1
|
Xin H, Strickland LW, Hamilton JP, Trusky JK, Fang C, Butler NM, Douches DS, Buell CR, Jiang J. Jan and mini-Jan, a model system for potato functional genomics. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1243-1256. [PMID: 39846980 PMCID: PMC11933877 DOI: 10.1111/pbi.14582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/28/2024] [Accepted: 01/02/2025] [Indexed: 01/24/2025]
Abstract
Potato (Solanum tuberosum) is the third-most important food crop in the world. Although the potato genome has been fully sequenced, functional genomics research of potato lags behind that of other major food crops, largely due to the lack of a model experimental potato line. Here, we present a diploid potato line, 'Jan,' which possesses all essential characteristics for facile functional genomics studies. Jan exhibits a high level of homozygosity after seven generations of self-pollination. Jan is vigorous, highly fertile and produces tubers with outstanding traits. Additionally, it demonstrates high regeneration rates and excellent transformation efficiencies. We generated a chromosome-scale genome assembly for Jan, annotated its genes and identified syntelogs relative to the potato reference genome assembly DMv6.1 to facilitate functional genomics. To miniaturize plant architecture, we developed two 'mini-Jan' lines with compact and dwarf plant stature through CRISPR/Cas9-mediated mutagenesis targeting the Dwarf and Erecta genes involved in growth. One mini-Jan mutant, mini-JanE, is fully fertile and will permit higher-throughput studies in limited growth chamber and greenhouse space. Thus, Jan and mini-Jan offer a robust model system that can be leveraged for gene editing and functional genomics research in potato.
Collapse
Affiliation(s)
- Haoyang Xin
- Department of Plant BiologyMichigan State UniversityEast LansingMIUSA
| | | | - John P. Hamilton
- Center for Applied Genetic TechnologiesUniversity of GeorgiaAthensGAUSA
- Department of Crop and Soil SciencesUniversity of GeorgiaAthensGAUSA
| | - Jacob K. Trusky
- Department of Plant BiologyMichigan State UniversityEast LansingMIUSA
| | - Chao Fang
- Department of Plant BiologyMichigan State UniversityEast LansingMIUSA
- Present address:
Yazhouwan National LaboratorySanyaChina
| | - Nathaniel M. Butler
- Department of HorticultureUniversity of Wisconsin‐MadisonMadisonWIUSA
- United States Department of Agriculture‐Agricultural Research ServiceVegetable Crops Research UnitMadisonWIUSA
| | - David S. Douches
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMIUSA
- Michigan State University AgBioResearchEast LansingMIUSA
| | - C. Robin Buell
- Center for Applied Genetic TechnologiesUniversity of GeorgiaAthensGAUSA
- Department of Crop and Soil SciencesUniversity of GeorgiaAthensGAUSA
- Institute of Plant Breeding, Genetics and GenomicsUniversity of GeorgiaAthensGAUSA
- The Plant CenterUniversity of GeorgiaAthensGAUSA
| | - Jiming Jiang
- Department of Plant BiologyMichigan State UniversityEast LansingMIUSA
- Michigan State University AgBioResearchEast LansingMIUSA
- Department of HorticultureMichigan State UniversityEast LansingMIUSA
| |
Collapse
|
2
|
Wang H, Zhang Y, Jiang H, Ding Q, Wang Y, Wang M, Yan C, Jia L. Transcriptomic and metabolomic analysis reveals the molecular mechanism of exogenous melatonin improves salt tolerance in eggplants. FRONTIERS IN PLANT SCIENCE 2025; 15:1523582. [PMID: 39866315 PMCID: PMC11759302 DOI: 10.3389/fpls.2024.1523582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/17/2024] [Indexed: 01/28/2025]
Abstract
Introduction Melatonin significantly enhances the tolerance of plants to biotic and abiotic stress, and plays an important role in plant resistance to salt stress. However, its role and molecular mechanisms in eggplant salt stress resistance have been rarely reported. In previous studies, we experimentally demonstrated that melatonin can enhance the salt stress resistance of eggplants. Methods In this study, we treated salt-stressed eggplant plants with melatonin and a control treatment with water, then conducted physiological and biochemical tests, transcriptomic and metabolomic sequencing, and RT-qPCR validation at different stages after treatment. Results The results showed that exogenous melatonin can alleviate the adverse effects of salt stress on plants by increasing the activity of antioxidant enzymes, reducing the content of reactive oxygen species in plants, and increasing the content of organic osmoprotectants. Transcriptomic and metabolomic data, as well as combined analysis, indicate that melatonin can activate the metabolic pathways of plant resistance to adverse stress. Compared to the control treatment with water, melatonin can activate the genes of the α-linolenic acid metabolism pathway and promote the accumulation of metabolites in this pathway, with significant effects observed 48 hours after treatment, and significantly activates the expression of genes such as SmePLA2, SmeLOXs and SmeOPR et al. and the accumulation of metabolites such as α-Linolenic acid, (9R,13R)-12-oxophytodienoic acid, 9(S)-HpOTrE and (+)-7-iso-Jasmonic acid. RT-qPCR validated the activating effect of melatonin on the candidate genes of the a-linolenic acid metabolism pathway. Discussion This study analyzed the molecular mechanism of melatonin in alleviating eggplant salt stress, providing a theoretical foundation for the application of melatonin in enhancing eggplant salt stress resistance in production.
Collapse
Affiliation(s)
- Han Wang
- Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei, China
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei, China
- Key Laboratory of Horticultural Crop Germplasm innovation and Utilization (Co-construction by Ministry and Province), Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yu Zhang
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei, China
- Key Laboratory of Horticultural Crop Germplasm innovation and Utilization (Co-construction by Ministry and Province), Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Haikun Jiang
- Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei, China
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei, China
- Key Laboratory of Horticultural Crop Germplasm innovation and Utilization (Co-construction by Ministry and Province), Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Qiangqiang Ding
- Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei, China
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei, China
- Key Laboratory of Horticultural Crop Germplasm innovation and Utilization (Co-construction by Ministry and Province), Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yan Wang
- Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei, China
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei, China
- Key Laboratory of Horticultural Crop Germplasm innovation and Utilization (Co-construction by Ministry and Province), Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Mingxia Wang
- Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei, China
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei, China
- Key Laboratory of Horticultural Crop Germplasm innovation and Utilization (Co-construction by Ministry and Province), Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Congsheng Yan
- Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei, China
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei, China
- Key Laboratory of Horticultural Crop Germplasm innovation and Utilization (Co-construction by Ministry and Province), Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Li Jia
- Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei, China
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei, China
- Key Laboratory of Horticultural Crop Germplasm innovation and Utilization (Co-construction by Ministry and Province), Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, China
| |
Collapse
|
3
|
Nocchi G, Whiting JR, Yeaman S. Repeated global adaptation across plant species. Proc Natl Acad Sci U S A 2024; 121:e2406832121. [PMID: 39705310 DOI: 10.1073/pnas.2406832121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 11/09/2024] [Indexed: 12/22/2024] Open
Abstract
Global adaptation occurs when all populations of a species undergo selection toward a common optimum. This can occur by a hard selective sweep with the emergence of a new globally advantageous allele that spreads throughout a species' natural range until reaching fixation. This evolutionary process leaves a temporary trace in the region affected, which is detectable using population genomic methods. While selective sweeps have been identified in many species, there have been few comparative and systematic studies of the genes involved in global adaptation. Building upon recent findings showing repeated genetic basis of local adaptation across independent populations and species, we asked whether certain genes play a more significant role in driving global adaptation across plant species. To address this question, we scanned the genomes of 17 plant species to identify signals of repeated global selective sweeps. Despite the substantial evolutionary distance between the species analyzed, we identified several gene families with strong evidence of repeated positive selection. These gene families tend to be enriched for reduced pleiotropy, consistent with predictions from Fisher's evolutionary model and the cost of complexity hypothesis. We also found that genes with repeated sweeps exhibit elevated levels of gene duplication. Our findings contrast with recent observations of increased pleiotropy in genes driving local adaptation, consistent with predictions based on the theory of migration-selection balance.
Collapse
Affiliation(s)
- Gabriele Nocchi
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - James R Whiting
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Samuel Yeaman
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
4
|
Xin H, Strickland LW, Hamilton JP, Trusky JK, Fang C, Butler NM, Douches DS, Buell CR, Jiang J. Jan and mini-Jan, a model system for potato functional genomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.10.627817. [PMID: 39713299 PMCID: PMC11661178 DOI: 10.1101/2024.12.10.627817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Potato (Solanum tuberosum) is the third most important food crop in the world. Although the potato genome has been fully sequenced, functional genomics research of potato lags relative to other major food crops due primarily to the lack of a model experimental potato line. Here, we present a diploid potato line, 'Jan', which possesses all essential characteristics for facile functional genomics studies. Jan has a high level of homozygosity after seven generations of self-pollination. Jan is vigorous and highly fertile with outstanding tuber traits, high regeneration rates, and excellent transformation efficiencies. We generated a chromosome-scale genome assembly for Jan, annotated genes, and identified syntelogs relative to the potato reference genome assembly DMv6.1 to facilitate functional genomics. To miniaturize plant architecture, we developed two "mini-Jan" lines with compact and dwarf plant stature using CRISPR/Cas9-mediated mutagenesis targeting the Dwarf and Erecta genes related to growth. Mini-Jan mutants are fully fertile and will permit higher-throughput studies in limited growth chamber and greenhouse space. Thus, Jan and mini-Jan provide an outstanding model system that can be leveraged for gene editing and functional genomics research in potato.
Collapse
Affiliation(s)
- Haoyang Xin
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Luke W. Strickland
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - John P. Hamilton
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia 30602, USA
- Department of Crop and Soil Sciences, University of Georgia, Athens, Georgia 30602, USA
| | - Jacob K. Trusky
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Chao Fang
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Nathaniel M. Butler
- Department of Horticulture, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- United States Department of Agriculture-Agricultural Research Service, Vegetable Crops Research Unit, Madison, Wisconsin 53706, USA
| | - David S. Douches
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA
- Michigan State University AgBioResearch, East Lansing, Michigan 48824, USA
| | - C. Robin Buell
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia 30602, USA
- Department of Crop and Soil Sciences, University of Georgia, Athens, Georgia 30602, USA
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, Georgia 30602, USA
- The Plant Center, University of Georgia, Athens, Georgia 30602, USA
| | - Jiming Jiang
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Michigan State University AgBioResearch, East Lansing, Michigan 48824, USA
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
5
|
Cao H, Gong R, Xiong L, Wang F, Gu H, Li S, He G, Liang S, Luo W, Qiu X. Comparative Metabolome and Transcriptome Analysis Reveals the Possible Roles of Rice Phospholipase A Genes in the Accumulation of Oil in Grains. Int J Mol Sci 2024; 25:11498. [PMID: 39519050 PMCID: PMC11546879 DOI: 10.3390/ijms252111498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The phospholipase A (PLA) gene family plays a crucial role in the regulation of plant growth, development and stress response. Although PLA genes have been identified in various plant species, their specific functions and characteristics in oil quality formation of rice grains (Oryza sativa L.) have not been studied yet. Here, we identified and characterized 35 rice PLA genes, which were divided into three subgroups based on gene structures and phylogenetic relationships. These genes are distributed unevenly across 11 rice chromosomes. The promoter sequence of rice PLAs contain multiple plant hormones and stress-related elements. Gene expression analyses in various tissues and under stress conditions indicated that PLAs may be involved in rice growth, development and stress response. In addition, metabolomics, transcriptomics and qRT-PCR analyses between two rice varieties Guang8B (G8B, high oil content) and YueFengB (YFB, low oil content) revealed that the different expressional levels of rice PLA genes were closely related to the differences in the oil content between 'G8B' and 'YFB' grains. The findings of this study provide potential novel insights into the molecular information of the phospholipase A gene family in rice, and underscore the potential functions of PLA genes in rice oil content accumulation, providing valuable resources for future genetic improvement and breeding strategies.
