1
|
Azevedo LM, de Oliveira RR, Dos Reis GL, de Campos Rume G, Alvarenga JP, Gutiérrez RM, de Carvalho Costa J, Chalfun-Junior A. Hormonal crosstalk during the reproductive stage of Coffea arabica: interactions among gibberellin, abscisic acid, and ethylene. PLANTA 2025; 261:110. [PMID: 40223003 DOI: 10.1007/s00425-025-04679-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/27/2025] [Indexed: 04/15/2025]
Abstract
MAIN CONCLUSION The application of gibberellin and abscisic acid in coffee plants resulted in increased floral bud formation and fruit production by regulating key genes involved in flowering and hormonal biosynthesis pathways. Despite ongoing efforts, understanding hormonal regulation in perennial and woody species with complex phenological cycles, such as Coffea arabica L., remains limited. Given the global importance of coffee, identifying the main regulators of reproductive development is crucial to guarantee production, especially in face of climate change. This study investigated the effects of gibberellin (GA) and abscisic acid (ABA) at different concentrations (5, 25 and 100 ppm) in the reproductive development of C. arabica. Phenological analyses, molecular identification of genes involved in GA and ABA biosynthesis, degradation, and signaling, as well as gene expression profiling in leaves and floral buds during floral induction and development, were conducted. Promoter analysis of CaFT, quantification of 1-aminocyclopropane-1-carboxylate (ACC), enzymatic activity of ACC oxidase (ACO), and ethylene content were also assessed. Results showed that GA irrespective of concentration and ABA at 25 ppm applied during the main period of floral induction (March) significantly increased the number of floral buds, with ABA also accelerating the development. Similarly, applying these regulators in plants with floral buds at more advanced stages (August) increased the number of floral buds and fruit production in the GA (5 and 100 ppm) and ABA (25 and 100 ppm) treatments. Phylogenetic and molecular analyses identified genes related to GA and ABA biosynthesis, degradation, and signaling in coffee plants. GA and ABA treatments affected the expression of genes related to floral induction and organ formation, such as CaDELLA in March, which may relate to the increased number of floral buds. Moreover, in August, plants treated with 5 and 100 ppm GA and 100 ppm ABA showed up-regulation of CaFT1 expression, likely due to the down-regulation of CaCO during this period. In addition to GA-ABA interactions, our results suggest that GA promotes ACC accumulation in leaves in August, which may act as a mobile signal transported to floral buds, where its conversion to ethylene could regulate anthesis, highlighting a GA-ACC-ethylene interaction in coffee flowering. However, no significant differences in ethylene biosynthesis were observed in March with the application of these hormones, underscoring the incipient role of ethylene during floral induction in coffee. These results suggest reciprocal regulation of floral development by GA-ABA pathways in a dose-dependent manner and interacting with other hormonal pathways such as the ethylene biosynthesis in leaves and floral buds. These findings provide new insights into the hormonal regulation of coffee flowering, guiding field practices and breeding programs to maximize coffee production.
Collapse
Affiliation(s)
- Lillian Magalhães Azevedo
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Institute of Biology, Federal University of Lavras (UFLA), Lavras, Minas Gerais, Brazil
| | - Raphael Ricon de Oliveira
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Institute of Biology, Federal University of Lavras (UFLA), Lavras, Minas Gerais, Brazil
- Department of Biological Sciences, State University of Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Gabriel Lasmar Dos Reis
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Institute of Biology, Federal University of Lavras (UFLA), Lavras, Minas Gerais, Brazil
| | - Gabriel de Campos Rume
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Institute of Biology, Federal University of Lavras (UFLA), Lavras, Minas Gerais, Brazil
| | - Joyce Pereira Alvarenga
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Institute of Biology, Federal University of Lavras (UFLA), Lavras, Minas Gerais, Brazil
| | - Robert Márquez Gutiérrez
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Institute of Biology, Federal University of Lavras (UFLA), Lavras, Minas Gerais, Brazil
| | - Júlia de Carvalho Costa
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Institute of Biology, Federal University of Lavras (UFLA), Lavras, Minas Gerais, Brazil
| | - Antonio Chalfun-Junior
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Institute of Biology, Federal University of Lavras (UFLA), Lavras, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Azevedo LM, de Oliveira RR, Chalfun-Junior A. The Role of FT/ TFL1 Clades and Their Hormonal Interactions to Modulate Plant Architecture and Flowering Time in Perennial Crops. PLANTS (BASEL, SWITZERLAND) 2025; 14:923. [PMID: 40265831 PMCID: PMC11944798 DOI: 10.3390/plants14060923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 04/24/2025]
Abstract
Human nutrition is inherently associated with the cultivation of vegetables, grains, and fruits, underscoring the critical need to understand and manipulate the balance between vegetative and reproductive development in plants. Despite the vast diversity within the plant kingdom, these developmental processes share conserved and interconnected pathways among angiosperms, predominantly involving age, vernalization, gibberellin, temperature, photoperiod, and autonomous pathways. These pathways interact with environmental cues and orchestrate the transition from vegetative growth to reproductive stages. Related to this, there are two key genes belonging to the same Phosphatidylethanolamine-binding proteins family (PEBP), the FLOWERING LOCUS T (FT) and TERMINAL FLOWER 1 (TFL1), which activate and repress the floral initiation, respectively, in different plant species. They compete for transcription factors such as FLOWERING LOCUS D (FD) and 14-3-3 to form floral activation complexes (FAC) and floral repression complexes (FRC). The FT/TFL1 mechanism plays a pivotal role in meristem differentiation, determining developmental outcomes as determinate or indeterminate. This review aims to explore the roles of FT and TFL1 in plant architecture and floral induction of annual and perennial species, together with their interactions with plant hormones. In this context, we propose that plant development can be modulated by the response of FT and/or TFL1 to plant growth regulators (PGRs), which emerge as potential tools for mitigating the adverse effects of environmental changes on plant reproductive processes. Thus, understanding these mechanisms is crucial to address the challenges of agricultural practices, especially in the face of climate change.
Collapse
Affiliation(s)
- Lillian Magalhães Azevedo
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Institute of Biology, Federal University of Lavras (UFLA), Lavras 37200-900, MG, Brazil; (L.M.A.); (R.R.d.O.)
| | - Raphael Ricon de Oliveira
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Institute of Biology, Federal University of Lavras (UFLA), Lavras 37200-900, MG, Brazil; (L.M.A.); (R.R.d.O.)
