1
|
Saez Lancellotti TE, Avena MV, Funes AK, Bernal-López MR, Gómez-Huelgas R, Fornes MW. Exploring the impact of lipid stress on sperm cytoskeleton: insights and prospects. Nat Rev Urol 2024:10.1038/s41585-024-00952-1. [PMID: 39528754 DOI: 10.1038/s41585-024-00952-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 11/16/2024]
Abstract
The decline in male fertility correlates with the global rise in obesity and dyslipidaemia, representing significant public health challenges. High-fat diets induce metabolic alterations, including hypercholesterolaemia, hepatic steatosis and atherosclerosis, with detrimental effects on testicular function. Testicular tissue, critically dependent on lipids for steroidogenesis, is particularly vulnerable to these metabolic disruptions. Excessive lipid accumulation within the testes, including cholesterol, triglycerides and specific fatty acids, disrupts essential sperm production processes such as membrane formation, maturation, energy metabolism and cell signalling. This leads to apoptosis, impaired spermatogenesis, and abnormal sperm morphology and function, ultimately compromising male fertility. During spermiogenesis, round spermatids undergo extensive reorganization, including the formation of the acrosome, manchette and specialized filamentous structures, which are essential for defining the final sperm cell shape. In this Perspective, we examine the impact of high-fat diets on the cytoskeleton of spermatogenic cells and its consequences to identify the mechanisms underlying male infertility associated with dyslipidaemia. Understanding these processes may facilitate the development of therapeutic strategies, such as dietary interventions or natural product supplementation, that aim to address infertility in men with obesity and hypercholesterolaemia. The investigation of cytoskeleton response to lipid stress extends beyond male reproduction, offering insights with broader implications.
Collapse
Affiliation(s)
- Tania E Saez Lancellotti
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu), Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina.
- Instituto de Investigaciones, Facultad de Ciencias Médicas, Universidad del Aconcagua, Mendoza, Argentina.
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain.
| | - María V Avena
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu), Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Abi K Funes
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu), Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María-Rosa Bernal-López
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Ricardo Gómez-Huelgas
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel W Fornes
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
2
|
Blázquez MA. Polyamines: Their Role in Plant Development and Stress. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:95-117. [PMID: 38382905 DOI: 10.1146/annurev-arplant-070623-110056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
This review focuses on the intricate relationship between plant polyamines and the genetic circuits and signaling pathways that regulate various developmental programs and the defense responses of plants when faced with biotic and abiotic aggressions. Particular emphasis is placed on genetic evidence supporting the involvement of polyamines in specific processes, such as the pivotal role of thermospermine in regulating xylem cell differentiation and the significant contribution of polyamine metabolism in enhancing plant resilience to drought. Based on the numerous studies describing effects of the manipulation of plant polyamine levels, two conceptually different mechanisms for polyamine activity are discussed: direct participation of polyamines in translational regulation and the indirect production of hydrogen peroxide as a defensive mechanism against pathogens. By describing the multifaceted functions of polyamines, this review underscores the profound significance of these compounds in enabling plants to adapt and thrive in challenging environments.
Collapse
Affiliation(s)
- Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain;
| |
Collapse
|
3
|
Zhu H, Tian W, Zhu X, Tang X, Wu L, Hu X, Jin S. Ectopic expression of GhSAMDC 1 improved plant vegetative growth and early flowering through conversion of spermidine to spermine in tobacco. Sci Rep 2020; 10:14418. [PMID: 32879344 PMCID: PMC7468128 DOI: 10.1038/s41598-020-71405-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/14/2020] [Indexed: 01/11/2023] Open
Abstract
Polyamines play essential roles in plant development and various stress responses. In this study, one of the cotton S-adenosylmethionine decarboxylase (SAMDC) genes, GhSAMDC1, was constructed in the pGWB17 vector and overexpressed in tobacco. Leaf area and plant height increased 25.9-36.6% and 15.0-27.0%, respectively, compared to the wild type, and flowering time was advanced by 5 days in transgenic tobacco lines. Polyamine and gene expression analyses demonstrated that a decrease in spermidine and an increase in total polyamines and spermine might be regulated by NtSPDS4 and NtSPMS in transgenic plants. Furthermore, exogenous spermidine, spermine and spermidine synthesis inhibitor dicyclohexylamine were used for complementary tests, which resulted in small leaves and dwarf plants, big leaves and early flowering, and big leaves and dwarf plants, respectively. These results indicate that spermidine and spermine are mainly involved in the vegetative growth and early flowering stages, respectively. Expression analysis of flowering-related genes suggested that NtSOC1, NtAP1, NtNFL1 and NtFT4 were upregulated in transgenic plants. In conclusion, ectopic GhSAMDC1 is involved in the conversion of spermidine to spermine, resulting in rapid vegetative growth and early flowering in tobacco, which could be applied to genetically improve plants.
Collapse
Affiliation(s)
- Huaguo Zhu
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, China.