Collapse
Affiliation(s)
- Huasheng Cao
- Rice Research Institue, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (H.C.); (R.G.); (L.X.); (F.W.); (H.G.); (G.H.); (S.L.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China Co-Construction by Ministry, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Rong Gong
- Rice Research Institue, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (H.C.); (R.G.); (L.X.); (F.W.); (H.G.); (G.H.); (S.L.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China Co-Construction by Ministry, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Liang Xiong
- Rice Research Institue, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (H.C.); (R.G.); (L.X.); (F.W.); (H.G.); (G.H.); (S.L.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China Co-Construction by Ministry, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Fujun Wang
- Rice Research Institue, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (H.C.); (R.G.); (L.X.); (F.W.); (H.G.); (G.H.); (S.L.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China Co-Construction by Ministry, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Haiyong Gu
- Rice Research Institue, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (H.C.); (R.G.); (L.X.); (F.W.); (H.G.); (G.H.); (S.L.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China Co-Construction by Ministry, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Shuguang Li
- Rice Research Institue, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (H.C.); (R.G.); (L.X.); (F.W.); (H.G.); (G.H.); (S.L.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China Co-Construction by Ministry, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Gao He
- Rice Research Institue, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (H.C.); (R.G.); (L.X.); (F.W.); (H.G.); (G.H.); (S.L.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China Co-Construction by Ministry, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Shihu Liang
- Rice Research Institue, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (H.C.); (R.G.); (L.X.); (F.W.); (H.G.); (G.H.); (S.L.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China Co-Construction by Ministry, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Wenyong Luo
- Rice Research Institue, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (H.C.); (R.G.); (L.X.); (F.W.); (H.G.); (G.H.); (S.L.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China Co-Construction by Ministry, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Xianjin Qiu
- College of Agriculture, Yangte University, Jingzhou 434025, China
| |
Collapse
|
6
|
Xu L, Ma L, Wei R, Ma Y, Ma T, Dang J, Chen Z, Li S, Ma S, Chen G. Effect of Continuous Cropping on Growth and Lobetyolin Synthesis of the Medicinal Plant Codonopsis pilosula (Franch.) Nannf. Based on the Integrated Analysis of Plant-Metabolite-Soil Factors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19604-19617. [PMID: 39196612 DOI: 10.1021/acs.jafc.4c03664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The integrated plant-metabolite-soil regulation model of C. Pilosula growth and lobetyolin synthesis in response to continuous cropping lacks systematic investigation. In this study, we investigated the regulatory mechanisms of growth and lobetyolin synthesis in C. pilosula under continuous cropping stress based on high-performance liquid chromatography, transcriptome, and microbial sequencing on the root system and rhizosphere soil of C. pilosula from one year of cultivation and five years of continuous cropping. The findings of this study revealed that continuous cropping significantly inhibited the growth of C. pilosula and led to a notable decrease in the lobetyolin content. An effort was made to propose a potential pathway for lobetyolin biosynthesis in C. pilosula, which is closely linked to the expression of genes responsible for glucoside and unsaturated fatty acid chain synthesis. In addition, soil physicochemical properties and soil microorganisms had strong correlations with root growth and synthesis of lobetyolin, suggesting that soil physicochemical properties and microorganisms are the main factors triggering the succession disorder in C. pilosula. This study provides an in-depth interpretation of the regulatory mechanism of acetylenic glycoside synthesis and offers new insights into the triggering mechanism of C. pilosula succession disorder, which will guide future cultivation and industrial development.
Collapse
Affiliation(s)
- Ling Xu
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Lei Ma
- Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| | - Ruonan Wei
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yantong Ma
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Tingfeng Ma
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Junhong Dang
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhen Chen
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Sheng Li
- State Key Laboratory of Aridland Crop Science, College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Shaoying Ma
- Laboratory and Base Management Center, Gansu Agricultural University, Lanzhou 730070, China
| | - Guiping Chen
- Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
7
|
Lin MZ, Bi YH, Li SQ, Xie JH, Zhou ZG. The enzyme encoded by Myrmecia incisa, a green microalga, phospholipase A 2 gene preferentially hydrolyzes arachidonic acid at the sn-2 position of phosphatidylcholine. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108806. [PMID: 38861822 DOI: 10.1016/j.plaphy.2024.108806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/20/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024]
Abstract
The enzyme phospholipase A2 (PLA2) plays a crucial role in acyl remodeling of phospholipids via the Lands' cycle, and consequently alters fatty acid compositions in triacylglycerol (TAG). In this study, a full-length cDNA sequence coding Myrmecia incisa phospholipase A2 (MiPLA2) was cloned using the technique of rapid amplification of cDNA ends. Comparison of the 1082-bp cDNA with its corresponding cloned DNA sequence revealed that MiPLA2 contained 3 introns. Mature MiPLA2 (mMiPLA2) had a conserved Ca2+-binding loop and a catalytic site motif that has been recognized in plant secretory PLA2 (sPLA2) proteins. Correspondingly, phylogenetic analysis illustrated that MiPLA2 was clustered within GroupXIA of plant sPLA2 proteins. To ascertain the function of MiPLA2, the cDNA coding for mMiPLA2 was subcloned into the vector pET-32a to facilitate the production of recombinant mMiPLA2 in Escherichia coli. Recombinant mMiPLA2 was purified and used for the in vitro enzyme reaction. Thin-layer chromatography profiles of the catalytic products generated by recombinant mMiPLA2 indicated a specificity for cleaving sn-2 acyl chains from phospholipids, thereby functionally characterizing MiPLA2. Although recombinant mMiPLA2 displayed a strong preference for phosphatidylethanolamine, it preferentially hydrolyzes arachidonic acid (ArA) at the sn-2 position of phosphatidylcholine. Results from the fused expression of p1300-sp-EGFP-mMiPLA2 illustrated that MiPLA2 was localized in the intercellular space of onion epidermis. Furthermore, the positive correlation between MiPLA2 transcription and free ArA levels were established. Consequently, the role of mMiPLA2 in the biosynthesis of ArA-rich TAG was elucidated. This study helps to understand how M. incisa preferentially uses ArA to synthesize TAG.
Collapse
Affiliation(s)
- Mei-Zhi Lin
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred by Ministry of Education, Shanghai Ocean University, No. 999 Huchenghuan Road, Nanhui New City, Shanghai, 201306, China
| | - Yan-Hui Bi
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred by Ministry of Education, Shanghai Ocean University, No. 999 Huchenghuan Road, Nanhui New City, Shanghai, 201306, China
| | - Si-Qi Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred by Ministry of Education, Shanghai Ocean University, No. 999 Huchenghuan Road, Nanhui New City, Shanghai, 201306, China
| | - Jin-Hai Xie
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred by Ministry of Education, Shanghai Ocean University, No. 999 Huchenghuan Road, Nanhui New City, Shanghai, 201306, China
| | - Zhi-Gang Zhou
- International Research Center for Marine Biosciences Conferred by Ministry of Science and Technology, Shanghai Ocean University, No. 999 Huchenghuan Road, Nanhui New City, Shanghai, 201306, China.
| |
Collapse
|
8
|
Pečenková T, Potocký M, Stegmann M. More than meets the eye: knowns and unknowns of the trafficking of small secreted proteins in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3713-3730. [PMID: 38693754 DOI: 10.1093/jxb/erae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/01/2024] [Indexed: 05/03/2024]
Abstract
Small proteins represent a significant portion of the cargo transported through plant secretory pathways, playing crucial roles in developmental processes, fertilization, and responses to environmental stresses. Despite the importance of small secreted proteins, substantial knowledge gaps persist regarding the regulatory mechanisms governing their trafficking along the secretory pathway, and their ultimate localization or destination. To address these gaps, we conducted a comprehensive literature review, focusing particularly on trafficking and localization of Arabidopsis small secreted proteins with potential biochemical and/or signaling roles in the extracellular space, typically those within the size range of 101-200 amino acids. Our investigation reveals that while at least six members of the 21 mentioned families have a confirmed extracellular localization, eight exhibit intracellular localization, including cytoplasmic, nuclear, and chloroplastic locations, despite the presence of N-terminal signal peptides. Further investigation into the trafficking and secretion mechanisms of small protein cargo could not only deepen our understanding of plant cell biology and physiology but also provide a foundation for genetic manipulation strategies leading to more efficient plant cultivation.
Collapse
Affiliation(s)
- Tamara Pečenková
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague 2, Czech Republic
| | - Martin Potocký
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague 2, Czech Republic
| | - Martin Stegmann
- Technical University Munich, School of Life Sciences, Phytopathology, Emil-Ramann-Str. 2, 85354 Freising, Germany
| |
Collapse
|
9
|
Wu J, Xing L, Zheng Y, Yu Y, Wu R, Liu X, Li L, Huang Y. Disease-specific protein corona formed in pathological intestine enhances the oral absorption of nanoparticles. Acta Pharm Sin B 2023; 13:3876-3891. [PMID: 37719377 PMCID: PMC10501873 DOI: 10.1016/j.apsb.2023.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/25/2023] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
Protein corona (PC) has been identified to impede the transportation of intravenously injected nanoparticles (NPs) from blood circulation to their targeted sites. However, how intestinal PC (IPC) affects the delivery of orally administered NPs are still needed to be elucidated. Here, we found that IPC exerted "positive effect" or "negative effect" depending on different pathological conditions in the gastrointestinal tract. We prepared polystyrene nanoparticles (PS) adsorbed with different IPC derived from the intestinal tract of healthy, diabetic, and colitis rats (H-IPC@PS, D-IPC@PS, C-IPC@PS). Proteomics analysis revealed that, compared with healthy IPC, the two disease-specific IPC consisted of a higher proportion of proteins that were closely correlated with transepithelial transport across the intestine. Consequently, both D-IPC@PS and C-IPC@PS mainly exploited the recycling endosome and ER-Golgi mediated secretory routes for intracellular trafficking, which increased the transcytosis from the epithelium. Together, disease-specific IPC endowed NPs with higher intestinal absorption. D-IPC@PS posed "positive effect" on intestinal absorption into blood circulation for diabetic therapy. Conversely, C-IPC@PS had "negative effect" on colitis treatment because of unfavorable absorption in the intestine before arriving colon. These results imply that different or even opposite strategies to modulate the disease-specific IPC need to be adopted for oral nanomedicine in the treatment of variable diseases.
Collapse
Affiliation(s)
- Jiawei Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Liyun Xing
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yaxian Zheng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yinglan Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ruinan Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xi Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
10
|
Saddhe AA, Potocký M. Comparative phylogenomic and structural analysis of canonical secretory PLA2 and novel PLA2-like family in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1118670. [PMID: 36909415 PMCID: PMC9995887 DOI: 10.3389/fpls.2023.1118670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Plant secretory phospholipase A2 (sPLA2) is a family of lipolytic enzymes involved in the sn-2 hydrolysis of phospholipid carboxyester bonds, characterized by the presence of a conserved PA2c domain. PLA2 produces free fatty acids and lysophospholipids, which regulate several physiological functions, including lipid metabolism, plant growth and development, signal transduction, and response to various environmental stresses. In the present work, we have performed a comparative analysis of PA2c domain-containing genes across plants, focusing on gene distribution, phylogenetic analysis, tissue-specific expression, and homology modeling. Our data revealed the widespread occurrence of multiple sPLA2 in most land plants and documented single sPLA2 in multiple algal groups, indicating an ancestral origin of sPLA2. We described a novel PA2c-containing gene family present in all plant lineages and lacking secretory peptide, which we termed PLA2-like. Phylogenetic analysis revealed two independent clades in canonical sPLA2 genes referred to as α and β clades, whereas PLA2-like genes clustered independently as a third clade. Further, we have explored clade-specific gene expressions showing that while all three clades were expressed in vegetative and reproductive tissues, only sPLA2-β and PLA2-like members were expressed in the pollen and pollen tube. To get insight into the conservation of the gene regulatory network of sPLA2 and PLA2-like genes, we have analyzed the occurrence of various cis-acting promoter elements across the plant kingdom. The comparative 3D structure analysis revealed conserved and unique features within the PA2c domain for the three clades. Overall, this study will help to understand the evolutionary significance of the PA2c family and lay the foundation for future sPLA2 and PLA2-like characterization in plants.