- Department of Biological Sciences, State University of Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil
| | - Antonio Chalfun-Junior
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Institute of Biology, Federal University of Lavras (UFLA), Lavras 37200-900, MG, Brazil; (L.M.A.); (R.R.d.O.)
| |
Collapse
|
3
|
Bhattacharjee S, Paul K, Raman KV, Tilgam J, Kumari P, Baaniya M, Sreevathsa R, Anand A, Prashat GR, Pattanayak D. Constitutive expression of CEN-like protein 2, a TFL1 ortholog of pigeon pea ( Cajanus cajan [L.] Millspaugh) delays flowering in transgenic tobacco plants. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2025; 31:419-433. [PMID: 40256274 PMCID: PMC12006589 DOI: 10.1007/s12298-025-01572-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/22/2025] [Accepted: 03/02/2025] [Indexed: 04/22/2025]
Abstract
CEN-like protein 2 of pigeon pea, a candidate anti-florigen gene and a close homolog of AtTFL1 (Arabidopsis Terminal Flower1) of the PEBP family has been characterized through constitutive expression in tobacco. In-silico analysis helped to demonstrate the absence of a nuclear binding domain and the conserveness of substrate binding sites of this protein across angiosperms. Transgenic tobacco lines with 2-eightfold higher expressions of CEN-like protein 2 showed delayed flowering (26-32 days) along with significant morphological changes, including vegetative vigour, number and size of flowers, fruit setting, etc. Together, these findings showed that CEN-like protein 2 not only delays floral transition through repression but also regulates a variety of developmental traits. Expression profiling of upstream and downstream interacting pathway genes explained that their expression modulation led to a prolonged vegetative phase of over-expressed lines. Floral inducer genes like APETALA1 and LEAFY were drastically down-regulated in transgenic lines, reconfirming the role of the CEN-like 2 gene in floral regulation. In conclusion, precisely controlling CcCEN-like 2 gene expression may prove useful for refining pigeon pea breeding. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-025-01572-8.
Collapse
Affiliation(s)
- Sougata Bhattacharjee
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Krishnayan Paul
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - K. Venkat Raman
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| | - Jyotsana Tilgam
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Priyanka Kumari
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Mahi Baaniya
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Rohini Sreevathsa
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| | - Anjali Anand
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| | - G. Rama Prashat
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| | - Debasis Pattanayak
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| |
Collapse
|
4
|
Liang Z, Huang Y, Hao Y, Song X, Zhu T, Liu C, Li C. The HISTONE ACETYLTRANSFERASE 1 interacts with CONSTANS to promote flowering in Arabidopsis. J Genet Genomics 2025:S1673-8527(25)00025-6. [PMID: 39855391 DOI: 10.1016/j.jgg.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Chromatin modifications, including histone acetylation, play essential roles in regulating flowering. The CBP/p300 family HISTONE ACETYLTRANSFERASE 1 (HAC1), which mediates histone acetylation, promotes the process of floral transition; however, the precise mechanism remains largely unclear. Specifically, how HAC1 is involved in the flowering regulatory network and which genes are the direct targets of HAC1 during flowering regulation are still unknown. In this study, we elucidated the critical function of HAC1 in promoting flowering via exerting active epigenetic markers at two key floral integrators, FT and SOC1, thereby regulating their expression to trigger the flowering process. We show that HAC1 physically interacts with CONSTANS (CO) in vivo and in vitro. Chromatin immunoprecipitation results indicate that HAC1 directly binds to the FT and SOC1 loci. Loss of HAC1 impairs CO-mediated transcriptional activation of FT and SOC1 in promoting flowering. Moreover, CO mutation leads to the decreased enrichment of HAC1 at FT and SOC1, indicating that CO recruits HAC1 to FT and SOC1. Finally, HAC1, as well as CO, is required for the elevated histone acetylation level at FT and SOC1. Taken together, our finding reveals that HAC1-mediated histone acetylation boots flowering via a CO-dependent activation of FT and SOC1.
Collapse
Affiliation(s)
- Zhenwei Liang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Yisui Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Yuanhao Hao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Xin Song
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Tao Zhu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Chen Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Chenlong Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China.
| |
Collapse
|
5
|
Duk MA, Gursky VV, Bankin MP, Semenova EA, Gurkina MV, Golubkova EV, Hirata D, Samsonova MG, Surkova SY. Modeling Floral Induction in the Narrow-Leafed Lupin Lupinus angustifolius Under Different Environmental Conditions. PLANTS (BASEL, SWITZERLAND) 2024; 13:3548. [PMID: 39771246 PMCID: PMC11678331 DOI: 10.3390/plants13243548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
Flowering is initiated in response to environmental cues, with the photoperiod and ambient temperature being the main ones. The regulatory pathways underlying floral transition are well studied in Arabidopsis thaliana but remain largely unknown in legumes. Here, we first applied an in silico approach to infer the regulatory inputs of four FT-like genes of the narrow-leafed lupin Lupinus angustifolius. We studied the roles of FTc1, FTc2, FTa1, and FTa2 in the activation of meristem identity gene AGL8 in response to 8 h and 16 h photoperiods, vernalization, and the circadian rhythm. We developed a set of regression models of AGL8 regulation by the FT-like genes and fitted these models to the recently published gene expression data. The importance of the input from each FT-like gene or their combinations was estimated by comparing the performance of models with one or few FT-like genes turned off, thereby simulating loss-of-function mutations that were yet unavailable in L. angustifolius. Our results suggested that in the early flowering Ku line and intermediate Pal line, the FTc1 gene played a major role in floral transition; however, it acted through different mechanisms under short and long days. Turning off the regulatory input of FTc1 resulted in substantial changes in AGL8 expression associated with vernalization sensitivity and the circadian rhythm. In the wild ku line, we found that both FTc1 and FTa1 genes had an essential role under long days, which was associated with the vernalization response. These results could be applied both for setting up new experiments and for data analysis using the proposed modeling approach.