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, 438000, Huanggang, Hubei, China.
| | - Wengang Tian
- College of Agronomy, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Xuefeng Zhu
- College of Agronomy, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Xinxin Tang
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, China
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, 438000, Huanggang, Hubei, China
| | - Lan Wu
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, China
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, 438000, Huanggang, Hubei, China
| | - Xiaoming Hu
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, China
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, 438000, Huanggang, Hubei, China
| | - Shuangxia Jin
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| |
Collapse
|
4
|
Madeo F, Eisenberg T, Pietrocola F, Kroemer G. Spermidine in health and disease. Science 2018; 359:359/6374/eaan2788. [DOI: 10.1126/science.aan2788] [Citation(s) in RCA: 438] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
5
|
Aljaafri WAR, McNeece BT, Lawaju BR, Sharma K, Niruala PM, Pant SR, Long DH, Lawrence KS, Lawrence GW, Klink VP. A harpin elicitor induces the expression of a coiled-coil nucleotide binding leucine rich repeat (CC-NB-LRR) defense signaling gene and others functioning during defense to parasitic nematodes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 121:161-175. [PMID: 29107936 DOI: 10.1016/j.plaphy.2017.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 05/23/2023]
Abstract
The bacterial effector harpin induces the transcription of the Arabidopsis thaliana NON-RACE SPECIFIC DISEASE RESISTANCE 1/HARPIN INDUCED1 (NDR1/HIN1) coiled-coil nucleotide binding leucine rich repeat (CC-NB-LRR) defense signaling gene. In Glycine max, Gm-NDR1-1 transcripts have been detected within root cells undergoing a natural resistant reaction to parasitism by the syncytium-forming nematode Heterodera glycines, functioning in the defense response. Expressing Gm-NDR1-1 in Gossypium hirsutum leads to resistance to Meloidogyne incognita parasitism. In experiments presented here, the heterologous expression of Gm-NDR1-1 in G. hirsutum impairs Rotylenchulus reniformis parasitism. These results are consistent with the hypothesis that Gm-NDR1-1 expression functions broadly in generating a defense response. To examine a possible relationship with harpin, G. max plants topically treated with harpin result in induction of the transcription of Gm-NDR1-1. The result indicates the topical treatment of plants with harpin, itself, may lead to impaired nematode parasitism. Topical harpin treatments are shown to impair G. max parasitism by H. glycines, M. incognita and R. reniformis and G. hirsutum parasitism by M. incognita and R. reniformis. How harpin could function in defense has been examined in experiments showing it also induces transcription of G. max homologs of the proven defense genes ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1), TGA2, galactinol synthase, reticuline oxidase, xyloglucan endotransglycosylase/hydrolase, alpha soluble N-ethylmaleimide-sensitive fusion protein (α-SNAP) and serine hydroxymethyltransferase (SHMT). In contrast, other defense genes are not directly transcriptionally activated by harpin. The results indicate harpin induces pathogen associated molecular pattern (PAMP) triggered immunity (PTI) and effector-triggered immunity (ETI) defense processes in the root, activating defense to parasitic nematodes.
Collapse
Affiliation(s)
- Weasam A R Aljaafri
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, United States.
| | - Brant T McNeece
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, United States.
| | - Bisho R Lawaju
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, United States.
| | - Keshav Sharma
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, United States.
| | - Prakash M Niruala
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, United States.
| | - Shankar R Pant
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, United States.
| | - David H Long
- Albaugh, LLC, 4060 Dawkins Farm Drive, Olive Branch, MS 38654, United States.
| | - Kathy S Lawrence
- Department of Entomology and Plant Pathology, Auburn University, 209 Life Science Building, Auburn, AL 36849, United States.
| | - Gary W Lawrence
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, United States.
| | - Vincent P Klink
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, United States.
| |
Collapse
|
6
|
Tomei EJ, Wolniak SM. Kinesin-2 and kinesin-9 have atypical functions during ciliogenesis in the male gametophyte of Marsilea vestita. BMC Cell Biol 2016; 17:29. [PMID: 27421907 PMCID: PMC4947347 DOI: 10.1186/s12860-016-0107-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/07/2016] [Indexed: 11/28/2022] Open
Abstract
Background Spermatogenesis in the semi-aquatic fern, Marsilea vestita, is a rapid, synchronous process that is initiated when dry microspores are placed in water. Development is post-transcriptionally driven and can be divided into two phases. The first phase consists of nine mitotic division cycles that produce 7 sterile cells and 32 spermatids. During the second phase, each spermatid differentiates into a corkscrew-shaped motile spermatozoid with ~140 cilia. Results Analysis of the transcriptome from the male gametophyte of Marsilea revealed that one kinesin-2 (MvKinesin-2) and two kinesin-9 s (MvKinesin-9A and MvKinesin-9B) are present during spermatid differentiation and ciliogenesis. RNAi knockdowns show that MvKinesin-2 is required for mitosis and cytokinesis in spermatogenous cells. Without MvKinesin-2, most spermatozoids contain two or more coiled microtubule ribbons with attached cilia and very large cell bodies. MvKinesin-9A is required for the correct placement of basal bodies along the organelle coil. Knockdowns of MvKinesin-9A have basal bodies and cilia that are irregularly positioned. Spermatozoid swimming behavior in MvKinesin-2 and -9A knockdowns is altered because of defects in axonemal placement or ciliogenesis. MvKinesin-2 knockdowns only quiver in place while MvKinesin-9A knockdowns swim erratically compared to controls. In contrast, spermatozoids produced after the silencing of MvKinesin-9B exhibit normal morphology and swimming behavior, though development is slower than normal for these gametes. Conclusions Our results show that MvKinesin-2 and MvKinesin-9A are required for ciliogenesis and motility in the Marsilea male gametophyte; however, these kinesins display atypical roles during these processes. MvKinesin-2 is required for cytokinesis, a role not typically associated with this protein, as well as for ciliogenesis during rapid development and MvKinesin-9A is needed for the correct orientation of basal bodies. Our results are the first to investigate the kinesin-linked mechanisms that regulate ciliogenesis in a land plant. Electronic supplementary material The online version of this article (doi:10.1186/s12860-016-0107-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Erika J Tomei
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, MD, 20742, USA
| | - Stephen M Wolniak
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, MD, 20742, USA.
