis
- Graduate School of Plant Protection and Quarantine, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea.
| | - Ju-Yeon Yoon
- Graduate School of Plant Protection and Quarantine, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea.
| |
Collapse
|
7
|
Nam JC, Bhatt PS, Kim SI, Kang HG. Co-immunoprecipitation for Assessing Protein-Protein Interactions in Agrobacterium-Mediated Transient Expression System in Nicotiana benthamiana. Methods Mol Biol 2023; 2690:101-110. [PMID: 37450140 DOI: 10.1007/978-1-0716-3327-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The characterization of protein-protein interactions (PPI) often provides functional information about a target protein. Yeast-two-hybrid (Y2H) and luminescence/fluorescence-based detections, therefore, have been widely utilized for assessing PPI. In addition, a co-immunoprecipitation (co-IP) method has also been adopted with transient protein expression in Nicotiana benthamiana (N. benthamiana) infiltrated with Agrobacterium tumefaciens. Herein, we describe a co-IP procedure in which structural maintenance of chromosome 1 (SMC1), identified from a Y2H screening, was verified as an interacting partner for microchidia 1 (MORC1), a protein well known for its function in plant immunity and epigenetics. SMC1 and MORC1 were transiently expressed in N. benthamiana when infiltrated by Agrobacterium with the respective genes. From this approach, we identified a region of SMC1 responsible for interacting with MORC1. The co-IP method, of which outputs are mainly from immunoblot analysis, provided information about target protein expression as well, which is often useful for troubleshooting. Using this feature, we showcased a PPI confirmation from our SMC1-MORC1 study in which a full-length SMC1 protein was not detectable, and, therefore, a subsequent truncated mutant analysis had to be employed for PPI verification.
Collapse
Affiliation(s)
- Ji Chul Nam
- Department of Molecular Biosciences, Institute for Cellular & Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Padam S Bhatt
- Department of Biology, Texas State University, San Marcos, TX, USA
| | - Sung-Il Kim
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Hong-Gu Kang
- Department of Biology, Texas State University, San Marcos, TX, USA.
| |
Collapse
|
8
|
Ul Haq SI, Zheng D, Feng N, Jiang X, Qiao F, He JS, Qiu QS. Progresses of CRISPR/Cas9 genome editing in forage crops. JOURNAL OF PLANT PHYSIOLOGY 2022; 279:153860. [PMID: 36371870 DOI: 10.1016/j.jplph.2022.153860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) mediated-genome editing has evolved into a powerful tool that is widely used in plant species to induce editing in the genome for analyzing gene function and crop improvement. CRISPR/Cas9 is an RNA-guided genome editing tool consisting of a Cas9 nuclease and a single-guide RNA (sgRNA). The CRISPR/Cas9 system enables more accurate and efficient genome editing in crops. In this review, we summarized the advances of the CRISPR/Cas9 technology in plant genome editing and its applications in forage crops. We described briefly about the development of CRISPR/Cas9 technology in plant genome editing. We assessed the progress of CRISPR/Cas9-mediated targeted-mutagenesis in various forage crops, including alfalfa, Medicago truncatula, Hordeum vulgare, Sorghum bicolor, Setaria italica and Panicum virgatum. The potentials and challenges of CRISPR/Cas9 in forage breeding were discussed.
Collapse
Affiliation(s)
- Syed Inzimam Ul Haq
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Dianfeng Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Naijie Feng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Xingyu Jiang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Feng Qiao
- Academy of Plateau Science and Sustainability, School of Life Sciences, Qinghai Normal University, Xining, Qinghai, 810016, China
| | - Jin-Sheng He
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Quan-Sheng Qiu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, Gansu, 730000, China; Academy of Plateau Science and Sustainability, School of Life Sciences, Qinghai Normal University, Xining, Qinghai, 810016, China; College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China.
| |
Collapse
|
9
|
Chen X, Guo HY, Zhang QY, Wang L, Guo R, Zhan YX, Lv P, Xu YP, Guo MB, Zhang Y, Zhang K, Liu YH, Yang M. Whole-genome resequencing of wild and cultivated cannabis reveals the genetic structure and adaptive selection of important traits. BMC PLANT BIOLOGY 2022; 22:371. [PMID: 35883045 PMCID: PMC9327241 DOI: 10.1186/s12870-022-03744-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Cannabis is an important industrial crop species whose fibre, seeds, flowers and leaves are widely used by humans. The study of cannabinoids extracted from plants has been popular research topic in recent years. China is one of the origins of cannabis and one of the few countries with wild cannabis plants. However, the genetic structure of Chinese cannabis and the degree of adaptive selection remain unclear. RESULTS The main morphological characteristics of wild cannabis in China were assessed. Based on whole-genome resequencing SNPs, Chinese cannabis could be divided into five groups in terms of geographical source and ecotype: wild accessions growing in the northwestern region; wild accessions growing in the northeastern region; cultivated accessions grown for fibre in the northeastern region; cultivated accessions grown for seed in northwestern region, and cultivated accessions in southwestern region. We further identified genes related to flowering time, seed germination, seed size, embryogenesis, growth, and stress responses selected during the process of cannabis domestication. The expression of flowering-related genes under long-day (LD) and short-day (SD) conditions showed that Chinese cultivated cannabis is adapted to different photoperiods through the regulation of Flowering locus T-like (FT-like) expression. CONCLUSION This study clarifies the genetic structure of Chinese cannabis and offers valuable genomic resources for cannabis breeding.
Collapse
Affiliation(s)
- Xuan Chen
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| | - Hong-Yan Guo
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| | - Qing-Ying Zhang
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| | - Lu Wang
- State Key Laboratory for Conservation, School of Life Sciences, Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650500 China
| | - Rong Guo
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| | - Yi-Xun Zhan
- State Key Laboratory for Conservation, School of Life Sciences, Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650500 China
| | - Pin Lv
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| | - Yan-Ping Xu
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| | - Meng-Bi Guo
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| | - Yuan Zhang
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| | - Kun Zhang
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| | - Yan-Hu Liu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 China
| | - Ming Yang
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| |
Collapse
|
10
|
Köster P, DeFalco TA, Zipfel C. Ca 2+ signals in plant immunity. EMBO J 2022; 41:e110741. [PMID: 35560235 PMCID: PMC9194748 DOI: 10.15252/embj.2022110741] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/03/2022] [Accepted: 04/27/2022] [Indexed: 12/22/2022] Open
Abstract
Calcium ions function as a key second messenger ion in eukaryotes. Spatially and temporally defined cytoplasmic Ca2+ signals are shaped through the concerted activity of ion channels, exchangers, and pumps in response to diverse stimuli; these signals are then decoded through the activity of Ca2+ -binding sensor proteins. In plants, Ca2+ signaling is central to both pattern- and effector-triggered immunity, with the generation of characteristic cytoplasmic Ca2+ elevations in response to potential pathogens being common to both. However, despite their importance, and a long history of scientific interest, the transport proteins that shape Ca2+ signals and their integration remain poorly characterized. Here, we discuss recent work that has both shed light on and deepened the mysteries of Ca2+ signaling in plant immunity.
Collapse
Affiliation(s)
- Philipp Köster
- Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Thomas A DeFalco
- Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Cyril Zipfel
- Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland.,The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| |
Collapse
|
11
|
Galli M, Martiny E, Imani J, Kumar N, Koch A, Steinbrenner J, Kogel K. CRISPR/SpCas9-mediated double knockout of barley Microrchidia MORC1 and MORC6a reveals their strong involvement in plant immunity, transcriptional gene silencing and plant growth. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:89-102. [PMID: 34487614 PMCID: PMC8710901 DOI: 10.1111/pbi.13697] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
The Microrchidia (MORC) family proteins are important nuclear regulators in both animals and plants with critical roles in epigenetic gene silencing and genome stabilization. In the crop plant barley (Hordeum vulgare), seven MORC gene family members have been described. While barley HvMORC1 has been functionally characterized, very little information is available about other HvMORC paralogs. In this study, we elucidate the role of HvMORC6a and its potential interactors in regulating plant immunity via analysis of CRISPR/SpCas9-mediated single and double knockout (dKO) mutants, hvmorc1 (previously generated and characterized by our group), hvmorc6a, and hvmorc1/6a. For generation of hvmorc1/6a, we utilized two different strategies: (i) successive Agrobacterium-mediated transformation of homozygous single mutants, hvmorc1 and hvmorc6a, with the respective second construct, and (ii) simultaneous transformation with both hvmorc1 and hvmorc6a CRISPR/SpCas9 constructs. Total mutation efficiency in transformed homozygous single mutants ranged from 80 to 90%, while upon simultaneous transformation, SpCas9-induced mutation in both HvMORC1 and HvMORC6a genes was observed in 58% of T0 plants. Subsequent infection assays showed that HvMORC6a covers a key role in resistance to biotrophic (Blumeria graminis) and necrotrophic (Fusarium graminearum) plant pathogenic fungi, where the dKO hvmorc1/6a showed the strongest resistant phenotype. Consistent with this, the dKO showed highest levels of basal PR gene expression and derepression of TEs. Finally, we demonstrate that HvMORC1 and HvMORC6a form distinct nucleocytoplasmic homo-/heteromers with other HvMORCs and interact with components of the RNA-directed DNA methylation (RdDM) pathway, further substantiating that MORC proteins are involved in the regulation of TEs in barley.