Collapse
Affiliation(s)
- Maria A. Duk
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great Saint Petersburg Polytechnic University, 195251 St. Petersburg, Russia
- Theoretical Department, Ioffe Institute, 194021 St. Petersburg, Russia
| | - Vitaly V. Gursky
- Theoretical Department, Ioffe Institute, 194021 St. Petersburg, Russia
| | - Mikhail P. Bankin
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great Saint Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Elena A. Semenova
- Faculty of Agronomy and Ecology, Far Eastern State Agrarian University, 675005 Blagoveschensk, Russia
| | - Maria V. Gurkina
- Astrakhan Experiment Station, N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 416462 Astrakhan, Russia
| | - Elena V. Golubkova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, 199034 St. Petersburg, Russia
| | - Daisuke Hirata
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great Saint Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Maria G. Samsonova
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great Saint Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Svetlana Yu. Surkova
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great Saint Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| |
Collapse
|
6
|
Ding J, Wang K, Pandey S, Perales M, Allona I, Khan MRI, Busov VB, Bhalerao RP. Molecular advances in bud dormancy in trees. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6063-6075. [PMID: 38650362 PMCID: PMC11582002 DOI: 10.1093/jxb/erae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Seasonal bud dormancy in perennial woody plants is a crucial and intricate process that is vital for the survival and development of plants. Over the past few decades, significant advancements have been made in understanding many features of bud dormancy, particularly in model species, where certain molecular mechanisms underlying this process have been elucidated. We provide an overview of recent molecular progress in understanding bud dormancy in trees, with a specific emphasis on the integration of common signaling and molecular mechanisms identified across different tree species. Additionally, we address some challenges that have emerged from our current understanding of bud dormancy and offer insights for future studies.
Collapse
Affiliation(s)
- Jihua Ding
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Center for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, 430070, Wuhan, China
| | - Kejing Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Center for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, 430070, Wuhan, China
| | - Shashank Pandey
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Mariano Perales
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria, CNINIA (CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Isabel Allona
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria, CNINIA (CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Md Rezaul Islam Khan
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, USA
| | - Victor B Busov
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, USA
| | - Rishikesh P Bhalerao
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| |
Collapse
|
7
|
Wan M, Zhao D, Lin S, Wang P, Liang B, Jin Q, Jiao Y, Song Y, Ge X, King GJ, Yang G, Wang J, Hong D. Allelic Variation of BnaFTA2 and BnaFTC6 Is Associated With Flowering Time and Seasonal Crop Type in Rapeseed (Brassica napus L.). PLANT, CELL & ENVIRONMENT 2024. [PMID: 39360620 DOI: 10.1111/pce.15165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 08/20/2024] [Accepted: 09/07/2024] [Indexed: 10/04/2024]
Abstract
Different ecological types of rapeseed (Brassica napus L.), including winter, spring, and semi-winter cultivars, exhibit varying flowering times and cannot be planted in the same cultivation areas. FLOWERING LOCUS T (FT) plays a key role in regulating flowering. In allotetraploid B. napus six copies of FT (BnaFT) have been reported. However, there is uncertainty about how the translated products of each paralog, as well as cis-allelic variations at each locus, contribute functionally to flowering time and define specific crop types. In this study, we confirm that BnaFT exhibit distinct expression patterns in different crop types of rapeseed. Using the CRISPR/Cas9 gene editing system, we provide functional evidence that the mutants between Bnaft paralogues affects the regulation of flowering time. Furthermore, we identify a new haplotype of BnaFT.A2 that is associated with early flowering time, although this appears necessary but not sufficient to confer a spring type phenotype. Three haplotypes of BnaFT.C6 were further identified and associated with both flowering time and crop types. We speculate that variations in both BnaFT.A2 and BnaFT.C6 may have undergone diversifying selection during the divergence of seasonal crop types in rapeseed.
Collapse
Affiliation(s)
- Ming Wan
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dawei Zhao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shengzhe Lin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Pengfei Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Baoling Liang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qingdong Jin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yushun Jiao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yixian Song
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Graham J King
- Southern Cross Plant Science, Southern Cross University, Lismore, New South Wales, Australia
| | - Guangsheng Yang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Jing Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dengfeng Hong
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
8
|
Liu X, Han M, Jiang T, Liu L, Luo J, Lu Y, Zhao Y, Jiang CZ, Gao J, Hong B, Ma C. AGAMOUS-LIKE 24 senses continuous inductive photoperiod in the inflorescence meristem to promote anthesis in chrysanthemum. THE PLANT CELL 2024; 36:4658-4671. [PMID: 39159157 PMCID: PMC11448879 DOI: 10.1093/plcell/koae235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024]
Abstract
During the floral transition, many plant species including chrysanthemum (Chrysanthemum morifolium) require continuous photoperiodic stimulation for successful anthesis. Insufficient photoperiodic stimulation results in flower bud arrest or even failure. The molecular mechanisms underlying how continuous photoperiodic stimulation promotes anthesis are not well understood. Here, we reveal that in wild chrysanthemum (Chrysanthemum indicum), an obligate short-day (SD) plant, floral evocation is not limited to SD conditions. However, SD signals generated locally in the inflorescence meristem (IM) play a vital role in ensuring anthesis after floral commitment. Genetic analyses indicate that the florigen FLOWERING LOCUS T-LIKE3 (CiFTL3) plays an important role in floral evocation, but a lesser role in anthesis. Importantly, our data demonstrate that AGAMOUS-LIKE 24 (CiAGL24) is a critical component of SD signal perception in the IM to promote successful anthesis, and that floral evocation and anthesis are two separate developmental events in chrysanthemum. We further reveal that the central circadian clock component PSEUDO-RESPONSE REGULATOR 7 (CiPRR7) in the IM activates CiAGL24 expression in response to SD conditions. Moreover, our findings elucidate a negative feedback loop in which CiAGL24 and SUPPRESSOR OF OVEREXPRESSION OF CO 1 (CiSOC1) modulate LEAFY (CiLFY) expression. Together, our results demonstrate that the CiPRR7-CiAGL24 module is vital for sustained SD signal perception in the IM to ensure successful anthesis in chrysanthemum.