| |
Collapse
|
7
|
Tomei EJ, Wolniak SM. Transcriptome analysis reveals a diverse family of kinesins essential for spermatogenesis in the fern
M
arsilea. Cytoskeleton (Hoboken) 2016; 73:145-59. [DOI: 10.1002/cm.21285] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/10/2016] [Accepted: 02/12/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Erika J. Tomei
- Department of Cell Biology and Molecular GeneticsUniversity of Maryland at College ParkCollege Park Maryland
| | - Stephen M. Wolniak
- Department of Cell Biology and Molecular GeneticsUniversity of Maryland at College ParkCollege Park Maryland
| |
Collapse
|
8
|
Zierer W, Hajirezaei MR, Eggert K, Sauer N, von Wirén N, Pommerrenig B. Phloem-Specific Methionine Recycling Fuels Polyamine Biosynthesis in a Sulfur-Dependent Manner and Promotes Flower and Seed Development. PLANT PHYSIOLOGY 2016; 170:790-806. [PMID: 26662272 PMCID: PMC4734553 DOI: 10.1104/pp.15.00786] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 12/06/2015] [Indexed: 05/17/2023]
Abstract
The Yang or Met Cycle is a series of reactions catalyzing the recycling of the sulfur (S) compound 5'-methylthioadenosine (MTA) to Met. MTA is produced as a by-product in ethylene, nicotianamine, and polyamine biosynthesis. Whether the Met Cycle preferentially fuels one of these pathways in a S-dependent manner remained unclear so far. We analyzed Arabidopsis (Arabidopsis thaliana) mutants with defects in the Met Cycle enzymes 5-METHYLTHIORIBOSE-1-PHOSPHATE-ISOMERASE1 (MTI1) and DEHYDRATASE-ENOLASE-PHOSPHATASE-COMPLEX1 (DEP1) under different S conditions and assayed the contribution of the Met Cycle to the regeneration of S for these pathways. Neither mti1 nor dep1 mutants could recycle MTA but showed S-dependent reproductive failure, which was accompanied by reduced levels of the polyamines putrescine, spermidine, and spermine in mutant inflorescences. Complementation experiments with external application of these three polyamines showed that only the triamine spermine could specifically rescue the S-dependent reproductive defects of the mutant plants. Furthermore, expressing gene-reporter fusions in Arabidopsis showed that MTI1 and DEP1 were mainly expressed in the vasculature of all plant parts. Phloem-specific reconstitution of Met Cycle activity in mti1 and dep1 mutant plants was sufficient to rescue their S-dependent mutant phenotypes. We conclude from these analyses that phloem-specific S recycling during periods of S starvation is essential for the biosynthesis of polyamines required for flowering and seed development.