Collapse
Affiliation(s)
- Matteo Galli
- Institute of PhytopathologyResearch Centre for BioSystems, Land Use and NutritionJustus Liebig University GiessenGiessenGermany
| | - Engie Martiny
- Institute of PhytopathologyResearch Centre for BioSystems, Land Use and NutritionJustus Liebig University GiessenGiessenGermany
| | - Jafargholi Imani
- Institute of PhytopathologyResearch Centre for BioSystems, Land Use and NutritionJustus Liebig University GiessenGiessenGermany
| | - Neelendra Kumar
- Institute of PhytopathologyResearch Centre for BioSystems, Land Use and NutritionJustus Liebig University GiessenGiessenGermany
| | - Aline Koch
- Institute for PhytomedicineUniversity of HohenheimStuttgartGermany
| | - Jens Steinbrenner
- Institute of PhytopathologyResearch Centre for BioSystems, Land Use and NutritionJustus Liebig University GiessenGiessenGermany
| | - Karl‐Heinz Kogel
- Institute of PhytopathologyResearch Centre for BioSystems, Land Use and NutritionJustus Liebig University GiessenGiessenGermany
| |
Collapse
|
12
|
Pröbsting M, Schenke D, Hossain R, Häder C, Thurau T, Wighardt L, Schuster A, Zhou Z, Ye W, Rietz S, Leckband G, Cai D. Loss of function of CRT1a (calreticulin) reduces plant susceptibility to Verticillium longisporum in both Arabidopsis thaliana and oilseed rape (Brassica napus). PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2328-2344. [PMID: 32358986 PMCID: PMC7589372 DOI: 10.1111/pbi.13394] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/06/2020] [Accepted: 04/11/2020] [Indexed: 05/24/2023]
Abstract
Brassica napus is highly susceptible towards Verticillium longisporum (Vl43) with no effective genetic resistance. It is believed that the fungus reprogrammes plant physiological processes by up-regulation of so-called susceptibility factors to establish a compatible interaction. By transcriptome analysis, we identified genes, which were activated/up-regulated in rapeseed after Vl43 infection. To test whether one of these genes is functionally involved in the infection process and loss of function would lead to decreased susceptibility, we firstly challenged KO lines of corresponding Arabidopsis orthologs with Vl43 and compared them with wild-type plants. Here, we report that the KO of AtCRT1a results in drastically reduced susceptibility of plants to Vl43. To prove crt1a mutation also decreases susceptibility in B. napus, we identified 10 mutations in a TILLING population. Three T3 mutants displayed increased resistance as compared to the wild type. To validate the results, we generated CRISPR/Cas-induced BnCRT1a mutants, challenged T2 plants with Vl43 and observed an overall reduced susceptibility in 3 out of 4 independent lines. Genotyping by allele-specific sequencing suggests a major effect of mutations in the CRT1a A-genome copy, while the C-genome copy appears to have no significant impact on plant susceptibility when challenged with Vl43. As revealed by transcript analysis, the loss of function of CRT1a results in activation of the ethylene signalling pathway, which may contribute to reduced susceptibility. Furthermore, this study demonstrates a novel strategy with great potential to improve plant disease resistance.
Collapse
Affiliation(s)
- Michael Pröbsting
- Department of Molecular Phytopathology and BiotechnologyInstitute of PhytopathologyChristian‐Albrechts‐University of KielKielGermany
| | - Dirk Schenke
- Department of Molecular Phytopathology and BiotechnologyInstitute of PhytopathologyChristian‐Albrechts‐University of KielKielGermany
| | | | - Claudia Häder
- Department of Molecular Phytopathology and BiotechnologyInstitute of PhytopathologyChristian‐Albrechts‐University of KielKielGermany
| | - Tim Thurau
- Department of Molecular Phytopathology and BiotechnologyInstitute of PhytopathologyChristian‐Albrechts‐University of KielKielGermany
| | - Lisa Wighardt
- Department of Molecular Phytopathology and BiotechnologyInstitute of PhytopathologyChristian‐Albrechts‐University of KielKielGermany
| | - Andrea Schuster
- Department of Molecular Phytopathology and BiotechnologyInstitute of PhytopathologyChristian‐Albrechts‐University of KielKielGermany
| | - Zheng Zhou
- Department of Molecular Phytopathology and BiotechnologyInstitute of PhytopathologyChristian‐Albrechts‐University of KielKielGermany
| | - Wanzhi Ye
- Department of Molecular Phytopathology and BiotechnologyInstitute of PhytopathologyChristian‐Albrechts‐University of KielKielGermany
| | | | | | - Daguang Cai
- Department of Molecular Phytopathology and BiotechnologyInstitute of PhytopathologyChristian‐Albrechts‐University of KielKielGermany
| |
Collapse
|
13
|
Meier N, Hatch C, Nagalakshmi U, Dinesh‐Kumar SP. Perspectives on intracellular perception of plant viruses. MOLECULAR PLANT PATHOLOGY 2019; 20:1185-1190. [PMID: 31282091 PMCID: PMC6715608 DOI: 10.1111/mpp.12839] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The intracellular nucleotide-binding domain leucine-rich repeat (NLR) class of immune receptors plays an important role in plant viral defence. Plant NLRs recognize viruses through direct or indirect association of viral proteins, triggering a downstream defence response to prevent viral proliferation and movement within the plant. This review focuses on current knowledge of intracellular perception of viral pathogens, activation of NLRs and the downstream signalling components involved in plant viral defence.
Collapse
Affiliation(s)
- Nathan Meier
- Department of Plant Biology and The Genome Center, College of Biological SciencesUniversity of CaliforniaDavisCA95616USA
| | - Cameron Hatch
- Department of Plant Biology and The Genome Center, College of Biological SciencesUniversity of CaliforniaDavisCA95616USA
| | - Ugrappa Nagalakshmi
- Department of Plant Biology and The Genome Center, College of Biological SciencesUniversity of CaliforniaDavisCA95616USA
| | - Savithramma P. Dinesh‐Kumar
- Department of Plant Biology and The Genome Center, College of Biological SciencesUniversity of CaliforniaDavisCA95616USA
| |
Collapse
|
14
|
Zhu X, Pan T, Zhang X, Fan L, Quintero FJ, Zhao H, Su X, Li X, Villalta I, Mendoza I, Shen J, Jiang L, Pardo JM, Qiu QS. K + Efflux Antiporters 4, 5, and 6 Mediate pH and K + Homeostasis in Endomembrane Compartments. PLANT PHYSIOLOGY 2018; 178:1657-1678. [PMID: 30309966 PMCID: PMC6288736 DOI: 10.1104/pp.18.01053] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/01/2018] [Indexed: 05/20/2023]
Abstract
KEA4, KEA5, and KEA6 are members of the Arabidopsis (Arabidopsis thaliana) K+ efflux antiporter (KEA) family that share high sequence similarity but whose function remains unknown. Here, we show their gene expression pattern, subcellular localization, and physiological function in Arabidopsis. KEA4, KEA5, and KEA6 had similar tissue expression patterns, and the three KEA proteins localized to the Golgi, the trans-Golgi network, and the prevacuolar compartment/multivesicular bodies, suggesting overlapping roles of these proteins in the endomembrane system. Phenotypic analyses of single, double, and triple mutants confirmed functional redundancy. The triple mutant kea4 kea5 kea6 had small rosettes, short seedlings, and was sensitive to low K+ availability and to the sodicity imposed by high salinity. Also, the kea4 kea5 kea6 mutant plants had a reduced luminal pH in the Golgi, trans-Golgi network, prevacuolar compartment, and vacuole, in accordance with the K/H exchange activity of KEA proteins. Genetic analysis indicated that KEA4, KEA5, and KEA6 as well as endosomal Na+/H+exchanger5 (NHX5) and NHX6 acted coordinately to facilitate endosomal pH homeostasis and salt tolerance. Neither cancelling nor overexpressing the vacuolar antiporters NHX1 and NHX2 in the kea4 kea5 kea6 mutant background altered the salt-sensitive phenotype. The NHX1 and NHX2 proteins in the kea4 kea5 kea6 mutant background could not suppress the acidity of the endomembrane system but brought the vacuolar pH close to wild-type values. Together, these data signify that KEA4, KEA5, and KEA6 are endosomal K+ transporters functioning in maintaining pH and ion homeostasis in the endomembrane network.
Collapse
Affiliation(s)
- Xiaojie Zhu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China 730000
| | - Ting Pan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China 730000
| | - Xiao Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China 730000
| | - Ligang Fan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China 730000
| | - Francisco J Quintero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Cientificas, 41092 Seville, Spain
| | - Hong Zhao
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China 730000
| | - Xiaomeng Su
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China 730000
| | - Xiaojiao Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China 730000
| | - Irene Villalta
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, 41092 Seville, Spain
| | - Imelda Mendoza
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Cientificas, 41092 Seville, Spain
| | - Jinbo Shen
- School of Life Sciences, Center for Cell and Developmental Biology, and State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Center for Cell and Developmental Biology, and State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Jose M Pardo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Cientificas, 41092 Seville, Spain
| | - Quan-Sheng Qiu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China 730000
| |
Collapse
|
15
|
Dong W, Vannozzi A, Chen F, Hu Y, Chen Z, Zhang L. MORC Domain Definition and Evolutionary Analysis of the MORC Gene Family in Green Plants. Genome Biol Evol 2018; 10:1730-1744. [PMID: 29982569 PMCID: PMC6048995 DOI: 10.1093/gbe/evy136] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2018] [Indexed: 01/04/2023] Open
Abstract
Microrchidia (MORC) proteins have been described as epigenetic regulators and plant immune mediators in Arabidopsis. Typically, plant and animal MORC proteins contain a hallmark GHKL-type (Gyrase, Hsp90, Histidine kinase, MutL) ATPase domain in their N-terminus. Here, 356 and 83 MORC orthologues were identified in 60 plant and 27 animal genomes. Large-scale MORC sequence analyses revealed the presence of a highly conserved motif composition that defined as the MORC domain. The MORC domain was present in both plants and animals, indicating that it originated in the common ancestor before the divergence of plants and animals. Phylogenetic analyses showed that MORC genes in both plant and animal lineages were clearly classified into two major groups, named Plants-Group I, Plants-Group II and Animals-Group I, Animals-Group II, respectively. Further analyses of MORC genes in green plants uncovered that Group I can be subdivided into Group I-1 and Group I-2. Group I-1 only contains seed plant genes, suggesting that Group I-1 and I-2 divergence occurred at least before the emergence of spermatophytes. Group I-2 and Group II have undergone several gene duplications, resulting in the expansion of MORC gene family in angiosperms. Additionally, MORC gene expression analyses in Arabidopsis, soybean, and rice revealed a higher expression level in reproductive tissues compared with other organs, and showed divergent expression patterns for several paralogous gene pairs. Our studies offered new insights into the origins, phylogenetic relationships, and expressional patterns of MORC family members in green plants, which would help to further reveal their functions as plant epigenetic regulators.
