1
|
Xiao J, Liu W, Wu B, Zhang Y, Li S, Li E. Root hair: An important guest-meeting avenue for rhizobia in legume-Rhizobium symbiosis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 356:112518. [PMID: 40274194 DOI: 10.1016/j.plantsci.2025.112518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 04/14/2025] [Accepted: 04/18/2025] [Indexed: 04/26/2025]
Abstract
Root hairs anchor the plant in the soil, facilitating nutrient assimilation, water absorption, and interaction of plants with their environment. In legumes, they play a key role in the early infection of rhizobia. This review aimed to summarize the recent progress about the nodulation factor receptors on the root hair surface. It also discussed the importance of downstream signaling pathways of nodulation factor receptors and highlighted Rho of plants signaling pathway that controls infection thread polar growth and nodulation.
Collapse
Affiliation(s)
- Jingwen Xiao
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Wenxu Liu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Bicong Wu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yuling Zhang
- School of Foreign Languages, Qingdao Agricultural University, Qingdao 266109, China
| | - Sha Li
- QAU-RAU Joint Institute for Advanced Agricultural Technology Institute, Qingdao Agricultural University, Qingdao 266109, China
| | - En Li
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
2
|
Zhao X, Wei M, Tang Q, Tang L, Fu J, Wang K, Zhou Y, Yang Y. Receptor-like Kinase GOM1 Regulates Glume-Opening in Rice. PLANTS (BASEL, SWITZERLAND) 2024; 14:5. [PMID: 39795264 PMCID: PMC11722787 DOI: 10.3390/plants14010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025]
Abstract
Glume-opening of thermosensitive genic male sterile (TGMS) rice (Oryza sativa L.) lines after anthesis is a serious problem that significantly reduces the yield and quality of hybrid seeds. However, the molecular mechanisms regulating the opening and closing of rice glumes remain largely unclear. In this study, we report the isolation and functional characterization of a glum-opening mutant after anthesis, named gom1. gom1 exhibits dysfunctional lodicules that lead to open glumes following anthesis. Map-based cloning and subsequent complementation tests confirmed that GOM1 encodes a receptor-like kinase (RLK). GOM1 was expressed in nearly all floral tissues, with the highest expression in the lodicule. Loss-of-function of GOM1 resulted in a decrease in the expression of genes related to JA biosynthesis, JA signaling, and sugar transport. Compared with LK638S, the JA content in the gom1 mutant was significantly reduced, while the soluble sugar, sucrose, glucose, and fructose contents were significantly increased in lodicules after anthesis. Together, we speculated that GOM1 regulates carbohydrate transport in lodicules during anthesis through JA and JA signaling, maintaining a higher osmolality in lodicules after anthesis, which leads to glum-opening.
Collapse
Affiliation(s)
- Xinhui Zhao
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China;
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs/Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha 410001, China
| | - Mengyi Wei
- College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Qianying Tang
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs/Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha 410001, China
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Tang
- College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Jun Fu
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs/Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha 410001, China
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Wang
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs/Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha 410001, China
| | - Yanbiao Zhou
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs/Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha 410001, China
- College of Life Sciences, Hunan Normal University, Changsha 410081, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Yuanzhu Yang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China;
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs/Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha 410001, China
- College of Life Sciences, Hunan Normal University, Changsha 410081, China
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Choudhury SR, Pandey S. SymRK Regulates G-Protein Signaling During Nodulation in Soybean ( Glycine max) by Modifying RGS Phosphorylation and Activity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024:MPMI04240036R. [PMID: 39167823 DOI: 10.1094/mpmi-04-24-0036-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Molecular interspecies dialogue between leguminous plants and nitrogen-fixing rhizobia results in the development of symbiotic root nodules. This is initiated by several nodulation-related receptors present on the surface of root hair epidermal cells. We have shown previously that specific subunits of heterotrimeric G-proteins and their associated regulator of G-protein signaling (RGS) proteins act as molecular links between the receptors and downstream components during nodule formation in soybeans. Nod factor receptor 1 (NFR1) interacts with and phosphorylates RGS proteins to regulate the G-protein cycle. Symbiosis receptor-like kinases (SymRK) phosphorylate Gα to make it inactive and unavailable for Gβγ. We now show that like NFR1, SymRK also interacts with the RGS proteins to phosphorylate them. Phosphorylated RGS has higher activity for accelerating guanosine triphosphate (GTP) hydrolysis by Gα, which favors conversion of active Gα to its inactive form. Phosphorylation of RGS proteins is physiologically relevant, as overexpression of a phospho-mimic version of the RGS protein enhances nodule formation in soybean. These results reveal an intricate fine-tuning of the G-protein signaling during nodulation, where a negative regulator (Gα) is effectively deactivated by RGS due to the concerted efforts of several receptor proteins to ensure adequate nodulation. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Swarup Roy Choudhury
- Donald Danforth Plant Science Center, St. Louis, MO 63132, U.S.A
- Department of Biology, Indian Institute of Science Education and Research, Tirupati 517619, India
| | - Sona Pandey
- Donald Danforth Plant Science Center, St. Louis, MO 63132, U.S.A
| |
Collapse
|
4
|
Li R, Song S, Li X, An J, Niu X. Genome-wide identification of SINA gene family in Medicago truncatula and functional analysis of MtSINAL7. Mol Biol Rep 2024; 51:991. [PMID: 39287846 DOI: 10.1007/s11033-024-09932-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
Ubiquitination is an essential biological process that is vital for maintaining cellular activity and plays a critical role in precisely regulating protein levels within cells. The SINA (seven in absentia) protein belongs to the RING-type E3 ubiquitin ligase, which is one of the key enzymes involved in the process of ubiquitination. However, there have been few reports on the genome-wide identification of SINA gene family and the functional analysis of its specific genes, particularly in leguminous plants. In this study, a total of 20 MtSINA genes were identified from the genomes of Medicago truncatula, and classified into three subfamilies. These genes are distributed on 7 of 8 chromosomes with chromosome preference. The gene structures of most MtSINA genes are quite similar, and all MtSINA proteins contain conserved RING and SINA functional domains. Moreover, various cis-regulatory elements related to abiotic stress and hormone signals were found in the promoters of MtSINA genes. The expression profile indicates that a majority of MtSINA genes exhibit a significant response to abiotic stress. Furthermore, the study characterized the function of MtSINAL7 in plants and discovered its pivotal role in improving plant stress resistance. In summary, this study provides a new insight into the potential functions of MtSINA genes in Medicago truncatula.
Collapse
Affiliation(s)
- Rui Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Shujiang Song
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xinchen Li
- Taiyuan Botanical Garden, Taiyuan, 030000, China
| | - Jianping An
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Xiaolin Niu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
5
|
Chen T, Miao Y, Jing F, Gao W, Zhang Y, Zhang L, Zhang P, Guo L, Yang D. Genomic-wide analysis reveals seven in absentia genes regulating grain development in wheat (Triticum aestivum L.). THE PLANT GENOME 2024; 17:e20480. [PMID: 38840306 DOI: 10.1002/tpg2.20480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/28/2024] [Accepted: 05/10/2024] [Indexed: 06/07/2024]
Abstract
Seven in absentia proteins, which contain a conserved SINA domain, are involved in regulating various aspects of wheat (Triticum aestivum L.) growth and development, especially in response to environmental stresses. However, it is unclear whether TaSINA family members are involved in regulating grain development until now. In this study, the expression pattern, genomic polymorphism, and relationship with grain-related traits were analyzed for all TaSINA members. Most of the TaSINA genes identified showed higher expression levels in young wheat spikes or grains than other organs. The genomic polymorphism analysis revealed that at least 62 TaSINA genes had different haplotypes, where the haplotypes of five genes were significantly correlated with grain-related traits. Kompetitive allele-specific PCR markers were developed to confirm the single nucleotide polymorphisms in TaSINA101 and TaSINA109 among the five selected genes in a set of 292 wheat accessions. The TaSINA101-Hap II and TaSINA109-Hap II haplotypes had higher grain weight and width compared to TaSINA101-Hap I and TaSINA109-Hap I in at least three environments, respectively. The qRT-PCR assays revealed that TaSINA101 was highly expressed in the palea shell, seed coat, and embryo in young wheat grains. The TaSINA101 protein was unevenly distributed in the nucleus when transiently expressed in the protoplast of wheat. Three homozygous TaSINA101 transgenic lines in rice (Oryza sativa L.) showed higher grain weight and size compared to the wild type. These findings provide valuable insight into the biological function and elite haplotype of TaSINA family genes in wheat grain development at a genomic-wide level.
Collapse
Affiliation(s)
- Tao Chen
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yongping Miao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Fanli Jing
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Weidong Gao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yanyan Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Long Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Peipei Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Lijian Guo
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Delong Yang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
6
|
Lan J, Lian C, Shao Y, Chen S, Lu Y, Zhu L, Mu D, Tang Q. Genome-Wide Identification of Seven in Absentia E3 Ubiquitin Ligase Gene Family and Expression Profiles in Response to Different Hormones in Uncaria rhynchophylla. Int J Mol Sci 2024; 25:7636. [PMID: 39062882 PMCID: PMC11277444 DOI: 10.3390/ijms25147636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
SINA (Seven in absentia) E3 ubiquitin ligases are a family of RING (really interesting new gene) E3 ubiquitin ligases, and they play a crucial role in regulating plant growth and development, hormone response, and abiotic and biotic stress. However, there is little research on the SINA gene family in U. rhynchophylla. In this study, a total of 10 UrSINA genes were identified from the U. rhynchophylla genome. The results of multiple sequence alignments and chromosomal locations show that 10 UrSINA genes were unevenly located on 22 chromosomes, and each UrSINA protein contained a SINA domain at the N-terminal and RING domains at the C-terminal. Synteny analysis showed that there are no tandem duplication gene pairs and there are four segmental gene pairs in U. rhynchophylla, contributing to the expansion of the gene family. Furthermore, almost all UrSINA genes contained the same gene structure, with three exons and two introns, and there were many cis-acting elements relating to plant hormones, light responses, and biotic and abiotic stress. The results of qRT-PCR show that most UrSINA genes were expressed in stems, with the least expression in roots; meanwhile, most UrSINA genes and key enzyme genes were responsive to ABA and MeJA hormones with overlapping but different expression patterns. Co-expression analysis showed that UrSINA1 might participate in the TIA pathway under ABA treatment, and UrSINA5 and UrSINA6 might participate in the TIA pathway under MeJA treatment. The mining of UrSINA genes in the U. rhynchophylla provided novel information for understanding the SINA gene and its function in plant secondary metabolites, growth, and development.
Collapse
Affiliation(s)
- Jinxu Lan
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (J.L.); (C.L.); (S.C.)
| | - Conglong Lian
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (J.L.); (C.L.); (S.C.)
| | - Yingying Shao
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (Y.L.); (L.Z.)
| | - Suiqing Chen
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (J.L.); (C.L.); (S.C.)
| | - Ying Lu
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (Y.L.); (L.Z.)
| | - Lina Zhu
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (Y.L.); (L.Z.)
| | - Detian Mu
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (Y.L.); (L.Z.)
| | - Qi Tang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (Y.L.); (L.Z.)
| |
Collapse
|
7
|
Li H, Ou Y, Zhang J, Huang K, Wu P, Guo X, Zhu H, Cao Y. Dynamic modulation of nodulation factor receptor levels by phosphorylation-mediated functional switch of a RING-type E3 ligase during legume nodulation. MOLECULAR PLANT 2024; 17:1090-1109. [PMID: 38822523 DOI: 10.1016/j.molp.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/25/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
The precise control of receptor levels is crucial for initiating cellular signaling transduction in response to specific ligands; however, such mechanisms regulating nodulation factor (NF) receptor (NFR)-mediated perception of NFs to establish symbiosis remain unclear. In this study, we unveil the pivotal role of the NFR-interacting RING-type E3 ligase 1 (NIRE1) in regulating NFR1/NFR5 homeostasis to optimize rhizobial infection and nodule development in Lotus japonicus. We demonstrated that NIRE1 has a dual function in this regulatory process. It associates with both NFR1 and NFR5, facilitating their degradation through K48-linked polyubiquitination before rhizobial inoculation. However, following rhizobial inoculation, NFR1 phosphorylates NIRE1 at a conserved residue, Tyr-109, inducing a functional switch in NIRE1, which enables NIRE1 to mediate K63-linked polyubiquitination, thereby stabilizing NFR1/NFR5 in infected root cells. The introduction of phospho-dead NIRE1Y109F leads to delayed nodule development, underscoring the significance of phosphorylation at Tyr-109 in orchestrating symbiotic processes. Conversely, expression of the phospho-mimic NIRE1Y109E results in the formation of spontaneous nodules in L. japonicus, further emphasizing the critical role of the phosphorylation-dependent functional switch in NIRE1. In summary, these findings uncover a fine-tuned symbiotic mechanism that a single E3 ligase could undergo a phosphorylation-dependent functional switch to dynamically and precisely regulate NF receptor protein levels.