Collapse
Affiliation(s)
- Wolfgang Zierer
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Molecular Plant Physiology, 91058 Erlangen, Germany (W.Z., N.S.); andMolecular Plant Nutrition (M.R.H., K.E., N.v.W.) and Metalloid Transport (B.P.), Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Mohammad R Hajirezaei
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Molecular Plant Physiology, 91058 Erlangen, Germany (W.Z., N.S.); andMolecular Plant Nutrition (M.R.H., K.E., N.v.W.) and Metalloid Transport (B.P.), Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Kai Eggert
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Molecular Plant Physiology, 91058 Erlangen, Germany (W.Z., N.S.); andMolecular Plant Nutrition (M.R.H., K.E., N.v.W.) and Metalloid Transport (B.P.), Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Norbert Sauer
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Molecular Plant Physiology, 91058 Erlangen, Germany (W.Z., N.S.); andMolecular Plant Nutrition (M.R.H., K.E., N.v.W.) and Metalloid Transport (B.P.), Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Nicolaus von Wirén
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Molecular Plant Physiology, 91058 Erlangen, Germany (W.Z., N.S.); andMolecular Plant Nutrition (M.R.H., K.E., N.v.W.) and Metalloid Transport (B.P.), Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Benjamin Pommerrenig
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Molecular Plant Physiology, 91058 Erlangen, Germany (W.Z., N.S.); andMolecular Plant Nutrition (M.R.H., K.E., N.v.W.) and Metalloid Transport (B.P.), Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| |
Collapse
|
9
|
Aloisi I, Cai G, Serafini-Fracassini D, Del Duca S. Polyamines in Pollen: From Microsporogenesis to Fertilization. FRONTIERS IN PLANT SCIENCE 2016; 7:155. [PMID: 26925074 PMCID: PMC4757701 DOI: 10.3389/fpls.2016.00155] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/29/2016] [Indexed: 05/20/2023]
Abstract
The entire pollen life span is driven by polyamine (PA) homeostasis, achieved through fine regulation of their biosynthesis, oxidation, conjugation, compartmentalization, uptake, and release. The critical role of PAs, from microsporogenesis to pollen-pistil interaction during fertilization, is suggested by high and dynamic transcript levels of PA biosynthetic genes, as well as by the activities of the corresponding enzymes. Moreover, exogenous supply of PAs strongly affects pollen maturation and pollen tube elongation. A reduction of endogenous free PAs impacts pollen viability both in the early stages of pollen development and during fertilization. A number of studies have demonstrated that PAs largely function by modulating transcription, by structuring pollen cell wall, by modulating protein (mainly cytoskeletal) assembly as well as by modulating the level of reactive oxygen species. Both free low-molecular weight aliphatic PAs, and PAs conjugated to proteins and hydroxyl-cinnamic acids take part in these complex processes. Here, we review both historical and recent evidence regarding molecular events underlying the role of PAs during pollen development. In the concluding remarks, the outstanding issues and directions for future research that will further clarify our understanding of PA involvement during pollen life are outlined.
Collapse
Affiliation(s)
- Iris Aloisi
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università degli Studi di BolognaBologna, Italia
| | - Giampiero Cai
- Dipartimento di Scienze della Vita, Università di SienaSiena, Italia
| | | | - Stefano Del Duca
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università degli Studi di BolognaBologna, Italia
- *Correspondence: Stefano Del Duca,
| |
Collapse
|
10
|
Wolniak SM, Boothby TC, van der Weele CM. Posttranscriptional control over rapid development and ciliogenesis in Marsilea. Methods Cell Biol 2015; 127:403-44. [PMID: 25837402 DOI: 10.1016/bs.mcb.2015.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Marsilea vestita is a semiaquatic fern that produces its spores (meiotic products) as it undergoes a process of natural desiccation. During the period of desiccation, the spores mature, and produce large quantities of pre-mRNA, which is partially processed and stored in nuclear speckles and can remain stable during a period of extended quiescence in the dry spore. Rehydration of the spores initiates a highly coordinated developmental program, featuring nine successive mitotic division cycles that occur at precise times and in precise planes within the spore wall to produce 39 cells, 32 of which are spermatids. The spermatids then undergo de novo basal body formation, the assembly of a massive cytoskeleton, nuclear and cell elongation, and finally ciliogenesis, before being released from the spore wall. The entire developmental program requires only 11 h to reach completion, and is synchronous in a population of spores rehydrated at the same time. Rapid development in this endosporic gametophyte is controlled posttranscriptionally, where stored pre-mRNAs, many of which are intron-retaining transcripts, are unmasked, processed, and translated under tight spatial and temporal control. Here, we describe posttranscriptional mechanisms that exert temporal and spatial control over this developmental program, which culminates in the production of ∼140 ciliary axonemes in each spermatozoid.
Collapse
Affiliation(s)
- Stephen M Wolniak
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park MD 20742, USA
| | - Thomas C Boothby
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park MD 20742, USA
| | - Corine M van der Weele
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park MD 20742, USA
| |
Collapse
|
11
|
Kim NH, Kim BS, Hwang BK. Pepper arginine decarboxylase is required for polyamine and γ-aminobutyric acid signaling in cell death and defense response. PLANT PHYSIOLOGY 2013; 162:2067-83. [PMID: 23784462 PMCID: PMC3729783 DOI: 10.1104/pp.113.217372] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 06/18/2013] [Indexed: 05/05/2023]
Abstract
The Xanthomonas campestris pv vesicatoria (Xcv) effector AvrBsT induces a hypersensitive cell death in pepper (Capsicum annuum). However, the molecular mechanisms underlying AvrBsT-triggered cell death are not fully understood. Here, we identified pepper arginine decarboxylase (CaADC1) as an AvrBsT-interacting protein, which is early and strongly induced in incompatible pepper-Xcv interactions. Bimolecular fluorescence complementation and coimmunoprecipitation assays showed that the CaADC1-AvrBsT complex was localized to the cytoplasm. Transient coexpression of CaADC1 with avrBsT in Nicotiana benthamiana leaves specifically enhanced AvrBsT-triggered cell death, accompanied by an accumulation of polyamines, nitric oxide (NO), and hydrogen peroxide (H₂O₂) bursts. Among the polyamines, spermine application strongly induced NO and H₂O₂ bursts, ultimately leading to cell death. CaADC1 silencing in pepper leaves significantly compromised NO and H₂O₂ accumulation and cell death induction, leading to the enhanced avirulent Xcv growth during infection. The levels of salicylic acid, polyamines, and γ-aminobutyric acid (GABA), and the expression of defense response genes during avirulent Xcv infection, were distinctly lower in CaADC1-silenced plants than those in the empty vector control plants. GABA application significantly inhibited avirulent Xcv growth in CaADC1-silenced leaves and the empty vector control plants. Together, these results suggest that CaADC1 may act as a key defense and cell death regulator via mediation of polyamine and GABA metabolism.