Collapse
Affiliation(s)
- Xuening Liu
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Mingzheng Han
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Tianhua Jiang
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Lei Liu
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jiayi Luo
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Ying Lu
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yafei Zhao
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Cai-Zhong Jiang
- Crops Pathology and Genetic Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, CA 95616, USA
- Department of Plant Sciences, University of California at Davis, Davis, CA 95616, USA
| | - Junping Gao
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Bo Hong
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Chao Ma
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
9
|
Tan J, Muhammad S, Zhang L, He H, Bian J. Functional divergence of FTL9 and FTL10 in flowering control in rice. BMC Genomics 2024; 25:562. [PMID: 38840036 PMCID: PMC11151565 DOI: 10.1186/s12864-024-10441-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Floral transition in cereals is a critical phenomenon influenced by exogenous and endogenous signals, determining crop yield and reproduction. Flowering Locus T-like (FT-like) genes encode a mobile florigen, the main signaling molecule for flowering. RESULTS In this study, we characterized two FT-like genes, FTL9 and FTL10, to study their functional diversity in flowering control in rice. We compared independent mutant lines of ftl10 with WT and observed negligible differences in the flowering phenotype, or agronomic traits implying potentially redundant roles of FTL10 loss-of-function in flowering control in rice. Nevertheless, we found that overexpression of FTL10, but not FTL9, substantially accelerated flowering, indicating the flowering-promoting role of FTL10 and the divergent functions between FTL9 and FTL10 in flowering. Besides flowering, additive agronomic roles were observed for FTL10-OE regulating the number of effective panicles per plant, the number of primary branches per panicle, and spikelets per panicle without regulating seed size. Mechanistically, our Y2H and BiFC analyses demonstrate that FTL10, in contrast to FTL9, can interact with FD1 and GF14c, forming a flowering activation complex and thereby regulating flowering. CONCLUSION Altogether, our results elucidate the regulatory roles of FTL9 and FTL10 in flowering control, unveiling the molecular basis of functional divergence between FTL10 and FTL9, which provides mechanistic insights into shaping the dynamics of flowering time regulation in rice.
Collapse
Affiliation(s)
- Jingai Tan
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Sajid Muhammad
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lantian Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Jianmin Bian
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
10
|
Huang PK, Schmitt J, Runcie DE. Exploring the molecular regulation of vernalization-induced flowering synchrony in Arabidopsis. THE NEW PHYTOLOGIST 2024; 242:947-959. [PMID: 38509854 DOI: 10.1111/nph.19680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/27/2024] [Indexed: 03/22/2024]
Abstract
Many plant populations exhibit synchronous flowering, which can be advantageous in plant reproduction. However, molecular mechanisms underlying flowering synchrony remain poorly understood. We studied the role of known vernalization-response and flower-promoting pathways in facilitating synchronized flowering in Arabidopsis thaliana. Using the vernalization-responsive Col-FRI genotype, we experimentally varied germination dates and daylength among individuals to test flowering synchrony in field and controlled environments. We assessed the activity of flowering regulation pathways by measuring gene expression across leaves produced at different time points during development and through a mutant analysis. We observed flowering synchrony across germination cohorts in both environments and discovered a previously unknown process where flower-promoting and repressing signals are differentially regulated between leaves that developed under different environmental conditions. We hypothesized this mechanism may underlie synchronization. However, our experiments demonstrated that signals originating from sources other than leaves must also play a pivotal role in synchronizing flowering time, especially in germination cohorts with prolonged growth before vernalization. Our results suggest flowering synchrony is promoted by a plant-wide integration of flowering signals across leaves and among organs. To summarize our findings, we propose a new conceptual model of vernalization-induced flowering synchrony and provide suggestions for future research in this field.
Collapse
Affiliation(s)
- Po-Kai Huang
- Department of Plant Sciences, University of California, Davis, Davis, CA, 95616, USA
| | - Johanna Schmitt
- Department of Evolution and Ecology, University of California, Davis, Davis, CA, 95616, USA
| | - Daniel E Runcie
- Department of Plant Sciences, University of California, Davis, Davis, CA, 95616, USA
| |
Collapse
|
11
|
Zuo X, Wang S, Liu X, Tang T, Li Y, Tong L, Shah K, Ma J, An N, Zhao C, Xing L, Zhang D. FLOWERING LOCUS T1 and TERMINAL FLOWER1 regulatory networks mediate flowering initiation in apple. PLANT PHYSIOLOGY 2024; 195:580-597. [PMID: 38366880 DOI: 10.1093/plphys/kiae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/01/2023] [Accepted: 01/07/2024] [Indexed: 02/18/2024]
Abstract
Flower bud formation is a critical process that directly determines yield and fruit quality in fruit crops. Floral induction is modulated by the balance between 2 flowering-related proteins, FLOWERING LOCUS T (FT) and TERMINAL FLOWER1 (TFL1); however, the mechanisms underlying the establishment and maintenance of this dynamic balance remain largely elusive. Here, we showed that in apple (Malus × domestica Borkh.), MdFT1 is predominantly expressed in spur buds and exhibits an increase in expression coinciding with flower induction; in contrast, MdTFL1 exhibited downregulation in apices during flower induction, suggesting that MdTFL1 has a role in floral repression. Interestingly, both the MdFT1 and MdTFL1 transcripts are directly regulated by transcription factor basic HELIX-LOOP-HELIX48 (MdbHLH48), and overexpression of MdbHLH48 in Arabidopsis (Arabidopsis thaliana) and tomato (Solanum lycopersicum) results in accelerated flowering. Binding and activation analyses revealed that MdbHLH48 functions as a positive regulator of MdFT1 and a negative regulator of MdTFL1. Further studies established that both MdFT1 and MdTFL1 interact competitively with MdWRKY6 protein to facilitate and inhibit, respectively, MdWRKY6-mediated transcriptional activation of target gene APPLE FLORICAULA/LFY (AFL1, an apple LEAFY-like gene), ultimately regulating apple flower bud formation. These findings illustrate the fine-tuned regulation of flowering by the MdbHLH48-MdFT1/MdTFL1-MdWRKY6 module and provide insights into flower bud formation in apples.