Collapse
Affiliation(s)
- Wei Dong
- College of Life Science, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Alessandro Vannozzi
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Italy
| | - Fei Chen
- College of Life Science, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yue Hu
- College of Life Science, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zihua Chen
- College of Life Science, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liangsheng Zhang
- College of Life Science, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
16
|
Kumar N, Galli M, Ordon J, Stuttmann J, Kogel K, Imani J. Further analysis of barley MORC1 using a highly efficient RNA-guided Cas9 gene-editing system. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1892-1903. [PMID: 29577542 PMCID: PMC6181210 DOI: 10.1111/pbi.12924] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 03/18/2018] [Indexed: 05/05/2023]
Abstract
Microrchidia (MORC) proteins comprise a family of proteins that have been identified in prokaryotes and eukaryotes. They are defined by two hallmark domains: a GHKL-type ATPase and an S5-fold. In plants, MORC proteins were first discovered in a genetic screen for Arabidopsis thaliana mutants compromised for resistance to a viral pathogen. Subsequent studies expanded their role in plant immunity and revealed their involvement in gene silencing and genome stabilization. Little is known about the role of MORC proteins of cereals, especially because knockout (KO) mutants were not available and assessment of loss of function relied only on RNAi strategies, which were arguable, given that MORC proteins in itself are influencing gene silencing. Here, we used a Streptococcus pyogenes Cas9 (SpCas9)-mediated KO strategy to functionally study HvMORC1, one of the current seven MORC members of barley. Using a novel barley RNA Pol III-dependent U3 small nuclear RNA (snRNA) promoter to drive expression of the synthetic single guide RNA (sgRNA), we achieved a very high mutation frequency in HvMORC1. High frequencies of mutations were detectable by target sequencing in the callus, the T0 generation (77%) and T1 generation (70%-100%), which constitutes an important improvement of the gene-editing technology in cereals. Corroborating and extending earlier findings, SpCas9-edited hvmorc1-KO barley, in clear contrast to Arabidopsis atmorc1 mutants, had a distinct phenotype of increased disease resistance to fungal pathogens, while morc1 mutants of either plant showed de-repressed expression of transposable elements (TEs), substantiating that plant MORC proteins contribute to genome stabilization in monocotyledonous and dicotyledonous plants.
Collapse
Affiliation(s)
- Neelendra Kumar
- Research Centre for BioSystems, Land Use and NutritionInstitute of PhytopathologyJustus‐Liebig University GiessenGiessenGermany
| | - Matteo Galli
- Research Centre for BioSystems, Land Use and NutritionInstitute of PhytopathologyJustus‐Liebig University GiessenGiessenGermany
| | - Jana Ordon
- Institute of GeneticsMartin Luther University of Halle‐WittenbergHalleSaaleGermany
| | - Johannes Stuttmann
- Institute of GeneticsMartin Luther University of Halle‐WittenbergHalleSaaleGermany
| | - Karl‐Heinz Kogel
- Research Centre for BioSystems, Land Use and NutritionInstitute of PhytopathologyJustus‐Liebig University GiessenGiessenGermany
| | - Jafargholi Imani
- Research Centre for BioSystems, Land Use and NutritionInstitute of PhytopathologyJustus‐Liebig University GiessenGiessenGermany
| |
Collapse
|
17
|
Lim GH, Hoey T, Zhu S, Clavel M, Yu K, Navarre D, Kachroo A, Deragon JM, Kachroo P. COP1, a negative regulator of photomorphogenesis, positively regulates plant disease resistance via double-stranded RNA binding proteins. PLoS Pathog 2018; 14:e1006894. [PMID: 29513740 PMCID: PMC5871017 DOI: 10.1371/journal.ppat.1006894] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 03/27/2018] [Accepted: 01/22/2018] [Indexed: 11/18/2022] Open
Abstract
The E3 ubiquitin ligase COP1 (Constitutive Photomorphogenesis 1) is a well known component of the light-mediated plant development that acts as a repressor of photomorphogenesis. Here we show that COP1 positively regulates defense against turnip crinkle virus (TCV) and avrRPM1 bacteria by contributing to stability of resistance (R) protein HRT and RPM1, respectively. HRT and RPM1 levels and thereby pathogen resistance is significantly reduced in the cop1 mutant background. Notably, the levels of at least two double-stranded RNA binding (DRB) proteins DRB1 and DRB4 are reduced in the cop1 mutant background suggesting that COP1 affects HRT stability via its effect on the DRB proteins. Indeed, a mutation in either drb1 or drb4 resulted in degradation of HRT. In contrast to COP1, a multi-subunit E3 ligase encoded by anaphase-promoting complex (APC) 10 negatively regulates DRB4 and TCV resistance but had no effect on DRB1 levels. We propose that COP1-mediated positive regulation of HRT is dependent on a balance between COP1 and negative regulators that target DRB1 and DRB4.
Collapse
Affiliation(s)
- Gah-Hyun Lim
- Department of Plant Pathology, University of Kentucky, Lexington, KY, United States of America
| | - Timothy Hoey
- Department of Plant Pathology, University of Kentucky, Lexington, KY, United States of America
| | - Shifeng Zhu
- Department of Plant Pathology, University of Kentucky, Lexington, KY, United States of America
| | - Marion Clavel
- Université de Perpignan Via Domitia, CNRS UMR5096 LGDP, Perpignan, France
| | - Keshun Yu
- Department of Plant Pathology, University of Kentucky, Lexington, KY, United States of America
| | - Duroy Navarre
- U.S. Department of Agriculture–Agricultural Research Service, Washington State University, Prosser, WA, United States of America
| | - Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY, United States of America
| | - Jean-Marc Deragon
- Université de Perpignan Via Domitia, CNRS UMR5096 LGDP, Perpignan, France
| | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY, United States of America
| |
Collapse
|
18
|
Manohar M, Choi HW, Manosalva P, Austin CA, Peters JE, Klessig DF. Plant and Human MORC Proteins Have DNA-Modifying Activities Similar to Type II Topoisomerases, but Require One or More Additional Factors for Full Activity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:87-100. [PMID: 27992291 DOI: 10.1094/mpmi-10-16-0208-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
To elucidate one or more mechanisms through which microrchidia (MORC) proteins impact immunity, epigenetic gene silencing, and DNA modifications, the enzymatic activities of plant MORCs were characterized. Previously, we showed that plant MORC1s have ATPase and DNA endonuclease activities. Here, we demonstrate that plant MORCs have topoisomerase type II (topo II)-like activities, as they i) covalently bind DNA, ii) exhibit DNA-stimulated ATPase activity, iii) relax or nick supercoiled DNA, iv) catenate DNA, and v) decatenante kinetoplast DNA. Mutational analysis of tomato SlMORC1 suggests that a K loop-like sequence is required to couple DNA binding to ATPase stimulation as well as for efficient SlMORC1's DNA relaxation and catenation activities and in planta suppression of INF1-induced cell death, which is related to immunity. Human MORCs were found to exhibit the same topo II-like DNA modification activities as their plant counterparts. In contrast to typical topo IIs, SlMORC1 appears to require one or more accessory factors to complete some of its enzymatic activities, since addition of tomato extracts were needed for ATP-dependent, efficient conversion of supercoiled DNA to nicked/relaxed DNA and catenanes and for formation of topoisomer intermediates. Both plant and human MORCs bind salicylic acid; this suppresses their decatenation but not relaxation activity.
Collapse
Affiliation(s)
| | | | | | - Caroline A Austin
- 2 Institute for Cell and Molecular Biosciences, Newcastle University, NE2 4HH, U.K.; and
| | - Joseph E Peters
- 3 Department of Microbiology, Cornell University, Ithaca, NY 14853, U.S.A
| | | |
Collapse
|
19
|
Koch A, Kang HG, Steinbrenner J, Dempsey DA, Klessig DF, Kogel KH. MORC Proteins: Novel Players in Plant and Animal Health. FRONTIERS IN PLANT SCIENCE 2017; 8:1720. [PMID: 29093720 PMCID: PMC5651269 DOI: 10.3389/fpls.2017.01720] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/20/2017] [Indexed: 05/02/2023]
Abstract
Microrchidia (MORC) proteins comprise a family of proteins that have been identified in prokaryotes and eukaryotes. They are defined by two hallmark domains: a GHKL-type ATPase and an S5 fold. MORC proteins in plants were first discovered via a genetic screen for Arabidopsis mutants compromised for resistance to a viral pathogen. Subsequent studies expanded their role in plant immunity and revealed their involvement in gene silencing and transposable element repression. Emerging data suggest that MORC proteins also participate in pathogen-induced chromatin remodeling and epigenetic gene regulation. In addition, biochemical analyses recently demonstrated that plant MORCs have topoisomerase II (topo II)-like DNA modifying activities that may be important for their function. Interestingly, animal MORC proteins exhibit many parallels with their plant counterparts, as they have been implicated in disease development and gene silencing. In addition, human MORCs, like plant MORCs, bind salicylic acid and this inhibits some of their topo II-like activities. In this review, we will focus primarily on plant MORCs, although relevant comparisons with animal MORCs will be provided.
Collapse
Affiliation(s)
- Aline Koch
- Centre for BioSystems, Land Use and Nutrition, Institute for Phytopathology, Justus Liebig University Giessen, Giessen, Germany
| | - Hong-Gu Kang
- Department of Biology, Texas State University, San Marcos, TX, United States
| | - Jens Steinbrenner
- Centre for BioSystems, Land Use and Nutrition, Institute for Phytopathology, Justus Liebig University Giessen, Giessen, Germany
| | | | - Daniel F. Klessig
- Boyce Thompson Institute for Plant Research, Ithaca, NY, United States
- *Correspondence: Daniel F. Klessig
| | - Karl-Heinz Kogel
- Centre for BioSystems, Land Use and Nutrition, Institute for Phytopathology, Justus Liebig University Giessen, Giessen, Germany
- Karl-Heinz Kogel
| |
Collapse
|
20
|
Moon JY, Lee JH, Oh C, Kang H, Park JM. Endoplasmic reticulum stress responses function in the HRT-mediated hypersensitive response in Nicotiana benthamiana. MOLECULAR PLANT PATHOLOGY 2016; 17:1382-1397. [PMID: 26780303 PMCID: PMC6638521 DOI: 10.1111/mpp.12369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 01/10/2016] [Accepted: 01/11/2016] [Indexed: 05/08/2023]
Abstract
HRT is a plant coiled-coil, nucleotide-binding and leucine-rich repeat (CC-NB-LRR) disease resistance protein that triggers the hypersensitive response (HR) on recognition of Turnip crinkle virus (TCV) coat protein (CP). The molecular mechanism and significance of HR-mediated cell death for TCV resistance have not been fully elucidated. To identify the genes involved in HRT/TCV CP-mediated HR in Nicotiana benthamiana, we performed virus-induced gene silencing (VIGS) of 459 expressed sequence tags (ESTs) of pathogen-responsive Capsicum annuum genes. VIGS of CaBLP5, which encodes an endoplasmic reticulum (ER)-associated immunoglobulin-binding protein (BiP), silenced NbBiP4 and NbBiP5 and significantly reduced HRT-mediated HR. The induction of ER stress-responsive genes and the accumulation of ER-targeted BiPs in response to HRT-mediated HR suggest that ER is involved in HR in N. benthamiana. BiP4/5 silencing significantly down-regulated HRT at the mRNA and protein levels, and affected SGT1 and HSP90 expression. Co-expression of TCV CP in BiP4/5-silenced plants completely abolished HRT induction. Transient expression of TCV CP alone induced selected ER stress-responsive gene transcripts only in Tobacco rattle virus (TRV)-infected plants, and most of these genes were induced by HRT/TCV CP, except for bZIP60, which was induced specifically in response to HRT/TCV CP. TCV CP-mediated induction of ER stress-responsive genes still occurred in BiP4/5-silenced plants, but HRT/TCV CP-mediated induction of these genes was defective. Tunicamycin, a chemical that inhibits protein N-glycosylation, inhibited HRT-mediated HR, suggesting that ER has a role in HR regulation. These results indicate that BiP and ER, which modulate pattern recognition receptors in innate immunity, also regulate R protein-mediated resistance.