Collapse
Affiliation(s)
- Nak Hyun Kim
- College of Life Sciences and Biotechnology, Korea University, Seoul 136–713, Republic of Korea
| | - Beom Seok Kim
- College of Life Sciences and Biotechnology, Korea University, Seoul 136–713, Republic of Korea
| | - Byung Kook Hwang
- College of Life Sciences and Biotechnology, Korea University, Seoul 136–713, Republic of Korea
| |
Collapse
|
12
|
Boothby TC, Zipper RS, van der Weele CM, Wolniak SM. Removal of retained introns regulates translation in the rapidly developing gametophyte of Marsilea vestita. Dev Cell 2013; 24:517-29. [PMID: 23434411 DOI: 10.1016/j.devcel.2013.01.015] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 11/20/2012] [Accepted: 01/19/2013] [Indexed: 01/12/2023]
Abstract
The utilization of stored RNA is a driving force in rapid development. Here, we show that retention and subsequent removal of introns from pre-mRNAs regulate temporal patterns of translation during rapid and posttranscriptionally controlled spermatogenesis of the fern Marsilea vestita. Analysis of RNAseq-derived transcriptomes revealed a large subset of intron-retaining transcripts (IRTs) that encode proteins essential for gamete development. Genomic and IRT sequence comparisons show that other introns have been previously removed from the IRT pre-mRNAs. Fully spliced isoforms appear at distinct times during development in a spliceosome-dependent and transcription-independent manner. RNA interference knockdowns of 17/17 IRTs produced anomalies after the time points when those transcripts would normally be spliced. Intron retention is a functional mechanism for forestalling precocious translation of transcripts in the male gametophyte of M. vestita. These results have broad implications for plant gene regulation, where intron retention is widespread.
Collapse
Affiliation(s)
- Thomas C Boothby
- University of Maryland at College Park, Department of Cell Biology and Molecular Genetics, College Park, MD 20742, USA
| | | | | | | |
Collapse
|
13
|
Bauer MA, Carmona-Gutiérrez D, Ruckenstuhl C, Reisenbichler A, Megalou EV, Eisenberg T, Magnes C, Jungwirth H, Sinner FM, Pieber TR, Fröhlich KU, Kroemer G, Tavernarakis N, Madeo F. Spermidine promotes mating and fertilization efficiency in model organisms. Cell Cycle 2013; 12:346-52. [PMID: 23255134 PMCID: PMC3575463 DOI: 10.4161/cc.23199] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Spermidine is a naturally occurring polyamine involved in multiple biological processes, including DNA metabolism, autophagy and aging. Like other polyamines, spermidine is also indispensable for successful reproduction at several stages. However, a direct influence on the actual fertilization process, i.e., the fusion of an oocyte with a spermatocyte, remains uncertain. To explore this possibility, we established the mating process in the yeast Saccharomyces cerevisiae as a model for fertilization in higher eukaryotes. During human fertilization, the sperm capacitates and the acrosome reaction is necessary for penetration of the oocyte. Similarly, sexually active yeasts form a protrusion called "shmoo" as a prerequisite for mating. In this study, we demonstrate that pheromone-induced shmoo formation requires spermidine. In addition, we show that spermidine is essential for mating in yeast as well as for egg fertilization in the nematode Caenorhabditis elegans. In both cases, this occurs independently from autophagy. In synthesis, we identify spermidine as an important mating component in unicellular and multicellular model organisms, supporting an unprecedented evolutionary conservation of the mechanisms governing fertilization-related cellular fusion.