Collapse
Affiliation(s)
- Xiya Zuo
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shixiang Wang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiuxiu Liu
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ting Tang
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Youmei Li
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Lu Tong
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kamran Shah
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Juanjuan Ma
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Na An
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Caiping Zhao
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Libo Xing
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dong Zhang
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
12
|
Tsuji H, Sato M. The Function of Florigen in the Vegetative-to-Reproductive Phase Transition in and around the Shoot Apical Meristem. PLANT & CELL PHYSIOLOGY 2024; 65:322-337. [PMID: 38179836 PMCID: PMC11020210 DOI: 10.1093/pcp/pcae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/30/2023] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
Plants undergo a series of developmental phases throughout their life-cycle, each characterized by specific processes. Three critical features distinguish these phases: the arrangement of primordia (phyllotaxis), the timing of their differentiation (plastochron) and the characteristics of the lateral organs and axillary meristems. Identifying the unique molecular features of each phase, determining the molecular triggers that cause transitions and understanding the molecular mechanisms underlying these transitions are keys to gleaning a complete understanding of plant development. During the vegetative phase, the shoot apical meristem (SAM) facilitates continuous leaf and stem formation, with leaf development as the hallmark. The transition to the reproductive phase induces significant changes in these processes, driven mainly by the protein FT (FLOWERING LOCUS T) in Arabidopsis and proteins encoded by FT orthologs, which are specified as 'florigen'. These proteins are synthesized in leaves and transported to the SAM, and act as the primary flowering signal, although its impact varies among species. Within the SAM, florigen integrates with other signals, culminating in developmental changes. This review explores the central question of how florigen induces developmental phase transition in the SAM. Future research may combine phase transition studies, potentially revealing the florigen-induced developmental phase transition in the SAM.
Collapse
Affiliation(s)
- Hiroyuki Tsuji
- Bioscience and Biotechnology Center, Nagoya University, Furocho, Chikusa, Nagoya, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Moeko Sato
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| |
Collapse
|
13
|
Lu HC, Huang CW, Mimura T, Sukma D, Chan MT. Temperature-Regulated Flowering Locus T-Like Gene Coordinates the Spike Initiation in Phalaenopsis Orchid. PLANT & CELL PHYSIOLOGY 2024; 65:405-419. [PMID: 38153763 DOI: 10.1093/pcp/pcad166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
Phalaenopsis aphrodite can be induced to initiate spike growth and flowering by exposure to low ambient temperatures. However, the factors and mechanisms responsible for spike initiation in P. aphrodite remain largely unknown. In this study, we show that a repressor Flowing Locus T-like (FTL) gene, FTL, can act as a negative regulator of spike initiation in P. aphrodite. The mRNA transcripts of PaFTL are consistently high during high ambient temperature, thereby preventing premature spike initiation. However, during low ambient temperature, PaFTL expression falls while FT expression increases, allowing for spike initiation. Knock-down of PaFTL expression through virus-inducing gene silencing promoted spike initiation at 30/28°C. Moreover, PaFTL interacts with FLOWERING LOCUS D in a similar manner to FT to regulate downstream flowering initiation genes. Transgenic P. aphrodite plants exhibiting high expression of PaFTL do not undergo spike initiation, even when exposed to low ambient temperatures. These findings shed light on the flowering mechanisms in Phalaenopsis and provide new insights into how perennial plants govern spike initiation in response to temperature cues.
Collapse
Affiliation(s)
- Hsiang-Chia Lu
- Academia Sinica Biotechnology Center in Southern Taiwan, Agricultural Biotechnology Research Center, Academia Sinica, No. 100, Sec. 1, Guiren 13th Rd., Guiren Dist., Tainan 741, Taiwan
| | - Chiao-Wen Huang
- Academia Sinica Biotechnology Center in Southern Taiwan, Agricultural Biotechnology Research Center, Academia Sinica, No. 100, Sec. 1, Guiren 13th Rd., Guiren Dist., Tainan 741, Taiwan
| | - Tetsuro Mimura
- Graduate Program of Translational Agricultural Sciences, National Cheng Kung University and Academia Sinica, No. 1, Daxue Rd., East Dist., Taiwan 70101, Taiwan
| | - Dewi Sukma
- Department of Agronomy & Horticulture, Faculty of Agriculture, IPB University, Jl. Meranti, Dramaga Campus, Bogor, West Java 16680, Indonesia
| | - Ming-Tsair Chan
- Academia Sinica Biotechnology Center in Southern Taiwan, Agricultural Biotechnology Research Center, Academia Sinica, No. 100, Sec. 1, Guiren 13th Rd., Guiren Dist., Tainan 741, Taiwan
- Graduate Program of Translational Agricultural Sciences, National Cheng Kung University and Academia Sinica, No. 1, Daxue Rd., East Dist., Taiwan 70101, Taiwan
| |
Collapse
|
14
|
Jones DM, Hepworth J, Wells R, Pullen N, Trick M, Morris RJ. A transcriptomic time-series reveals differing trajectories during pre-floral development in the apex and leaf in winter and spring varieties of Brassica napus. Sci Rep 2024; 14:3538. [PMID: 38347020 PMCID: PMC10861513 DOI: 10.1038/s41598-024-53526-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/31/2024] [Indexed: 02/15/2024] Open
Abstract
Oilseed rape (Brassica napus) is an important global oil crop, with spring and winter varieties grown commercially. To understand the transcriptomic differences between these varieties, we collected transcriptomes from apex and leaf tissue from a spring variety, Westar, and a winter variety, Tapidor, before, during, and after vernalisation treatment, until the plants flowered. Large transcriptomic differences were noted in both varieties during the vernalisation treatment because of temperature and day length changes. Transcriptomic alignment revealed that the apex transcriptome reflects developmental state, whereas the leaf transcriptome is more closely aligned to the age of the plant. Similar numbers of copies of genes were expressed in both varieties during the time series, although key flowering time genes exhibited expression pattern differences. BnaFLC copies on A2 and A10 are the best candidates for the increased vernalisation requirement of Tapidor. Other BnaFLC copies show tissue-dependent reactivation of expression post-cold, with these dynamics suggesting some copies have retained or acquired a perennial nature. BnaSOC1 genes, also related to the vernalisation pathway, have expression profiles which suggest tissue subfunctionalisation. This understanding may help to breed varieties with more consistent or robust vernalisation responses, of special importance due to the milder winters resulting from climate change.