Collapse
Affiliation(s)
- Ankush Ashok Saddhe
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Martin Potocký
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
11
|
Wang D, Wang Y, Zhang L, Yang Y, Wu Q, Hu G, Wang W, Li J, Huang Z. Integrated transcriptomic and proteomic analysis of a cytoplasmic male sterility line and associated maintainer line in soybean. FRONTIERS IN PLANT SCIENCE 2023; 14:1098125. [PMID: 36818857 PMCID: PMC9933710 DOI: 10.3389/fpls.2023.1098125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Heterosis is a critical phenomenon in crop improvement. Cytoplasmic male sterility (CMS) and Restorer gene (Rf) systems are essential components for heterosis-based breeding. However, the molecular mechanism underlying CMS remains largely unclear in soybean. METHODS We integrated a morphological investigation with comparative analyses of transcriptomic and proteomic changes in pollen from the CMS line W931A and its maintainer line, W931B, at the uninucleate microspore (UM) and binucleate pollen (BP) stages. RESULTS Compared to W931B, which had healthy, oval pollen grains, W931A showed shrunken or degraded pollen grains with an irregularly thickened endothelium and decreased starch accumulation. Transcriptomic comparisons revealed a total of 865 differentially expressed genes (DEGs) in W931A over the two stages. These genes were primarily associated with pentose and glucuronate interconversions, sphingolipid metabolism, and glycerolipid metabolism. Proteomic analysis revealed 343 differentially expressed proteins (DEPs), which were mainly involved in carbon metabolism, glycolysis/gluconeogenesis, and nitrogen metabolism. Consistently, Gene Ontology (GO) biological process terms related to pollen development were enriched among DEGs at the UM and BP stages. Notably, four genes with demonstrated roles in pollen development were differentially expressed, including AGAMOUS-LIKE 104, PROTEIN-TYROSINE-PHOSPHATASE 1, and PHOSPHOLIPASE A2. A total of 53 genes and the corresponding proteins were differentially expressed in W931A at both the UM and BP stages, and many of these were pectinesterases, polygalacturonases, peroxidases, and ATPases. DISCUSSION The results of this study suggest that pollen development in W931A is likely regulated through suppression of the identified DEGs and DEPs. These findings increase our understanding of the molecular mechanism underlying CMS in soybean, aiding future research into soybean fertility and promoting the efficient use of heterosis for soybean improvement.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jiekun Li
- *Correspondence: Zhiping Huang, ; Jiekun Li,
| | | |
Collapse
|
12
|
Deng J, Lu Z, Wang H, Li N, Song G, Zhu Q, Sun J, Zhang Y. A secretory phospholipase A2 of a fungal pathogen contributes to lipid droplet homeostasis, assimilation of insect-derived lipids, and repression of host immune responses. INSECT SCIENCE 2022; 29:1685-1702. [PMID: 35276754 DOI: 10.1111/1744-7917.13029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Secretory phospholipase A2s (sPLA2s) are found in a wide range of organisms from bacteria to higher plants and animals and are involved in varied and cellular processes. However, roles of these enzymes in microbial pathogens remain unclear. Here, an sPLA2 (BbPLA2) was characterized in the filamentous insect pathogenic fungus, Beauveria bassiana. BbPLA2 was exclusively expressed in insect hemolymph-derived cells (hyphal bodies), and its expression was induced by insect-derived nutrients and lipids, and nutrient starvation. High levels of secretion of BbPLA2 were observed as well as its distribution in hyphal body lipid drops (LDs). Overexpression of BbPLA2 increased the ability of B. bassiana to utilize insect-derived nutrients and lipids, and promoted LD accumulation, indicating functions for BbPLA2 in mediating LD homeostasis and assimilation of insect-derived lipids. Strains overexpressing BbPLA2 showed moderately increased virulence, including more efficient penetration of the insect cuticle and evasion of host immune responses as compared to the wild type strain. In addition, B. bassiana-activated host immune genes were downregulated in the BbPLA2 overexpression strain, but upregulated by infections with a ΔBbPLA2 strain. These data demonstrate that BbPLA2 contributes to LD homeostasis, assimilation of insect-derived lipids, and repression of host immune responses.
Collapse
Affiliation(s)
- Juan Deng
- Biotechnology Research Center, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Zhuoyue Lu
- Biotechnology Research Center, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Huifang Wang
- Biotechnology Research Center, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Ning Li
- Biotechnology Research Center, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Guimei Song
- Biotechnology Research Center, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Qiankuan Zhu
- Biotechnology Research Center, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- College of Plant Protection, Southwest University, Chongqing, China
| | - Jingxin Sun
- Biotechnology Research Center, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yongjun Zhang
- Biotechnology Research Center, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
13
|
Ulyanov AV, Karlov AV, Khatefov EB. The use of maize haploidy inducers as a tool in agricultural plant biotechnology. Vavilovskii Zhurnal Genet Selektsii 2022; 26:704-713. [DOI: 10.18699/vjgb-22-85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 12/05/2022] Open
Affiliation(s)
- A. V. Ulyanov
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
| | | | - E. B. Khatefov
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
| |
Collapse
|
14
|
Serrano N, Pejchar P, Soukupová H, Hubálek M, Potocký M. Comprehensive analysis of glycerolipid dynamics during tobacco pollen germination and pollen tube growth. FRONTIERS IN PLANT SCIENCE 2022; 13:1028311. [PMID: 36426152 PMCID: PMC9679300 DOI: 10.3389/fpls.2022.1028311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/11/2022] [Indexed: 06/12/2023]
Abstract
Pollen germination and subsequent pollen tube elongation are essential for successful land plant reproduction. These processes are achieved through well-documented activation of membrane trafficking and cell metabolism. Despite this, our knowledge of the dynamics of cellular phospholipids remains scarce. Here we present the turnover of the glycerolipid composition during the establishment of cell polarity and elongation processes in tobacco pollen and show the lipid composition of pollen plasma membrane-enriched fraction for the first time. To achieve this, we have combined several techniques, such as lipidomics, plasma membrane isolation, and live-cell microscopy, and performed a study with different time points during the pollen germination and pollen tube growth. Our results showed that tobacco pollen tubes undergo substantial changes in their whole-cell lipid composition during the pollen germination and growth, finding differences in most of the glycerolipids analyzed. Notably, while lysophospholipid levels decrease during germination and growth, phosphatidic acid increases significantly at cell polarity establishment and continues with similar abundance in cell elongation. We corroborated these findings by measuring several phospholipase activities in situ. We also observed that lysophospholipids and phosphatidic acid are more abundant in the plasma membrane-enriched fraction than that in the whole cell. Our results support the important role for the phosphatidic acid in the establishment and maintenance of cellular polarity in tobacco pollen tubes and indicate that plasma membrane lysophospholipids may be involved in pollen germination.
Collapse
Affiliation(s)
- Natalia Serrano
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Přemysl Pejchar
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Hana Soukupová
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Martin Hubálek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Martin Potocký
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
15
|
Klodová B, Potěšil D, Steinbachová L, Michailidis C, Lindner AC, Hackenberg D, Becker JD, Zdráhal Z, Twell D, Honys D. Regulatory dynamics of gene expression in the developing male gametophyte of Arabidopsis. PLANT REPRODUCTION 2022:10.1007/s00497-022-00452-5. [PMID: 36282332 PMCID: PMC10363097 DOI: 10.1007/s00497-022-00452-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Sexual reproduction in angiosperms requires the production and delivery of two male gametes by a three-celled haploid male gametophyte. This demands synchronized gene expression in a short developmental window to ensure double fertilization and seed set. While transcriptomic changes in developing pollen are known for Arabidopsis, no studies have integrated RNA and proteomic data in this model. Further, the role of alternative splicing has not been fully addressed, yet post-transcriptional and post-translational regulation may have a key role in gene expression dynamics during microgametogenesis. We have refined and substantially updated global transcriptomic and proteomic changes in developing pollen for two Arabidopsis accessions. Despite the superiority of RNA-seq over microarray-based platforms, we demonstrate high reproducibility and comparability. We identify thousands of long non-coding RNAs as potential regulators of pollen development, hundreds of changes in alternative splicing and provide insight into mRNA translation rate and storage in developing pollen. Our analysis delivers an integrated perspective of gene expression dynamics in developing Arabidopsis pollen and a foundation for studying the role of alternative splicing in this model.
Collapse
Affiliation(s)
- Božena Klodová
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, Praha 2, 128 00, Czech Republic
| | - David Potěšil
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Lenka Steinbachová
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
| | - Christos Michailidis
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
| | - Ann-Cathrin Lindner
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Dieter Hackenberg
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
- KWS SAAT SE & Co. KGaA, Grimsehlstraße 31, 37574, Einbeck, Germany
| | - Jörg D Becker
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157, Oeiras, Portugal
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Zbyněk Zdráhal
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - David Twell
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK.
| | - David Honys
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic.
| |
Collapse
|
16
|
Feng Z, Li L, Tang M, Liu Q, Ji Z, Sun D, Liu G, Zhao S, Huang C, Zhang Y, Zhang G, Yu S. Detection of Stable Elite Haplotypes and Potential Candidate Genes of Boll Weight Across Multiple Environments via GWAS in Upland Cotton. FRONTIERS IN PLANT SCIENCE 2022; 13:929168. [PMID: 35769298 PMCID: PMC9234699 DOI: 10.3389/fpls.2022.929168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/17/2022] [Indexed: 05/02/2023]
Abstract
Boll weight (BW) is a key determinant of yield component traits in cotton, and understanding the genetic mechanism of BW could contribute to the progress of cotton fiber yield. Although many yield-related quantitative trait loci (QTLs) responsible for BW have been determined, knowledge of the genes controlling cotton yield remains limited. Here, association mapping based on 25,169 single-nucleotide polymorphisms (SNPs) and 2,315 insertions/deletions (InDels) was conducted to identify high-quality QTLs responsible for BW in a global collection of 290 diverse accessions, and BW was measured in nine different environments. A total of 19 significant markers were detected, and 225 candidate genes within a 400 kb region (± 200 kb surrounding each locus) were predicted. Of them, two major QTLs with highly phenotypic variation explanation on chromosomes A08 and D13 were identified among multiple environments. Furthermore, we found that two novel candidate genes (Ghir_A08G009110 and Ghir_D13G023010) were associated with BW and that Ghir_D13G023010 was involved in artificial selection during cotton breeding by population genetic analysis. The transcription level analyses showed that these two genes were significantly differentially expressed between high-BW accession and low-BW accession during the ovule development stage. Thus, these results reveal valuable information for clarifying the genetic basics of the control of BW, which are useful for increasing yield by molecular marker-assisted selection (MAS) breeding in cotton.
Collapse
Affiliation(s)
- Zhen Feng
- College of Advanced Agriculture Sciences, Zhejiang A&F University, Hangzhou, China
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A&F University, Hangzhou, China
| | - Libei Li
- College of Advanced Agriculture Sciences, Zhejiang A&F University, Hangzhou, China
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A&F University, Hangzhou, China
| | - Minqiang Tang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), College of Forestry, Hainan University, Haikou, China
| | - Qibao Liu
- College of Advanced Agriculture Sciences, Zhejiang A&F University, Hangzhou, China
| | - Zihan Ji
- College of Advanced Agriculture Sciences, Zhejiang A&F University, Hangzhou, China
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A&F University, Hangzhou, China
| | - Dongli Sun
- College of Advanced Agriculture Sciences, Zhejiang A&F University, Hangzhou, China
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A&F University, Hangzhou, China
| | - Guodong Liu
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Shuqi Zhao
- Huanggang Academy of Agricultural Sciences, Huanggang, China
| | - Chenjue Huang
- College of Advanced Agriculture Sciences, Zhejiang A&F University, Hangzhou, China
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A&F University, Hangzhou, China
| | - Yanan Zhang
- College of Advanced Agriculture Sciences, Zhejiang A&F University, Hangzhou, China
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A&F University, Hangzhou, China
| | - Guizhi Zhang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Shuxun Yu
- College of Advanced Agriculture Sciences, Zhejiang A&F University, Hangzhou, China
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
17
|
Wattelet-Boyer V, Le Guédard M, Dittrich-Domergue F, Maneta-Peyret L, Kriechbaumer V, Boutté Y, Bessoule JJ, Moreau P. Lysophosphatidic acid acyltransferases: a link with intracellular protein trafficking in Arabidopsis root cells? JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1327-1343. [PMID: 34982825 DOI: 10.1093/jxb/erab504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
Phosphatidic acid (PA) and lysophosphatidic acid acyltransferases (LPAATs) might be critical for the secretory pathway. Four extra-plastidial LPAATs (LPAAT2, 3, 4, and 5) were identified in Arabidopsis thaliana. These AtLPAATs display a specific enzymatic activity converting lysophosphatidic acid to PA and are located in the endomembrane system. We investigate a putative role for AtLPAATs 3, 4, and 5 in the secretory pathway of root cells through genetical (knockout mutants), biochemical (activity inhibitor, lipid analyses), and imaging (live and immuno-confocal microscopy) approaches. Treating a lpaat4;lpaat5 double mutant with the LPAAT inhibitor CI976 produced a significant decrease in primary root growth. The trafficking of the auxin transporter PIN2 was disturbed in this lpaat4;lpaat5 double mutant treated with CI976, whereas trafficking of H+-ATPases was unaffected. The lpaat4;lpaat5 double mutant is sensitive to salt stress, and the trafficking of the aquaporin PIP2;7 to the plasma membrane in the lpaat4;lpaat5 double mutant treated with CI976 was reduced. We measured the amounts of neo-synthesized PA in roots, and found a decrease in PA only in the lpaat4;lpaat5 double mutant treated with CI976, suggesting that the protein trafficking impairment was due to a critical PA concentration threshold.