Collapse
Affiliation(s)
- Ju Yeon Moon
- Molecular Biofarming Research CenterKRIBBDaejeon305‐600South Korea
- Department of Biosystems and BioengineeringUSTDaejeon305‐350South Korea
| | - Jeong Hee Lee
- Molecular Biofarming Research CenterKRIBBDaejeon305‐600South Korea
| | - Chang‐Sik Oh
- Department of HorticultureKyung Hee UniversityYongin446‐701South Korea
| | - Hong‐Gu Kang
- Department of BiologyTexas State UniversitySan MarcosTX78666USA
| | - Jeong Mee Park
- Molecular Biofarming Research CenterKRIBBDaejeon305‐600South Korea
- Department of Biosystems and BioengineeringUSTDaejeon305‐350South Korea
| |
Collapse
|
21
|
Bordiya Y, Zheng Y, Nam JC, Bonnard AC, Choi HW, Lee BK, Kim J, Klessig DF, Fei Z, Kang HG. Pathogen Infection and MORC Proteins Affect Chromatin Accessibility of Transposable Elements and Expression of Their Proximal Genes in Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:674-687. [PMID: 27482822 DOI: 10.1094/mpmi-01-16-0023-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
To assess the role of MORC1 in epigenetics in relation to plant immunity, genome-wide chromatin accessibility was compared between mock- or Pseudomonas syringae pv. tomato-inoculated wild type (WT) Arabidopsis, the morc1/2 double mutant, or both. Most changes in chromatin accessibility, scored by DNase I hypersensitive sites (DHSs), were located in the promoters of genes and transposable elements (TEs). Comparisons between morc1/2 and WT receiving the same treatment revealed differential DHSs (dDHSs) predominantly associated with heterochromatic TEs. By contrast, comparisons between mock- and P. syringae pv. tomato-inoculated plants from the same genotype showed dDHSs associated with biotic and abiotic stress-related genes; a smaller but significant population was in TEs. Moreover, many defense genes, including PR-1, PR-2, and PR-5, were proximal to P. syringae pv. tomato-induced, TE-associated dDHSs. A random subset of these defense genes showed moderately delayed or reduced expression or both in P. syringae pv. tomato-infected morc1/2 as compared with WT. MORC1 was physically bound to chromatin in a P. syringae pv. tomato infection-responsive manner at sites dispersed throughout the genome. Notably, silencing of TE-associated dDHSs proximal to these infection-induced, MORC1-interacting sites led to significant suppression of P. syringae pv. tomato-induced transcription of adjacent defense genes, including PR-1. These results provide evidence that MORC1 is associated with TEs and suggest that a subset of these TEs may help regulate their proximal defense genes.
Collapse
Affiliation(s)
- Yogendra Bordiya
- 1 Department of Biology, Texas State University, San Marcos, TX, U.S.A
| | - Yi Zheng
- 2 Boyce Thompson Institute for Plant Research, Ithaca, NY, U.S.A
| | - Ji-Chul Nam
- 1 Department of Biology, Texas State University, San Marcos, TX, U.S.A
| | - April C Bonnard
- 1 Department of Biology, Texas State University, San Marcos, TX, U.S.A
| | - Hyong Woo Choi
- 2 Boyce Thompson Institute for Plant Research, Ithaca, NY, U.S.A
| | - Bum-Kyu Lee
- 3 Department of Molecular Biosciences, The University of Texas at Austin, U.S.A.; and
| | - Jonghwan Kim
- 3 Department of Molecular Biosciences, The University of Texas at Austin, U.S.A.; and
| | - Daniel F Klessig
- 2 Boyce Thompson Institute for Plant Research, Ithaca, NY, U.S.A
| | - Zhangjun Fei
- 2 Boyce Thompson Institute for Plant Research, Ithaca, NY, U.S.A
- 4 USDA Robert W. Holley Center for Agriculture and Health, Tower Road, Ithaca, NY, U.S.A
| | - Hong-Gu Kang
- 1 Department of Biology, Texas State University, San Marcos, TX, U.S.A
| |
Collapse
|
22
|
Hatsugai N, Hillmer R, Yamaoka S, Hara-Nishimura I, Katagiri F. The μ Subunit of Arabidopsis Adaptor Protein-2 Is Involved in Effector-Triggered Immunity Mediated by Membrane-Localized Resistance Proteins. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:345-51. [PMID: 26828402 DOI: 10.1094/mpmi-10-15-0228-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Endocytosis has been suggested to be important in the cellular processes of plant immune responses. However, our understanding of its role during effector-triggered immunity (ETI) is still limited. We have previously shown that plant endocytosis, especially clathrin-coated vesicle formation at the plasma membrane, is mediated by the adaptor protein-2 (AP-2) complex and that loss of the μ subunit of AP-2 (AP2M) affects plant growth and floral organ development. Here, we report that AP2M is required for full-strength ETI mediated by the disease resistance (R) genes RPM1 and RPS2 in Arabidopsis. Reduced ETI was observed in an ap2m mutant plant, measured by growth of Pseudomonas syringae pv. tomato DC3000 strains carrying the corresponding effector genes avrRpm1 or avrRpt2 and by hypersensitive cell death response and defense gene expression triggered by these strains. In contrast, RPS4-mediated ETI and its associated immune responses were not affected by the ap2m mutation. While RPM1 and RPS2 are localized to the plasma membrane, RPS4 is localized to the cytoplasm and nucleus. Our results suggest that AP2M is involved in ETI mediated by plasma membrane-localized R proteins, possibly by mediating endocytosis of the immune receptor complex components from the plasma membrane.
Collapse
Affiliation(s)
- Noriyuki Hatsugai
- 1 Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota, 1500 Gortner Ave., St. Paul, MN 55108, U.S.A.; and
| | - Rachel Hillmer
- 1 Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota, 1500 Gortner Ave., St. Paul, MN 55108, U.S.A.; and
| | - Shohei Yamaoka
- 2 Department of Botany, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Ikuko Hara-Nishimura
- 2 Department of Botany, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Fumiaki Katagiri
- 1 Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota, 1500 Gortner Ave., St. Paul, MN 55108, U.S.A.; and
| |
Collapse
|
23
|
Harris CJ, Husmann D, Liu W, Kasmi FE, Wang H, Papikian A, Pastor WA, Moissiard G, Vashisht AA, Dangl JL, Wohlschlegel JA, Jacobsen SE. Arabidopsis AtMORC4 and AtMORC7 Form Nuclear Bodies and Repress a Large Number of Protein-Coding Genes. PLoS Genet 2016; 12:e1005998. [PMID: 27171361 PMCID: PMC4865129 DOI: 10.1371/journal.pgen.1005998] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/30/2016] [Indexed: 12/30/2022] Open
Abstract
The MORC family of GHKL ATPases are an enigmatic class of proteins with diverse chromatin related functions. In Arabidopsis, AtMORC1, AtMORC2, and AtMORC6 act together in heterodimeric complexes to mediate transcriptional silencing of methylated DNA elements. Here, we studied Arabidopsis AtMORC4 and AtMORC7. We found that, in contrast to AtMORC1,2,6, they act to suppress a wide set of non-methylated protein-coding genes that are enriched for those involved in pathogen response. Furthermore, atmorc4 atmorc7 double mutants show a pathogen response phenotype. We found that AtMORC4 and AtMORC7 form homomeric complexes in vivo and are concentrated in discrete nuclear bodies adjacent to chromocenters. Analysis of an atmorc1,2,4,5,6,7 hextuple mutant demonstrates that transcriptional de-repression is largely uncoupled from changes in DNA methylation in plants devoid of MORC function. However, we also uncover a requirement for MORC in both DNA methylation and silencing at a small but distinct subset of RNA-directed DNA methylation target loci. These regions are characterized by poised transcriptional potential and a low density of sites for symmetric cytosine methylation. These results provide insight into the biological function of MORC proteins in higher eukaryotes.
Collapse
Affiliation(s)
- C. Jake Harris
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Dylan Husmann
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Wanlu Liu
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Farid El Kasmi
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Haifeng Wang
- Basic Forestry and Proteomics Research Center, Haixia Institute of Science and Technology (HIST), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ashot Papikian
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California, United States of America
| | - William A. Pastor
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Guillaume Moissiard
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Ajay A. Vashisht
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Jeffery L. Dangl
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - James A. Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Steven E. Jacobsen
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California, United States of America
- Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
24
|
Manosalva P, Manohar M, Kogel KH, Kang HG, Klessig DF. The GHKL ATPase MORC1 Modulates Species-Specific Plant Immunity in Solanaceae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:927-42. [PMID: 25822715 DOI: 10.1094/mpmi-12-14-0401-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The microrchidia (MORC) proteins, a subset of the GHKL ATPase superfamily, were recently described as components involved in transcriptional gene silencing and plant immunity in Arabidopsis. To assess the role of MORC1 during resistance to Phytophthora infestans in solanaceous species, we altered the expression of the corresponding MORC1 homologs in potato, tomato, and Nicotiana benthamiana. Basal resistance to P. infestans was compromised in StMORC1-silenced potato and enhanced in overexpressing lines, indicating that StMORC1 positively affects immunity. By contrast, silencing SlMORC1 expression in tomato or NbMORC1 expression in N. benthamiana enhanced basal resistance to this oomycete pathogen. In addition, silencing SlMORC1 further enhanced resistance conferred by two resistance genes in tomato. Transient expression of StMORC1 in N. benthamiana accelerated cell death induced by infestin1 (INF1), whereas SlMORC1 or NbMORC1 suppressed it. Domain-swapping and mutational analyses indicated that the C-terminal region dictates the species-specific effects of the solanaceous MORC1 proteins on INF1-induced cell death. This C-terminal region also was required for homodimerization and phosphorylation of recombinant StMORC1 and SlMORC1, and its transient expression induced spontaneous cell death in N. benthamiana. Thus, this C-terminal region likely plays important roles in both determining and modulating the biological activity of MORC1 proteins.