Collapse
Affiliation(s)
- D Marc Jones
- Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
- Synthace, The WestWorks, 195 Wood Lane, 4th Floor, London, W12 7FQ, UK.
| | - Jo Hepworth
- Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Rachel Wells
- Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Nick Pullen
- Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Martin Trick
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Richard J Morris
- Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
15
|
Duk MA, Gursky VV, Samsonova MG, Surkova SY. Modeling the Flowering Activation Motif during Vernalization in Legumes: A Case Study of M. trancatula. Life (Basel) 2023; 14:26. [PMID: 38255642 PMCID: PMC10817331 DOI: 10.3390/life14010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
In many plant species, flowering is promoted by the cold treatment or vernalization. The mechanism of vernalization-induced flowering has been extensively studied in Arabidopsis but remains largely unknown in legumes. The orthologs of the FLC gene, a major regulator of vernalization response in Arabidopsis, are absent or non-functional in the vernalization-sensitive legume species. Nevertheless, the legume integrator genes FT and SOC1 are involved in the transition of the vernalization signal to meristem identity genes, including PIM (AP1 ortholog). However, the regulatory contribution of these genes to PIM activation in legumes remains elusive. Here, we presented the theoretical and data-driven analyses of a feed-forward regulatory motif that includes a vernalization-responsive FT gene and several SOC1 genes, which independently activate PIM and thereby mediate floral transition. Our theoretical model showed that the multiple regulatory branches in this regulatory motif facilitated the elimination of no-sense signals and amplified useful signals from the upstream regulator. We further developed and analyzed four data-driven models of PIM activation in Medicago trancatula in vernalized and non-vernalized conditions in wild-type and fta1-1 mutants. The model with FTa1 providing both direct activation and indirect activation via three intermediate activators, SOC1a, SOC1b, and SOC1c, resulted in the most relevant PIM dynamics. In this model, the difference between regulatory inputs of SOC1 genes was nonessential. As a result, in the M. trancatula model, the cumulative action of SOC1a, SOC1b, and SOC1c was favored. Overall, in this study, we first presented the in silico analysis of vernalization-induced flowering in legumes. The considered vernalization network motif can be supplemented with additional regulatory branches as new experimental data become available.
Collapse
Affiliation(s)
- Maria A. Duk
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great Saint Petersburg Polytechnic University, 195251 St. Petersburg, Russia
- Theoretical Department, Ioffe Institute, 194021 St. Petersburg, Russia
| | - Vitaly V. Gursky
- Theoretical Department, Ioffe Institute, 194021 St. Petersburg, Russia
| | - Maria G. Samsonova
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great Saint Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Svetlana Yu. Surkova
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great Saint Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| |
Collapse
|
16
|
Cerise M, da Silveira Falavigna V, Rodríguez-Maroto G, Signol A, Severing E, Gao H, van Driel A, Vincent C, Wilkens S, Iacobini FR, Formosa-Jordan P, Pajoro A, Coupland G. Two modes of gene regulation by TFL1 mediate its dual function in flowering time and shoot determinacy of Arabidopsis. Development 2023; 150:dev202089. [PMID: 37971083 PMCID: PMC10730086 DOI: 10.1242/dev.202089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
Plant organ primordia develop successively at the shoot apical meristem (SAM). In Arabidopsis, primordia formed early in development differentiate into vegetative leaves, whereas those formed later generate inflorescence branches and flowers. TERMINAL FLOWER 1 (TFL1), a negative regulator of transcription, acts in the SAM to delay flowering and to maintain inflorescence meristem indeterminacy. We used confocal microscopy, time-resolved transcript profiling and reverse genetics to elucidate this dual role of TFL1. We found that TFL1 accumulates dynamically in the SAM reflecting its dual function. Moreover, TFL1 represses two major sets of genes. One set includes genes that promote flowering, expression of which increases earlier in tfl1 mutants. The other set is spatially misexpressed in tfl1 inflorescence meristems. The misexpression of these two gene sets in tfl1 mutants depends upon FD transcription factor, with which TFL1 interacts. Furthermore, the MADS-box gene SEPALLATA 4, which is upregulated in tfl1, contributes both to the floral transition and shoot determinacy defects of tfl1 mutants. Thus, we delineate the dual function of TFL1 in shoot development in terms of its dynamic spatial distribution and different modes of gene repression.
Collapse
Affiliation(s)
- Martina Cerise
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Vítor da Silveira Falavigna
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Gabriel Rodríguez-Maroto
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Antoine Signol
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Edouard Severing
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - He Gao
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Annabel van Driel
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Coral Vincent
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Sandra Wilkens
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Francesca Romana Iacobini
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Pau Formosa-Jordan
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Alice Pajoro
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
- Institute of Molecular Biology and Pathology, National Research Council, c/o Department Biology and Biotechnology ‘C. Darwin’ Sapienza University, Rome 00185, Italy
| | - George Coupland
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| |
Collapse
|
17
|
Gao M, Lu Y, Geng F, Klose C, Staudt AM, Huang H, Nguyen D, Lan H, Lu H, Mockler TC, Nusinow DA, Hiltbrunner A, Schäfer E, Wigge PA, Jaeger KE. Phytochromes transmit photoperiod information via the evening complex in Brachypodium. Genome Biol 2023; 24:256. [PMID: 37936225 PMCID: PMC10631206 DOI: 10.1186/s13059-023-03082-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 10/04/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Daylength is a key seasonal cue for animals and plants. In cereals, photoperiodic responses are a major adaptive trait, and alleles of clock genes such as PHOTOPERIOD1 (PPD1) and EARLY FLOWERING3 (ELF3) have been selected for in adapting barley and wheat to northern latitudes. How monocot plants sense photoperiod and integrate this information into growth and development is not well understood. RESULTS We find that phytochrome C (PHYC) is essential for flowering in Brachypodium distachyon. Conversely, ELF3 acts as a floral repressor and elf3 mutants display a constitutive long day phenotype and transcriptome. We find that ELF3 and PHYC occur in a common complex. ELF3 associates with the promoters of a number of conserved regulators of flowering, including PPD1 and VRN1. Consistent with observations in barley, we are able to show that PPD1 overexpression accelerates flowering in short days and is necessary for rapid flowering in response to long days. PHYC is in the active Pfr state at the end of the day, but we observe it undergoes dark reversion over the course of the night. CONCLUSIONS We propose that PHYC acts as a molecular timer and communicates information on night-length to the circadian clock via ELF3.