Collapse
Affiliation(s)
- Hao Li
- National Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yajuan Ou
- National Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jidan Zhang
- National Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Kui Huang
- National Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Ping Wu
- National Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoli Guo
- National Key Lab of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Zhu
- National Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yangrong Cao
- National Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
8
|
Li Y, Qiu J, Yang J, Li Y, Zhang H, Zhao F, Tan H. Molecular Mechanism of GmSNE3 Ubiquitin Ligase-Mediated Inhibition of Soybean Nodulation by Halosulfuron Methyl. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14114-14125. [PMID: 38867659 DOI: 10.1021/acs.jafc.4c02621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
In this study, the role of E3 ubiquitin ligase GmSNE3 in halosulfuron methyl (HSM) inhibiting soybean nodulation was investigated. GmSNE3 was strongly induced by HSM stress, and the overexpression of GmSNE3 significantly reduced the number of soybean nodules. Further investigation found that GmSNE3 could interact with a nodulation signaling pathway 1 protein (GmNSP1a) and GmSNE3 could mediate the degradation of GmNSP1a. Importantly, GmSNE3-mediated degradation of GmNSP1a could be promoted by HSM stress. Moreover, HSM stress and the overexpression of GmSNE3 resulted in a substantial decrease in the expression of the downstream target genes of GmNSP1a. These results revealed that HSM promotes the ubiquitin-mediated degradation of GmNSP1a by inducing GmSNE3, thereby inhibiting the regulatory effect of GmNSP1a on its downstream target genes and ultimately leading to a reduction in nodulation. Our findings will promote a better understanding of the toxic mechanism of herbicides on the symbiotic nodulation between legumes and rhizobia.
Collapse
Affiliation(s)
- Yuanfu Li
- Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Jingsi Qiu
- Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Jingxia Yang
- Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Yihan Li
- Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Hui Zhang
- Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Feng Zhao
- Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Huihua Tan
- Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| |
Collapse
|
9
|
Ma J, Wang Y, Tang X, Zhao D, Zhang D, Li C, Li W, Li T, Jiang L. TaSINA2B, interacting with TaSINA1D, positively regulates drought tolerance and root growth in wheat (Triticum aestivum L.). PLANT, CELL & ENVIRONMENT 2023; 46:3760-3774. [PMID: 37642386 DOI: 10.1111/pce.14708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/05/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
Wheat (Triticum aestivum L.) is an important food crop mainly grown in arid and semiarid regions worldwide, whose productivity is severely limited by drought stress. Although various E3 ubiquitin (Ub) ligases regulate drought stress, only a few SINA-type E3 Ub ligases are known to participate in such responses. Herein, we identified and cloned 15 TaSINAs from wheat. The transcription level of TaSINA2B was highly induced by drought, osmotic and abscisic acid treatments. Two-type promoters of TaSINA2B were found in 192 wheat accessions; furthermore wheat accessions with promoter TaSINA2BII showed a considerably higher level of drought tolerance and gene expression levels than those characterizing accessions with promoter TaSINA2BI that was mainly caused by a 64 bp insertion in its promoter. Enhanced drought tolerance of TaSINA2B-overexpressing (OE) transgenic wheat lines was found to be associated with root growth promotion. Further, an interaction between TaSINA2B and TaSINA1D was detected through yeast two-hybrid and bimolecular fluorescence complementation assays. And TaSINA1D-OE transgenic wheat lines showed similar drought tolerance and root growth phenotype to those observed when TaSINA2B was overexpressed. Therefore, the variation of TaSINA2B promoter contributed to the drought stress regulation, while TaSINA2B, interacting with TaSINA1D, positively regulated drought tolerance by promoting root growth.
Collapse
Affiliation(s)
- Jianhui Ma
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Yudie Wang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Xiaoxiao Tang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Dongyang Zhao
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Daijing Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Chunxi Li
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Wei Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Tian Li
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lina Jiang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| |
Collapse
|
10
|
Guo L, Cao M, Li Y, Wang J, He L, Li P, Lin X, Li X, Yuan X, Zhao B, Zhang N, Guo YD. RING finger ubiquitin E3 ligase CsCHYR1 targets CsATAF1 for degradation to modulate the drought stress response of cucumber through the ABA-dependent pathway. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107928. [PMID: 37582305 DOI: 10.1016/j.plaphy.2023.107928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/12/2023] [Accepted: 08/01/2023] [Indexed: 08/17/2023]
Abstract
CsCHYR1 (CHY ZINC-FINGER AND RING PROTEIN1) encodes a RING (Really Interesting New Gene) finger E3 ubiquitin ligase involved in ubiquitin-mediated protein degradation and plays an important role for cucumber to resist drought stress. Here, we obtain one of the candidate proteins CsCHYR1 that probably interacts with CsATAF1 by yeast-two hybrid screening. Subsequently, it is verified that CsCHYR1 interacts with CsATAF1 and has self-ubiquitination activity. When the cysteine residue at 180 in the RING domain of CsCHYR1 is replaced by serine or alanine, ubiquitin could not be transported from E2 to the substrate. CsCHYR1 ubiquitinates CsATAF1 and affects the stability of CsATAF1 when plants are subjected to drought stress. The expression level of CsCHYR1 is increased by 4-fold after ABA treatment at 9 h. The Atchyr1 mutants perform an ABA-hyposensitive phenotype and have a lower survival rate than Col-0 and CsCHYR1 Atchyr1 lines. In addition, CsCHYR1 interacts with CsSnRK2.6. Therefore, our study reveals a CsSnRK2.6-CsCHYR1-CsATAF1 complex to promote the drought stress response by decreasing CsATAF1 protein accumulation and inducing stomatal closure. Those findings provide new ideas for cucumber germplasm innovation from the perspective of biochemistry and molecular biology.
Collapse
Affiliation(s)
- Luqin Guo
- College of Horticulture, China Agricultural University, Beijing, China
| | - Meng Cao
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yafei Li
- College of Horticulture, China Agricultural University, Beijing, China
| | - Jinfang Wang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Lingfeng He
- College of Horticulture, China Agricultural University, Beijing, China
| | - Ping Li
- College of Horticulture, China Agricultural University, Beijing, China
| | - Xinpeng Lin
- College of Horticulture, China Agricultural University, Beijing, China
| | - Xingsheng Li
- Huasheng Seed Group Co. Ltd, Qingzhou, Shandong, 262500, China
| | - Xiaowei Yuan
- Huasheng Seed Group Co. Ltd, Qingzhou, Shandong, 262500, China
| | - Bing Zhao
- College of Horticulture, China Agricultural University, Beijing, China.
| | - Na Zhang
- College of Horticulture, China Agricultural University, Beijing, China.
| | - Yang-Dong Guo
- College of Horticulture, China Agricultural University, Beijing, China.
| |
Collapse
|
11
|
Tang X, Hou Y, Jiang F, Lang H, Li J, Cheng J, Wang L, Liu X, Zhang H. Genome-wide characterization of SINA E3 ubiquitin ligase family members and their expression profiles in response to various abiotic stresses and hormones in kiwifruit. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107891. [PMID: 37459805 DOI: 10.1016/j.plaphy.2023.107891] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/27/2023] [Accepted: 07/08/2023] [Indexed: 08/13/2023]
Abstract
SINA (Seven in absentia) proteins in the subtype of E3 ubiquitin ligase family have important functions in regulating the growth and development as well as in response to abiotic and biotic stresses in plants. However, the characteristics and possible functions of SINA family proteins in kiwifruit are not studied. In this research, a total number of 11 AcSINA genes in the kiwifruit genome were identified. Chromosome location and multiple sequence alignment analyses indicated that they were unevenly distributed on 10 chromosomes and all contained the typical N-terminal RING domain and C-terminal SINA domain. Phylogenetic, gene structure and collinear relationship analyses revealed that they were highly conserved with the same gene structure, and have gone through segmental duplication events. Expression pattern analyses demonstrated that all AcSINAs were ubiquitously expressed in roots, stems and leaves, and were responsive to different abiotic and plant hormone treatments with overlapped but distinct expression patterns. Further yeast two-hybrid and Arabidopsis transformation analyses demonstrated most AcSINAs interacted with itself or other AcSINA members to form homo- or heterodimers, and ectopic expression of AcSINA2 in Arabidopsis led to hypersensitive growth phenotype of transgenic seedlings to ABA treatment. Our results reveal that AcSINAs take part in the response to various abiotic stresses and hormones, and provide important information for the functional elucidation of AcSINAs in vine fruit plants.
Collapse
Affiliation(s)
- Xiaoli Tang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China; Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, Shandong Province, 265400, China
| | - Yaqiong Hou
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China; Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, Shandong Province, 265400, China
| | - Fudong Jiang
- Yantai Academy of Agricultural Sciences, 26 West Gangcheng Avenue, Yantai, Shandong, 265559, China
| | - Hongshan Lang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China; Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, Shandong Province, 265400, China
| | - Jianzhao Li
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China; Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, Shandong Province, 265400, China
| | - Jieshan Cheng
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China; Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, Shandong Province, 265400, China
| | - Limin Wang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China; Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, Shandong Province, 265400, China
| | - Xiaohua Liu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China; Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, Shandong Province, 265400, China.
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China; Shandong Institute of Sericulture, Shandong Academy of Agricultural Sciences, 5 Qingdao Avenue, Yantai, 265503, China; Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, Shandong Province, 265400, China.
| |
Collapse
|
12
|
An JP, Zhang XW, Li HL, Wang DR, You CX, Han Y. The E3 ubiquitin ligases SINA1 and SINA2 integrate with the protein kinase CIPK20 to regulate the stability of RGL2a, a positive regulator of anthocyanin biosynthesis. THE NEW PHYTOLOGIST 2023. [PMID: 37235698 DOI: 10.1111/nph.18997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023]
Abstract
Although DELLA protein destabilization mediated by post-translational modifications is essential for gibberellin (GA) signal transduction and GA-regulated anthocyanin biosynthesis, the related mechanisms remain largely unknown. In this study, we report the ubiquitination and phosphorylation of an apple DELLA protein MdRGL2a in response to GA signaling and its regulatory role in anthocyanin biosynthesis. MdRGL2a could interact with MdWRKY75 to enhance the MdWRKY75-activated transcription of anthocyanin activator MdMYB1 and interfere with the interaction between anthocyanin repressor MdMYB308 and MdbHLH3 or MdbHLH33, thereby promoting anthocyanin accumulation. A protein kinase MdCIPK20 was found to phosphorylate and protect MdRGL2a from degradation, and it was essential for MdRGL2a-promoting anthocyanin accumulation. However, MdRGL2a and MdCIPK20 were ubiquitinated and degraded by E3 ubiquitin ligases MdSINA1 and MdSINA2, respectively, both of which were activated in the presence of GA. Our results display the integration of SINA1/2 with CIPK20 to dynamically regulate GA signaling and will be helpful toward understanding the mechanism of GA signal transduction and GA-inhibited anthocyanin biosynthesis. The discovery of extensive interactions between DELLA and SINA and CIPK proteins in apple will provide reference for the study of ubiquitination and phosphorylation of DELLA proteins in other species.
Collapse
Affiliation(s)
- Jian-Ping An
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xiao-Wei Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Hong-Liang Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Da-Ru Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Chun-Xiang You
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
| |
Collapse
|
13
|
Fang F, Zhou W, Liu Y, Song Z, Zheng S, Wang F, Lu Z, Qi D, Li B, Sun N, Tang X, Zhang J, Zhan R, Wang L, Zhang H. Characterization of RING-type ubiquitin SINA E3 ligases and their responsive expression to salt and osmotic stresses in Brassica napus. PLANT CELL REPORTS 2023; 42:859-877. [PMID: 36788135 DOI: 10.1007/s00299-023-02996-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/02/2023] [Indexed: 05/06/2023]
Abstract
SINA (Seven in absentia) proteins in the subtype of E3 ubiquitin ligase family play a crucial role in plant growth and development. However, their functions in response to salt and osmotic stresses in oil crops are still largely unknown. In this study, a total number of 23 BnaSINAs were identified in the rapeseed genome. Chromosome location and collinear relationship analyses revealed that they were unevenly distributed on 13 chromosomes, and have gone through 22 segmental duplication events under purifying selection. Phylogenetic and gene structural analyses indicated that they belonged to five main groups, and those in the same subgroup showed similar gene structure. All BnaSINAs were predicted to form homo- or heterodimers. Except BnaSINA7, BnaSINA11, BnaSINA17 and BnaSINA18, which lacked the N-terminal RING finger, all BnaSINAs contained a conserved C-terminal SINA domain, a typical structural feature of the RING-type E3 ligase family. Transcriptional expression analyses demonstrated that most BnaSINAs were ubiquitously expressed in roots, stems, leaves, flowers, pods and seeds, and all were responsive to salt and osmotic stresses. Further, yeast two-hybrid and Arabidopsis mutant complementation analyses demonstrated that BnaSINA4 interacted with BnaSINA17 to form heterodimer, and expression of BnaSINA17 in the Arabidopsis sina2 mutant restored its growth resistance to salt and osmotic stresses. Our findings provide an important genetic foundation for the functional elucidation of BnaSINAs and a novel gene resource for the breeding of new oil crop cultivars with improved abiotic stress resistance.