Collapse
Affiliation(s)
- Valérie Wattelet-Boyer
- CNRS, University of Bordeaux, Laboratoire de Biogenèse Membranaire, UMR 5200, 33140 Villenave d'Ornon, France
| | - Marina Le Guédard
- CNRS, University of Bordeaux, Laboratoire de Biogenèse Membranaire, UMR 5200, 33140 Villenave d'Ornon, France
- LEB Aquitaine Transfert-ADERA, INRA Bordeaux Aquitaine, 33140 Villenave d'Ornon, France
| | - Franziska Dittrich-Domergue
- CNRS, University of Bordeaux, Laboratoire de Biogenèse Membranaire, UMR 5200, 33140 Villenave d'Ornon, France
| | - Lilly Maneta-Peyret
- CNRS, University of Bordeaux, Laboratoire de Biogenèse Membranaire, UMR 5200, 33140 Villenave d'Ornon, France
| | - Verena Kriechbaumer
- Plant Cell Biology, Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Yohann Boutté
- CNRS, University of Bordeaux, Laboratoire de Biogenèse Membranaire, UMR 5200, 33140 Villenave d'Ornon, France
| | - Jean-Jacques Bessoule
- CNRS, University of Bordeaux, Laboratoire de Biogenèse Membranaire, UMR 5200, 33140 Villenave d'Ornon, France
- LEB Aquitaine Transfert-ADERA, INRA Bordeaux Aquitaine, 33140 Villenave d'Ornon, France
| | - Patrick Moreau
- CNRS, University of Bordeaux, Laboratoire de Biogenèse Membranaire, UMR 5200, 33140 Villenave d'Ornon, France
- Bordeaux Imaging Center, UMS 3420 CNRS, US004 INSERM, University of Bordeaux, 33000 Bordeaux, France
| |
Collapse
|
18
|
iTRAQ and PRM -based proteomics analysis for the identification of differentially abundant proteins related to male sterility in ms-7 mutant tomato (Solanum lycoperscium) plants. J Proteomics 2022; 261:104557. [DOI: 10.1016/j.jprot.2022.104557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 11/20/2022]
|
19
|
Li Y, Lin Z, Yue Y, Zhao H, Fei X, E L, Liu C, Chen S, Lai J, Song W. Loss-of-function alleles of ZmPLD3 cause haploid induction in maize. NATURE PLANTS 2021; 7:1579-1588. [PMID: 34887519 PMCID: PMC8677622 DOI: 10.1038/s41477-021-01037-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/01/2021] [Indexed: 05/06/2023]
Abstract
Doubled haploid technology has been widely applied to multiple plant species and is recognized as one of the most important technologies for improving crop breeding efficiency. Although mutations in MATRILINEAL/Zea mays PHOSPHOLIPASE A1/NOT LIKE DAD (MTL/ZmPLA1/NLD) and Zea mays DOMAIN OF UNKNOWN FUNCTION 679 MEMBRANE PROTEIN (ZmDMP) have been shown to generate haploids in maize, knowledge of the genetic basis of haploid induction (HI) remains incomplete. Therefore, cloning of new genes underlying HI is important for further elucidating its genetic architecture. Here, we found that loss-of-function mutations of Zea mays PHOSPHOLIPASE D3 (ZmPLD3), one of the members from the phospholipase D subfamily, could trigger maternal HI in maize. ZmPLD3 was identified through a reverse genetic strategy based on analysis of pollen-specifically expressed phospholipases, followed by validation through the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR-Cas9) system. Mutations of ZmPLD3 resulted in a haploid induction rate (HIR) similar to that of mtl/zmpla1/nld and showed synergistic effects rather than functional redundancy on tripling the HIR (from 1.19% to 4.13%) in the presence of mtl/zmpla1/nld. RNA-seq profiling of mature pollen indicated that a large number of pollen-specific differentially expressed genes were enriched in processes related to gametogenesis development, such as pollen tube development and cell communication, during the double-fertilization process. In addition, ZmPLD3 is highly conserved among cereals, highlighting the potential application of these in vivo haploid-inducer lines for other important crop plant species. Collectively, our discovery identifies a novel gene underlying in vivo maternal HI and provides possibility of breeding haploid inducers with further improved HIR.
Collapse
Affiliation(s)
- Yuan Li
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, P. R. China
- National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Zhen Lin
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, P. R. China
- National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Yang Yue
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, P. R. China
- National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Haiming Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, P. R. China
- National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, P. R. China
- Sanya Institute of China Agricultural University, Sanya, P. R. China
- Hainan Yazhou Bay Seed Laboratory, Sanya, P. R. China
| | - Xiaohong Fei
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, P. R. China
- National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
- Longping Agriculture Science Co. Ltd., Beijing, P. R. China
| | - Lizhu E
- National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
- Sanya Institute of China Agricultural University, Sanya, P. R. China
- Hainan Yazhou Bay Seed Laboratory, Sanya, P. R. China
| | - Chenxu Liu
- National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Shaojiang Chen
- National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Jinsheng Lai
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, P. R. China
- National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, P. R. China
- Sanya Institute of China Agricultural University, Sanya, P. R. China
- Hainan Yazhou Bay Seed Laboratory, Sanya, P. R. China
| | - Weibin Song
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, P. R. China.
- National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China.
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, P. R. China.
- Sanya Institute of China Agricultural University, Sanya, P. R. China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, P. R. China.
| |
Collapse
|
20
|
Gilles LM, Calhau ARM, La Padula V, Jacquier NMA, Lionnet C, Martinant JP, Rogowsky PM, Widiez T. Lipid anchoring and electrostatic interactions target NOT-LIKE-DAD to pollen endo-plasma membrane. J Cell Biol 2021; 220:212519. [PMID: 34323919 PMCID: PMC8327379 DOI: 10.1083/jcb.202010077] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 06/04/2021] [Accepted: 07/08/2021] [Indexed: 01/16/2023] Open
Abstract
Phospholipases cleave phospholipids, major membrane constituents. They are thus essential for many developmental processes, including male gamete development. In flowering plants, mutation of phospholipase NOT-LIKE-DAD (NLD, also known as MTL or ZmPLA1) leads to peculiar defects in sexual reproduction, notably the induction of maternal haploid embryos. Contrary to previous reports, NLD does not localize to cytosol and plasma membrane of sperm cells but to the pollen endo-plasma membrane (endo-PM), a specific membrane derived from the PM of the pollen vegetative cell that encircles the two sperm cells. After pollen tube burst, NLD localizes at the apical region of the egg apparatus. Pharmacological approaches coupled with targeted mutagenesis revealed that lipid anchoring together with electrostatic interactions are involved in the attachment of NLD to this atypical endo-PM. Membrane surface-charge and lipid biosensors indicated that phosphatidylinositol-4,5-bisphosphate is enriched in the endo-PM, uncovering a unique example of how membrane electrostatic properties can define a specific polar domain (i.e., endo-PM), which is critical for plant reproduction and gamete formation.
Collapse
Affiliation(s)
- Laurine M Gilles
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342, Lyon, France.,Limagrain, Limagrain Field Seeds, Research Centre, Gerzat, France
| | - Andrea R M Calhau
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | - Veronica La Padula
- Centre Technologique des Microstructures, Université de Lyon 1, Lyon, France
| | - Nathanaël M A Jacquier
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342, Lyon, France.,Limagrain, Limagrain Field Seeds, Research Centre, Gerzat, France
| | - Claire Lionnet
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | | | - Peter M Rogowsky
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | - Thomas Widiez
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| |
Collapse
|
21
|
Xing J, Zhang L, Duan Z, Lin J. Coordination of Phospholipid-Based Signaling and Membrane Trafficking in Plant Immunity. TRENDS IN PLANT SCIENCE 2021; 26:407-420. [PMID: 33309101 DOI: 10.1016/j.tplants.2020.11.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 05/26/2023]
Abstract
In plants, defense-associated signal transduction involves key membrane-related processes, such as phospholipid-based signaling and membrane trafficking. Coordination of these processes occurs in the lipid bilayer of plasma membrane (PM) and luminal/extracellular membranes. Deciphering the spatiotemporal organization of phospholipids and lipid-protein interactions provides crucial information on the mechanisms that link phospholipid-based signaling and membrane trafficking in plant immunity. In this review, we summarize recent advances in our understanding of these connections, including deployment of key enzymes and molecules in phospholipid pathways, and roles of lipid diversity in membrane trafficking. We highlight the mechanisms that mediate feedback between phospholipid-based signaling and membrane trafficking to regulate plant immunity, including their novel roles in balancing endocytosis and exocytosis.
Collapse
Affiliation(s)
- Jingjing Xing
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Liang Zhang
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Zhikun Duan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
22
|
Hooghvorst I, Nogués S. Chromosome doubling methods in doubled haploid and haploid inducer-mediated genome-editing systems in major crops. PLANT CELL REPORTS 2021; 40:255-270. [PMID: 32975636 DOI: 10.1007/s00299-020-02605-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 09/14/2020] [Indexed: 05/11/2023]
Abstract
The doubled haploid technique aims to generate pure inbred lines for basic research and as commercial cultivars. The doubled haploid technique first generates haploid plants and is followed by chromosome doubling, which can be separated in time or overlapped, depending the procedure for each species. For a long time, much effort has been focused on haploid production via androgenesis, gynogenesis, or parthenogenesis. The obtention of haploid plants has frequently required more optimization and has lagged behind research and improvements in chromosome doubling methods. Nevertheless, chromosome doubling has recently been of renewed interest to increase the rates and efficiency of doubled haploid plant production through trialing and optimizing of different procedures. New antimitotic compounds and application methods are being studied to ensure the success of chromosome doubling once haploid material has been regenerated. Moreover, a haploid inducer-mediated CRISPR/Cas9 genome-editing system is a breakthrough method in the production of haploid plant material and could be of great importance for species where traditional haploid regeneration methods have not been successful, or for recalcitrant species. In all cases, the new deployment of this system will demand a suitable chromosome doubling protocol. In this review, we explore the existing doubled haploid and chromosome doubling methods to identify opportunities to enhance the breeding process in major crops.
Collapse
Affiliation(s)
- Isidre Hooghvorst
- Departament de Biologia Evolutiva, Ecologia i Ciencies Ambientals, Secció de Fisiologia Vegetal, Universitat de Barcelona, 08028, Barcelona, Spain.
- Rocalba S.A., c/Barcelona 15 PO BOX 156, 17002, Girona, Spain.
| | - Salvador Nogués
- Departament de Biologia Evolutiva, Ecologia i Ciencies Ambientals, Secció de Fisiologia Vegetal, Universitat de Barcelona, 08028, Barcelona, Spain
| |
Collapse
|
23
|
Xu Y, Caldo KMP, Singer SD, Mietkiewska E, Greer MS, Tian B, Dyer JM, Smith M, Zhou XR, Qiu X, Weselake RJ, Chen G. Physaria fendleri and Ricinus communis lecithin:cholesterol acyltransferase-like phospholipases selectively cleave hydroxy acyl chains from phosphatidylcholine. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:182-196. [PMID: 33107656 DOI: 10.1111/tpj.15050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/12/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Production of hydroxy fatty acids (HFAs) in transgenic crops represents a promising strategy to meet our demands for specialized plant oils with industrial applications. The expression of Ricinus communis (castor) OLEATE 12-HYDROXYLASE (RcFAH12) in Arabidopsis has resulted in only limited accumulation of HFAs in seeds, which probably results from inefficient transfer of HFAs from their site of synthesis (phosphatidylcholine; PC) to triacylglycerol (TAG), especially at the sn-1/3 positions of TAG. Phospholipase As (PLAs) may be directly involved in the liberation of HFAs from PC, but the functions of their over-expression in HFA accumulation and distribution at TAG in transgenic plants have not been well studied. In this work, the functions of lecithin:cholesterol acyltransferase-like PLAs (LCAT-PLAs) in HFA biosynthesis were characterized. The LCAT-PLAs were shown to exhibit homology to LCAT and mammalian lysosomal PLA2 , and to contain a conserved and functional Ser/His/Asp catalytic triad. In vitro assays revealed that LCAT-PLAs from the HFA-accumulating plant species Physaria fendleri (PfLCAT-PLA) and castor (RcLCAT-PLA) could cleave acyl chains at both the sn-1 and sn-2 positions of PC, and displayed substrate selectivity towards sn-2-ricinoleoyl-PC over sn-2-oleoyl-PC. Furthermore, co-expression of RcFAH12 with PfLCAT-PLA or RcLCAT-PLA, but not Arabidopsis AtLCAT-PLA, resulted in increased occupation of HFA at the sn-1/3 positions of TAG as well as small but insignificant increases in HFA levels in Arabidopsis seeds compared with RcFAH12 expression alone. Therefore, PfLCAT-PLA and RcLCAT-PLA may contribute to HFA turnover on PC, and represent potential candidates for engineering the production of unusual fatty acids in crops.