Collapse
Affiliation(s)
- Patricia Manosalva
- 1 Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A
- 2 Department of Plant Pathology and Microbiology, University of California Riverside, Riverside 92521, U.S.A
| | - Murli Manohar
- 1 Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A
| | - Karl-Heinz Kogel
- 3 Research Centre for BioSystems, Land Use, and Nutrition, Justus Liebig University, Giessen D-35392, Germany; and
| | - Hong-Gu Kang
- 4 Department of Biology, Texas State University, San Marcos 78666, U.S.A
| | - Daniel F Klessig
- 1 Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A
| |
Collapse
|
25
|
Wu L, Chen H, Curtis C, Fu ZQ. Go in for the kill: How plants deploy effector-triggered immunity to combat pathogens. [Corrected]. Virulence 2015; 5:710-21. [PMID: 25513772 PMCID: PMC4189877 DOI: 10.4161/viru.29755] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Plant resistance (R) proteins perceive specific pathogen effectors from diverse plant pathogens to initiate defense responses, designated effector-triggered immunity (ETI). Plant R proteins are mostly nucleotide binding-leucine rich repeat (NB-LRR) proteins, which recognize pathogen effectors directly or indirectly through sophisticated mechanisms. Upon activation by effector proteins, R proteins elicit robust defense responses, including a rapid burst of reactive oxygen species (ROS), induced biosynthesis and accumulation of salicylic acid (SA), a rapid programmed cell death (PCD) called hypersensitive response (HR) at the infection sites, and increased expression of pathogenesis-related (PR) genes. Initiation of ETI is correlated with a complex network of defense signaling pathways, resulting in defensive cellular responses and large-scale transcriptional reprogramming events. In this review, we highlight important recent advances on the recognition of effectors, regulation and activation of plant R proteins, dynamic intracellular trafficking of R proteins, induction of cell death, and transcriptional reprogramming associated with ETI. Current knowledge gaps and future research directions are also discussed in this review.
Collapse
Affiliation(s)
- Liang Wu
- a Department of Biological Sciences; University of South Carolina; Columbia, SC USA
| | | | | | | |
Collapse
|
26
|
Functional characterization and organ distribution of three mitochondrial ATP-Mg/Pi carriers in Arabidopsis thaliana. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1220-30. [PMID: 26140942 DOI: 10.1016/j.bbabio.2015.06.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/15/2015] [Accepted: 06/29/2015] [Indexed: 11/22/2022]
Abstract
The Arabidopsis thaliana genome contains 58 membrane proteins belonging to the mitochondrial carrier family. Three members of this family, here named AtAPC1, AtAPC2, and AtAPC3, exhibit high structural similarities to the human mitochondrial ATP-Mg(2+)/phosphate carriers. Under normal physiological conditions the AtAPC1 gene was expressed at least five times more than the other two AtAPC genes in flower, leaf, stem, root and seedlings. However, in stress conditions the expression levels of AtAPC1 and AtAPC3 change. Direct transport assays with recombinant and reconstituted AtAPC1, AtAPC2 and AtAPC3 showed that they transport phosphate, AMP, ADP, ATP, adenosine 5'-phosphosulfate and, to a lesser extent, other nucleotides. AtAPC2 and AtAPC3 also had the ability to transport sulfate and thiosulfate. All three AtAPCs catalyzed a counter-exchange transport that was saturable and inhibited by pyridoxal-5'-phosphate. The transport activities of AtAPCs were also inhibited by the addition of EDTA or EGTA and stimulated by the addition of Ca(2+). Given that phosphate and sulfate can be recycled via their own specific carriers, these findings indicate that AtAPCs can catalyze net transfer of adenine nucleotides across the inner mitochondrial membrane in exchange for phosphate (or sulfate), and that this transport is regulated both at the transcriptional level and by Ca(2+).
Collapse
|
27
|
Matzke MA, Kanno T, Matzke AJM. RNA-Directed DNA Methylation: The Evolution of a Complex Epigenetic Pathway in Flowering Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2015; 66:243-67. [PMID: 25494460 DOI: 10.1146/annurev-arplant-043014-114633] [Citation(s) in RCA: 303] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
RNA-directed DNA methylation (RdDM) is an epigenetic process in plants that involves both short and long noncoding RNAs. The generation of these RNAs and the induction of RdDM rely on complex transcriptional machineries comprising two plant-specific, RNA polymerase II (Pol II)-related RNA polymerases known as Pol IV and Pol V, as well as a host of auxiliary factors that include both novel and refashioned proteins. We present current views on the mechanism of RdDM with a focus on evolutionary innovations that occurred during the transition from a Pol II transcriptional pathway, which produces mRNA precursors and numerous noncoding RNAs, to the Pol IV and Pol V pathways, which are specialized for RdDM and gene silencing. We describe recently recognized deviations from the canonical RdDM pathway, discuss unresolved issues, and speculate on the biological significance of RdDM for flowering plants, which have a highly developed Pol V pathway.
Collapse
Affiliation(s)
- Marjori A Matzke
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan; , ,
| | | | | |
Collapse
|
28
|
Zhang B, Van Aken O, Thatcher L, De Clercq I, Duncan O, Law SR, Murcha MW, van der Merwe M, Seifi HS, Carrie C, Cazzonelli C, Radomiljac J, Höfte M, Singh KB, Van Breusegem F, Whelan J. The mitochondrial outer membrane AAA ATPase AtOM66 affects cell death and pathogen resistance in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:709-727. [PMID: 25227923 DOI: 10.1111/tpj.12665] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 08/27/2014] [Accepted: 08/29/2014] [Indexed: 06/03/2023]
Abstract
One of the most stress-responsive genes encoding a mitochondrial protein in Arabidopsis (At3g50930) has been annotated as AtBCS1 (cytochrome bc1 synthase 1), but was previously functionally uncharacterised. Here, we show that the protein encoded by At3g50930 is present as a homo-multimeric protein complex on the outer mitochondrial membrane and lacks the BCS1 domain present in yeast and mammalian BCS1 proteins, with the sequence similarity restricted to the AAA ATPase domain. Thus we propose to re-annotate this protein as AtOM66 (Outer Mitochondrial membrane protein of 66 kDa). While transgenic plants with reduced AtOM66 expression appear to be phenotypically normal, AtOM66 over-expression lines have a distinct phenotype, showing strong leaf curling and reduced starch content. Analysis of mitochondrial protein content demonstrated no detectable changes in mitochondrial respiratory complex protein abundance. Consistent with the stress inducible expression pattern, over-expression lines of AtOM66 are more tolerant to drought stress but undergo stress-induced senescence earlier than wild type. Genome-wide expression analysis revealed a constitutive induction of salicylic acid-related (SA) pathogen defence and cell death genes in over-expression lines. Conversely, expression of SA marker gene PR-1 was reduced in atom66 plants, while jasmonic acid response genes PDF1.2 and VSP2 have increased transcript abundance. In agreement with the expression profile, AtOM66 over-expression plants show increased SA content, accelerated cell death rates and are more tolerant to the biotrophic pathogen Pseudomonas syringae, but more susceptible to the necrotrophic fungus Botrytis cinerea. In conclusion, our results demonstrate a role for AtOM66 in cell death and amplifying SA signalling.
Collapse
Affiliation(s)
- Botao Zhang
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Bayliss Building M316, 35 Stirling Highway, Crawley, WA, 6009, Australia; Department of Botany, ARC Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, Vic., 3086, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ek-Ramos MJ, Avila J, Nelson Dittrich AC, Su D, Gray JW, Devarenne TP. The tomato cell death suppressor Adi3 is restricted to the endosomal system in response to the Pseudomonas syringae effector protein AvrPto. PLoS One 2014; 9:e110807. [PMID: 25350368 PMCID: PMC4211712 DOI: 10.1371/journal.pone.0110807] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 09/20/2014] [Indexed: 01/22/2023] Open
Abstract
The tomato (Solanum lycopersicum) AGC protein kinase Adi3 functions as a suppressor of cell death and was first identified as an interactor with the tomato resistance protein Pto and the Pseudomonas syringae effector protein AvrPto. Models predict that loss of Adi3 cell death suppression (CDS) activity during Pto/AvrPto interaction leads to the cell death associated with the resistance response initiated from this interaction. Nuclear localization is required for Adi3 CDS. Prevention of nuclear accumulation eliminates Adi3 CDS and induces cell death by localizing Adi3 to intracellular punctate membrane structures. Here we use several markers of the endomembrane system to show that the punctate membrane structures to which non-nuclear Adi3 is localized are endosomal in nature. Wild-type Adi3 also localizes in these punctate endosomal structures. This was confirmed by the use of endosomal trafficking inhibitors, which were capable of trapping wild-type Adi3 in endosomal-like structures similar to the non-nuclear Adi3. This suggests Adi3 may traffic through the cell using the endomembrane system. Additionally, Adi3 was no longer found in the nucleus but was visualized in these punctate endosomal-like membranes during the cell death induced by the Pto/AvrPto interaction. Therefore we propose that inhibiting nuclear import and constraining Adi3 to the endosomal system in response to AvrPto is a mechanism to initiate the cell death associated with resistance.
Collapse
Affiliation(s)
- María J. Ek-Ramos
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Julian Avila
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Anna C. Nelson Dittrich
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Dongyin Su
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Joel W. Gray
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Timothy P. Devarenne
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
30
|
Transcriptional gene silencing by Arabidopsis microrchidia homologues involves the formation of heteromers. Proc Natl Acad Sci U S A 2014; 111:7474-9. [PMID: 24799676 DOI: 10.1073/pnas.1406611111] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epigenetic gene silencing is of central importance to maintain genome integrity and is mediated by an elaborate interplay between DNA methylation, histone posttranslational modifications, and chromatin remodeling complexes. DNA methylation and repressive histone marks usually correlate with transcriptionally silent heterochromatin, however there are exceptions to this relationship. In Arabidopsis, mutation of Morpheus Molecule 1 (MOM1) causes transcriptional derepression of heterochromatin independently of changes in DNA methylation. More recently, two Arabidopsis homologues of mouse microrchidia (MORC) genes have also been implicated in gene silencing and heterochromatin condensation without altering genome-wide DNA methylation patterns. In this study, we show that Arabidopsis microrchidia (AtMORC6) physically interacts with AtMORC1 and with its close homologue, AtMORC2, in two mutually exclusive protein complexes. RNA-sequencing analyses of high-order mutants indicate that AtMORC1 and AtMORC2 act redundantly to repress a common set of loci. We also examined genetic interactions between AtMORC6 and MOM1 pathways. Although AtMORC6 and MOM1 control the silencing of a very similar set of genomic loci, we observed synergistic transcriptional regulation in the mom1/atmorc6 double mutant, suggesting that these epigenetic regulators act mainly by different silencing mechanisms.