Collapse
Affiliation(s)
- Fengyan Fang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
| | - Wenlong Zhou
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
| | - Yanfeng Liu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
| | - Zhizhong Song
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
| | - Songfeng Zheng
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
| | - Fei Wang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
| | - Zeyu Lu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
| | - Dazhuang Qi
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
| | - Bei Li
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
| | - Nan Sun
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
| | - Xiaoli Tang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
- Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, 265400, Shandong, China
| | - Juan Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
| | - Renhui Zhan
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Limin Wang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China.
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou, 571101, China.
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China.
- Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, 265400, Shandong, China.
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China.
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou, 571101, China.
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China.
- Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, 265400, Shandong, China.
| |
Collapse
|
14
|
Fu B, Xu Z, Lei Y, Dong R, Wang Y, Guo X, Zhu H, Cao Y, Yan Z. A novel secreted protein, NISP1, is phosphorylated by soybean Nodulation Receptor Kinase to promote nodule symbiosis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1297-1311. [PMID: 36534458 DOI: 10.1111/jipb.13436] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/15/2022] [Indexed: 05/13/2023]
Abstract
Nodulation Receptor Kinase (NORK) functions as a co-receptor of Nod factor receptors to mediate rhizobial symbiosis in legumes, but its direct phosphorylation substrates that positively mediate root nodulation remain to be fully identified. Here, we identified a GmNORK-Interacting Small Protein (GmNISP1) that functions as a phosphorylation target of GmNORK to promote soybean nodulation. GmNORKα directly interacted with and phosphorylated GmNISP1. Transcription of GmNISP1 was strongly induced after rhizobial infection in soybean roots and nodules. GmNISP1 encodes a peptide containing 90 amino acids with a "DY" consensus motif at its N-terminus. GmNISP1 protein was detected to be present in the apoplastic space. Phosphorylation of GmNISP1 by GmNORKα could enhance its secretion into the apoplast. Pretreatment with either purified GmNISP1 or phosphorylation-mimic GmNISP112D on the roots could significantly increase nodule numbers compared with the treatment with phosphorylation-inactive GmNISP112A . The data suggested a model that soybean GmNORK phosphorylates GmNISP1 to promote its secretion into the apoplast, which might function as a potential peptide hormone to promote root nodulation.
Collapse
Affiliation(s)
- Baolan Fu
- State Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhipeng Xu
- State Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yutao Lei
- State Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ru Dong
- State Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanan Wang
- State Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoli Guo
- State Key Lab of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hui Zhu
- State Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yangrong Cao
- State Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhe Yan
- National Key Facility for Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
15
|
Dávila-Delgado R, Flores-Canúl K, Juárez-Verdayes MA, Sánchez-López R. Rhizobia induce SYMRK endocytosis in Phaseolus vulgaris root hair cells. PLANTA 2023; 257:83. [PMID: 36928335 PMCID: PMC10020325 DOI: 10.1007/s00425-023-04116-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
PvSYMRK-EGFP undergoes constitutive and rhizobia-induced endocytosis, which rely on the phosphorylation status of T589, the endocytic YXXØ motif and the kinase activity of the receptor. Legume-rhizobia nodulation is a complex developmental process. It initiates when the rhizobia-produced Nod factors are perceived by specific LysM receptors present in the root hair apical membrane. Consequently, SYMRK (Symbiosis Receptor-like Kinase) becomes active in the root hair and triggers an extensive signaling network essential for the infection process and nodule organogenesis. Despite its relevant functions, the underlying cellular mechanisms involved in SYMRK signaling activity remain poorly characterized. In this study, we demonstrated that PvSYMRK-EGFP undergoes constitutive and rhizobia-induced endocytosis. We found that in uninoculated roots, PvSYMRK-EGFP is mainly associated with the plasma membrane, although intracellular puncta labelled with PvSymRK-EGFP were also observed in root hair and nonhair-epidermal cells. Inoculation with Rhizobium etli producing Nod factors induces in the root hair a redistribution of PvSYMRK-EGFP from the plasma membrane to intracellular puncta. In accordance, deletion of the endocytic motif YXXØ (YKTL) and treatment with the endocytosis inhibitors ikarugamycin (IKA) and tyrphostin A23 (TyrA23), as well as brefeldin A (BFA), drastically reduced the density of intracellular PvSYMRK-EGFP puncta. A similar effect was observed in the phosphorylation-deficient (T589A) and kinase-dead (K618E) mutants of PvSYMRK-EGFP, implying these structural features are positive regulators of PvSYMRK-EGFP endocytosis. Our findings lead us to postulate that rhizobia-induced endocytosis of SYMRK modulates the duration and amplitude of the SYMRK-dependent signaling pathway.
Collapse
Affiliation(s)
- Raúl Dávila-Delgado
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, 62210 Cuernavaca, Morelos Mexico
| | - Karen Flores-Canúl
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, 62210 Cuernavaca, Morelos Mexico
| | - Marco Adán Juárez-Verdayes
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, 62210 Cuernavaca, Morelos Mexico
| | - Rosana Sánchez-López
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, 62210 Cuernavaca, Morelos Mexico
| |
Collapse
|
16
|
Yang J, Mao T, Geng Z, Xue W, Ma L, Jin Y, Guo P, Qiu Z, Wang L, Yu C, Sheng Y, Zhang J, Zhang H. Constitutive expression of AtSINA2 from Arabidopsis improves grain yield, seed oil and drought tolerance in transgenic soybean. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:444-453. [PMID: 36758291 DOI: 10.1016/j.plaphy.2023.01.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/14/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
The SEVEN IN Absentia (SINA), a typical member of the RING E3 ligase family, plays a crucial role in plant growth, development and response to abiotic stress. However, its biological functions in oil crops are still unknown. Previously, we reported that overexpression of AtSINA2 in Arabidopsis positively regulated the drought tolerance of transgenic plants. In this work, we demonstrate that ectopic expression of AtSINA2 in soybean improved the shoot growth, grain yield, drought tolerance and seed oil content in transgenic plants. Compared to wild type, transgenic soybean produced greater shoot biomass and grain yield, and showed improved seed oil and drought tolerance. Physiological analyses exhibited that the increased drought tolerance of transgenic plants was accompanied with a higher chlorophyll content, and a lower malondialdehyde accumulation and water loss during drought stress. Further transcriptomic analyses revealed that the expressions of genes related to plant growth, flowering and stress response were up- or down-regulated in transgenic soybean under both normal and drought stress conditions. Our findings imply that AtSINA2 improved both agricultural production and drought tolerance, and it can be used as a candidate gene for the genetic engineering of new soybean cultivars with improved grain yield and drought resistance.
Collapse
Affiliation(s)
- Jin Yang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China; College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
| | - Tingting Mao
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China; Zhaoyuan Shenghui Agricultural Technology Development Co, Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, Shandong, 265400, China
| | - Zigui Geng
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China; College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
| | - Wenwen Xue
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
| | - Lan Ma
- Shandong Institute of Sericulture, Shandong Academy of Agricultural Sciences, 21 Zhichubei Road, Yantai, 264001, China
| | - Yu Jin
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
| | - Pan Guo
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
| | - Zitong Qiu
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
| | - Limin Wang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China; Zhaoyuan Shenghui Agricultural Technology Development Co, Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, Shandong, 265400, China
| | - Chunyan Yu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China; Zhaoyuan Shenghui Agricultural Technology Development Co, Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, Shandong, 265400, China
| | - Yuting Sheng
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China; Zhaoyuan Shenghui Agricultural Technology Development Co, Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, Shandong, 265400, China
| | - Juan Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China; College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China.
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China; Shandong Institute of Sericulture, Shandong Academy of Agricultural Sciences, 21 Zhichubei Road, Yantai, 264001, China; Zhaoyuan Shenghui Agricultural Technology Development Co, Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, Shandong, 265400, China.
| |
Collapse
|
17
|
Singh J, Verma PK. Role of Nod factor receptors and its allies involved in nitrogen fixation. PLANTA 2023; 257:54. [PMID: 36780015 DOI: 10.1007/s00425-023-04090-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Lysin motif (LysM)-receptor-like kinase (RLK) and leucine-rich repeat (LRR)-RLK mediated signaling play important roles in the development and regulation of root nodule symbiosis in legumes. The availability of water and nutrients in the soil is a major limiting factor affecting crop productivity. Plants of the Leguminosae family form a symbiotic association with nitrogen-fixing Gram-negative soil bacteria, rhizobia for nitrogen fixation. This symbiotic relationship between legumes and rhizobia depends on the signal exchange between them. Plant receptor-like kinases (RLKs) containing lysin motif (LysM) and/or leucine-rich repeat (LRR) play an important role in the perception of chemical signals from rhizobia for initiation and establishment of root nodule symbiosis (RNS) that results in nitrogen fixation. This review highlights the diverse aspects of LysM-RLK and LRR receptors including their specificity, functions, interacting partners, regulation, and associated signaling in RNS. The activation of LysM-RLKs and LRR-RLKs is important for ensuring the successful interaction between legume roots and rhizobia. The intracellular regions of the receptors enable additional layers of signaling that help in the transduction of signals intracellularly. Additionally, symbiosis receptor-like kinase (SYMRK) containing the LRR motif acts as a co-receptor with Nod factors receptors (LysM-RLK). Cleavage of the malectin-like domain from the SYMRK ectodomain is a mechanism for controlling SYMRK stability. Overall, this review has discussed different aspects of legume receptors that are critical to the perception of signals from rhizobia and their subsequent role in creating the mutualistic relationship necessary for nitrogen fixation. Additionally, it has been discussed how crucial it is to extrapolate the knowledge gained from model legumes to crop legumes such as chickpea and common bean to better understand the mechanism underlying nodule formation in crop legumes. Future directions have also been proposed in this regard.
Collapse
Affiliation(s)
- Jawahar Singh
- Plant-Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), 54090, Tlalnepantla, State of Mexico, Mexico.
| | - Praveen Kumar Verma
- Plant-Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
- Plant-Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 10067, India.
| |
Collapse
|
18
|
Yamazaki A, Battenberg K, Shimoda Y, Hayashi M. NDR1/HIN1-Like Protein 13 Interacts with Symbiotic Receptor Kinases and Regulates Nodulation in Lotus japonicus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:845-856. [PMID: 36107197 DOI: 10.1094/mpmi-11-21-0263-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lysin-motif receptor-like kinases (LysM-RLKs) are involved in the recognition of microbe-associated molecular patterns to initiate pattern-triggered immunity (PTI). LysM-RLKs are also required for recognition of microbe-derived symbiotic signal molecules upon establishing mutualistic interactions between plants and microsymbionts. A LysM-RLK CHITIN ELICITOR RECEPTOR KINASE1 (CERK1) plays central roles both in chitin-mediated PTI and in arbuscular mycorrhizal symbiosis, suggesting the overlap between immunity and symbiosis, at least in the signal perception and the activation of downstream signal cascades. In this study, we screened for the interacting proteins of Nod factor Receptor1 (NFR1), a CERK1 homolog in the model legume Lotus japonicus, and obtained a protein orthologous to NONRACE-SPECIFIC DISEASE RESISTANCE1/HARPIN-INDUCED1-LIKE13 (NHL13), a protein involved in the activation of innate immunity in Arabidopsis thaliana, which we named LjNHL13a. LjNHL13a interacted with NFR1 and with the symbiosis receptor kinase SymRK. LjNHL13a also displayed positive effects in nodulation. Our results suggest that NHL13 plays a role both in plant immunity and symbiosis, possibly where they overlap. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Akihiro Yamazaki
- Center for Sustainable Resource Science, RIKEN 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Kai Battenberg
- Center for Sustainable Resource Science, RIKEN 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Yoshikazu Shimoda
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization 3-1-3 Kan-nondai, Tsukuba, Ibaraki 305-8604, Japan
| | - Makoto Hayashi
- Center for Sustainable Resource Science, RIKEN 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization 3-1-3 Kan-nondai, Tsukuba, Ibaraki 305-8604, Japan
| |
Collapse
|
19
|
Roy Choudhury S, Pandey S. SymRK-dependent phosphorylation of Gα protein and its role in signaling during soybean (Glycine max) nodulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:277-291. [PMID: 35048428 DOI: 10.1111/tpj.15672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Heterotrimeric G proteins, comprised of Gα, Gβ and Gγ subunits, influence signaling in most eukaryotes. In metazoans, G proteins are activated by G protein-coupled receptor (GPCR)-mediated GDP to GTP exchange on Gα; however, the role(s) of GPCRs in regulating plant G-protein signaling remains equivocal. Mounting evidence suggests the involvement of receptor-like kinases (RLKs) in regulating plant G-protein signaling, but their mechanistic details remain scarce. We have previously shown that during Glycine max (soybean) nodulation, the nod factor receptor 1 (NFR1) interacts with G-protein components and indirectly affects signaling. We explored the direct regulation of G-protein signaling by RLKs using protein-protein interactions, receptor-mediated in vitro phosphorylations and the effects of such phosphorylations on soybean nodule formation. Results presented in this study demonstrate a direct, phosphorylation-based regulation of Gα by symbiosis receptor kinase (SymRK). SymRKs interact with and phosphorylate Gα at multiple residues in vitro, including two in its active site, which abolishes GTP binding. Additionally, phospho-mimetic Gα fails to interact with Gβγ, potentially allowing for constitutive signaling by the freed Gβγ. These results uncover an unusual mechanism of G-protein cycle regulation in plants where the receptor-mediated phosphorylation of Gα not only affects its activity but also influences the availability of its signaling partners, thereby exerting a two-pronged check on signaling.