Collapse
Affiliation(s)
- Yang Xu
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Kristian Mark P Caldo
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Stacy D Singer
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, T1J 4B1, Canada
| | - Elzbieta Mietkiewska
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Michael S Greer
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Bo Tian
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
- CAS Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
| | - John M Dyer
- U.S. Department of Agriculture-Agricultural Research Service, US Arid-Land Agricultural Research Center, Maricopa, AZ, 85138, USA
| | - Mark Smith
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, Saskatchewan, S7N 0X2, Canada
| | - Xue-Rong Zhou
- CSIRO Agriculture and Food, PO Box 1700, Canberra, ACT, 2601, Australia
| | - Xiao Qiu
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5A8, Canada
| | - Randall J Weselake
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| |
Collapse
|
24
|
Lipid Composition of Latex and Rubber Particles in Hevea brasiliensis and Taraxacum kok-saghyz. Molecules 2020; 25:molecules25215110. [PMID: 33153210 PMCID: PMC7662343 DOI: 10.3390/molecules25215110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 11/17/2022] Open
Abstract
Natural rubber is usually synthesized in the rubber particles present in the latex of rubber-producing plants such as the Pará rubber tree (Hevea brasiliensis) and rubber dandelion (Taraxacum kok-saghyz). Since the detailed lipid compositions of fresh latex and rubber particles of the plants are poorly known, the present study reports detailed compound lipid composition, focusing on phospholipids and galactolipids in the latex and rubber particles of the plants. In the fresh latex and rubber particles of both plants, phospholipids were much more dominant (85-99%) compared to galactolipids. Among the nine classes of phospholipids, phosphatidylcholines (PCs) were most abundant, at ~80%, in both plants. Among PCs, PC (36:4) and PC (34:2) were most abundant in the rubber tree and rubber dandelion, respectively. Two classes of galactolipids, monogalactosyl diacylglycerol and digalactosyl diacylglycerol, were detected as 12% and 1%, respectively, of total compound lipids in rubber tree, whereas their percentages in the rubber dandelion were negligible (< 1%). Overall, the compound lipid composition differed only slightly between the fresh latex and the rubber particles of both rubber plants. These results provide fundamental data on the lipid composition of rubber particles in two rubber-producing plants, which can serve as a basis for artificial rubber particle production in the future.
Collapse
|
25
|
Hernández ML, Lima-Cabello E, Alché JDD, Martínez-Rivas JM, Castro AJ. Lipid Composition and Associated Gene Expression Patterns during Pollen Germination and Pollen Tube Growth in Olive (Olea europaea L.). PLANT & CELL PHYSIOLOGY 2020; 61:1348-1364. [PMID: 32384163 PMCID: PMC7377348 DOI: 10.1093/pcp/pcaa063] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/30/2020] [Indexed: 05/23/2023]
Abstract
Pollen lipids are essential for sexual reproduction, but our current knowledge regarding lipid dynamics in growing pollen tubes is still very scarce. Here, we report unique lipid composition and associated gene expression patterns during olive pollen germination. Up to 376 genes involved in the biosynthesis of all lipid classes, except suberin, cutin and lipopolysaccharides, are expressed in olive pollen. The fatty acid profile of olive pollen is markedly different compared with other plant organs. Triacylglycerol (TAG), containing mostly C12-C16 saturated fatty acids, constitutes the bulk of olive pollen lipids. These compounds are partially mobilized, and the released fatty acids enter the β-oxidation pathway to yield acetyl-CoA, which is converted into sugars through the glyoxylate cycle during the course of pollen germination. Our data suggest that fatty acids are synthesized de novo and incorporated into glycerolipids by the 'eukaryotic pathway' in elongating pollen tubes. Phosphatidic acid is synthesized de novo in the endomembrane system during pollen germination and seems to have a central role in pollen tube lipid metabolism. The coordinated action of fatty acid desaturases FAD2-3 and FAD3B might explain the increase in linoleic and alpha-linolenic acids observed in germinating pollen. Continuous synthesis of TAG by the action of diacylglycerol acyltransferase 1 (DGAT1) enzyme, but not phosphoplipid:diacylglycerol acyltransferase (PDAT), also seems plausible. All these data allow for a better understanding of lipid metabolism during the olive reproductive process, which can impact, in the future, on the increase in olive fruit yield and, therefore, olive oil production.
Collapse
Affiliation(s)
- M Luisa Hernández
- Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa (CSIC), Seville 41013, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, Avda. Reina Mercedes s/n, Sevilla 41012, Spain
| | - Elena Lima-Cabello
- Plant Reproductive Biology and Advanced Imaging Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín (CSIC), Granada 18008, Spain
| | - Juan de D Alché
- Plant Reproductive Biology and Advanced Imaging Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín (CSIC), Granada 18008, Spain
| | - José M Martínez-Rivas
- Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa (CSIC), Seville 41013, Spain
| | - Antonio J Castro
- Plant Reproductive Biology and Advanced Imaging Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín (CSIC), Granada 18008, Spain
| |
Collapse
|
26
|
Mutations of OsPLDa1 Increase Lysophospholipid Content and Enhance Cooking and Eating Quality in Rice. PLANTS 2020; 9:plants9030390. [PMID: 32245281 PMCID: PMC7154823 DOI: 10.3390/plants9030390] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 11/29/2022]
Abstract
Phospholipids belong to a significant class of lipids and comprise ~10% of total lipids in rice grains. Lysophospholipid (LPL) is derived from the hydrolysis of phospholipids and plays an important role in rice grain quality. Our previous study demonstrated that mutations in a phospholipase D gene (OsPLDα1) significantly altered lipid metabolites and reduced phytic acid content. In the present study, the effect of two ospldα1 mutations on LPL and other physicochemical prosperities of brown rice was further investigated, with the aim of assessing the overall importance of ospldα1 mutations in rice grain quality. Metabolite profiling revealed a ~15% increase in LPL level in both ospldα1 mutants as compared with their wild-type (WT) parent. Both ospldα1 mutations significantly lowered the apparent amylose content in brown rice flour (~1.9%) and altered viscosity profiles with significantly increased breakdown (+12.4%) and significantly reduced setback viscosity (−6.2%). Moreover, both ospldα1 mutations significantly lowered the gelatinization onset, peak temperature and retrogradation percentage of brown rice flour. This study demonstrated that OsPLDα1 plays a crucial role in rice grain quality and its mutation could, in general, improve the cooking and eating quality and nourishment of brown rice.
Collapse
|
27
|
Kim HM, Park SH, Ma SH, Park SY, Yun CH, Jang G, Joung YH. Promoted ABA Hydroxylation by Capsicum annuum CYP707As Overexpression Suppresses Pollen Maturation in Nicotiana tabacum. FRONTIERS IN PLANT SCIENCE 2020; 11:583767. [PMID: 33363553 PMCID: PMC7752897 DOI: 10.3389/fpls.2020.583767] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 11/16/2020] [Indexed: 05/14/2023]
Abstract
Abscisic acid (ABA) is a key signaling molecule that mediates plant response to stress. Increasing evidence indicates that ABA also regulates many aspects of plant development, such as seed germination, leaf development, and ripening. ABA metabolism, including ABA biosynthesis and degradation, is an essential aspect of ABA response in plants. In this study, we identified four cytochrome P450 genes (CaCYP707A1, 2, 3, and 4) that mediate ABA hydroxylation, which is required for ABA degradation in Capsicum annuum. We observed that CaCYP707A-mediated ABA hydroxylation promotes ABA degradation, leading to low levels of ABA and a dehydration phenotype in 35S:CaCYP707A plants. Importantly, seed formation was strongly inhibited in 35S:CaCYP707A plants, and a cross-pollination test suggested that the defect in seed formation is caused by improper pollen development. Phenotypic analysis showed that pollen maturation is suppressed in 35S:CaCYP707A1 plants. Consequently, most 35S:CaCYP707A1 pollen grains degenerated, unlike non-transgenic (NT) pollen, which developed into mature pollen grains. Together our results indicate that CaCYP707A mediates ABA hydroxylation and thereby influences pollen development, helping to elucidate the mechanism underlying ABA-regulated pollen development.
Collapse
|
28
|
Khan MSS, Basnet R, Islam SA, Shu Q. Mutational Analysis of OsPLDα1 Reveals Its Involvement in Phytic Acid Biosynthesis in Rice Grains. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11436-11443. [PMID: 31553599 DOI: 10.1021/acs.jafc.9b05052] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Phospholipids and phytic acid are important phosphorus (P)-containing compounds in rice grains. Phytic acid is considered as a major antinutrient, because the negatively charged phytic acid chelates cations, including essential micronutrients, and decreases their bioavailability to human beings and monogastric animals. To gain an insight into the interplay of these two kinds of phosphorus-containing metabolites, we used the CRISPR/Cas9 system to generate mutants of a phospholipase D gene (OsPLDα1) and analyzed the mutational effect on metabolites, including phytic acid in rice grains. Metabolic profiling of two ospldα1 mutants revealed depletion in the phosphatidic acid production and lower accumulation of cytidine diphosphate diacylglycerol and phosphatidylinositol. The mutants also showed significantly reduced phytic acid content as compared to their wild-type parent, and the expression of the key genes involved in the phytic acid biosynthesis was altered in the mutants. These results demonstrate that OsPLDα1 not only plays an important role in phospholipid metabolism but also is involved in phytic acid biosynthesis, most probably through the lipid-dependent pathway, and thus revealed a potential new route to regulate phytic acid biosynthesis in rice.
Collapse
Affiliation(s)
- Muhammad Saad Shoaib Khan
- National Key Laboratory of Rice Biology, Institute of Crop Sciences , Zhejiang University , Hangzhou , China
- Hubei Collaborative Innovation Center for the Grain Industry , Yangtze University , Jingzhou , China
| | - Rasbin Basnet
- National Key Laboratory of Rice Biology, Institute of Crop Sciences , Zhejiang University , Hangzhou , China
- Hubei Collaborative Innovation Center for the Grain Industry , Yangtze University , Jingzhou , China
| | - Shah Ashadul Islam
- National Key Laboratory of Rice Biology, Institute of Crop Sciences , Zhejiang University , Hangzhou , China
- Hubei Collaborative Innovation Center for the Grain Industry , Yangtze University , Jingzhou , China
| | - Qingyao Shu
- National Key Laboratory of Rice Biology, Institute of Crop Sciences , Zhejiang University , Hangzhou , China
- Hubei Collaborative Innovation Center for the Grain Industry , Yangtze University , Jingzhou , China
- Zhejiang Key Laboratory of Crop Germplasm Resources, College of Agriculture and Biotechnology , Zhejiang University , Hangzhou , China
| |
Collapse
|
29
|
Mishiba KI, Iwata Y, Mochizuki T, Matsumura A, Nishioka N, Hirata R, Koizumi N. Unfolded protein-independent IRE1 activation contributes to multifaceted developmental processes in Arabidopsis. Life Sci Alliance 2019; 2:2/5/e201900459. [PMID: 31601623 PMCID: PMC6788458 DOI: 10.26508/lsa.201900459] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/29/2019] [Accepted: 09/30/2019] [Indexed: 12/14/2022] Open
Abstract
The Arabidopsis unfolded protein response transducer IRE1 contributes to male gametophyte development using an alternative activation mechanism bypassing the unfolded protein-sensing domain. In Arabidopsis, the IRE1A and IRE1B double mutant (ire1a/b) is unable to activate cytoplasmic splicing of bZIP60 mRNA and regulated IRE1-dependent decay under ER stress, whereas the mutant does not exhibit severe developmental defects under normal conditions. In this study, we focused on the Arabidopsis IRE1C gene, whose product lacks a sensor domain. We found that the ire1a/b/c triple mutant is lethal, and heterozygous IRE1C (ire1c/+) mutation in the ire1a/b mutants resulted in growth defects and reduction of the number of pollen grains. Genetic analysis revealed that IRE1C is required for male gametophyte development in the ire1a/b mutant background. Expression of a mutant form of IRE1B that lacks the luminal sensor domain (ΔLD) complemented a developmental defect in the male gametophyte in ire1a/b/c haplotype. In vivo, the ΔLD protein was activated by glycerol treatment that increases the composition of saturated lipid and was able to activate regulated IRE1-dependent decay but not bZIP60 splicing. These observations suggest that IRE1 contributes to plant development, especially male gametogenesis, using an alternative activation mechanism that bypasses the unfolded protein-sensing luminal domain.
Collapse
Affiliation(s)
- Kei-Ichiro Mishiba
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Yuji Iwata
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Tomofumi Mochizuki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Atsushi Matsumura
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Nanami Nishioka
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Rikako Hirata
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Nozomu Koizumi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| |
Collapse
|
30
|
WITHDRAWN: Functional diversity of glycerolipid acylhydrolases in plant metabolism and physiology. Prog Lipid Res 2019. [DOI: 10.1016/j.plipres.2019.100994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Functional diversity of glycerolipid acylhydrolases in plant metabolism and physiology. Prog Lipid Res 2019; 75:100987. [PMID: 31078649 DOI: 10.1016/j.plipres.2019.100987] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 11/22/2022]
Abstract
Most current knowledge about plant lipid metabolism has focused on the biosynthesis of lipids and their transport between different organelles. However, lipid composition changes during development and in response to environmental cues often go beyond adjustments of lipid biosynthesis. When lipids have to be removed to adjust the extent of membranes during down regulation of photosynthesis, or lipid composition has to be adjusted to alter the biophysical properties of membranes, or lipid derived chemical signals have to be produced, lipid-degrading enzymes come into play. This review focuses on glycerolipid acylhydrolases that remove acyl groups from glycerolipids and will highlight their roles in lipid remodeling and lipid-derived signal generation. One emerging theme is that these enzymes are involved in the dynamic movement of acyl groups through different lipid pools, for example from polar membrane lipids to neutral lipids sequestered in lipid droplets during de novo triacylglycerol synthesis. Another example of acyl group sequestration in the form of triacylglycerols in lipid droplets is membrane lipid remodeling in response to abiotic stresses. Fatty acids released for membrane lipids can also give rise to potent signaling molecules and acylhydrolases are therefore often the first step in initiating the formation of these lipid signals.