Collapse
|
31
|
Zhu S, Lim GH, Yu K, Jeong RD, Kachroo A, Kachroo P. RNA silencing components mediate resistance signaling against turnip crinkle virus. PLANT SIGNALING & BEHAVIOR 2014; 9:e28435. [PMID: 24614040 PMCID: PMC4091425 DOI: 10.4161/psb.28435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 03/04/2014] [Accepted: 03/04/2014] [Indexed: 06/03/2023]
Abstract
Species-specific immunity is induced when an effector protein from a specific pathogen strain is perceived by a cognate resistance (R) protein in the plant. In Arabidopsis, the R protein HRT, which confers resistance to turnip crinkle virus (TCV), is activated upon recognition of the TCV coat-protein (CP), a potent suppressor of host RNA silencing. Recognition by HRT does not require RNA silencing suppressor function of CP and is not associated with the accumulation of TCV-specific small-RNA. However, several components of the host RNA silencing pathway participate in HRT-mediated defense against TCV. For example, the double stranded RNA binding protein (DRB) 4 interacts with the plasma membrane localized HRT, and is required for its stability. Intriguingly, TCV infection promotes the cytosolic accumulation of the otherwise primarily nuclear DRB4, and this in turn inhibits HRT-DRB4 interaction. These data together with differential localization of DRB4 in plants inoculated with avirulent and virulent viruses, suggests that sub-cellular compartmentalization of DRB4 plays an important role in activation of HRT.
Collapse
Affiliation(s)
- Shifeng Zhu
- † Current affiliation: Department of Plant Biology and Ecology; College of Life Sciences; Nankai University; Tianjin, PR China
| | - Gah-Hyun Lim
- Department of Plant Pathology; University of Kentucky; Lexington, KY USA
| | - Keshun Yu
- Department of Plant Pathology; University of Kentucky; Lexington, KY USA
| | - Rae-Dong Jeong
- ‡ Current affiliation: Korea Atomic Energy Research Institute; Jeongeup si Jeonlabukdo, South Korea
| | - Aardra Kachroo
- Department of Plant Pathology; University of Kentucky; Lexington, KY USA
| | - Pradeep Kachroo
- Department of Plant Pathology; University of Kentucky; Lexington, KY USA
| |
Collapse
|
32
|
Langen G, von Einem S, Koch A, Imani J, Pai SB, Manohar M, Ehlers K, Choi HW, Claar M, Schmidt R, Mang HG, Bordiya Y, Kang HG, Klessig DF, Kogel KH. The compromised recognition of turnip crinkle virus1 subfamily of microrchidia ATPases regulates disease resistance in barley to biotrophic and necrotrophic pathogens. PLANT PHYSIOLOGY 2014; 164:866-78. [PMID: 24390392 PMCID: PMC3912112 DOI: 10.1104/pp.113.227488] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 12/30/2013] [Indexed: 05/18/2023]
Abstract
MORC1 and MORC2, two of the seven members of the Arabidopsis (Arabidopsis thaliana) Compromised Recognition of Turnip Crinkle Virus1 subfamily of microrchidia Gyrase, Heat Shock Protein90, Histidine Kinase, MutL (GHKL) ATPases, were previously shown to be required in multiple layers of plant immunity. Here, we show that the barley (Hordeum vulgare) MORCs also are involved in disease resistance. Genome-wide analyses identified five MORCs that are 37% to 48% identical on the protein level to AtMORC1. Unexpectedly, and in clear contrast to Arabidopsis, RNA interference-mediated knockdown of MORC in barley resulted in enhanced basal resistance and effector-triggered, powdery mildew resistance locus A12-mediated resistance against the biotrophic powdery mildew fungus (Blumeria graminis f. sp. hordei), while MORC overexpression decreased resistance. Moreover, barley knockdown mutants also showed higher resistance to Fusarium graminearum. Barley MORCs, like their Arabidopsis homologs, contain the highly conserved GHKL ATPase and S5 domains, which identify them as members of the MORC superfamily. Like AtMORC1, barley MORC1 (HvMORC1) binds DNA and has Mn2+-dependent endonuclease activities, suggesting that the contrasting function of MORC1 homologs in barley versus Arabidopsis is not due to differences in their enzyme activities. In contrast to AtMORCs, which are involved in silencing of transposons that are largely restricted to pericentromeric regions, barley MORC mutants did not show a loss-of-transposon silencing regardless of their genomic location. Reciprocal overexpression of MORC1 homologs in barley and Arabidopsis showed that AtMORC1 and HvMORC1 could not restore each other's function. Together, these results suggest that MORC proteins function as modulators of immunity, which can act negatively (barley) or positively (Arabidopsis) dependent on the species.
Collapse
|
33
|
Choi HW, Kim DS, Kim NH, Jung HW, Ham JH, Hwang BK. Xanthomonas filamentous hemagglutinin-like protein Fha1 interacts with pepper hypersensitive-induced reaction protein CaHIR1 and functions as a virulence factor in host plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1441-54. [PMID: 23931712 DOI: 10.1094/mpmi-07-13-0204-r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Pathogens have evolved a variety of virulence factors to infect host plants successfully. We previously identified the pepper plasma-membrane-resident hypersensitive-induced reaction protein (CaHIR1) as a regulator of plant disease- and immunity-associated cell death. Here, we identified the small filamentous hemagglutinin-like protein (Fha1) of Xanthomonas campestris pv. vesicatoria as an interacting partner of CaHIR1 using yeast two-hybrid screening. Coimmunoprecipitation and bimolecular fluorescence complementation experiments revealed that Fha1 specifically interacts with CaHIR1 in planta. The endocytic tracker FM4-64 staining showed that the CaHIR1-Fha1 complex localizes in the endocytic vesicle-like structure. The X. campestris pv. vesicatoria Δfha1 mutant strain exhibited significantly increased surface adherence but reduced swarming motility. Mutation of fha1 inhibited the growth of X. campestris pv. vesicatoria and X. campestris pv. vesicatoria ΔavrBsT in tomato and pepper leaves, respectively, suggesting that Fha1 acts as a virulence factor in host plants. Transient expression of fha1 and also infiltration with purified Fha1 proteins induced disease-associated cell death response through the interaction with CaHIR1 and suppressed the expression of pathogenesis-related (PR) genes. Silencing of CaHIR1 in pepper significantly reduced ΔavrBsT growth and Fha1-triggered susceptibility cell death. Overexpression of fha1 in Arabidopsis retarded plant growth and triggered disease-associated cell death, resulting in altered disease susceptibility. Taken together, these results suggest that the X. campestris pv. vesicatoria virulence factor Fha1 interacts with CaHIR1, induces susceptibility cell death, and suppresses PR gene expression in host plants.
Collapse
|
34
|
Brabbs TR, He Z, Hogg K, Kamenski A, Li Y, Paszkiewicz KH, Moore KA, O'Toole P, Graham IA, Jones L. The stochastic silencing phenotype of Arabidopsis morc6 mutants reveals a role in efficient RNA-directed DNA methylation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:836-46. [PMID: 23675613 DOI: 10.1111/tpj.12246] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 05/09/2013] [Indexed: 05/18/2023]
Abstract
The RNA-directed DNA methylation (RdDM) pathway is of central importance to the initiation and maintenance of transcriptional gene silencing in plants. DNA methylation is directed to target sequences by a mechanism that involves production of small RNAs by RNA polymerase IV and long non-coding RNAs by RNA polymerase V. DNA methylation then leads to recruitment of histone-modifying enzymes, followed by establishment of a silenced chromatin state. Recently MORC6, a member of the microrchidia (MORC) family of adenosine triphosphatases (ATPases), has been shown to be involved in transcriptional gene silencing. However, reports differ regarding whether MORC6 is involved in RdDM itself or acts downstream of DNA methylation to enable formation of higher-order chromatin structure. Here we demonstrate that MORC6 is required for efficient RdDM at some target loci, and, using a GFP reporter system, we found that morc6 mutants show a stochastic silencing phenotype. By using cell sorting to separate silenced and unsilenced cells, we show that release of silencing at this locus is associated with a loss of DNA methylation. Thus our data support a view that MORC6 influences RdDM and that it is not acting downstream of DNA methylation. For some loci, efficient initiation or maintenance of DNA methylation may depend on the ability to form higher-order chromatin structure.
Collapse
Affiliation(s)
- Thomas R Brabbs
- Department of Biology, University of York, YO10 5DD, York, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
CRT1 is a nuclear-translocated MORC endonuclease that participates in multiple levels of plant immunity. Nat Commun 2013; 3:1297. [PMID: 23250427 DOI: 10.1038/ncomms2279] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 11/12/2012] [Indexed: 12/13/2022] Open
Abstract
Arabidopsis thaliana CRT1 (compromised for recognition of Turnip Crinkle Virus) was previously shown to be required for effector-triggered immunity. Sequence analyses previously revealed that CRT1 contains the ATPase and S5 domains characteristic of Microchidia (MORC) proteins; these proteins are associated with DNA modification and repair. Here we show that CRT1 and its closest homologue, CRH1, are also required for pathogen-associated molecular pattern (PAMP)-triggered immunity, basal resistance, non-host resistance and systemic acquired resistance. Consistent with its role in PAMP-triggered immunity, CRT1 interacted with the PAMP recognition receptor FLS2. Subcellular fractionation and transmission electron microscopy detected a subpopulation of CRT1 in the nucleus, whose levels increased following PAMP treatment or infection with an avirulent pathogen. These results, combined with the demonstration that CRT1 binds DNA, exhibits endonuclease activity, and affects tolerance to the DNA-damaging agent mitomycin C, argue that this prototypic eukaryotic member of the MORC superfamily has important nuclear functions during immune response activation.
Collapse
|
36
|
Takken FLW, Goverse A. How to build a pathogen detector: structural basis of NB-LRR function. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:375-84. [PMID: 22658703 DOI: 10.1016/j.pbi.2012.05.001] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/27/2012] [Accepted: 05/02/2012] [Indexed: 05/20/2023]
Abstract
Many plant disease resistance (R) proteins belong to the family of nucleotide-binding-leucine rich repeat (NB-LRR) proteins. NB-LRRs mediate recognition of pathogen-derived effector molecules and subsequently activate host defence. Their multi-domain structure allows these pathogen detectors to simultaneously act as sensor, switch and response factor. Structure-function analyses and the recent elucidation of the 3D structures of subdomains have provided new insight in how these different functions are combined and what the contribution is of the individual subdomains. Besides interdomain contacts, interactions with chaperones, the proteasome and effector baits are required to keep NB-LRRs in a signalling-competent, yet auto-inhibited state. In this review we explore operational models of NB-LRR functioning based on recent advances in understanding their structure.