Collapse
Affiliation(s)
- Swarup Roy Choudhury
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO, 63132, USA
| | - Sona Pandey
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO, 63132, USA
| |
Collapse
|
20
|
Qi H, Xia FN, Xiao S, Li J. TRAF proteins as key regulators of plant development and stress responses. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:431-448. [PMID: 34676666 DOI: 10.1111/jipb.13182] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Tumor necrosis factor receptor-associated factor (TRAF) proteins are conserved in higher eukaryotes and play key roles in transducing cellular signals across different organelles. They are characterized by their C-terminal region (TRAF-C domain) containing seven to eight anti-parallel β-sheets, also known as the meprin and TRAF-C homology (MATH) domain. Over the past few decades, significant progress has been made toward understanding the diverse roles of TRAF proteins in mammals and plants. Compared to other eukaryotic species, the Arabidopsis thaliana and rice (Oryza sativa) genomes encode many more TRAF/MATH domain-containing proteins; these plant proteins cluster into five classes: TRAF/MATH-only, MATH-BPM, MATH-UBP (ubiquitin protease), Seven in absentia (SINA), and MATH-Filament and MATH-PEARLI-4 proteins, suggesting parallel evolution of TRAF proteins in plants. Increasing evidence now indicates that plant TRAF proteins form central signaling networks essential for multiple biological processes, such as vegetative and reproductive development, autophagosome formation, plant immunity, symbiosis, phytohormone signaling, and abiotic stress responses. Here, we summarize recent advances and highlight future prospects for understanding on the molecular mechanisms by which TRAF proteins act in plant development and stress responses.
Collapse
Affiliation(s)
- Hua Qi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Fan-Nv Xia
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shi Xiao
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Juan Li
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
21
|
Chang S, Huang G, Wang D, Zhu W, Shi J, Yang L, Liang W, Xie Q, Zhang D. Rice SIAH E3 Ligases Interact with RMD Formin and Affect Plant Morphology. RICE (NEW YORK, N.Y.) 2022; 15:6. [PMID: 35075530 PMCID: PMC8786996 DOI: 10.1186/s12284-022-00554-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Formins are actin-binding proteins that are key to maintaining the actin cytoskeleton in cells. However, molecular mechanisms controlling the stability of formin proteins in plants remain unknown. Here, we have identified six rice SIAH-type E3 ligases, named RIP1-6 (RMD Interacting Protein 1-6) respectively, with ubiquitination enzyme activity in vitro. All six proteins can form homo- and hetero-dimers with themselves, and hetero-dimers with type II formin RMD/OsFH5. In vivo assays showed that RIP1-6 proteins localize in the cytoplasm with a punctate distribution, and all of them interact with RMD to change its native diffuse cytoplasmic localization to match that of RIP1-6. To our surprise, degradation experiments revealed that RIP1, RIP5, and RIP6 decrease rather than increase the degradation rate of RMD. Genetic analyses revealed redundancy between these six genes; either single or double mutants did not show any obvious phenotypes. However, the sextuple rip1-6 mutant displayed dwarf height, wrinkled seeds and wider leaves that were similar to the previously reported rmd mutant, and defective microfilaments and increased flag leaf angles that were not reported in rmd mutant. Collectively, our study provides insights into the mechanisms determining formin protein stability in plants.
Collapse
Affiliation(s)
- Shuwei Chang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Guoqiang Huang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Duoxiang Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Wanwan Zhu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Jianxin Shi
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Litao Yang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Wanqi Liang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Dabing Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
22
|
Wang Y, Wang L, Chen S, Chen S. A study of RNA-editing in Populus trichocarpa nuclei revealed acquisition of RNA-editing on the endosymbiont-derived genes, and a preference for intracellular remodeling genes in adaptation to endosymbiosis. FORESTRY RESEARCH 2021; 1:20. [PMID: 39524518 PMCID: PMC11524294 DOI: 10.48130/fr-2021-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2024]
Abstract
RNA-editing is a post-transcriptional modification that can diversify genome-encoded information by modifying individual RNA bases. In contrast to the well-studied RNA-editing in organelles, little is known about nuclear RNA-editing in higher plants. We performed a genome-wide study of RNA-editing in Populus trichocarpa nuclei using the RNA-seq data generated from the sequenced poplar genotype, 'Nisqually-1'. A total of 24,653 nuclear RNA-editing sites present in 8,603 transcripts were identified. Notably, RNA-editing in P. trichocarpa nuclei tended to occur on endosymbiont-derived genes. We then scrutinized RNA-editing in a cyanobacterial strain closely related to chloroplast. No RNA-editing sites were identified therein, implying that RNA-editing of these endosymbiont-derived genes was acquired after endosymbiosis. Gene ontology enrichment analysis of all the edited genes in P. trichocarpa nuclei demonstrated that nuclear RNA-editing was primarily focused on genes involved in intracellular remodeling processes, which suggests that RNA-editing plays contributing roles in organellar establishment during endosymbiosis. We built a coexpression network using all C-to-U edited genes and then decomposed it to obtain 18 clusters, six of which contained a conserved core motif, A/G-C-A/G. Such a short core motif not only attracted the RNA-editing machinery but also enabled large numbers of sites to be targeted though further study is necessary to verify this finding.
Collapse
Affiliation(s)
- Yiran Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Lihu Wang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056000, China
| | - Su Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Song Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
23
|
QTL mapping and candidate gene mining of flag leaf size traits in Japonica rice based on linkage mapping and genome-wide association study. Mol Biol Rep 2021; 49:63-71. [PMID: 34677716 DOI: 10.1007/s11033-021-06842-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/13/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND As one of the most important factors of the japonica rice plant, leaf shape affects the photosynthesis and carbohydrate accumulation directly. Mining and using new leaf shape related genes/QTLs can further enrich the theory of molecular breeding and accelerate the breeding process of japonica rice. METHODS In the present study, 2 RILs and a natural population with 295 japonica rice varieties were used to map QTLs for flag leaf length (FL), flag leaf width (FW) and flag leaf area (FLA) by linkage analysis and genome-wide association study (GWAS) throughout 2 years. RESULTS A total of 64 QTLs were detected by 2 ways, and pleiotropic QTLs qFL2 (Chr2_33,332,579) and qFL10 (Chr10_10,107,835; Chr10_10,230,100) consisted of overlapping QTLs mapped by linkage analysis and GWAS throughout the 2 years were identified. CONCLUSIONS The candidate genes LOC_Os02g54254, LOC_Os02g54550, LOC_Os10g20160, LOC_Os10g20240, LOC_Os10g20260 were obtained, filtered by linkage disequilibrium (LD), and haplotype analysis. LOC_Os10g20160 (SD-RLK-45) showed outstanding characteristics in quantitative real-time PCR (qRT-PCR) analysis in leaf development period, belongs to S-domain receptor-like protein kinases gene and probably to be a main gene regulating flag leaf width of japonica rice. The results of this study provide valuable resources for mining the main genes/QTLs of japonica rice leaf development and molecular breeding of japonica rice ideal leaf shape.
Collapse
|
24
|
Reciprocal antagonistic regulation of E3 ligases controls ACC synthase stability and responses to stress. Proc Natl Acad Sci U S A 2021; 118:2011900118. [PMID: 34404725 DOI: 10.1073/pnas.2011900118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ethylene influences plant growth, development, and stress responses via crosstalk with other phytohormones; however, the underlying molecular mechanisms are still unclear. Here, we describe a mechanistic link between the brassinosteroid (BR) and ethylene biosynthesis, which regulates cellular protein homeostasis and stress responses. We demonstrate that as a scaffold, 1-aminocyclopropane-1-carboxylic acid (ACC) synthases (ACS), a rate-limiting enzyme in ethylene biosynthesis, promote the interaction between Seven-in-Absentia of Arabidopsis (SINAT), a RING-domain containing E3 ligase involved in stress response, and ETHYLENE OVERPRODUCER 1 (ETO1) and ETO1-like (EOL) proteins, the E3 ligase adaptors that target a subset of ACS isoforms. Each E3 ligase promotes the degradation of the other, and this reciprocally antagonistic interaction affects the protein stability of ACS. Furthermore, 14-3-3, a phosphoprotein-binding protein, interacts with SINAT in a BR-dependent manner, thus activating reciprocal degradation. Disrupted reciprocal degradation between the E3 ligases compromises the survival of plants in carbon-deficient conditions. Our study reveals a mechanism by which plants respond to stress by modulating the homeostasis of ACS and its cognate E3 ligases.
Collapse
|
25
|
Liu Y, Wang K, Cheng Q, Kong D, Zhang X, Wang Z, Wang Q, Xie Q, Yan J, Chu J, Ling HQ, Li Q, Miao J, Zhao B. Cysteine protease RD21A regulated by E3 ligase SINAT4 is required for drought-induced resistance to Pseudomonas syringae in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5562-5576. [PMID: 32453812 DOI: 10.1093/jxb/eraa255] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Plants can be simultaneously exposed to multiple stresses. The interplay of abiotic and biotic stresses may result in synergistic or antagonistic effects on plant development and health. Temporary drought stress can stimulate plant immunity; however, the molecular mechanism of drought-induced immunity is largely unknown. In this study, we demonstrate that cysteine protease RD21A is required for drought-induced immunity. Temporarily drought-treated wild-type Arabidopsis plants became more sensitive to the bacterial pathogen-associated molecular pattern flg22, triggering stomatal closure, which resulted in increased resistance to Pseudomonas syringae pv. tomato DC3000 (Pst-DC3000). Knocking out rd21a inhibited flg22-triggered stomatal closure and compromised the drought-induced immunity. Ubiquitin E3 ligase SINAT4 interacted with RD21A and promoted its degradation in vivo. The overexpression of SINAT4 also consistently compromised the drought-induced immunity to Pst-DC3000. A bacterial type III effector, AvrRxo1, interacted with both SINAT4 and RD21A, enhancing SINAT4 activity and promoting the degradation of RD21A in vivo. Therefore, RD21A could be a positive regulator of drought-induced immunity, which could be targeted by pathogen virulence effectors during pathogenesis.
Collapse
Affiliation(s)
- Yi Liu
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
- Lushan Botanical Garden Jiangxi Province and Chinese Academy of Sciences, Jiujiang, Jiangxi, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Kunru Wang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Qiang Cheng
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Danyu Kong
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Xunzhong Zhang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Zhibo Wang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Qian Wang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jijun Yan
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jinfang Chu
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hong-Qing Ling
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qi Li
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Jiamin Miao
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
- College of Grassland, Gansu Agricultural University, Lanzhou, China
| | - Bingyu Zhao
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
26
|
Chiu CH, Paszkowski U. Receptor-Like Kinases Sustain Symbiotic Scrutiny. PLANT PHYSIOLOGY 2020; 182:1597-1612. [PMID: 32054781 PMCID: PMC7140970 DOI: 10.1104/pp.19.01341] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/25/2020] [Indexed: 05/04/2023]
Abstract
Plant receptor-like kinases (RLKs) control the initiation, development, and maintenance of symbioses with beneficial mycorrhizal fungi and nitrogen-fixing bacteria. Carbohydrate perception activates symbiosis signaling via Lysin-motif RLKs and subsequently the common symbiosis signaling pathway. As the receptors activated are often also immune receptors in multiple species, exactly how carbohydrate identities avoid immune activation and drive symbiotic outcome is still not fully understood. This may involve the coincident detection of additional signaling molecules that provide specificity. Because of the metabolic costs of supporting symbionts, the level of symbiosis development is fine-tuned by a range of local and mobile signals that are activated by various RLKs. Beyond early, precontact symbiotic signaling, signal exchanges ensue throughout infection, nutrient exchange, and turnover of symbiosis. Here, we review the latest understanding of plant symbiosis signaling from the perspective of RLK-mediated pathways.
Collapse
Affiliation(s)
- Chai Hao Chiu
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Uta Paszkowski
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|
27
|
Garcia-Barcena C, Osinalde N, Ramirez J, Mayor U. How to Inactivate Human Ubiquitin E3 Ligases by Mutation. Front Cell Dev Biol 2020; 8:39. [PMID: 32117970 PMCID: PMC7010608 DOI: 10.3389/fcell.2020.00039] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/16/2020] [Indexed: 12/24/2022] Open
Abstract
E3 ubiquitin ligases are the ultimate enzymes involved in the transfer of ubiquitin to substrate proteins, a process that determines the fate of the modified protein. Numerous diseases are caused by defects in the ubiquitin-proteasome machinery, including when the activity of a given E3 ligase is hampered. Thus, inactivation of E3 ligases and the resulting effects at molecular or cellular level have been the focus of many studies during the last few years. For this purpose, site-specific mutation of key residues involved in either protein interaction, substrate recognition or ubiquitin transfer have been reported to successfully inactivate E3 ligases. Nevertheless, it is not always trivial to predict which mutation(s) will block the catalytic activity of a ligase. Here we review over 250 site-specific inactivating mutations that have been carried out in 120 human E3 ubiquitin ligases. We foresee that the information gathered here will be helpful for the design of future experimental strategies.