Collapse
|
32
|
Takáč T, Novák D, Šamaj J. Recent Advances in the Cellular and Developmental Biology of Phospholipases in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:362. [PMID: 31024579 PMCID: PMC6459882 DOI: 10.3389/fpls.2019.00362] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/08/2019] [Indexed: 05/05/2023]
Abstract
Phospholipases (PLs) are lipid-hydrolyzing enzymes known to have diverse signaling roles during plant abiotic and biotic stress responses. They catalyze lipid remodeling, which is required to generate rapid responses of plants to environmental cues. Moreover, they produce second messenger molecules, such as phosphatidic acid (PA) and thus trigger or modulate signaling cascades that lead to changes in gene expression. The roles of phospholipases in plant abiotic and biotic stress responses have been intensively studied. Nevertheless, emerging evidence suggests that they also make significant contributions to plants' cellular and developmental processes. In this mini review, we summarized recent advances in the study of the cellular and developmental roles of phospholipases in plants.
Collapse
Affiliation(s)
| | | | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| |
Collapse
|
33
|
Lee HJ, Park OK. Lipases associated with plant defense against pathogens. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 279:51-58. [PMID: 30709493 DOI: 10.1016/j.plantsci.2018.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/07/2018] [Accepted: 07/06/2018] [Indexed: 06/09/2023]
Abstract
When facing microbe invaders, plants activate genetic and metabolic defense mechanisms and undergo extracellular and intracellular changes to obtain a certain level of host resistance. Dynamic adjustment and adaptation occur in structures containing lipophilic compounds and cellular metabolites. Lipids encompassing fatty acids, fatty acid-based polymers, and fatty acid derivatives are part of the fundamental architecture of cells and tissues and are essential compounds in numerous biological processes. Lipid-associated plant defense responses are mostly facilitated by the activation of lipases (lipid hydrolyzing proteins), which cleave or transform lipid substrates in various subcellular compartments. In this review, several types of plant defense-associated lipases are described, including their molecular aspects, enzymatic actions, cellular functions, and possible functional relevance in plant defense. Defensive roles are discussed considering enzyme properties, lipid metabolism, downstream regulation, and phenotypic traits in loss-of-function mutants.
Collapse
Affiliation(s)
- Hye-Jung Lee
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea.
| | - Ohkmae K Park
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
34
|
Wang S, Jin W, Wang K. Centromere histone H3- and phospholipase-mediated haploid induction in plants. PLANT METHODS 2019; 15:42. [PMID: 31057661 PMCID: PMC6485145 DOI: 10.1186/s13007-019-0429-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/24/2019] [Indexed: 05/14/2023]
Abstract
Simple and consistent production of haploid is always an appealing pursuit for both crop breeders and researchers. Although diverse strategies have been developed to produce haploids over the past decades, most of them are applicable in only a limited number of plant species. In 2010, Ravi and Chan reported that haploid Arabidopsis thaliana plants can be efficiently induced through the introduction of a single genetic alteration in centromere histone H3 (CENH3). Subsequent studies demonstrated that haploids can be efficiently induced either through genetic engineering of CENH3 N-terminal tail or histone fold domain or by replacing CENH3 with an ortholog. The mutation of a pollen-specific phospholipase gene, MATRILINEAL (MTL) has been revealed to trigger the haploid induction (HI) in maize, which present another promising HI approach by the editing of MTL in plant. Here, we review the progress of the CENH3-medialed HI and propose a revised centromere-size model by suggesting a competitive loading process between wild-type and mutant CENH3 during HI. This model can explain both the findings of HI failure when wild-type and mutant CENH3 genes are coexpressed and the alien centromere loading of CENH3 in stable hybrids. In addition, we review the current understanding of MTL-mediated HI in plant. The conservation of CENH3 and MTL in plants indicates wide potential application for HI. We discuss the utility and potential of these two methods in crops by comparing their mechanisms and applications to date in plants. This review will promote the study and application of both CENH3- and MTL-mediated haploid induction in plants.
Collapse
Affiliation(s)
- Song Wang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Weiwei Jin
- College of Agriculture, China Agricultural University, No. 2, Yuan Ming Yuan West Road, Haidian District, Beijing, 100193 China
| | - Kai Wang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
35
|
Tian X, Qin Y, Chen B, Liu C, Wang L, Li X, Dong X, Liu L, Chen S. Hetero-fertilization together with failed egg-sperm cell fusion supports single fertilization involved in in vivo haploid induction in maize. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4689-4701. [PMID: 29757396 PMCID: PMC6137981 DOI: 10.1093/jxb/ery177] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/08/2018] [Indexed: 05/03/2023]
Abstract
In vivo doubled-haploid technology is widely applied in commercial maize breeding programs because of its time-saving and cost-reducing features. The production of maize haploids primarily depends on the use of Stock6-derived haploid inducer lines. Although the gene underlying haploid induction, MTL/ZmPLA1/NLD, was cloned recently, the mechanism of haploid induction is still unknown. Hetero-fertilization can occur via a single fertilization, which provides a means to investigate single-fertilization events by studying the hetero-fertilization phenomenon. In this study, we found that the hetero-fertilization rate increased significantly when female maize lines were first individually crossed with pollen from the inducer CAU5 in dual-pollination experiments 4 h before a second pollination with common lines. We also examined embryogenesis during haploid induction by confocal laser-scanning microscopy and observed single-fertilized ovules, indicating that single fertilization occurred during haploid induction. We therefore postulate that both single fertilization and chromosome elimination contribute to haploid induction in maize. We also propose a scheme for the formation of hetero-fertilized and haploid kernels. Our results provide an efficient approach to identify hetero-fertilized kernels for research on interactions between embryo and endosperm.
Collapse
Affiliation(s)
- Xiaolong Tian
- National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Yuanmingyuan West Road, Haidian District, Beijing, China
| | - Yuanxin Qin
- National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Yuanmingyuan West Road, Haidian District, Beijing, China
| | - Baojian Chen
- National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Yuanmingyuan West Road, Haidian District, Beijing, China
| | - Chenxu Liu
- National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Yuanmingyuan West Road, Haidian District, Beijing, China
| | - Lele Wang
- National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Yuanmingyuan West Road, Haidian District, Beijing, China
| | - Xingli Li
- National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Yuanmingyuan West Road, Haidian District, Beijing, China
| | - Xin Dong
- National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Yuanmingyuan West Road, Haidian District, Beijing, China
- Chongqing Academy of Agricultural Sciences, Jiulongpo District, Chongqing, China
| | - Liwei Liu
- National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Yuanmingyuan West Road, Haidian District, Beijing, China
| | - Shaojiang Chen
- National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Yuanmingyuan West Road, Haidian District, Beijing, China
- Correspondence:
| |
Collapse
|
36
|
Li HJ, Meng JG, Yang WC. Multilayered signaling pathways for pollen tube growth and guidance. PLANT REPRODUCTION 2018; 31:31-41. [PMID: 29441420 DOI: 10.1007/s00497-018-0324-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/24/2018] [Indexed: 05/22/2023]
Abstract
Sexual reproductive success is essential for the survival of all higher organisms. As the most prosperous and diverse group of land plants on earth, flowering plants evolved highly sophisticated fertilization mechanisms. To adapt to the terrestrial environment, a tubular structure pollen tube has been evolved to deliver the immobile sperm cells to the egg and central cell enclosed within the ovule. The pollen tube is generated from the vegetative cell of the pollen (male gametophyte), where two sperm cells are hosted. Pollen tube elongation in the maternal tissue and navigation to the ovule require intimate cell-cell interactions between the tube and female tissues. Questions on how the single-celled pollen tube accomplishes such task and how the female tissues accommodate the tube have attracted many plant biologists. Here, we review recent progresses and concepts in understanding the molecular mechanisms governing pollen tube growth and its interactions with the female tissues. We will also discuss the future perspective in this field.
Collapse
Affiliation(s)
- Hong-Ju Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, East Lincui Road, Beijing, 100101, China.
- The University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China.
| | - Jiang-Guo Meng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, East Lincui Road, Beijing, 100101, China
- The University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Wei-Cai Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, East Lincui Road, Beijing, 100101, China.
- The University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
37
|
Endoplasmic reticulum acyltransferase with prokaryotic substrate preference contributes to triacylglycerol assembly in Chlamydomonas. Proc Natl Acad Sci U S A 2018; 115:1652-1657. [PMID: 29382746 DOI: 10.1073/pnas.1715922115] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding the unique features of triacylglycerol (TAG) metabolism in microalgae may be necessary to realize the full potential of these organisms for biofuel and biomaterial production. In the unicellular green alga Chlamydomonas reinhardtii a chloroplastic (prokaryotic) pathway has been proposed to play a major role in TAG precursor biosynthesis. However, as reported here, C. reinhardtii contains a chlorophyte-specific lysophosphatidic acid acyltransferase, CrLPAAT2, that localizes to endoplasmic reticulum (ER) membranes. Unlike canonical, ER-located LPAATs, CrLPAAT2 prefers palmitoyl-CoA over oleoyl-CoA as the acyl donor substrate. RNA-mediated suppression of CrLPAAT2 indicated that the enzyme is required for TAG accumulation under nitrogen deprivation. Our findings suggest that Chlamydomonas has a distinct glycerolipid assembly pathway that relies on CrLPAAT2 to generate prokaryotic-like TAG precursors in the ER.
Collapse
|
38
|
Paris R, Pagliarani G, Savazzini F, Aloisi I, Iorio RA, Tartarini S, Ricci G, Del Duca S. Comparative analysis of allergen genes and pro-inflammatory factors in pollen and fruit of apple varieties. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 264:57-68. [PMID: 28969803 DOI: 10.1016/j.plantsci.2017.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/20/2017] [Accepted: 08/16/2017] [Indexed: 06/07/2023]
Abstract
Allergy to freshly consumed apple fruits is often associated to pollinosis and manifested as oral allergy syndrome (OAS). The allergenic properties of apple varieties differ greatly, spanning from low allergenic to high allergenic varieties. The knowledge of the genetic determinants for allergenicity has been of great interest in scientific community for several years, but the molecular mechanisms involved are still little understood. Here, factors putatively involved in allergenicity were investigated at biochemical and molecular level in pollen and in fruits of apple varieties differing in their allergenic potential. Among putative sensitizing factors, transglutaminase (TGase) and phospholipase A2 (PLA2) were considered together with reactive oxygen species (ROS) and known apple allergen genes, with particular attention devoted to the Mal d 1 gene family, the most important one in sensitization. We found that the expression of some allergen genes and the activities of TGase, PLA2 and ROS producing enzyme are lower in the hypo-allergenic variety 'Durello di Forlì' in comparison with the high-allergenic genotypes 'Gala' and 'Florina'. These results highlight correlations among allergen expressions, enzymatic activities and apple cultivars; these data underline the possibility that some of them could be used in the future as markers for allergenicity.
Collapse
Affiliation(s)
- Roberta Paris
- CREA - Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, Via di Corticella, 133, 40128 Bologna, Italy
| | - Giulia Pagliarani
- Department of Agricultural Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy
| | - Federica Savazzini
- Department of Agricultural Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy
| | - Iris Aloisi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy
| | - Rosa Anna Iorio
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy
| | - Stefano Tartarini
- Department of Agricultural Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy
| | - Giampaolo Ricci
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti 11, 40138 Bologna, Italy
| | - Stefano Del Duca
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy.
| |
Collapse
|
39
|
Gupta P, Dash PK. Molecular details of secretory phospholipase A 2 from flax (Linum usitatissimum L.) provide insight into its structure and function. Sci Rep 2017; 7:11080. [PMID: 28894144 DOI: 10.1038/s41598-017-109699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/17/2017] [Indexed: 05/29/2023] Open
Abstract
Secretory phospholipase A2 (sPLA2) are low molecular weight proteins (12-18 kDa) involved in a suite of plant cellular processes imparting growth and development. With myriad roles in physiological and biochemical processes in plants, detailed analysis of sPLA2 in flax/linseed is meagre. The present work, first in flax, embodies cloning, expression, purification and molecular characterisation of two distinct sPLA2s (I and II) from flax. PLA2 activity of the cloned sPLA2s were biochemically assayed authenticating them as bona fide phospholipase A2. Physiochemical properties of both the sPLA2s revealed they are thermostable proteins requiring di-valent cations for optimum activity.While, structural analysis of both the proteins revealed deviations in the amino acid sequence at C- & N-terminal regions; hydropathic study revealed LusPLA2I as a hydrophobic protein and LusPLA2II as a hydrophilic protein. Structural analysis of flax sPLA2s revealed that secondary structure of both the proteins are dominated by α-helix followed by random coils. Modular superimposition of LusPLA2 isoforms with rice sPLA2 confirmed monomeric structural preservation among plant phospholipase A2 and provided insight into structure of folded flax sPLA2s.