Collapse
Affiliation(s)
- Maria Anna Bauer
- Institute of Molecular Biosciences; Karl-Franzens University of Graz; Graz, Austria
| | | | | | - Angela Reisenbichler
- Institute of Molecular Biosciences; Karl-Franzens University of Graz; Graz, Austria
| | - Evgenia V. Megalou
- Institute of Molecular Biology and Biotechnology; Foundation for Research and Technology-Hellas; Heraklion, Greece
| | - Tobias Eisenberg
- Institute of Molecular Biosciences; Karl-Franzens University of Graz; Graz, Austria
| | - Christoph Magnes
- Institute of Medical Technologies and Health Management; Joanneum Research; Graz, Austria
- Department of Internal Medicine; Division of Diabetes and Metabolism; Medical University of Graz; Graz, Austria
| | - Helmut Jungwirth
- Institute of Molecular Biosciences; Karl-Franzens University of Graz; Graz, Austria
| | - Frank M. Sinner
- Institute of Medical Technologies and Health Management; Joanneum Research; Graz, Austria
- Department of Internal Medicine; Division of Diabetes and Metabolism; Medical University of Graz; Graz, Austria
| | - Thomas R. Pieber
- Institute of Medical Technologies and Health Management; Joanneum Research; Graz, Austria
- Department of Internal Medicine; Division of Diabetes and Metabolism; Medical University of Graz; Graz, Austria
| | - Kai-Uwe Fröhlich
- Institute of Molecular Biosciences; Karl-Franzens University of Graz; Graz, Austria
| | - Guido Kroemer
- INSERM; U848 and Institut Gustave Roussy; Villejuif, France
- Metabolomics Platform; Institut Gustave Roussy; Villejuif, France
- Centre de Recherche des Cordeliers; Paris, France
- Pôle de Biologie; Hôpital Européen Georges Pompidou; Assistance Publique–Hôpitaux de Paris (AP-HP); Paris, France
- Université Paris Descartes/Paris 5; Sorbonne Paris Cité; Paris, France
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology; Foundation for Research and Technology-Hellas; Heraklion, Greece
| | - Frank Madeo
- Institute of Molecular Biosciences; Karl-Franzens University of Graz; Graz, Austria
| |
Collapse
|
14
|
Rodriguez-Enriquez MJ, Mehdi S, Dickinson HG, Grant-Downton RT. A novel method for efficient in vitro germination and tube growth of Arabidopsis thaliana pollen. THE NEW PHYTOLOGIST 2013; 197:668-679. [PMID: 23173941 DOI: 10.1111/nph.12037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/04/2012] [Indexed: 05/06/2023]
Abstract
In addition to its importance in studies of plant reproduction and fertility, pollen is as widely employed as a model system of cell growth and development. This work demands robust, reproducible methods to induce pollen germination and morphologically normal growth of pollen tubes in vitro. Despite numerous advantages of Arabidopsis thaliana as a model plant, such experiments on pollen germination and pollen tube growth have often proved challenging. Our new method employs a physical cellulosic membrane, overlying an agarose substrate. By modulating the substrate composition, we provide important insights into the mechanisms promoting pollen growth both in vitro and in vivo. This effective new technical approach to A. thaliana pollen germination and tube growth results in swift, consistent and unprecedented levels of germination to over 90%. It can also promote rapid growth of long, morphologically normal pollen tubes. This technical development demonstrates that exogenous spermidine and a cellulosic substrate are key factors in stimulating germination. It has potential to greatly assist the study of reproduction in A. thaliana and its closest relatives, not only for the study of germination levels and pollen tube growth dynamics by microscopy, but also for biochemical and molecular analysis of germinating pollen.
Collapse
Affiliation(s)
- M J Rodriguez-Enriquez
- Instituto de Bioorgánica Antonio González (IUBO), University of La Laguna, Avenida Astrofísico Francisco Sánchez, 38206, La Laguna, Tenerife, Spain
| | - S Mehdi
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - H G Dickinson
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - R T Grant-Downton
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| |
Collapse
|
15
|
Polyamine metabolism in fungi with emphasis on phytopathogenic species. JOURNAL OF AMINO ACIDS 2012; 2012:837932. [PMID: 22957208 PMCID: PMC3432380 DOI: 10.1155/2012/837932] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 06/23/2012] [Indexed: 12/23/2022]
Abstract
Polyamines are essential metabolites present in all living organisms, and this subject has attracted the attention of researchers worldwide interested in defining their mode of action in the variable cell functions in which they are involved, from growth to development and differentiation. Although the mechanism of polyamine synthesis is almost universal, different biological groups show interesting differences in this aspect that require to be further analyzed. For these studies, fungi represent interesting models because of their characteristics and facility of analysis. During the last decades fungi have contributed to the understanding of polyamine metabolism. The use of specific inhibitors and the isolation of mutants have allowed the manipulation of the pathway providing information on its regulation. During host-fungus interaction polyamine metabolism suffers striking changes in response to infection, which requires examination. Additionally the role of polyamine transporter is getting importance because of its role in polyamine regulation. In this paper we analyze the metabolism of polyamines in fungi, and the difference of this process with other biological groups. Of particular importance is the difference of polyamine biosynthesis between fungi and plants, which makes this process an attractive target for the control of phytopathogenic fungi.