Collapse
Affiliation(s)
- Cristina Garcia-Barcena
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Nerea Osinalde
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Juanma Ramirez
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Ugo Mayor
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain.,Ikerbasque - Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
28
|
Li HL, Wang X, Ji XL, Qiao ZW, You CX, Hao YJ. Genome-Wide Identification of Apple Ubiquitin SINA E3 Ligase and Functional Characterization of MdSINA2. FRONTIERS IN PLANT SCIENCE 2020; 11:1109. [PMID: 32793265 PMCID: PMC7393226 DOI: 10.3389/fpls.2020.01109] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/06/2020] [Indexed: 05/22/2023]
Abstract
SINA (Seven in absentia) proteins are a small family of ubiquitin ligases that play important roles in regulating plant growth and developmental processes as well as in responses to diverse types of biotic and abiotic stress. However, the characteristics of the apple SINA family have not been previously studied. Here, we identified 11 MdSINAs members in the apple genome based on their conserved, N-terminal RING and C-terminal SINA domains. We also reconstructed a phylogeny of these genes; characterized their chromosomal location, structure, and motifs; and identified two major groups of MdSINA genes. Subsequent qRT-PCR analyses were used to characterize the expression of MdSINA genes in various tissues and organs, and levels of expression were highest in leaves. MdSINAs were significantly induced under ABA and carbon- and nitrate-starvation treatment. Except for MdSINA1 and MdSINA7, the other MdSINA proteins could interact with each other. Moreover, MdSINA2 was found to be localized in the nucleus using Agrobacterium-mediated transient expression. Western-blot analysis showed that MdSINA2 accumulated extensively under light, decreased under darkness, and became insensitive to light when the RING domain was disrupted. Finally, ABA-hypersensitive phenotypes were confirmed by transgenic calli and the ectopic expression of MdSINA2 in Arabidopsis. In conclusion, our results suggest that MdSINA genes participate in the responses to different types of stress, and that MdSINA2 might act as a negative regulator in the ABA stress response.
Collapse
|
29
|
Feng Y, Wu P, Fu W, Peng L, Zhu H, Cao Y, Zhou X, Hong Z, Zhang Z, Yuan S. The Lotus japonicus Ubiquitin Ligase SIE3 Interacts With the Transcription Factor SIP1 and Forms a Homodimer. FRONTIERS IN PLANT SCIENCE 2020; 11:795. [PMID: 32595680 PMCID: PMC7303358 DOI: 10.3389/fpls.2020.00795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/19/2020] [Indexed: 05/12/2023]
Abstract
The symbiosis receptor kinase SymRK plays an essential role in symbiotic signal transduction and nodule organogenesis. Several proteins bind to SymRK, but how the symbiosis signals are transduced from SymRK to downstream components remains elusive. We previously demonstrated that both SymRK interacting protein 1 (SIP1, an ARID-type DNA-binding protein) and SymRK interacting E3 ligase [SIE3, a RING (Really Interesting New Gene)-containing E3 ligase] interact with SymRK to regulate downstream cellular responses in Lotus japonicus during the legume-rhizobia symbiosis. Here, we show that SIE3 interacts with SIP1 in both yeast cells and Nicotiana benthamiana. SIE3 associated with itself and formed a homodimer. The cysteine 266 residue was found to be essential for SIE3 dimerization and for promoting nodulation in transgenic hairy roots of L. japonicus. Our findings provide a foundation for further investigating the regulatory mechanisms of the SymRK-mediated signaling pathway, as well as the biological function of E3 ligase dimerization in nodule organogenesis.
Collapse
Affiliation(s)
- Yong Feng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Ping Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Weiwei Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Liwei Peng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Hui Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Yangrong Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Xinan Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of People’s Republic of China, Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Zonglie Hong
- Department of Plant, Soil, and Entomological Sciences and Program of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Moscow, ID, United States
| | - Zhongming Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Zhongming Zhang,
| | - Songli Yuan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of People’s Republic of China, Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
- Songli Yuan,
| |
Collapse
|
30
|
Zhang C, Hao Z, Ning Y, Wang GL. SINA E3 Ubiquitin Ligases: Versatile Moderators of Plant Growth and Stress Response. MOLECULAR PLANT 2019; 12:610-612. [PMID: 30965150 DOI: 10.1016/j.molp.2019.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 05/19/2023]
Affiliation(s)
- Chongyang Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Department of Plant Pathology, the Ohio State University, Columbus, OH 43210, USA
| | - Zeyun Hao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Guo-Liang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Department of Plant Pathology, the Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
31
|
Tornkvist A, Liu C, Moschou PN. Proteolysis and nitrogen: emerging insights. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2009-2019. [PMID: 30715465 DOI: 10.1093/jxb/erz024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/10/2019] [Indexed: 05/07/2023]
Abstract
Nitrogen (N) is a core component of fertilizers used in modern agriculture to increase yields and thus to help feed a growing global population. However, this comes at a cost to the environment, through run-off of excess N as a result of poor N-use efficiency (NUE) by crops. An obvious remedy to this problem would therefore be the improvement of NUE, which requires advancing our understanding on N homeostasis, sensing, and uptake. Proteolytic pathways are linked to N homeostasis as they recycle proteins that contain N and carbon; however, emerging data suggest that their functions extend beyond this simple recycling. Here, we highlight roles of proteolytic pathways in non-symbiotic and symbiotic N uptake and in systemic N sensing. We also offer a novel view in which we suggest that proteolytic pathways have roles in N homeostasis that differ from their accepted function in recycling.
Collapse
Affiliation(s)
- Anna Tornkvist
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Chen Liu
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Panagiotis N Moschou
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
- Department of Biology, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Greece
| |
Collapse
|
32
|
Tsikou D, Ramirez EE, Psarrakou IS, Wong JE, Jensen DB, Isono E, Radutoiu S, Papadopoulou KK. A Lotus japonicus E3 ligase interacts with the Nod Factor Receptor 5 and positively regulates nodulation. BMC PLANT BIOLOGY 2018; 18:217. [PMID: 30285618 PMCID: PMC6171183 DOI: 10.1186/s12870-018-1425-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 09/13/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND Post-translational modification of receptor proteins is involved in activation and de-activation of signalling systems in plants. Both ubiquitination and deubiquitination have been implicated in plant interactions with pathogens and symbionts. RESULTS Here we present LjPUB13, a PUB-ARMADILLO repeat E3 ligase that specifically ubiquitinates the kinase domain of the Nod Factor receptor NFR5 and has a direct role in nodule organogenesis events in Lotus japonicus. Phenotypic analyses of three LORE1 retroelement insertion plant lines revealed that pub13 plants display delayed and reduced nodulation capacity and retarded growth. LjPUB13 expression is spatially regulated during symbiosis with Mesorhizobium loti, with increased levels in young developing nodules. CONCLUSION LjPUB13 is an E3 ligase with a positive regulatory role during the initial stages of nodulation in L. japonicus.
Collapse
Affiliation(s)
- Daniela Tsikou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500, Larisa, Greece
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej, 8000 C, Aarhus, Denmark
| | - Estrella E Ramirez
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej, 8000 C, Aarhus, Denmark
| | - Ioanna S Psarrakou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500, Larisa, Greece
| | - Jaslyn E Wong
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej, 8000 C, Aarhus, Denmark
| | - Dorthe B Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej, 8000 C, Aarhus, Denmark
| | - Erika Isono
- Department of Plant Systems Biology, Technical University of Munich, Emil-Ramann-Strabe 4, Freising, Germany
| | - Simona Radutoiu
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej, 8000 C, Aarhus, Denmark.
| | - Kalliope K Papadopoulou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500, Larisa, Greece.
| |
Collapse
|
33
|
Choi J, Summers W, Paszkowski U. Mechanisms Underlying Establishment of Arbuscular Mycorrhizal Symbioses. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:135-160. [PMID: 29856935 DOI: 10.1146/annurev-phyto-080516-035521] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Most land plants engage in mutually beneficial interactions with arbuscular mycorrhizal (AM) fungi, the fungus providing phosphate and nitrogen in exchange for fixed carbon. During presymbiosis, both organisms communicate via oligosaccharides and butenolides. The requirement for a rice chitin receptor in symbiosis-induced lateral root development suggests that cell division programs operate in inner root tissues during both AM and nodule symbioses. Furthermore, the identification of transcription factors underpinning arbuscule development and degeneration reemphasized the plant's regulatory dominance in AM symbiosis. Finally, the finding that AM fungi, as lipid auxotrophs, depend on plant fatty acids (FAs) to complete their asexual life cycle revealed the basis for fungal biotrophy. Intriguingly, lipid metabolism is also central for asexual reproduction and interaction of the fungal sister clade, the Mucoromycotina, with endobacteria, indicative of an evolutionarily ancient role for lipids in fungal mutualism.
Collapse
Affiliation(s)
- Jeongmin Choi
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom;
| | - William Summers
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom;
| | - Uta Paszkowski
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom;
| |
Collapse
|
34
|
Pan H, Stonoha-Arther C, Wang D. Medicago Plants Control Nodulation by Regulating Proteolysis of the Receptor-Like Kinase DMI2. PLANT PHYSIOLOGY 2018; 177:792-802. [PMID: 29717018 PMCID: PMC6001312 DOI: 10.1104/pp.17.01542] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/12/2018] [Indexed: 05/22/2023]
Abstract
Plants use receptor-like kinases to monitor environmental changes and transduce signals into plant cells. The Medicago truncatula (hereafter Mtruncatula) DOES NOT MAKE INFECTIONS2 (DMI2) protein functions as a coreceptor of rhizobial signals to initiate nodule development and rhizobial infection during nitrogen-fixing symbiosis, but the mechanisms regulating DMI2 protein level and folding are still unknown. Here, we report that DMI2 protein abundance changes during nitrogen-fixing symbiosis. DMI2 accumulates in the nodules and is induced by rhizobia treatment through a posttranscriptional process. However, DMI2 induction is independent of the perception of Nod factor, a group of lipochitooligosaccharides secreted by rhizobia. The stability of the DMI2 protein is controlled by the proteasome pathway: in rhizobia-free environments, DMI2 is degraded by the proteasome, but during rhizobial infection, DMI2 is protected from the proteasome, resulting in protein accumulation. Furthermore, proteasome inhibitor-promoted accumulation of DMI2 protein in Medicago roots induces the expression of two early nodulation marker genes, supporting the hypothesis that DMI2 accumulation activates downstream symbiosis signaling. The extracellular region of DMI2 contains two malectin-like domains (MLDs) and a leucine-rich repeat. When conserved amino acids in the MLDs are mutated, DMI2 fails to restore nodule development in dmi2 mutants, and point-mutated MLD proteins are degraded constitutively, suggesting that the MLD may be vital for the accumulation of DMI2. Our findings suggest that legumes control nodule development through modulating the protein level of DMI2, revealing a layer of regulation in the interaction between plants and rhizobia in nitrogen-fixing symbiosis.
Collapse
Affiliation(s)
- Huairong Pan
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Christina Stonoha-Arther
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Dong Wang
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| |
Collapse
|
35
|
Liu J, Deng J, Zhu F, Li Y, Lu Z, Qin P, Wang T, Dong J. The MtDMI2-MtPUB2 Negative Feedback Loop Plays a Role in Nodulation Homeostasis. PLANT PHYSIOLOGY 2018; 176:3003-3026. [PMID: 29440269 PMCID: PMC5884597 DOI: 10.1104/pp.17.01587] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/06/2018] [Indexed: 05/19/2023]
Abstract
DOES NOT MAKE INFECTION 2 (MtDMI2) is a Leu rich repeat-type receptor kinase required for signal transduction in the Medicago truncatula/Sinorhizobium meliloti symbiosis pathway. However, the mechanisms through which MtDMI2 participates in nodulation homeostasis are poorly understood. In this study, we identified MtPUB2-a novel plant U-box (PUB)-type E3 ligase-and showed that it interacts with MtDMI2. MtDMI2 and MtPUB2 accumulation were shown to be similar in various tissues. Roots of plants in which MtPUB2 was silenced by RNAi (MtPUB2-RNAi plants) exhibited impaired infection threads, fewer nodules, and shorter primary root lengths compared to those of control plants transformed with empty vector. Using liquid chromatography-tandem mass spectrometry, we showed that MtDMI2 phosphorylates MtPUB2 at Ser-316, Ser-421, and Thr-488 residues. When MtPUB2-RNAi plants were transformed with MtPUB2S421D , which mimics the phosphorylated state, MtDMI2 was persistently ubiquitinated and degraded by MtPUB2S421D, resulting in fewer nodules than observed in MtPUB2/MtPUB2-RNAi-complemented plants. However, MtPUB2S421A /MtPUB2-RNAi-complemented plants showed no MtPUB2 ubiquitination activity, and their nodulation phenotype was similar to that of MtPUB2-RNAi plants transformed with empty vector. Further studies demonstrated that these proteins form a negative feedback loop of the prey (MtDMI2)-predator (MtPUB2) type. Our results suggest that the MtDMI2-MtPUB2 negative feedback loop, which displays crosstalk with the long-distance autoregulation of nodulation via MtNIN, plays an important role in nodulation homeostasis.