Collapse
Affiliation(s)
- Frank L W Takken
- University of Amsterdam, SILS, Molecular Plant Pathology, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | | |
Collapse
|
37
|
Heidrich K, Blanvillain-Baufumé S, Parker JE. Molecular and spatial constraints on NB-LRR receptor signaling. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:385-91. [PMID: 22503757 DOI: 10.1016/j.pbi.2012.03.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 03/22/2012] [Accepted: 03/22/2012] [Indexed: 05/24/2023]
Abstract
In plants, a large polymorphic family of intracellular NB-LRR receptors lies at the heart of robust resistance to diverse pathogens and mechanisms by which these versatile molecular switches operate in effector-triggered immunity are beginning to emerge. We outline recent advances in our understanding of NB-LRR receptor signaling leading to disease resistance. Themes covered are (i) NB-LRR molecular constraining forces and their intimate relationship with receptor activation in different parts of the cell, (ii) cooperativity between NB-LRR proteins and the formation of higher order NB-LRR signaling complexes, and (iii) the spatial separation of different resistance branches within cells. Finally, we examine evidence for dynamic signaling across cell compartments in coordinating diverse immune outputs.
Collapse
Affiliation(s)
- Katharina Heidrich
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany
| | | | | |
Collapse
|
38
|
Huang YW, Hu CC, Liou MR, Chang BY, Tsai CH, Meng M, Lin NS, Hsu YH. Hsp90 interacts specifically with viral RNA and differentially regulates replication initiation of Bamboo mosaic virus and associated satellite RNA. PLoS Pathog 2012; 8:e1002726. [PMID: 22654666 PMCID: PMC3359997 DOI: 10.1371/journal.ppat.1002726] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 04/16/2012] [Indexed: 12/22/2022] Open
Abstract
Host factors play crucial roles in the replication of plus-strand RNA viruses. In this report, a heat shock protein 90 homologue of Nicotiana benthamiana, NbHsp90, was identified in association with partially purified replicase complexes from BaMV-infected tissue, and shown to specifically interact with the 3' untranslated region (3' UTR) of BaMV genomic RNA, but not with the 3' UTR of BaMV-associated satellite RNA (satBaMV RNA) or that of genomic RNA of other viruses, such as Potato virus X (PVX) or Cucumber mosaic virus (CMV). Mutational analyses revealed that the interaction occurs between the middle domain of NbHsp90 and domain E of the BaMV 3' UTR. The knockdown or inhibition of NbHsp90 suppressed BaMV infectivity, but not that of satBaMV RNA, PVX, or CMV in N. benthamiana. Time-course analysis further revealed that the inhibitory effect of 17-AAG is significant only during the immediate early stages of BaMV replication. Moreover, yeast two-hybrid and GST pull-down assays demonstrated the existence of an interaction between NbHsp90 and the BaMV RNA-dependent RNA polymerase. These results reveal a novel role for NbHsp90 in the selective enhancement of BaMV replication, most likely through direct interaction with the 3' UTR of BaMV RNA during the initiation of BaMV RNA replication.
Collapse
Affiliation(s)
- Ying Wen Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Chung Chi Hu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Ming Ru Liou
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Ban Yang Chang
- Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan
| | - Ching Hsiu Tsai
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Menghsiao Meng
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Na Sheng Lin
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yau Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
39
|
Moissiard G, Cokus SJ, Cary J, Feng S, Billi AC, Stroud H, Husmann D, Zhan Y, Lajoie BR, McCord RP, Hale CJ, Feng W, Michaels SD, Frand AR, Pellegrini M, Dekker J, Kim JK, Jacobsen SE. MORC family ATPases required for heterochromatin condensation and gene silencing. Science 2012; 336:1448-51. [PMID: 22555433 DOI: 10.1126/science.1221472] [Citation(s) in RCA: 249] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transposable elements (TEs) and DNA repeats are commonly targeted by DNA and histone methylation to achieve epigenetic gene silencing. We isolated mutations in two Arabidopsis genes, AtMORC1 and AtMORC6, which cause derepression of DNA-methylated genes and TEs but no losses of DNA or histone methylation. AtMORC1 and AtMORC6 are members of the conserved Microrchidia (MORC) adenosine triphosphatase (ATPase) family, which are predicted to catalyze alterations in chromosome superstructure. The atmorc1 and atmorc6 mutants show decondensation of pericentromeric heterochromatin, increased interaction of pericentromeric regions with the rest of the genome, and transcriptional defects that are largely restricted to loci residing in pericentromeric regions. Knockdown of the single MORC homolog in Caenorhabditis elegans also impairs transgene silencing. We propose that the MORC ATPases are conserved regulators of gene silencing in eukaryotes.
Collapse
Affiliation(s)
- Guillaume Moissiard
- Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, Terasaki Life Sciences Building, 610 Charles Young Drive East, Los Angeles, CA 90095-723905, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Lorković ZJ, Naumann U, Matzke AJM, Matzke M. Involvement of a GHKL ATPase in RNA-directed DNA methylation in Arabidopsis thaliana. Curr Biol 2012; 22:933-8. [PMID: 22560611 DOI: 10.1016/j.cub.2012.03.061] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 03/16/2012] [Accepted: 03/19/2012] [Indexed: 11/16/2022]
Abstract
RNA-directed DNA methylation (RdDM) is a small interfering RNA (siRNA)-mediated epigenetic modification that contributes to transposon silencing in plants. RdDM requires a complex transcriptional machinery comprising two RNA polymerase II-related RNA polymerases, called Pol IV and Pol V, as well as chromatin remodelers, transcription factors, and other novel proteins whose roles in the RdDM mechanism remain poorly understood. We have identified a new component of the RdDM machinery, DMS11 (defective in meristem silencing 11), which has a GHKL (gyrase, Hsp90, histidine kinase, MutL) ATPase domain. siRNAs accumulate in the dms11 mutant, and repressive epigenetic modifications undergo only modest reductions at target sequences. DMS11 interacts physically with another RdDM component, DMS3, an unusual structural maintenance of chromosomes (SMC) hinge domain-containing protein that lacks the ATPase motifs of authentic SMC proteins. The hinge region of DMS3 resembles that of the mammalian epigenetic factor SMCHD1, which also has a GHKL-type ATPase. In vitro, DMS11 has ATPase activity that is stimulated by DMS3. We suggest that DMS11 provides the missing ATPase function for DMS3 and that these proteins cooperate in the RdDM pathway to promote transcriptional repression. GHKL ATPases are thus emerging as new players in epigenetic regulation in plants and mammals.
Collapse
Affiliation(s)
- Zdravko J Lorković
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna, Austria
| | | | | | | |
Collapse
|
41
|
Mang HG, Qian W, Zhu Y, Qian J, Kang HG, Klessig DF, Hua J. Abscisic acid deficiency antagonizes high-temperature inhibition of disease resistance through enhancing nuclear accumulation of resistance proteins SNC1 and RPS4 in Arabidopsis. THE PLANT CELL 2012; 24:1271-84. [PMID: 22454454 PMCID: PMC3336126 DOI: 10.1105/tpc.112.096198] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 02/28/2012] [Accepted: 03/08/2012] [Indexed: 05/20/2023]
Abstract
Plant defense responses to pathogens are influenced by abiotic factors, including temperature. Elevated temperatures often inhibit the activities of disease resistance proteins and the defense responses they mediate. A mutant screen with an Arabidopsis thaliana temperature-sensitive autoimmune mutant bonzai1 revealed that the abscisic acid (ABA)-deficient mutant aba2 enhances resistance mediated by the resistance (R) gene suppressor of npr1-1 constitutive1 (SNC1) at high temperature. ABA deficiency promoted nuclear accumulation of SNC1, which was essential for it to function at low and high temperatures. Furthermore, the effect of ABA deficiency on SNC1 protein accumulation is independent of salicylic acid, whose effects are often antagonized by ABA. ABA deficiency also promotes the activity and nuclear localization of R protein resistance to Pseudomonas syringae4 at higher temperature, suggesting that the effect of ABA on R protein localization and nuclear activity is rather broad. By contrast, mutations that confer ABA insensitivity did not promote defense responses at high temperature, suggesting either tissue specificity of ABA signaling or a role of ABA in defense regulation independent of the core ABA signaling machinery. Taken together, this study reveals a new intersection between ABA and disease resistance through R protein localization and provides further evidence of antagonism between abiotic and biotic responses.
Collapse
Affiliation(s)
- Hyung-Gon Mang
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Weiqiang Qian
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Ying Zhu
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jun Qian
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Hong-Gu Kang
- Boyce Thompson Institute, Ithaca, New York 14853
- Department of Biology, Texas State University, San Marcos, Texas 78666
| | | | - Jian Hua
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
42
|
Contento AL, Bassham DC. Structure and function of endosomes in plant cells. J Cell Sci 2012; 125:3511-8. [DOI: 10.1242/jcs.093559] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Endosomes are a heterogeneous collection of organelles that function in the sorting and delivery of internalized material from the cell surface and the transport of materials from the Golgi to the lysosome or vacuole. Plant endosomes have some unique features, with an organization distinct from that of yeast or animal cells. Two clearly defined endosomal compartments have been studied in plant cells, the trans-Golgi network (equivalent to the early endosome) and the multivesicular body (equivalent to the late endosome), with additional endosome types (recycling endosome, late prevacuolar compartment) also a possibility. A model has been proposed in which the trans-Golgi network matures into a multivesicular body, which then fuses with the vacuole to release its cargo. In addition to basic trafficking functions, endosomes in plant cells are known to function in maintenance of cell polarity by polar localization of hormone transporters and in signaling pathways after internalization of ligand-bound receptors. These signaling functions are exemplified by the BRI1 brassinosteroid hormone receptor and by receptors for pathogen elicitors that activate defense responses. After endocytosis of these receptors from the plasma membrane, endosomes act as a signaling platform, thus playing an essential role in plant growth, development and defense responses. Here we describe the key features of plant endosomes and their differences from those of other organisms and discuss the role of these organelles in cell polarity and signaling pathways.