Collapse
Affiliation(s)
- Payal Gupta
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India.
- Department of Biotechnology, Kurukshetra University, Thanesar, 136119, India.
| | - Prasanta K Dash
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
40
|
Gupta P, Dash PK. Molecular details of secretory phospholipase A 2 from flax (Linum usitatissimum L.) provide insight into its structure and function. Sci Rep 2017; 7:11080. [PMID: 28894144 PMCID: PMC5593939 DOI: 10.1038/s41598-017-10969-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/17/2017] [Indexed: 01/19/2023] Open
Abstract
Secretory phospholipase A2 (sPLA2) are low molecular weight proteins (12-18 kDa) involved in a suite of plant cellular processes imparting growth and development. With myriad roles in physiological and biochemical processes in plants, detailed analysis of sPLA2 in flax/linseed is meagre. The present work, first in flax, embodies cloning, expression, purification and molecular characterisation of two distinct sPLA2s (I and II) from flax. PLA2 activity of the cloned sPLA2s were biochemically assayed authenticating them as bona fide phospholipase A2. Physiochemical properties of both the sPLA2s revealed they are thermostable proteins requiring di-valent cations for optimum activity.While, structural analysis of both the proteins revealed deviations in the amino acid sequence at C- & N-terminal regions; hydropathic study revealed LusPLA2I as a hydrophobic protein and LusPLA2II as a hydrophilic protein. Structural analysis of flax sPLA2s revealed that secondary structure of both the proteins are dominated by α-helix followed by random coils. Modular superimposition of LusPLA2 isoforms with rice sPLA2 confirmed monomeric structural preservation among plant phospholipase A2 and provided insight into structure of folded flax sPLA2s.
Collapse
Affiliation(s)
- Payal Gupta
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India.
- Department of Biotechnology, Kurukshetra University, Thanesar, 136119, India.
| | - Prasanta K Dash
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
41
|
Han X, Yang Y, Wu Y, Liu X, Lei X, Guo Y. A bioassay-guided fractionation system to identify endogenous small molecules that activate plasma membrane H+-ATPase activity in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2951-2962. [PMID: 28582540 PMCID: PMC5853834 DOI: 10.1093/jxb/erx156] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/08/2017] [Indexed: 05/13/2023]
Abstract
Plasma membrane (PM) H+-ATPase is essential for plant growth and development. Various environmental stimuli regulate its activity, a process that involves many protein cofactors. However, whether endogenous small molecules play a role in this regulation remains unknown. Here, we describe a bio-guided isolation method to identify endogenous small molecules that regulate PM H+-ATPase activity. We obtained crude extracts from Arabidopsis seedlings with or without salt treatment and then purified them into fractions based on polarity and molecular mass by repeated column chromatography. By evaluating the effect of each fraction on PM H+-ATPase activity, we found that fractions containing the endogenous, free unsaturated fatty acids oleic acid (C18:1), linoleic acid (C18:2), and linolenic acid (C18:3) extracted from salt-treated seedlings stimulate PM H+-ATPase activity. These results were further confirmed by the addition of exogenous C18:1, C18:2, or C18:3 in the activity assay. The ssi2 mutant, with reduced levels of C18:1, C18:2, and C18:3, displayed reduced PM H+-ATPase activity. Furthermore, C18:1, C18:2, and C18:3 directly bound to the C-terminus of the PM H+-ATPase AHA2. Collectively, our results demonstrate that the binding of free unsaturated fatty acids to the C-terminus of PM H+-ATPase is required for its activation under salt stress. The bio-guided isolation model described in this study could enable the identification of new endogenous small molecules that modulate essential protein functions, as well as signal transduction, in plants.
Collapse
Affiliation(s)
- Xiuli Han
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
- National Institute of Biological Sciences, Beijing, China
| | - Yongqing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yujiao Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaohui Liu
- National Institute of Biological Sciences, Beijing, China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xiaoguang Lei
- National Institute of Biological Sciences, Beijing, China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
42
|
Gilles LM, Khaled A, Laffaire JB, Chaignon S, Gendrot G, Laplaige J, Bergès H, Beydon G, Bayle V, Barret P, Comadran J, Martinant JP, Rogowsky PM, Widiez T. Loss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maize. EMBO J 2017; 36:707-717. [PMID: 28228439 PMCID: PMC5350562 DOI: 10.15252/embj.201796603] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 12/27/2022] Open
Abstract
Gynogenesis is an asexual mode of reproduction common to animals and plants, in which stimuli from the sperm cell trigger the development of the unfertilized egg cell into a haploid embryo. Fine mapping restricted a major maize QTL (quantitative trait locus) responsible for the aptitude of inducer lines to trigger gynogenesis to a zone containing a single gene NOT LIKE DAD (NLD) coding for a patatin-like phospholipase A. In all surveyed inducer lines, NLD carries a 4-bp insertion leading to a predicted truncated protein. This frameshift mutation is responsible for haploid induction because complementation with wild-type NLD abolishes the haploid induction capacity. Activity of the NLD promoter is restricted to mature pollen and pollen tube. The translational NLD::citrine fusion protein likely localizes to the sperm cell plasma membrane. In Arabidopsis roots, the truncated protein is no longer localized to the plasma membrane, contrary to the wild-type NLD protein. In conclusion, an intact pollen-specific phospholipase is required for successful sexual reproduction and its targeted disruption may allow establishing powerful haploid breeding tools in numerous crops.
Collapse
Affiliation(s)
- Laurine M Gilles
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon ENS de Lyon UCB Lyon 1 CNRS, INRA, Lyon, France
- Limagrain Europe SAS, Research Centre, Chappes, France
| | - Abdelsabour Khaled
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon ENS de Lyon UCB Lyon 1 CNRS, INRA, Lyon, France
- Department of Genetics, Faculty of Agriculture, Sohag University, Sohag, Egypt
| | | | - Sandrine Chaignon
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon ENS de Lyon UCB Lyon 1 CNRS, INRA, Lyon, France
| | - Ghislaine Gendrot
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon ENS de Lyon UCB Lyon 1 CNRS, INRA, Lyon, France
| | - Jérôme Laplaige
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon ENS de Lyon UCB Lyon 1 CNRS, INRA, Lyon, France
| | - Hélène Bergès
- INRA, US1258 Centre National des Ressources Génomiques Végétales, Auzeville, France
| | - Genséric Beydon
- INRA, US1258 Centre National des Ressources Génomiques Végétales, Auzeville, France
| | - Vincent Bayle
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon ENS de Lyon UCB Lyon 1 CNRS, INRA, Lyon, France
| | - Pierre Barret
- INRA, UMR1095 Génétique, Diversité, Ecophysiologie des Céréales, Clermont-Ferrand, France
| | | | | | - Peter M Rogowsky
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon ENS de Lyon UCB Lyon 1 CNRS, INRA, Lyon, France
| | - Thomas Widiez
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon ENS de Lyon UCB Lyon 1 CNRS, INRA, Lyon, France
| |
Collapse
|
43
|
Kelliher T, Starr D, Richbourg L, Chintamanani S, Delzer B, Nuccio ML, Green J, Chen Z, McCuiston J, Wang W, Liebler T, Bullock P, Martin B. MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nature 2017; 542:105-109. [PMID: 28114299 DOI: 10.1038/nature20827] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 11/23/2016] [Indexed: 12/18/2022]
Abstract
Sexual reproduction in flowering plants involves double fertilization, the union of two sperm from pollen with two sex cells in the female embryo sac. Modern plant breeders increasingly seek to circumvent this process to produce doubled haploid individuals, which derive from the chromosome-doubled cells of the haploid gametophyte. Doubled haploid production fixes recombinant haploid genomes in inbred lines, shaving years off the breeding process. Costly, genotype-dependent tissue culture methods are used in many crops, while seed-based in vivo doubled haploid systems are rare in nature and difficult to manage in breeding programmes. The multi-billion-dollar maize hybrid seed business, however, is supported by industrial doubled haploid pipelines using intraspecific crosses to in vivo haploid inducer males derived from Stock 6, first reported in 1959 (ref. 5), followed by colchicine treatment. Despite decades of use, the mode of action remains controversial. Here we establish, through fine mapping, genome sequencing, genetic complementation, and gene editing, that haploid induction in maize (Zea mays) is triggered by a frame-shift mutation in MATRILINEAL (MTL), a pollen-specific phospholipase, and that novel edits in MTL lead to a 6.7% haploid induction rate (the percentage of haploid progeny versus total progeny). Wild-type MTL protein localizes exclusively to sperm cytoplasm, and pollen RNA-sequence profiling identifies a suite of pollen-specific genes overexpressed during haploid induction, some of which may mediate the formation of haploid seed. These findings highlight the importance of male gamete cytoplasmic components to reproductive success and male genome transmittance. Given the conservation of MTL in the cereals, this discovery may enable development of in vivo haploid induction systems to accelerate breeding in crop plants.
Collapse
Affiliation(s)
- Timothy Kelliher
- Seeds Research, Syngenta Crop Protection, 9 Davis Drive, Research Triangle Park, North Carolina 27709, USA
| | - Dakota Starr
- Seeds Research, Syngenta Crop Protection, 9 Davis Drive, Research Triangle Park, North Carolina 27709, USA
| | - Lee Richbourg
- Seeds Research, Syngenta Crop Protection, 9 Davis Drive, Research Triangle Park, North Carolina 27709, USA
| | | | - Brent Delzer
- Syngenta Seeds, 4133 East County Road O, Janesville, Wisconsin 53546, USA
| | - Michael L Nuccio
- Seeds Research, Syngenta Crop Protection, 9 Davis Drive, Research Triangle Park, North Carolina 27709, USA
| | - Julie Green
- Seeds Research, Syngenta Crop Protection, 9 Davis Drive, Research Triangle Park, North Carolina 27709, USA
| | - Zhongying Chen
- Seeds Research, Syngenta Crop Protection, 9 Davis Drive, Research Triangle Park, North Carolina 27709, USA
| | - Jamie McCuiston
- Seeds Research, Syngenta Crop Protection, 9 Davis Drive, Research Triangle Park, North Carolina 27709, USA
| | - Wenling Wang
- Seeds Research, Syngenta Crop Protection, 9 Davis Drive, Research Triangle Park, North Carolina 27709, USA
| | - Tara Liebler
- Seeds Research, Syngenta Crop Protection, 9 Davis Drive, Research Triangle Park, North Carolina 27709, USA
| | - Paul Bullock
- Syngenta Seeds, 2369 330th Street, Slater, Iowa 50244, USA
| | - Barry Martin
- Seeds Research, Syngenta Crop Protection, 9 Davis Drive, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
44
|
Brocard L, Immel F, Coulon D, Esnay N, Tuphile K, Pascal S, Claverol S, Fouillen L, Bessoule JJ, Bréhélin C. Proteomic Analysis of Lipid Droplets from Arabidopsis Aging Leaves Brings New Insight into Their Biogenesis and Functions. FRONTIERS IN PLANT SCIENCE 2017; 8:894. [PMID: 28611809 PMCID: PMC5447075 DOI: 10.3389/fpls.2017.00894] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/12/2017] [Indexed: 05/18/2023]
Abstract
Lipid droplets (LDs) are cell compartments specialized for oil storage. Although their role and biogenesis are relatively well documented in seeds, little is known about their composition, structure and function in senescing leaves where they also accumulate. Here, we used a label free quantitative mass spectrometry approach to define the LD proteome of aging Arabidopsis leaves. We found that its composition is highly different from that of seed/cotyledon and identified 28 proteins including 9 enzymes of the secondary metabolism pathways involved in plant defense response. With the exception of the TRIGALACTOSYLDIACYLGLYCEROL2 protein, we did not identify enzymes implicated in lipid metabolism, suggesting that growth of leaf LDs does not occur by local lipid synthesis but rather through contact sites with the endoplasmic reticulum (ER) or other membranes. The two most abundant proteins of the leaf LDs are the CALEOSIN3 and the SMALL RUBBER PARTICLE1 (AtSRP1); both proteins have structural functions and participate in plant response to stress. CALEOSIN3 and AtSRP1 are part of larger protein families, yet no other members were enriched in the LD proteome suggesting a specific role of both proteins in aging leaves. We thus examined the function of AtSRP1 at this developmental stage and found that AtSRP1 modulates the expression of CALEOSIN3 in aging leaves. Furthermore, AtSRP1 overexpression induces the accumulation of triacylglycerol with an unusual composition compared to wild-type. We demonstrate that, although AtSRP1 expression is naturally increased in wild type senescing leaves, its overexpression in senescent transgenic lines induces an over-accumulation of LDs organized in clusters at restricted sites of the ER. Conversely, atsrp1 knock-down mutants displayed fewer but larger LDs. Together our results reveal that the abundancy of AtSRP1 regulates the neo-formation of LDs during senescence. Using electron tomography, we further provide evidence that LDs in leaves share tenuous physical continuity as well as numerous contact sites with the ER membrane. Thus, our data suggest that leaf LDs are functionally distinct from seed LDs and that their biogenesis is strictly controlled by AtSRP1 at restricted sites of the ER.