Collapse
Affiliation(s)
- Jiaxing Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jie Deng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fugui Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuan Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zheng Lu
- University of Wyoming, Department of Atmospheric Science, Laramie, Wyoming
| | - Peibin Qin
- Shanghai AB Sciex Analytical Instrument Trading Co., Ltd., Chaoyang District, Beijing, 100015, China
| | - Tao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jiangli Dong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
36
|
Wang W, Fan Y, Niu X, Miao M, Kud J, Zhou B, Zeng L, Liu Y, Xiao F. Functional analysis of the seven in absentia ubiquitin ligase family in tomato. PLANT, CELL & ENVIRONMENT 2018; 41:689-703. [PMID: 29320607 DOI: 10.1111/pce.13140] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 01/01/2018] [Accepted: 01/03/2018] [Indexed: 05/28/2023]
Abstract
Seven in absentia (SINA) protein is one subgroup of ubiquitin ligases possessing an N-terminal cysteine-rich really interesting new gene (RING) domain, two zinc-finger motifs, and a C-terminal domain responsible for substrate-binding and dimerization. In tomato (Solanum lycopersicum), the SINA gene family has six members, and we characterize in this study all tomato SINA (SlSINA) genes and the gene products. Our results show that SlSINA genes are differentially regulated in leaf, bud, stem, flower, and root. All SlSINA proteins possess RING-dependent E3 ubiquitin ligase activity, exhibiting similar specificity towards the E2 ubiquitin-conjugating enzyme. SlSINA1/3/4/5/6 are localized in both cytoplasm and nucleus, whereas SlSINA2 is exclusively localized in the nucleus. Moreover, all SlSINAs can interact with each other for homo- or hetero-dimerization. The functionality of SlSINA proteins has been investigated. SlSINA4 plays a positive role in defense signalling, as manifested by elicitation of E3-dependent hypersensitive response-like cell death; the other SlSINAs are negative regulator and capable to suppress hypersensitive response cell death. Transgenic tomato plants overexpressing SlSINA2 exhibit pale-green leaf phenotype, suggesting SlSINA2 regulates chlorophyll level in plant cells, whereas transgenic tomato plants overexpressing SlSINA5 have altered floral structure with exserted stigma, implicating SlSINA5 plays a role in flower development.
Collapse
Affiliation(s)
- Wenjie Wang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
- Department of Plant Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Youhong Fan
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
- Department of Plant Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Xiangli Niu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Min Miao
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Joanna Kud
- Department of Plant Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Bangjun Zhou
- Plant Science Innovation Center and Plant Pathology Department, University of Nebraska, Lincoln, NE, 68583, USA
| | - Lirong Zeng
- Plant Science Innovation Center and Plant Pathology Department, University of Nebraska, Lincoln, NE, 68583, USA
| | - Yongsheng Liu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, 610064, China
- School of Horticulture, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Fangming Xiao
- Department of Plant Sciences, University of Idaho, Moscow, ID, 83844, USA
| |
Collapse
|
37
|
Romero-Barrios N, Vert G. Proteasome-independent functions of lysine-63 polyubiquitination in plants. THE NEW PHYTOLOGIST 2018; 217:995-1011. [PMID: 29194634 DOI: 10.1111/nph.14915] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/12/2017] [Indexed: 05/21/2023]
Abstract
Contents Summary 995 I. Introduction 995 II. The plant Ub machinery 996 III. From Ub to Ub linkage types in plants 997 IV. Increasing analytical resolution for K63 polyUb in plants 998 V. How to build K63 polyUb chains? 998 VI. Cellular roles of K63 polyUb in plants 999 VII. Physiological roles of K63 polyUb in plants 1004 VIII. Future perspectives: towards the next level of the Ub code 1006 Acknowledgements 1006 References 1007 SUMMARY: Ubiquitination is a post-translational modification essential for the regulation of eukaryotic proteins, having an impact on protein fate, function, localization or activity. What originally appeared to be a simple system to regulate protein turnover by the 26S proteasome is now known to be the most intricate regulatory process cells have evolved. Ubiquitin can be arranged in countless chain assemblies, triggering various cellular outcomes. Polyubiquitin chains using lysine-63 from ubiquitin represent the second most abundant type of ubiquitin modification. Recent studies have exposed their common function in proteasome-independent functions in non-plant model organisms. The existence of lysine-63 polyubiquitination in plants is, however, only just emerging. In this review, we discuss the recent advances on the characterization of ubiquitin chains and the molecular mechanisms driving the formation of lysine-63-linked ubiquitin modifications. We provide an overview of the roles associated with lysine-63 polyubiquitination in plant cells in the light of what is known in non-plant models. Finally, we review the crucial roles of lysine-63 polyubiquitin-dependent processes in plant growth, development and responses to environmental conditions.
Collapse
Affiliation(s)
- Natali Romero-Barrios
- Institute for Integrative Biology of the Cell (I2BC), CNRS/CEA/Univ. Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, 91198, France
| | - Grégory Vert
- Institute for Integrative Biology of the Cell (I2BC), CNRS/CEA/Univ. Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, 91198, France
| |
Collapse
|
38
|
Jia N, Zhu Y, Xie F. An Efficient Protocol for Model Legume Root Protoplast Isolation and Transformation. FRONTIERS IN PLANT SCIENCE 2018; 9:670. [PMID: 29915605 PMCID: PMC5994418 DOI: 10.3389/fpls.2018.00670] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/02/2018] [Indexed: 05/12/2023]
Abstract
Transient gene expression systems using protoplasts have been widely used for rapid functional characterization of genes and high-throughput analysis in many model and crop species. Here, we describe a simplified and highly efficient root protoplast isolation and transient expression system in the model legumes Lotus japonicus and Medicago truncatula. Firstly, we presented an efficient protocol for isolating protoplasts from L. japonicus and M. truncatula roots. We then established an efficient transient expression system in these legumes root protoplasts. Using this protocol, the subcellular localization of two symbiosis related proteins (SYMRK and ERN1) were visualized in the plasma membrane and nuclei, respectively. Collectively, this efficient protoplast isolation and transformation protocol is sufficient for studies on protein subcellular localization, and should be suitable for many other molecular biology applications.
Collapse
Affiliation(s)
- Ning Jia
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yali Zhu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fang Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Fang Xie,
| |
Collapse
|
39
|
Dubeaux G, Vert G. Zooming into plant ubiquitin-mediated endocytosis. CURRENT OPINION IN PLANT BIOLOGY 2017; 40:56-62. [PMID: 28756333 DOI: 10.1016/j.pbi.2017.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/29/2017] [Accepted: 07/11/2017] [Indexed: 05/21/2023]
Abstract
Endocytosis in plants plays an essential role, not only for basic cellular functions but also for growth, development, and environmental responses. Over the past few years, ubiquitin emerged as a major signal triggering the removal of plasma membrane proteins from the cell surface and promoting their vacuolar targeting. Detailed genetic, biochemical and imaging studies have provided initial insights into the precise mechanisms and roles of ubiquitin-mediated endocytosis in plants. Here, we summarize the present state of knowledge about the machinery involved in plant ubiquitin-mediated endocytosis and how this is coordinated in time and space to control the internalization and the endosomal sorting of endocytosed proteins.
Collapse
Affiliation(s)
- Guillaume Dubeaux
- Institute for Integrative Biology of the Cell (I2BC), CNRS/CEA/Univ. Paris Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Grégory Vert
- Institute for Integrative Biology of the Cell (I2BC), CNRS/CEA/Univ. Paris Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France.
| |
Collapse
|
40
|
Kelly S, Radutoiu S, Stougaard J. Legume LysM receptors mediate symbiotic and pathogenic signalling. CURRENT OPINION IN PLANT BIOLOGY 2017; 39:152-158. [PMID: 28787662 DOI: 10.1016/j.pbi.2017.06.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/14/2017] [Accepted: 06/16/2017] [Indexed: 05/13/2023]
Abstract
Legume-rhizobia symbiosis is coordinated through the production and perception of signal molecules by both partners with legume LysM receptor kinases performing a central role in this process. Receptor complex formation and signalling outputs derived from these are regulated through ligand binding and further modulated by a diverse variety of interactors. The challenge now is to understand the molecular mechanisms of these reported interactors. Recently attributed roles of LysM receptors in the perception of rhizobial exopolysaccharide, distinguishing between pathogens and symbionts, and assembly of root and rhizosphere communities expand on the importance of these receptors. These studies also highlight challenges, such as identification of cognate ligands, formation of responsive receptor complexes and separation of downstream signal transduction pathways.
Collapse
Affiliation(s)
- Simon Kelly
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, University of Aarhus, DK - 8000 Aarhus, Denmark
| | - Simona Radutoiu
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, University of Aarhus, DK - 8000 Aarhus, Denmark
| | - Jens Stougaard
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, University of Aarhus, DK - 8000 Aarhus, Denmark.
| |
Collapse
|
41
|
Jayaraman D, Richards AL, Westphall MS, Coon JJ, Ané JM. Identification of the phosphorylation targets of symbiotic receptor-like kinases using a high-throughput multiplexed assay for kinase specificity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:1196-1207. [PMID: 28267253 PMCID: PMC5461195 DOI: 10.1111/tpj.13529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 02/17/2017] [Accepted: 03/01/2017] [Indexed: 05/29/2023]
Abstract
Detecting the phosphorylation substrates of multiple kinases in a single experiment is a challenge, and new techniques are being developed to overcome this challenge. Here, we used a multiplexed assay for kinase specificity (MAKS) to identify the substrates directly and to map the phosphorylation site(s) of plant symbiotic receptor-like kinases. The symbiotic receptor-like kinases nodulation receptor-like kinase (NORK) and lysin motif domain-containing receptor-like kinase 3 (LYK3) are indispensable for the establishment of root nodule symbiosis. Although some interacting proteins have been identified for these symbiotic receptor-like kinases, very little is known about their phosphorylation substrates. Using this high-throughput approach, we identified several other potential phosphorylation targets for both these symbiotic receptor-like kinases. In particular, we also discovered the phosphorylation of LYK3 by NORK itself, which was also confirmed by pairwise kinase assays. Motif analysis of potential targets for these kinases revealed that the acidic motif xxxsDxxx was common to both of them. In summary, this high-throughput technique catalogs the potential phosphorylation substrates of multiple kinases in a single efficient experiment, the biological characterization of which should provide a better understanding of phosphorylation signaling cascade in symbiosis.
Collapse
Affiliation(s)
- Dhileepkumar Jayaraman
- Department of Agronomy, 1575 Linden Drive, University of Wisconsin–Madison, WI 53706, USA
| | - Alicia L. Richards
- Department of Chemistry, 1101 University Avenue, University of Wisconsin–Madison, WI 53706, USA
- Genome Center of Wisconsin, University of Wisconsin–Madison, 425 Henry Mall, WI 53706, USA
| | - Michael S. Westphall
- Department of Chemistry, 1101 University Avenue, University of Wisconsin–Madison, WI 53706, USA
- Genome Center of Wisconsin, University of Wisconsin–Madison, 425 Henry Mall, WI 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, 420 Henry Mall, WI 53706, USA
| | - Joshua J. Coon
- Department of Chemistry, 1101 University Avenue, University of Wisconsin–Madison, WI 53706, USA
- Genome Center of Wisconsin, University of Wisconsin–Madison, 425 Henry Mall, WI 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, 420 Henry Mall, WI 53706, USA
| | - Jean-Michel Ané
- Department of Agronomy, 1575 Linden Drive, University of Wisconsin–Madison, WI 53706, USA
- Department of Bacteriology, 1550 Linden Drive, University of Wisconsin–Madison, WI 53706, USA
| |
Collapse
|
42
|
Differential regulation of the Epr3 receptor coordinates membrane-restricted rhizobial colonization of root nodule primordia. Nat Commun 2017; 8:14534. [PMID: 28230048 PMCID: PMC5331223 DOI: 10.1038/ncomms14534] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 01/09/2017] [Indexed: 11/08/2022] Open
Abstract
In Lotus japonicus, a LysM receptor kinase, EPR3, distinguishes compatible and incompatible rhizobial exopolysaccharides at the epidermis. However, the role of this recognition system in bacterial colonization of the root interior is unknown. Here we show that EPR3 advances the intracellular infection mechanism that mediates infection thread invasion of the root cortex and nodule primordia. At the cellular level, Epr3 expression delineates progression of infection threads into nodule primordia and cortical infection thread formation is impaired in epr3 mutants. Genetic dissection of this developmental coordination showed that Epr3 is integrated into the symbiosis signal transduction pathways. Further analysis showed differential expression of Epr3 in the epidermis and cortical primordia and identified key transcription factors controlling this tissue specificity. These results suggest that exopolysaccharide recognition is reiterated during the progressing infection and that EPR3 perception of compatible exopolysaccharide promotes an intracellular cortical infection mechanism maintaining bacteria enclosed in plant membranes.