Collapse
|
16
|
Choudhary SP, Kanwar M, Bhardwaj R, Yu JQ, Tran LSP. Chromium stress mitigation by polyamine-brassinosteroid application involves phytohormonal and physiological strategies in Raphanus sativus L. PLoS One 2012; 7:e33210. [PMID: 22479371 PMCID: PMC3315560 DOI: 10.1371/journal.pone.0033210] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 02/13/2012] [Indexed: 01/01/2023] Open
Abstract
Brassinosteroids (BRs) and polyamines (PAs) are well-established growth regulators playing key roles in stress management among plants. In the present study, we evaluated the effects of epibrassinolide (EBL, an active BR) and spermidine (Spd, an active PA) on the tolerance of radish to oxidative stress induced by Cr (VI) metal. Our investigation aimed to study the impacts of EBL (10(-9) M) and/or Spd (1 mM) on the biochemical and physiological responses of radish (Raphanus sativus L.) under Cr-stress. Applications of EBL and/or Spd were found to improve growth of Cr-stressed seedlings in terms of root length, shoot length and fresh weight. Our data also indicated that applications of EBL and Spd have significant impacts, particularly when applied together, on the endogenous titers of PAs, free and bound forms of IAA and ABA in seedlings treated with Cr-stress. Additionally, co-applications of EBL and Spd modulated more remarkably the titers of antioxidants (glutathione, ascorbic acid, proline, glycine betaine and total phenol) and activities of antioxidant enzymes (guaicol peroxidase, catalase, superoxide dismutase and glutathione reductase) in Cr-stressed plants than their individual applications. Attenuation of Cr-stress by EBL and/or Spd (more efficient with EBL and Spd combination) was also supported by enhanced values of stress indices, such as phytochelatins, photosynthetic pigments and total soluble sugars, and reduction in malondialdehyde and H(2)O(2) levels in Cr-treated seedlings. Diminution of ROS production and enhanced ROS scavenging capacities were also noted for EBL and/or Spd under Cr-stress. However, no significant reduction in Cr uptake was observed for co-application of EBL and Spd when compared to their individual treatments in Cr-stressed seedlings. Taken together, our results demonstrate that co-applications of EBL and Spd are more effective than their independent treatments in lowering the Cr-induced oxidative stress in radish, leading to improved growth of radish seedlings under Cr-stress.
Collapse
Affiliation(s)
- Sikander Pal Choudhary
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Botany, University of Jammu, Jammu, India
- * E-mail: (SPC); (LPT)
| | - Mukesh Kanwar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Jing-Quan Yu
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lam-Son Phan Tran
- Signaling Pathway Research Unit, RIKEN Plant Science Center, Yokohama, Kanagawa, Japan
- * E-mail: (SPC); (LPT)
| |
Collapse
|
17
|
Krasensky J, Jonak C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1593-1608. [PMID: 22291134 DOI: 10.1093/jxb/err460.drought] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Plants regularly face adverse growth conditions, such as drought, salinity, chilling, freezing, and high temperatures. These stresses can delay growth and development, reduce productivity, and, in extreme cases, cause plant death. Plant stress responses are dynamic and involve complex cross-talk between different regulatory levels, including adjustment of metabolism and gene expression for physiological and morphological adaptation. In this review, information about metabolic regulation in response to drought, extreme temperature, and salinity stress is summarized and the signalling events involved in mediating stress-induced metabolic changes are presented.
Collapse
Affiliation(s)
- Julia Krasensky
- GMI-Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | | |
Collapse
|
18
|
Krasensky J, Jonak C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1593-608. [PMID: 22291134 PMCID: PMC4359903 DOI: 10.1093/jxb/err460] [Citation(s) in RCA: 1028] [Impact Index Per Article: 79.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plants regularly face adverse growth conditions, such as drought, salinity, chilling, freezing, and high temperatures. These stresses can delay growth and development, reduce productivity, and, in extreme cases, cause plant death. Plant stress responses are dynamic and involve complex cross-talk between different regulatory levels, including adjustment of metabolism and gene expression for physiological and morphological adaptation. In this review, information about metabolic regulation in response to drought, extreme temperature, and salinity stress is summarized and the signalling events involved in mediating stress-induced metabolic changes are presented.
Collapse
Affiliation(s)
- Julia Krasensky
- GMI–Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Claudia Jonak
- GMI–Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
19
|
Boothby TC, Wolniak SM. Masked mRNA is stored with aggregated nuclear speckles and its asymmetric redistribution requires a homolog of Mago nashi. BMC Cell Biol 2011; 12:45. [PMID: 21995518 PMCID: PMC3205038 DOI: 10.1186/1471-2121-12-45] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 10/13/2011] [Indexed: 11/22/2022] Open
Abstract
Background Many rapidly developing systems rely on the regulated translation of stored transcripts for the formation of new proteins essential for morphogenesis. The microspores of the water fern Marsilea vestita dehydrate as they mature. During this process both mRNA and proteins required for subsequent development are stored within the microspores as they become fully desiccated and enter into senescence. At this point microspores become transcriptionally silent and remain so upon rehydration and for the remainder of spermatogenesis. Transcriptional silencing coupled with the translation of preformed RNA makes the microspore of M. vestita a useful system in which to study post-transcriptional regulation of RNA. Results We have characterized the distribution of mRNA as well as several conserved markers of subnuclear bodies within the nuclei of desiccating spores. During this period, nuclear speckles containing RNA were seen to aggregate forming a single large coalescence. We found that aggregated speckles contain several masked mRNA species known to be essential for spermatogenesis. During spermatogenesis masked mRNA and associated speckle proteins were shown to fragment and asymmetrically localize to spermatogenous but not sterile cells. This asymmetric localization was disrupted by RNAi knockdown of the Marsilea homolog of the Exon Junction Complex core component Mago nashi. Conclusions A subset of masked mRNA is stored in association with nuclear speckles during the dormant phase of microspore development in M. vestita. The asymmetric distribution of specific mRNAs to spermatogenous but not sterile cells mirrors their translational activities and appears to require the EJC or EJC components. This suggests a novel role for nuclear speckles in the post-transcriptional regulation of transcripts.