Collapse
Affiliation(s)
- Lysiane Brocard
- Plant Imaging Platform, Bordeaux Imaging Center, UMS 3420 Centre National de la Recherche Scientifique, US4 Institut National de la Santé et de la Recherche Médicale, University of BordeauxBordeaux, France
| | - Françoise Immel
- Laboratory of Membrane Biogenesis, Centre National de la Recherche Scientifique, UMR 5200Villenave d'Ornon, France
- Laboratory of Membrane Biogenesis, University of Bordeaux, UMR 5200Villenave d'Ornon, France
| | - Denis Coulon
- Laboratory of Membrane Biogenesis, Centre National de la Recherche Scientifique, UMR 5200Villenave d'Ornon, France
- Laboratory of Membrane Biogenesis, University of Bordeaux, UMR 5200Villenave d'Ornon, France
- Bordeaux INPTalence, France
| | - Nicolas Esnay
- Laboratory of Membrane Biogenesis, Centre National de la Recherche Scientifique, UMR 5200Villenave d'Ornon, France
- Laboratory of Membrane Biogenesis, University of Bordeaux, UMR 5200Villenave d'Ornon, France
| | - Karine Tuphile
- Laboratory of Membrane Biogenesis, Centre National de la Recherche Scientifique, UMR 5200Villenave d'Ornon, France
- Laboratory of Membrane Biogenesis, University of Bordeaux, UMR 5200Villenave d'Ornon, France
| | - Stéphanie Pascal
- Laboratory of Membrane Biogenesis, Centre National de la Recherche Scientifique, UMR 5200Villenave d'Ornon, France
- Laboratory of Membrane Biogenesis, University of Bordeaux, UMR 5200Villenave d'Ornon, France
| | - Stéphane Claverol
- Proteome Platform, Functional Genomic Center of Bordeaux, University of BordeauxBordeaux, France
| | - Laëtitia Fouillen
- Laboratory of Membrane Biogenesis, Centre National de la Recherche Scientifique, UMR 5200Villenave d'Ornon, France
- Laboratory of Membrane Biogenesis, University of Bordeaux, UMR 5200Villenave d'Ornon, France
| | - Jean-Jacques Bessoule
- Laboratory of Membrane Biogenesis, Centre National de la Recherche Scientifique, UMR 5200Villenave d'Ornon, France
- Laboratory of Membrane Biogenesis, University of Bordeaux, UMR 5200Villenave d'Ornon, France
| | - Claire Bréhélin
- Laboratory of Membrane Biogenesis, Centre National de la Recherche Scientifique, UMR 5200Villenave d'Ornon, France
- Laboratory of Membrane Biogenesis, University of Bordeaux, UMR 5200Villenave d'Ornon, France
- *Correspondence: Claire Bréhélin
| |
Collapse
|
45
|
Ju Y, Guo L, Cai Q, Ma F, Zhu QY, Zhang Q. Arabidopsis JINGUBANG Is a Negative Regulator of Pollen Germination That Prevents Pollination in Moist Environments. THE PLANT CELL 2016; 28:2131-2146. [PMID: 27468890 PMCID: PMC5059805 DOI: 10.1105/tpc.16.00401] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/05/2016] [Accepted: 07/23/2016] [Indexed: 05/14/2023]
Abstract
The molecular mechanism of pollen germination and pollen tube growth has been revealed in detail during the last decade, while the mechanism that suspends pollen grains in a dormant state is largely unclear. Here, we identified the JINGUBANG (JGB) gene by screening pollen-specific genes for those that are unnecessary for pollen germination. We showed that the pollen of the jgb loss-of-function mutant exhibited hyperactive germination in sucrose-only medium and inside the anther, while this phenotype was rescued by the transgenic expression of JGB in jgb plants. JGB contains seven WD40 repeats and is highly conserved in flowering plants. Overexpression of JGB inhibits pollen germination. These results indicate that JGB is a novel negative regulator of pollen germination. In addition, we found that jasmonic acid (JA) abundance was significantly elevated in jgb pollen, while exogenous application of methyl jasmonate rescued the inhibition of pollen germination in plants overexpressing JGB Based on the molecular features of JGB and on the finding that it interacts with a known JA biosynthesis-related transcription factor, TCP4, we propose that JGB, together with TCP4, forms a regulatory complex that controls pollen JA synthesis, ensuring pollination in moist environments.
Collapse
Affiliation(s)
- Yan Ju
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Liang Guo
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Qiang Cai
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Fei Ma
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Qiao-Yun Zhu
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Quan Zhang
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
46
|
AtSRP1, SMALL RUBBER PARTICLE PROTEIN HOMOLOG, functions in pollen growth and development in Arabidopsis. Biochem Biophys Res Commun 2016; 475:223-9. [PMID: 27208780 DOI: 10.1016/j.bbrc.2016.05.083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 05/16/2016] [Indexed: 11/20/2022]
Abstract
To identify novel roles of SMALL RUBBER PARTICLE PROTEIN Homolog in the non-rubber-producing plant Arabidopsis (AtSRP1), we isolated a T-DNA-insertion knock-out mutant (FLAG_543A05) and investigated its functional characteristics. AtSRP1 is predominantly expressed in reproductive organs and is localized to lipid droplets and ER. Compared to wild-type (WT) Arabidopsis, atsrp1 plants contain small siliques with a reduced number of heterogeneously shaped seeds. The size of anther and pollen grains in atsrp1 is highly irregular, with a lower grain number than WT. Therefore, AtSRP1 plays a novel role related to pollen growth and development in a non-rubber-producing plant.
Collapse
|
47
|
Nguyen HTK, Kim SY, Cho KM, Hong JC, Shin JS, Kim HJ. A Transcription Factor γMYB1 Binds to the P1BS cis-Element and Activates PLA2-γ Expression with its Co-Activator γMYB2. PLANT & CELL PHYSIOLOGY 2016; 57:784-97. [PMID: 26872838 DOI: 10.1093/pcp/pcw024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/22/2016] [Indexed: 05/10/2023]
Abstract
Phospholipase A2(PLA2) hydrolyzes phospholipid molecules to produce two products that are both precursors of second messengers of signaling pathways and signaling molecules per se.Arabidopsis thaliana PLA2 paralogs (-β,-γ and -δ) play critical roles during pollen development, pollen germination and tube growth. In this study, analysis of the PLA2-γ promoter using a deletion series revealed that the promoter region -153 to -1 is crucial for its pollen specificity. Using a yeast one-hybrid screening assay with the PLA2-γ promoter and an Arabidopsis transcription factor (TF)-only library, we isolated two novel MYB-like TFs belonging to the MYB-CC family, denoted here as γMYB1 and γMYB2. By electrophoretic mobility shift assay, we found that these two TFs bind directly to the P1BS (phosphate starvation response 1-binding sequence)cis-element of the PLA2-γ promoter. γMYB1 alone functioned as a transcriptional activator for PLA2-γ expression, whereas γMYB2 directly interacted with γMYB1 and enhanced its activation. Overexpression of γMYB1 in the mature pollen grain led to increased expression of not only the PLA2-γ gene but also of several genes whose promoters contain the P1BS cis-element and which are involved in the Pi starvation response, phospholipid biosynthesis and sugar synthesis. Based on these results, we suggest that the TF γMYB1 binds to the P1BS cis-element, activates the expression of PLA2-γ with the assistance of its co-activator, γMYB2, and regulates the expression of several target genes involved in many plant metabolic reactions.
Collapse
Affiliation(s)
| | - Soo Youn Kim
- Division of Life Sciences, Korea University, Seoul 136-701, Korea
| | - Kwang-Moon Cho
- Division of Life Sciences, Korea University, Seoul 136-701, Korea
| | - Jong Chan Hong
- Division of Life Science, Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea; Division of Plant Sciences, University of Missouri, Columbia, MO, USA
| | - Jeong Sheop Shin
- Division of Life Sciences, Korea University, Seoul 136-701, Korea
| | - Hae Jin Kim
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, NE 68588, USA
| |
Collapse
|
48
|
Park KY, Kim EY, Seo YS, Kim WT. Constitutive expression of CaPLA1 conferred enhanced growth and grain yield in transgenic rice plants. PLANT MOLECULAR BIOLOGY 2016; 90:517-32. [PMID: 26803502 DOI: 10.1007/s11103-016-0440-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 01/13/2016] [Indexed: 05/13/2023]
Abstract
Phospholipids are not only important components of cell membranes, but participate in diverse processes in higher plants. In this study, we generated Capsicum annuum phospholipiase A1 (CaPLA1) overexpressing transgenic rice (Oryza sativa L.) plants under the control of the maize ubiquitin promoter. The T4 CaPLA1-overexpressing rice plants (Ubi:CaPLA1) had a higher root:shoot mass ratio than the wild-type plants in the vegetative stage. Leaf epidermal cells from transgenic plants had more cells than wild-type plants. Genes that code for cyclin and lipid metabolic enzymes were up-regulated in the transgenic lines. When grown under typical paddy field conditions, the transgenic plants produced more tillers, longer panicles and more branches per panicle than the wild-type plants, all of which resulted in greater grain yield. Microarray analysis suggests that gene expressions that are related with cell proliferation, lipid metabolism, and redox state were widely altered in CaPLA1-overexpressing transgenic rice plants. Ubi:CaPLA1 plants had a reduced membrane peroxidation state, as determined by malondialdehyde and conjugated diene levels and higher peroxidase activity than wild-type rice plants. Furthermore, three isoprenoid synthetic genes encoding terpenoid synthase, hydroxysteroid dehydrogenase and 3-hydroxy-3-methyl-glutaryl-CoA reductase were up-regulated in CaPLA1-overexpressing plants. We suggest that constitutive expression of CaPLA1 conferred increased grain yield with enhanced growth in transgenic rice plants by alteration of gene activities related with cell proliferation, lipid metabolism, membrane peroxidation state and isoprenoid biosynthesis.
Collapse
Affiliation(s)
- Ki Youl Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749, Korea
| | - Eun Yu Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749, Korea
| | - Young Sam Seo
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749, Korea
- Research Institute, Korea Ginseng Corp., Daejeon, 305-805, Korea
| | - Woo Taek Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749, Korea.
| |
Collapse
|
49
|
Abstract
Acyl-CoA-binding proteins (ACBPs) play a pivotal role in fatty acid metabolism because they can transport medium- and long-chain acyl-CoA esters. In eukaryotic cells, ACBPs are involved in intracellular trafficking of acyl-CoA esters and formation of a cytosolic acyl-CoA pool. In addition to these ubiquitous functions, more specific non-redundant roles of plant ACBP subclasses are implicated by the existence of multigene families with variable molecular masses, ligand specificities, functional domains (e.g. protein-protein interaction domains), subcellular locations and gene expression patterns. In this chapter, recent progress in the characterization of ACBPs from the model dicot plant, Arabidopsis thaliana, and the model monocot, Oryza sativa, and their emerging roles in plant growth and development are discussed. The functional significance of respective members of the plant ACBP families in various developmental and physiological processes such as seed development and germination, stem cuticle formation, pollen development, leaf senescence, peroxisomal fatty acid β-oxidation and phloem-mediated lipid transport is highlighted.
Collapse
Affiliation(s)
- Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
50
|
Abstract
A gene family encoding six members of acyl-CoA-binding proteins (ACBP) exists in Arabidopsis and they are designated as AtACBP1-AtACBP6. They have been observed to play pivotal roles in plant lipid metabolism, consistent to the abilities of recombinant AtACBP in binding different medium- and long-chain acyl-CoA esters in vitro. While AtACBP1 and AtACBP2 are membrane-associated proteins with ankyrin repeats and AtACBP3 contains a signaling peptide for targeting to the apoplast, AtACBP4, AtACBP5 and AtACBP6 represent the cytosolic forms in the AtACBP family. They were verified to be subcellularly localized in the cytosol using diverse experimental methods, including cell fractionation followed by western blot analysis, immunoelectron microscopy and confocal laser-scanning microscopy using autofluorescence-tagged fusions. AtACBP4 (73.2 kDa) and AtACBP5 (70.1 kDa) are the largest, while AtACBP6 (10.4 kDa) is the smallest. Their binding affinities to oleoyl-CoA esters suggested that they can potentially transfer oleoyl-CoA esters from the plastids to the endoplasmic reticulum, facilitating the subsequent biosynthesis of non-plastidial membrane lipids in Arabidopsis. Recent studies on ACBP, extended from a dicot (Arabidopsis) to a monocot, revealed that six ACBP are also encoded in rice (Oryza sativa). Interestingly, three small rice ACBP (OsACBP1, OsACBP2 and OsACBP3) are present in the cytosol in comparison to one (AtACBP6) in Arabidopsis. In this review, the combinatory and distinct roles of the cytosolic AtACBP are discussed, including their functions in pollen and seed development, light-dependent regulation and substrate affinities to acyl-CoA esters.
Collapse
|