Collapse
|
43
|
Schweiger W, Steiner B, Vautrin S, Nussbaumer T, Siegwart G, Zamini M, Jungreithmeier F, Gratl V, Lemmens M, Mayer KFX, Bérgès H, Adam G, Buerstmayr H. Suppressed recombination and unique candidate genes in the divergent haplotype encoding Fhb1, a major Fusarium head blight resistance locus in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1607-23. [PMID: 27174222 PMCID: PMC4943984 DOI: 10.1007/s00122-016-2727-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 05/03/2016] [Indexed: 05/09/2023]
Abstract
Fine mapping and sequencing revealed 28 genes in the non-recombining haplotype containing Fhb1 . Of these, only a GDSL lipase gene shows a pathogen-dependent expression pattern. Fhb1 is a prominent Fusarium head blight resistance locus of wheat, which has been successfully introgressed in adapted breeding material, where it confers a significant increase in overall resistance to the causal pathogen Fusarium graminearum and the fungal virulence factor and mycotoxin deoxynivalenol. The Fhb1 region has been resolved for the susceptible wheat reference genotype Chinese Spring, yet the causal gene itself has not been identified in resistant cultivars. Here, we report the establishment of a 1 Mb contig embracing Fhb1 in the donor line CM-82036. Sequencing revealed that the region of Fhb1 deviates from the Chinese Spring reference in DNA size and gene content, which explains the repressed recombination at the locus in the performed fine mapping. Differences in genes expression between near-isogenic lines segregating for Fhb1 challenged with F. graminearum or treated with mock were investigated in a time-course experiment by RNA sequencing. Several candidate genes were identified, including a pathogen-responsive GDSL lipase absent in susceptible lines. The sequence of the Fhb1 region, the resulting list of candidate genes, and near-diagnostic KASP markers for Fhb1 constitute a valuable resource for breeding and further studies aiming to identify the gene(s) responsible for F. graminearum and deoxynivalenol resistance.
Collapse
Affiliation(s)
- W Schweiger
- Institute for Biotechnology in Plant Production (IFA-Tulln), BOKU-University of Natural Resources and Life Sciences, Konrad Lorenz Strasse 20, 3430, Tulln, Austria.
| | - B Steiner
- Institute for Biotechnology in Plant Production (IFA-Tulln), BOKU-University of Natural Resources and Life Sciences, Konrad Lorenz Strasse 20, 3430, Tulln, Austria
| | - S Vautrin
- French Plant Genomic Resource Centre, INRA-CNRGV, Chemin de Borde Rouge, CS 52627, 31326, Castanet Tolosan, France
| | - T Nussbaumer
- Plant Genome and Systems Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
- Division of Computational System Biology, Department of Microbiology and Ecosystem Science, University of Vienna, 1090, Vienna, Austria
| | - G Siegwart
- Institute for Biotechnology in Plant Production (IFA-Tulln), BOKU-University of Natural Resources and Life Sciences, Konrad Lorenz Strasse 20, 3430, Tulln, Austria
- Department of Applied Genetics and Cell Biology, BOKU-University of Natural Resources and Life Sciences, Konrad Lorenz Strasse 22, 3430, Tulln, Austria
| | - M Zamini
- Institute for Biotechnology in Plant Production (IFA-Tulln), BOKU-University of Natural Resources and Life Sciences, Konrad Lorenz Strasse 20, 3430, Tulln, Austria
| | - F Jungreithmeier
- Institute for Biotechnology in Plant Production (IFA-Tulln), BOKU-University of Natural Resources and Life Sciences, Konrad Lorenz Strasse 20, 3430, Tulln, Austria
| | - V Gratl
- Institute for Biotechnology in Plant Production (IFA-Tulln), BOKU-University of Natural Resources and Life Sciences, Konrad Lorenz Strasse 20, 3430, Tulln, Austria
| | - M Lemmens
- Institute for Biotechnology in Plant Production (IFA-Tulln), BOKU-University of Natural Resources and Life Sciences, Konrad Lorenz Strasse 20, 3430, Tulln, Austria
| | - K F X Mayer
- Plant Genome and Systems Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - H Bérgès
- French Plant Genomic Resource Centre, INRA-CNRGV, Chemin de Borde Rouge, CS 52627, 31326, Castanet Tolosan, France
| | - G Adam
- Department of Applied Genetics and Cell Biology, BOKU-University of Natural Resources and Life Sciences, Konrad Lorenz Strasse 22, 3430, Tulln, Austria
| | - H Buerstmayr
- Institute for Biotechnology in Plant Production (IFA-Tulln), BOKU-University of Natural Resources and Life Sciences, Konrad Lorenz Strasse 20, 3430, Tulln, Austria
| |
Collapse
|
44
|
Jardinaud MF, Boivin S, Rodde N, Catrice O, Kisiala A, Lepage A, Moreau S, Roux B, Cottret L, Sallet E, Brault M, Emery RJN, Gouzy J, Frugier F, Gamas P. A Laser Dissection-RNAseq Analysis Highlights the Activation of Cytokinin Pathways by Nod Factors in the Medicago truncatula Root Epidermis. PLANT PHYSIOLOGY 2016; 171:2256-76. [PMID: 27217496 PMCID: PMC4936592 DOI: 10.1104/pp.16.00711] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 05/18/2016] [Indexed: 05/19/2023]
Abstract
Nod factors (NFs) are lipochitooligosaccharidic signal molecules produced by rhizobia, which play a key role in the rhizobium-legume symbiotic interaction. In this study, we analyzed the gene expression reprogramming induced by purified NF (4 and 24 h of treatment) in the root epidermis of the model legume Medicago truncatula Tissue-specific transcriptome analysis was achieved by laser-capture microdissection coupled to high-depth RNA sequencing. The expression of 17,191 genes was detected in the epidermis, among which 1,070 were found to be regulated by NF addition, including previously characterized NF-induced marker genes. Many genes exhibited strong levels of transcriptional activation, sometimes only transiently at 4 h, indicating highly dynamic regulation. Expression reprogramming affected a variety of cellular processes, including perception, signaling, regulation of gene expression, as well as cell wall, cytoskeleton, transport, metabolism, and defense, with numerous NF-induced genes never identified before. Strikingly, early epidermal activation of cytokinin (CK) pathways was indicated, based on the induction of CK metabolic and signaling genes, including the CRE1 receptor essential to promote nodulation. These transcriptional activations were independently validated using promoter:β-glucuronidase fusions with the MtCRE1 CK receptor gene and a CK response reporter (TWO COMPONENT SIGNALING SENSOR NEW). A CK pretreatment reduced the NF induction of the EARLY NODULIN11 (ENOD11) symbiotic marker, while a CK-degrading enzyme (CYTOKININ OXIDASE/DEHYDROGENASE3) ectopically expressed in the root epidermis led to increased NF induction of ENOD11 and nodulation. Therefore, CK may play both positive and negative roles in M. truncatula nodulation.
Collapse
Affiliation(s)
- Marie-Françoise Jardinaud
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Stéphane Boivin
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Nathalie Rodde
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Olivier Catrice
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Anna Kisiala
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Agnes Lepage
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Sandra Moreau
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Brice Roux
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Ludovic Cottret
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Erika Sallet
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Mathias Brault
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - R J Neil Emery
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Jérôme Gouzy
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Florian Frugier
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Pascal Gamas
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| |
Collapse
|
45
|
Miao M, Niu X, Kud J, Du X, Avila J, Devarenne TP, Kuhl JC, Liu Y, Xiao F. The ubiquitin ligase SEVEN IN ABSENTIA (SINA) ubiquitinates a defense-related NAC transcription factor and is involved in defense signaling. THE NEW PHYTOLOGIST 2016; 211:138-48. [PMID: 26879496 DOI: 10.1111/nph.13890] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/10/2016] [Indexed: 05/18/2023]
Abstract
We recently identified a defense-related tomato (Solanum lycopersicum) NAC (NAM, ATAF1,2, CUC2) transcription factor, NAC1, that is subjected to ubiquitin-proteasome system-dependent degradation in plant cells. In this study, we identified a tomato ubiquitin ligase (termed SEVEN IN ABSENTIA3; SINA3) that ubiquitinates NAC1, promoting its degradation. We conducted coimmunoprecipitation and bimolecular fluorescence complementation to determine that SINA3 specifically interacts with the NAC1 transcription factor in the nucleus. Moreover, we found that SINA3 ubiquitinates NAC1 in vitro and promotes NAC1 degradation via polyubiquitination in vivo, indicating that SINA3 is a ubiquitin ligase that ubiquitinates NAC1, promoting its degradation. Our real-time PCR analysis indicated that, in contrast to our previous finding that NAC1 mRNA abundance increases upon Pseudomonas infection, the SINA3 mRNA abundance decreases in response to Pseudomonas infection. Moreover, using Agrobacterium-mediated transient expression, we found that overexpression of SINA3 interferes with the hypersensitive response cell death triggered by multiple plant resistance proteins. These results suggest that SINA3 ubiquitinates a defense-related NAC transcription factor for degradation and plays a negative role in defense signaling.
Collapse
Affiliation(s)
- Min Miao
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
- Department of Plant, Soil and Entomological Sciences, University of Idaho, Moscow, ID 83844-2339, USA
| | - Xiangli Niu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Joanna Kud
- Department of Plant, Soil and Entomological Sciences, University of Idaho, Moscow, ID 83844-2339, USA
| | - Xinran Du
- Department of Plant, Soil and Entomological Sciences, University of Idaho, Moscow, ID 83844-2339, USA
| | - Julian Avila
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 83844-2339, USA
| | - Timothy P Devarenne
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 83844-2339, USA
| | - Joseph C Kuhl
- Department of Plant, Soil and Entomological Sciences, University of Idaho, Moscow, ID 83844-2339, USA
| | - Yongsheng Liu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Fangming Xiao
- Department of Plant, Soil and Entomological Sciences, University of Idaho, Moscow, ID 83844-2339, USA
| |
Collapse
|
46
|
Vernié T, Camut S, Camps C, Rembliere C, de Carvalho-Niebel F, Mbengue M, Timmers T, Gasciolli V, Thompson R, le Signor C, Lefebvre B, Cullimore J, Hervé C. PUB1 Interacts with the Receptor Kinase DMI2 and Negatively Regulates Rhizobial and Arbuscular Mycorrhizal Symbioses through Its Ubiquitination Activity in Medicago truncatula. PLANT PHYSIOLOGY 2016; 170:2312-24. [PMID: 26839127 PMCID: PMC4825150 DOI: 10.1104/pp.15.01694] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/30/2016] [Indexed: 05/21/2023]
Abstract
PUB1, an E3 ubiquitin ligase, which interacts with and is phosphorylated by the LYK3 symbiotic receptor kinase, negatively regulates rhizobial infection and nodulation during the nitrogen-fixing root nodule symbiosis in Medicago truncatula In this study, we show that PUB1 also interacts with and is phosphorylated by DOES NOT MAKE INFECTIONS 2, the key symbiotic receptor kinase of the common symbiosis signaling pathway, required for both the rhizobial and the arbuscular mycorrhizal (AM) endosymbioses. We also show here that PUB1 expression is activated during successive stages of root colonization by Rhizophagus irregularis that is compatible with its interaction with DOES NOT MAKE INFECTIONS 2. Through characterization of a mutant, pub1-1, affected by the E3 ubiquitin ligase activity of PUB1, we have shown that the ubiquitination activity of PUB1 is required to negatively modulate successive stages of infection and development of rhizobial and AM symbioses. In conclusion, PUB1 represents, to our knowledge, a novel common component of symbiotic signaling integrating signal perception through interaction with and phosphorylation by two key symbiotic receptor kinases, and downstream signaling via its ubiquitination activity to fine-tune both rhizobial and AM root endosymbioses.