Collapse
|
43
|
Elmore JM, Lin ZJD, Coaker G. Plant NB-LRR signaling: upstreams and downstreams. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:365-71. [PMID: 21459033 PMCID: PMC3155621 DOI: 10.1016/j.pbi.2011.03.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/07/2011] [Accepted: 03/09/2011] [Indexed: 05/19/2023]
Abstract
Plant disease resistance proteins commonly belong to the nucleotide binding-leucine rich repeat (NB-LRR) protein family. These specialized immune proteins mediate recognition of diverse pathogen-derived effector proteins and initiate potent defense responses. NB-LRRs exhibit a multidomain architecture and each domain appears to have discrete functions depending on the stage of NB-LRR signaling. Novel proteins that were found to interact with the core HSP90 chaperone complex regulate accumulation and activation of NB-LRR immune receptors. Recent studies have also advanced our understanding of how accessory proteins contribute to NB-LRR activation. The dynamic nature of NB-LRR localization to different subcellular compartments before and after activation suggests that NB-LRRs may activate immune responses in multiple parts of the cell. In this review we highlight recent advances in understanding NB-LRR function.
Collapse
Affiliation(s)
| | | | - Gitta Coaker
- CORRESPONDING AUTHOR: Gitta Coaker, , Phone: 530-752-6541, Fax: 530-752-5674, Department of Plant Pathology, 254 Hutchison Hall, University of California, Davis, CA, 95616
| |
Collapse
|
44
|
Chung EH, da Cunha L, Wu AJ, Gao Z, Cherkis K, Afzal AJ, Mackey D, Dangl JL. Specific threonine phosphorylation of a host target by two unrelated type III effectors activates a host innate immune receptor in plants. Cell Host Microbe 2011; 9:125-36. [PMID: 21320695 DOI: 10.1016/j.chom.2011.01.009] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 12/13/2010] [Accepted: 01/13/2011] [Indexed: 11/26/2022]
Abstract
The Arabidopsis NB-LRR immune receptor RPM1 recognizes the Pseudomonas syringae type III effectors AvrB or AvrRpm1 to mount an immune response. Although neither effector is itself a kinase, AvrRpm1 and AvrB are known to target Arabidopsis RIN4, a negative regulator of basal plant defense, for phosphorylation. We show that RIN4 phosphorylation activates RPM1. RIN4(142-176) is necessary and, with appropriate localization sequences, sufficient to support effector-triggered RPM1 activation, with the threonine residue at position 166 being critical. Phosphomimic substitutions at T166 cause effector-independent RPM1 activation. RIN4 T166 is phosphorylated in vivo in the presence of AvrB or AvrRpm1. RIN4 mutants that lose interaction with AvrB cannot be coimmunoprecipitated with RPM1. This defines a common interaction platform required for RPM1 activation by phosphorylated RIN4 in response to pathogenic effectors. Conservation of an analogous threonine across all RIN4-like proteins suggests a key function for this residue beyond the regulation of RPM1.
Collapse
Affiliation(s)
- Eui-Hwan Chung
- Department of Biology, University of North Carolina, Chapel Hill, 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Oh CS, Martin GB. Tomato 14-3-3 protein TFT7 interacts with a MAP kinase kinase to regulate immunity-associated programmed cell death mediated by diverse disease resistance proteins. J Biol Chem 2011; 286:14129-36. [PMID: 21378171 PMCID: PMC3077614 DOI: 10.1074/jbc.m111.225086] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/03/2011] [Indexed: 12/20/2022] Open
Abstract
Programmed cell death (PCD) associated with immunity is triggered when a plant disease resistance (R) protein recognizes a corresponding pathogen virulence protein. In tomato, detection by the host Pto kinase of the Pseudomonas syringae proteins AvrPto or AvrPtoB causes localized PCD. Previously, we reported that both MAPKKKα (mitogen-activated protein kinase kinase kinase) and the tomato 14-3-3 protein 7 (TFT7) positively regulate Pto-mediated PCD in tomato and Nicotiana benthamiana. In addition, in contrast to MAPKKKα, TFT7 is required for PCD mediated by four other R proteins. Here we investigate why TFT7 is required for PCD induced by diverse R proteins in plants. We discovered that a MAPKK, SlMKK2, which acts downstream of SlMAPKKKα, also interacts with TFT7 in plant cells. Gene silencing experiments revealed that the orthologous genes of both SlMKK2 and TFT7 in N. benthamiana are required for PCD mediated by the same set of R proteins. SlMKK2 and its orthologs contain a 14-3-3 binding site in their N terminus, and Thr(33) in this site is required for interaction with TFT7 in vivo. Like the structurally similar human 14-3-3ε protein, TFT7 forms a homodimer in vivo. Because TFT7 interacts with both SlMAPKKKα and SlMKK2 and also forms a homodimer, we propose that TFT7 may coordinately recruit these client proteins for efficient signal transfer, leading to PCD induction.
Collapse
Affiliation(s)
- Chang-Sik Oh
- From the Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
- the Department of Horticultural Biotechnology, Kyung Hee University, Yong-In 446-701, Korea, and
| | - Gregory B. Martin
- From the Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
- the Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
46
|
Spies A, Korzun V, Bayles R, Rajaraman J, Himmelbach A, Hedley PE, Schweizer P. Allele mining in barley genetic resources reveals genes of race-non-specific powdery mildew resistance. FRONTIERS IN PLANT SCIENCE 2011; 2:113. [PMID: 22629270 PMCID: PMC3355509 DOI: 10.3389/fpls.2011.00113] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 12/22/2011] [Indexed: 05/18/2023]
Abstract
Race-non-specific, or quantitative, pathogen resistance is of high importance to plant breeders due to its expected durability. However, it is usually controlled by multiple quantitative trait loci (QTL) and therefore difficult to handle in practice. Knowing the genes that underlie race-non-specific resistance (NR) would allow its exploitation in a more targeted manner. Here, we performed an association-genetic study in a customized worldwide collection of spring barley accessions for candidate genes of race-NR to the powdery mildew fungus Blumeria graminis f. sp. hordei (Bgh) and combined data with results from QTL mapping as well as functional-genomics approaches. This led to the identification of 11 associated genes with converging evidence for an important role in race-NR in the presence of the Mlo gene for basal susceptibility. Outstanding in this respect was the gene encoding the transcription factor WRKY2. The results suggest that unlocking plant genetic resources and integrating functional-genomic with genetic approaches can accelerate the discovery of genes underlying race-NR in barley and other crop plants.
Collapse
Affiliation(s)
- Annika Spies
- Leibniz-Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| | | | | | - Jeyaraman Rajaraman
- Leibniz-Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| | - Axel Himmelbach
- Leibniz-Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| | | | - Patrick Schweizer
- Leibniz-Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
- *Correspondence: Patrick Schweizer, Leibniz-Institute of Plant Genetics and Crop Plant Research, Corrensstrasse 3, 06466 Gatersleben, Germany. e-mail:
| |
Collapse
|
47
|
Kim SH, Gao F, Bhattacharjee S, Adiasor JA, Nam JC, Gassmann W. The Arabidopsis resistance-like gene SNC1 is activated by mutations in SRFR1 and contributes to resistance to the bacterial effector AvrRps4. PLoS Pathog 2010; 6:e1001172. [PMID: 21079790 PMCID: PMC2973837 DOI: 10.1371/journal.ppat.1001172] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 09/29/2010] [Indexed: 12/23/2022] Open
Abstract
The SUPPRESSOR OF rps4-RLD1 (SRFR1) gene was identified based on enhanced AvrRps4-triggered resistance in the naturally susceptible Arabidopsis accession RLD. No other phenotypic effects were recorded, and the extent of SRFR1 involvement in regulating effector-triggered immunity was unknown. Here we show that mutations in SRFR1 in the accession Columbia-0 (Col-0) lead to severe stunting and constitutive expression of the defense gene PR1. These phenotypes were temperature-dependent. A cross between srfr1-1 (RLD background) and srfr1-4 (Col-0) showed that stunting was caused by a recessive locus in Col-0. Mapping and targeted crosses identified the Col-0-specific resistance gene SNC1 as the locus that causes stunting. SRFR1 was proposed to function as a transcriptional repressor, and SNC1 is indeed overexpressed in srfr1-4. Interestingly, co-regulated genes in the SNC1 cluster are also upregulated in the srfr1-4 snc1-11 double mutant, indicating that the overexpression of SNC1 is not a secondary effect of constitutive defense activation. In addition, a Col-0 RPS4 mutant showed full susceptibility to bacteria expressing avrRps4 at 24°C but not at 22°C, while RLD susceptibility was not temperature-dependent. The rps4-2 snc1-11 double mutant showed increased, but not full, susceptibility at 22°C, indicating that additional cross-talk between resistance pathways may exist. Intriguingly, when transiently expressed in Nicotiana benthamiana, SRFR1, RPS4 and SNC1 are in a common protein complex in a cytoplasmic microsomal compartment. Our results highlight SRFR1 as a convergence point in at least a subset of TIR-NBS-LRR protein-mediated immunity in Arabidopsis. Based on the cross-talk evident from our results, they also suggest that reports of constitutive resistance phenotypes in Col-0 need to consider the possible involvement of SNC1.
Collapse
Affiliation(s)
- Sang Hee Kim
- Division of Plant Sciences, Christopher S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
| | - Fei Gao
- Division of Plant Sciences, Christopher S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
| | - Saikat Bhattacharjee
- Division of Plant Sciences, Christopher S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
| | - Joseph A. Adiasor
- Department of Chemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Ji Chul Nam
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Walter Gassmann
- Division of Plant Sciences, Christopher S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|
48
|
Cryptochrome 2 and phototropin 2 regulate resistance protein-mediated viral defense by negatively regulating an E3 ubiquitin ligase. Proc Natl Acad Sci U S A 2010; 107:13538-43. [PMID: 20624951 DOI: 10.1073/pnas.1004529107] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Light harvested by plants is essential for the survival of most life forms. This light perception ability requires the activities of proteins termed photoreceptors. We report a function for photoreceptors in mediating resistance (R) protein-derived plant defense. The blue-light photoreceptors, cryptochrome (CRY) 2 and phototropin (PHOT) 2, are required for the stability of the R protein HRT, and thereby resistance to Turnip Crinkle virus (TCV). Exposure to darkness or blue-light induces degradation of CRY2, and in turn HRT, resulting in susceptibility. Overexpression of HRT can compensate for the absence of PHOT2 but not CRY2. HRT does not directly associate with either CRY2 or PHOT2 but does bind the CRY2-/PHOT2-interacting E3 ubiquitin ligase, COP1. Application of the proteasome inhibitor, MG132, prevents blue-light-dependent degradation of HRT, consequently these plants show resistance to TCV under blue-light. We propose that CRY2/PHOT2 negatively regulate the proteasome-mediated degradation of HRT, likely via COP1, and blue-light relieves this repression resulting in HRT degradation.
Collapse
|