Collapse
Affiliation(s)
- Thomas C Boothby
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
20
|
Profiling the aminopropyltransferases in plants: their structure, expression and manipulation. Amino Acids 2011; 42:813-30. [PMID: 21861167 DOI: 10.1007/s00726-011-0998-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 06/28/2011] [Indexed: 10/17/2022]
Abstract
Polyamines are organic polycations that are involved in a wide range of cellular activities related to growth, development, and stress response in plants. Higher polyamines spermidine and spermine are synthesized in plants and animals by a class of enzymes called aminopropyltransferases that transfer aminopropyl moieties (derived from decarboxylated S-adenosylmethionine) to putrescine and spermidine to produce spermidine and spermine, respectively. The higher polyamines show a much tighter homeostatic regulation of their metabolism than the diamine putrescine in most plants; therefore, the aminopropyltransferases are of high significance. We present here a comprehensive summary of the current literature on plant aminopropyltransferases including their distribution, biochemical properties, genomic organization, pattern of expression during development, and their responses to abiotic stresses, and manipulation of their cellular activity through chemical inhibitors, mutations, and genetic engineering. This minireview complements several recent reviews on the overall biosynthetic pathway of polyamines and their physiological roles in plants and animals. It is concluded that (1) plants often have two copies of the common aminopropyltransferase genes which exhibit redundancy of function, (2) their genomic organization is highly conserved, (3) direct enzyme activity data on biochemical properties of these enzymes are scant, (4) often there is a poor correlation among transcripts, enzyme activity and cellular contents of the respective polyamine, and (5) transgenic work mostly confirms the tight regulation of cellular contents of spermidine and spermine. An understanding of expression and regulation of aminopropyltransferases at the metabolic level will help us in effective use of genetic engineering approaches for the improvement in nutritional value and stress responses of plants.
Collapse
|
21
|
Wolniak SM, van der Weele CM, Deeb F, Boothby T, Klink VP. Extremes in rapid cellular morphogenesis: post-transcriptional regulation of spermatogenesis in Marsilea vestita. PROTOPLASMA 2011; 248:457-73. [PMID: 21487804 DOI: 10.1007/s00709-011-0276-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 03/30/2011] [Indexed: 05/07/2023]
Abstract
The endosporic male gametophyte of the water fern, Marsilea vestita, provides a unique opportunity to study the mechanisms that control cell fate determination during a burst of rapid development. In this review, we show how the spatial and temporal control of development in this simple gametophyte involves several distinct modes of RNA processing that allow the translation of specific mRNAs at distinct stages during gametogenesis. During the early part of development, nine successive cell division cycles occur in precise planes within a closed volume to produce seven sterile cells and 32 spermatids. There is no cell movement in the gametophyte; so, cell position and size within the spore wall define cell fate. After the division cycles have been completed, the spermatids become sites for the de novo formation of basal bodies, for the assembly of a complex cytoskeleton, for nuclear and cell elongation, and for ciliogenesis. In contrast, the adjacent sterile cells exhibit none of these changes. The spermatids differentiate into multiciliated, corkscrew-shaped gametes that resemble no other cells in the entire plant. Development is controlled post-transcriptionally. The transcripts stored in the microspore are released (unmasked) in the gametophyte at different times during development. At the start of these studies, we identified several key mRNAs that undergo translation at specific stages of gametophyte development. We developed RNA silencing protocols that enabled us to block the translation of these proteins and thereby establish their necessity and sufficiency for the completion of specific stages of gametogenesis. In addition, RNAi enabled us to identify additional proteins that are essential for other phases of development. Since the distributions of mRNAs and the proteins they encode are not identical in the gametophyte, transcript processing is apparently important in allowing translation to occur under strict temporal and spatial control. Transcript polyadenylation occurs in the spermatogenous cells in ways that match the translation of specific mRNAs. We have found that the exon junction complex plays key roles in transcript regulation and modifications that underlie cell specification in the gametophyte. We have recently become interested in the mechanisms that control the unmasking of the stored transcripts and have linked the synthesis and redistribution of spermidine in the gametophyte to the control of mRNA release from storage during early development and later to basal body formation, cytoskeletal assembly, and nuclear and cell elongation in the differentiating spermatids.
Collapse
Affiliation(s)
- Stephen M Wolniak
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
| | | | | | | | | |
Collapse
|