Collapse
Affiliation(s)
- Tatiana Vernié
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); and Institut National de la Recherche Agronomique-UMR1347-Agroecologie AgroSup/Institut National de la Recherche Agronomique/uB, Pôle Génétique & Ecophysiologie GEAPSI, 21065 Dijon France (R.T., C.L.)
| | - Sylvie Camut
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); and Institut National de la Recherche Agronomique-UMR1347-Agroecologie AgroSup/Institut National de la Recherche Agronomique/uB, Pôle Génétique & Ecophysiologie GEAPSI, 21065 Dijon France (R.T., C.L.)
| | - Céline Camps
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); and Institut National de la Recherche Agronomique-UMR1347-Agroecologie AgroSup/Institut National de la Recherche Agronomique/uB, Pôle Génétique & Ecophysiologie GEAPSI, 21065 Dijon France (R.T., C.L.)
| | - Céline Rembliere
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); and Institut National de la Recherche Agronomique-UMR1347-Agroecologie AgroSup/Institut National de la Recherche Agronomique/uB, Pôle Génétique & Ecophysiologie GEAPSI, 21065 Dijon France (R.T., C.L.)
| | - Fernanda de Carvalho-Niebel
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); and Institut National de la Recherche Agronomique-UMR1347-Agroecologie AgroSup/Institut National de la Recherche Agronomique/uB, Pôle Génétique & Ecophysiologie GEAPSI, 21065 Dijon France (R.T., C.L.)
| | - Malick Mbengue
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); and Institut National de la Recherche Agronomique-UMR1347-Agroecologie AgroSup/Institut National de la Recherche Agronomique/uB, Pôle Génétique & Ecophysiologie GEAPSI, 21065 Dijon France (R.T., C.L.)
| | - Ton Timmers
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); and Institut National de la Recherche Agronomique-UMR1347-Agroecologie AgroSup/Institut National de la Recherche Agronomique/uB, Pôle Génétique & Ecophysiologie GEAPSI, 21065 Dijon France (R.T., C.L.)
| | - Virginie Gasciolli
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); and Institut National de la Recherche Agronomique-UMR1347-Agroecologie AgroSup/Institut National de la Recherche Agronomique/uB, Pôle Génétique & Ecophysiologie GEAPSI, 21065 Dijon France (R.T., C.L.)
| | - Richard Thompson
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); and Institut National de la Recherche Agronomique-UMR1347-Agroecologie AgroSup/Institut National de la Recherche Agronomique/uB, Pôle Génétique & Ecophysiologie GEAPSI, 21065 Dijon France (R.T., C.L.)
| | - Christine le Signor
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); and Institut National de la Recherche Agronomique-UMR1347-Agroecologie AgroSup/Institut National de la Recherche Agronomique/uB, Pôle Génétique & Ecophysiologie GEAPSI, 21065 Dijon France (R.T., C.L.)
| | - Benoit Lefebvre
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); and Institut National de la Recherche Agronomique-UMR1347-Agroecologie AgroSup/Institut National de la Recherche Agronomique/uB, Pôle Génétique & Ecophysiologie GEAPSI, 21065 Dijon France (R.T., C.L.)
| | - Julie Cullimore
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); and Institut National de la Recherche Agronomique-UMR1347-Agroecologie AgroSup/Institut National de la Recherche Agronomique/uB, Pôle Génétique & Ecophysiologie GEAPSI, 21065 Dijon France (R.T., C.L.)
| | - Christine Hervé
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); and Institut National de la Recherche Agronomique-UMR1347-Agroecologie AgroSup/Institut National de la Recherche Agronomique/uB, Pôle Génétique & Ecophysiologie GEAPSI, 21065 Dijon France (R.T., C.L.)
| |
Collapse
|
47
|
Shu B, Li W, Liu L, Wei Y, Shi S. Transcriptomes of Arbuscular Mycorrhizal Fungi and Litchi Host Interaction after Tree Girdling. Front Microbiol 2016; 7:408. [PMID: 27065972 PMCID: PMC4811939 DOI: 10.3389/fmicb.2016.00408] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/14/2016] [Indexed: 12/17/2022] Open
Abstract
Trunk girdling can increase carbohydrate content above the girdling site and is an important strategy for inhibiting new shoot growth to promote flowering in cultivated litchi (Litchi chinensis Sonn.). However, girdling inhibits carbohydrate transport to the root in nearly all of the fruit development periods and consequently decreases root absorption. The mechanism through which carbohydrates regulate root development in arbuscular mycorrhiza (AM) remains largely unknown. Carbohydrate content, AM colonization, and transcriptome in the roots were analyzed to elucidate the interaction between host litchi and AM fungi when carbohydrate content decreases. Girdling decreased glucose, fructose, sucrose, quebrachitol, and starch contents in the litchi mycorrhizal roots, thereby reducing AM colonization. RNA-seq achieved approximately 60 million reads of each sample, with an average length of reads reaching 100 bp. Assembly of all the reads of the 30 samples produced 671,316 transcripts and 381,429 unigenes, with average lengths of 780 and 643 bp, respectively. Litchi (54,100 unigenes) and AM fungi unigenes (33,120 unigenes) were achieved through sequence annotation during decreased carbohydrate content. Analysis of differentially expressed genes (DEG) showed that flavonoids, alpha-linolenic acid, and linoleic acid are the main factors that regulate AM colonization in litchi. However, flavonoids may play a role in detecting the stage at which carbohydrate content decreases; alpha-linolenic acid or linoleic acid may affect AM formation under the adaptation process. Litchi trees stimulated the expression of defense-related genes and downregulated symbiosis signal-transduction genes to inhibit new AM colonization. Moreover, transcription factors of the AP2, ERF, Myb, WRKY, bHLH families, and lectin genes altered maintenance of litchi mycorrhizal roots in the post-symbiotic stage for carbohydrate starvation. Similar to those of the litchi host, the E3 ubiquitin ligase complex SCF subunit scon-3 and polyubiquitin of AM fungi were upregulated at the perceived stages. This occurrence suggested that ubiquitination plays an important role in perceiving carbohydrate decrease in AM fungi. The transcription of cytochrome b-245 and leucine-rich repeat was detected in the DEG database, implying that the transcripts were involved in AM fungal adaptation under carbohydrate starvation. The transcriptome data might suggest novel functions of unigenes in carbohydrate shortage of mycorrhizal roots.
Collapse
Affiliation(s)
| | | | | | | | - Shengyou Shi
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural ScienceZhanjiang, China
| |
Collapse
|
48
|
Yeo FKS, Wang Y, Vozabova T, Huneau C, Leroy P, Chalhoub B, Qi XQ, Niks RE, Marcel TC. Haplotype divergence and multiple candidate genes at Rphq2, a partial resistance QTL of barley to Puccinia hordei. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:289-304. [PMID: 26542283 PMCID: PMC4733143 DOI: 10.1007/s00122-015-2627-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 10/17/2015] [Indexed: 05/04/2023]
Abstract
KEY MESSAGE Rphq2, a minor gene for partial resistance to Puccinia hordei , was physically mapped in a 188 kbp introgression with suppressed recombination between haplotypes of rphq2 and Rphq2 barley cultivars. ABSTRACT Partial and non-host resistances to rust fungi in barley (Hordeum vulgare) may be based on pathogen-associated molecular pattern (PAMP)-triggered immunity. Understanding partial resistance may help to understand non-host resistance, and vice versa. We constructed two non-gridded BAC libraries from cultivar Vada and line SusPtrit. Vada is immune to non-adapted Puccinia rust fungi, and partially resistant to P. hordei. SusPtrit is susceptible to several non-adapted rust fungi, and has been used for mapping QTLs for non-host and partial resistance. The BAC libraries help to identify genes determining the natural variation for partial and non-host resistances of barley to rust fungi. A major-effect QTL, Rphq2, for partial resistance to P. hordei was mapped in a complete Vada and an incomplete SusPtrit contig. The physical distance between the markers flanking Rphq2 was 195 Kbp in Vada and at least 226 Kbp in SusPtrit. This marker interval was predicted to contain 12 genes in either accession, of which only five genes were in common. The haplotypes represented by Vada and SusPtrit were found in 57 and 43%, respectively, of a 194 barley accessions panel. The lack of homology between the two haplotypes probably explains the suppression of recombination in the Rphq2 area and limit further genetic resolution in fine mapping. The possible candidate genes for Rphq2 encode peroxidases, kinases and a member of seven-in-absentia protein family. This result suggests that Rphq2 does not belong to the NB-LRR gene family and does not resemble any of the partial resistance genes cloned previously.
Collapse
Affiliation(s)
- F K S Yeo
- Laboratory of Plant Breeding, Wageningen University, Droevendaalsesteeg 1, 6708PB, 6700 AJ, Wageningen, The Netherlands
- Department of Plant Science and Environmental Ecology, Faculty of Resource Science and Technology, University Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Y Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing, 100093, China
| | - T Vozabova
- Laboratory of Plant Breeding, Wageningen University, Droevendaalsesteeg 1, 6708PB, 6700 AJ, Wageningen, The Netherlands
- The Institute of Botany of the Academy of Science of the Czech Republic, Zámek 1, 252 43, Průhonice, Czech Republic
| | - C Huneau
- INRA, UMR1165, Unité de Recherche en Génomique Végétale, 91057, Evry, France
- Université d'Evry Val d'Essonne, UMR1165, Unité de Recherche en Génomique Végétale, 91057, Evry, France
| | - P Leroy
- INRA, UMR1095, Genetics Diversity and Ecophysiology of Cereals, 63039, Clermont-Ferrand, France
- Université Blaise Pascal, UMR1095, Genetics Diversity and Ecophysiology of Cereals, 63039, Clermont-Ferrand, France
| | - B Chalhoub
- INRA, UMR1165, Unité de Recherche en Génomique Végétale, 91057, Evry, France
- Université d'Evry Val d'Essonne, UMR1165, Unité de Recherche en Génomique Végétale, 91057, Evry, France
| | - X Q Qi
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing, 100093, China
| | - R E Niks
- Laboratory of Plant Breeding, Wageningen University, Droevendaalsesteeg 1, 6708PB, 6700 AJ, Wageningen, The Netherlands.
| | - T C Marcel
- Laboratory of Plant Breeding, Wageningen University, Droevendaalsesteeg 1, 6708PB, 6700 AJ, Wageningen, The Netherlands
- INRA, UMR1290, BIOGER, 78850, Thiverval-Grignon, France
- AgroParisTech, UMR1290, BIOGER, 78850, Thiverval-Grignon, France
| |
Collapse
|
49
|
Ramalingam A, Kudapa H, Pazhamala LT, Weckwerth W, Varshney RK. Proteomics and Metabolomics: Two Emerging Areas for Legume Improvement. FRONTIERS IN PLANT SCIENCE 2015; 6:1116. [PMID: 26734026 PMCID: PMC4689856 DOI: 10.3389/fpls.2015.01116] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/25/2015] [Indexed: 05/19/2023]
Abstract
The crop legumes such as chickpea, common bean, cowpea, peanut, pigeonpea, soybean, etc. are important sources of nutrition and contribute to a significant amount of biological nitrogen fixation (>20 million tons of fixed nitrogen) in agriculture. However, the production of legumes is constrained due to abiotic and biotic stresses. It is therefore imperative to understand the molecular mechanisms of plant response to different stresses and identify key candidate genes regulating tolerance which can be deployed in breeding programs. The information obtained from transcriptomics has facilitated the identification of candidate genes for the given trait of interest and utilizing them in crop breeding programs to improve stress tolerance. However, the mechanisms of stress tolerance are complex due to the influence of multi-genes and post-transcriptional regulations. Furthermore, stress conditions greatly affect gene expression which in turn causes modifications in the composition of plant proteomes and metabolomes. Therefore, functional genomics involving various proteomics and metabolomics approaches have been obligatory for understanding plant stress tolerance. These approaches have also been found useful to unravel different pathways related to plant and seed development as well as symbiosis. Proteome and metabolome profiling using high-throughput based systems have been extensively applied in the model legume species, Medicago truncatula and Lotus japonicus, as well as in the model crop legume, soybean, to examine stress signaling pathways, cellular and developmental processes and nodule symbiosis. Moreover, the availability of protein reference maps as well as proteomics and metabolomics databases greatly support research and understanding of various biological processes in legumes. Protein-protein interaction techniques, particularly the yeast two-hybrid system have been advantageous for studying symbiosis and stress signaling in legumes. In this review, several studies on proteomics and metabolomics in model and crop legumes have been discussed. Additionally, applications of advanced proteomics and metabolomics approaches have also been included in this review for future applications in legume research. The integration of these "omics" approaches will greatly support the identification of accurate biomarkers in legume smart breeding programs.
Collapse
Affiliation(s)
- Abirami Ramalingam
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) Hyderabad, India
| | - Himabindu Kudapa
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) Hyderabad, India
| | - Lekha T Pazhamala
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) Hyderabad, India
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, University of Vienna Vienna, Austria
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)Hyderabad, India; School of Plant Biology and Institute of Agriculture, The University of Western AustraliaCrawley, WA, Australia
| |
Collapse
|
50
|
Zou X, Qin Z, Zhang C, Liu B, Liu J, Zhang C, Lin C, Li H, Zhao T. Over-expression of an S-domain receptor-like kinase extracellular domain improves panicle architecture and grain yield in rice. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:7197-7209. [PMID: 26428067 PMCID: PMC4765790 DOI: 10.1093/jxb/erv417] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The S-domain receptor kinase (SRK) comprises a highly polymorphic subfamily of receptor-like kinases (RLKs) originally found to be involved in the self-incompatibility response in Brassica. Although several members have been identified to play roles in developmental control and disease responses, the correlation between SRKs and yield components in rice is still unclear. The utility of transgenic expression of a dominant negative form of SRK, OsLSK1 (Large spike S-domain receptor like Kinase 1), is reported here for the improvement of grain yield components in rice. OsLSK1 was highly expressed in nodes of rice and is a plasma membrane protein. The expression of OsLSK1 responded to the exogenous application of growth hormones, to abiotic stresses, and its extracellular domain could form homodimers or heterodimers with other related SRKs. Over-expression of a truncated version of OsLSK1 (including the extracellular and transmembrane domain of OsLSK1 without the intracellular kinase domain) increased plant height and improve yield components, including primary branches per panicle and grains per primary branch, resulting in about a 55.8% increase of the total grain yield per plot (10 plants). Transcriptional analysis indicated that several key genes involved in the GA biosynthetic and signalling pathway were up-regulated in transgenic plants. However, full-length cDNA over-expression and RNAi of OsLSK1 transgenic plants did not exhibit a detectable visual phenotype and possible reasons for this were discussed. These results indicate that OsLSK1 may act redundantly with its homologues to affect yield traits in rice and manipulation of OsLSK1 by the dominant negative method is a practicable strategy to improve grain yield in rice and other crops.
Collapse
Affiliation(s)
- Xiaohua Zou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhengrui Qin
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chunyu Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bin Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jun Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chengsheng Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Chentao Lin
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Hongyu Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tao Zhao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|