Collapse
Affiliation(s)
- Mingjun Gao
- Sainsbury Laboratory, University of Cambridge, 47 Bateman St., Cambridge, CB2 1LR, UK
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Yunlong Lu
- Leibniz-Institut für Gemüse- und Zierpflanzenbau, Theodor-Echtermeyer-Weg 1, Großbeeren, 14979, Germany
| | - Feng Geng
- Sainsbury Laboratory, University of Cambridge, 47 Bateman St., Cambridge, CB2 1LR, UK
| | - Cornelia Klose
- Institut für Biologie II, University of Freiburg, Schaenzlestr. 1, Freiburg, 79104, Germany
| | - Anne-Marie Staudt
- Institut für Biologie II, University of Freiburg, Schaenzlestr. 1, Freiburg, 79104, Germany
| | - He Huang
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Duy Nguyen
- Sainsbury Laboratory, University of Cambridge, 47 Bateman St., Cambridge, CB2 1LR, UK
| | - Hui Lan
- Sainsbury Laboratory, University of Cambridge, 47 Bateman St., Cambridge, CB2 1LR, UK
| | - Han Lu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Todd C Mockler
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | | | - Andreas Hiltbrunner
- Institut für Biologie II, University of Freiburg, Schaenzlestr. 1, Freiburg, 79104, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, 79104, Germany
| | - Eberhard Schäfer
- Institut für Biologie II, University of Freiburg, Schaenzlestr. 1, Freiburg, 79104, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schaenzlestr. 18, Freiburg, 79104, Germany
| | - Philip A Wigge
- Sainsbury Laboratory, University of Cambridge, 47 Bateman St., Cambridge, CB2 1LR, UK.
- Leibniz-Institut für Gemüse- und Zierpflanzenbau, Theodor-Echtermeyer-Weg 1, Großbeeren, 14979, Germany.
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, 14476, Germany.
| | - Katja E Jaeger
- Sainsbury Laboratory, University of Cambridge, 47 Bateman St., Cambridge, CB2 1LR, UK.
- Leibniz-Institut für Gemüse- und Zierpflanzenbau, Theodor-Echtermeyer-Weg 1, Großbeeren, 14979, Germany.
| |
Collapse
|
18
|
Paull RE, Ksouri N, Kantar M, Zerpa‐Catanho D, Chen NJ, Uruu G, Yue J, Guo S, Zheng Y, Wai CMJ, Ming R. Differential gene expression during floral transition in pineapple. PLANT DIRECT 2023; 7:e541. [PMID: 38028646 PMCID: PMC10644199 DOI: 10.1002/pld3.541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 12/01/2023]
Abstract
Pineapple (Ananas comosus var. comosus) and ornamental bromeliads are commercially induced to flower by treatment with ethylene or its analogs. The apex is transformed from a vegetative to a floral meristem and shows morphological changes in 8 to 10 days, with flowers developing 8 to 10 weeks later. During eight sampling stages ranging from 6 h to 8 days after treatment, 7961 genes were found to exhibit differential expression (DE) after the application of ethylene. In the first 3 days after treatment, there was little change in ethylene synthesis or in the early stages of the ethylene response. Subsequently, three ethylene response transcription factors (ERTF) were up-regulated and the potential gene targets were predicted to be the positive flowering regulator CONSTANS-like 3 (CO), a WUSCHEL gene, two APETALA1/FRUITFULL (AP1/FUL) genes, an epidermal patterning gene, and a jasmonic acid synthesis gene. We confirm that pineapple has lost the flowering repressor FLOWERING LOCUS C. At the initial stages, the SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) was not significantly involved in this transition. Another WUSCHEL gene and a PHD homeobox transcription factor, though not apparent direct targets of ERTF, were up-regulated within a day of treatment, their predicted targets being the up-regulated CO, auxin response factors, SQUAMOSA, and histone H3 genes with suppression of abscisic acid response genes. The FLOWERING LOCUS T (FT), TERMINAL FLOWER (TFL), AGAMOUS-like APETELAR (AP2), and SEPETALA (SEP) increased rapidly within 2 to 3 days after ethylene treatment. Two FT genes were up-regulated at the apex and not at the leaf bases after treatment, suggesting that transport did not occur. These results indicated that the ethylene response in pineapple and possibly most bromeliads act directly to promote the vegetative to flower transition via APETALA1/FRUITFULL (AP1/FUL) and its interaction with SPL, FT, TFL, SEP, and AP2. A model based on AP2/ERTF DE and predicted DE target genes was developed to give focus to future research. The identified candidate genes are potential targets for genetic manipulation to determine their molecular role in flower transition.
Collapse
Affiliation(s)
- Robert E. Paull
- Tropical Plant & Soil SciencesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Najla Ksouri
- Laboratory of Genomics, Genetics and Breeding of Fruits and Grapevine, Experimental Aula Dei‐CSICZaragozaSpain
| | - Michael Kantar
- Tropical Plant & Soil SciencesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | | | - Nancy Jung Chen
- Tropical Plant & Soil SciencesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Gail Uruu
- Tropical Plant & Soil SciencesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Jingjing Yue
- Center for Genomics and BiotechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Shiyong Guo
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingYunnanChina
| | - Yun Zheng
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingYunnanChina
| | | | - Ray Ming
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Center for Genomics and BiotechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
19
|
Bhattacharjee S, Bhowmick R, Paul K, Venkat Raman K, Jaiswal S, Tilgam J, Saakre M, Kumari P, Baaniya M, Vijayan J, Sreevathsa R, Pattanayak D. Identification, characterization, and comprehensive expression profiling of floral master regulators in pigeon pea (Cajanus cajan [L.] Millspaugh). Funct Integr Genomics 2023; 23:311. [PMID: 37751043 DOI: 10.1007/s10142-023-01236-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/04/2023] [Accepted: 09/15/2023] [Indexed: 09/27/2023]
Abstract
Pigeon pea is an important protein-rich pulse crop. Identification of flowering master regulators in pigeon pea is highly imperative as indeterminacy and late flowering are impediments towards yield improvement. A genome-wide analysis was performed to explore flowering orthologous groups in pigeon pea. Among the 412 floral orthologs identified in pigeon pea, 148 genes belong to the meristem identity, photoperiod-responsive, and circadian clock-associated ortholog groups. Our comparative genomics study revealed purifying selection pressures (ka/ks) on floral orthologs, and duplication patterns and evolution through synteny with other model species. Phylogenetic analysis of floral genes substantiated a connection between pigeon pea plant architecture and flowering time as all the PEBP domain-containing genes belong to meristem identity floral networks of pigeon pea. Expression profiling of eleven major orthologs in contrasting determinate and indeterminate genotypes indicated that these orthologs might be involved in flowering regulation. Expression of floral inducer, FT, and floral repressor, TFL1, was non-comparable in indeterminate genotypes across all the developmental stages of pigeon pea. However, dynamic FT/TFL1 expression ratio detected in all tissues of both the genotypes suggested their role in floral transition. One TFL1 ortholog having high sequence conserveness across pigeon pea genotypes showed differential expression indicating genotype-dependent regulation of this ortholog. Presence of conserved 6mA-methylation patterns in light-responsive elements and in other cis-regulatory elements of FT and TFL1 across different plant genotypes indicated possible involvement of epigenetic regulation in flowering.
Collapse
Affiliation(s)
- Sougata Bhattacharjee
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rakesh Bhowmick
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata, India
| | - Krishnayan Paul
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - K Venkat Raman
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Sandeep Jaiswal
- ICAR Research Complex for North Eastern Hill Region, Barapani, Meghalaya, India
| | - Jyotsana Tilgam
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Manjesh Saakre
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Priyanka Kumari
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Mahi Baaniya
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Joshitha Vijayan
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Rohini Sreevathsa
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Debasis Pattanayak
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India.
| |
Collapse
|
20
|
Rodríguez-Bolaños M, Martínez T, Juárez S, Quiroz S, Domínguez A, Garay-Arroyo A, Sanchez MDLP, Álvarez-Buylla ER, García-Ponce B. XAANTAL1 Reveals an Additional Level of Flowering Regulation in the Shoot Apical Meristem in Response to Light and Increased Temperature in Arabidopsis. Int J Mol Sci 2023; 24:12773. [PMID: 37628953 PMCID: PMC10454237 DOI: 10.3390/ijms241612773] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Light and photoperiod are environmental signals that regulate flowering transition. In plants like Arabidopsis thaliana, this regulation relies on CONSTANS, a transcription factor that is negatively posttranslational regulated by phytochrome B during the morning, while it is stabilized by PHYA and cryptochromes 1/2 at the end of daylight hours. CO induces the expression of FT, whose protein travels from the leaves to the apical meristem, where it binds to FD to regulate some flowering genes. Although PHYB delays flowering, we show that light and PHYB positively regulate XAANTAL1 and other flowering genes in the shoot apices. Also, the genetic data indicate that XAL1 and FD participate in the same signaling pathway in flowering promotion when plants are grown under a long-day photoperiod at 22 °C. By contrast, XAL1 functions independently of FD or PIF4 to induce flowering at higher temperatures (27 °C), even under long days. Furthermore, XAL1 directly binds to FD, SOC1, LFY, and AP1 promoters. Our findings lead us to propose that light and temperature influence the floral network at the meristem level in a partially independent way of the signaling generated from the leaves.
Collapse
Affiliation(s)
- Mónica Rodríguez-Bolaños
- Instituto de Ecologίa, Departamento de Ecologίa Funcional, Universidad Nacional Autónoma de México, Circuito ext. s/no. Ciudad Universitaria, Coyoacán 04510, CDMX, Mexico
| | - Tania Martínez
- Instituto de Ecologίa, Departamento de Ecologίa Funcional, Universidad Nacional Autónoma de México, Circuito ext. s/no. Ciudad Universitaria, Coyoacán 04510, CDMX, Mexico
| | - Saray Juárez
- Instituto de Ecologίa, Departamento de Ecologίa Funcional, Universidad Nacional Autónoma de México, Circuito ext. s/no. Ciudad Universitaria, Coyoacán 04510, CDMX, Mexico
| | - Stella Quiroz
- Instituto de Ecologίa, Departamento de Ecologίa Funcional, Universidad Nacional Autónoma de México, Circuito ext. s/no. Ciudad Universitaria, Coyoacán 04510, CDMX, Mexico
- Laboratory of Pathogens and Host Immunity, University of Montpellier, 34 090 Montpellier, France
| | - Andrea Domínguez
- Instituto de Ecologίa, Departamento de Ecologίa Funcional, Universidad Nacional Autónoma de México, Circuito ext. s/no. Ciudad Universitaria, Coyoacán 04510, CDMX, Mexico
| | - Adriana Garay-Arroyo
- Instituto de Ecologίa, Departamento de Ecologίa Funcional, Universidad Nacional Autónoma de México, Circuito ext. s/no. Ciudad Universitaria, Coyoacán 04510, CDMX, Mexico
| | - María de la Paz Sanchez
- Instituto de Ecologίa, Departamento de Ecologίa Funcional, Universidad Nacional Autónoma de México, Circuito ext. s/no. Ciudad Universitaria, Coyoacán 04510, CDMX, Mexico
| | - Elena R. Álvarez-Buylla
- Instituto de Ecologίa, Departamento de Ecologίa Funcional, Universidad Nacional Autónoma de México, Circuito ext. s/no. Ciudad Universitaria, Coyoacán 04510, CDMX, Mexico
| | - Berenice García-Ponce
- Instituto de Ecologίa, Departamento de Ecologίa Funcional, Universidad Nacional Autónoma de México, Circuito ext. s/no. Ciudad Universitaria, Coyoacán 04510, CDMX, Mexico
| |
Collapse
|
21
|
Wu J, Yang Y, Wang J, Wang Y, Yin L, An Z, Du K, Zhu Y, Qi J, Shen WH, Dong A. Histone chaperones AtChz1A and AtChz1B are required for H2A.Z deposition and interact with the SWR1 chromatin-remodeling complex in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2023; 239:189-207. [PMID: 37129076 DOI: 10.1111/nph.18940] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Abstract
The histone variant H2A.Z plays key functions in transcription and genome stability in all eukaryotes ranging from yeast to human, but the molecular mechanisms by which H2A.Z is incorporated into chromatin remain largely obscure. Here, we characterized the two homologs of yeast Chaperone for H2A.Z-H2B (Chz1) in Arabidopsis thaliana, AtChz1A and AtChz1B. AtChz1A/AtChz1B were verified to bind to H2A.Z-H2B and facilitate nucleosome assembly in vitro. Simultaneous knockdown of AtChz1A and AtChz1B, which exhibit redundant functions, led to a genome-wide reduction in H2A.Z and phenotypes similar to those of the H2A.Z-deficient mutant hta9-1hta11-2, including early flowering and abnormal flower morphologies. Interestingly, AtChz1A was found to physically interact with ACTIN-RELATED PROTEIN 6 (ARP6), an evolutionarily conserved subunit of the SWR1 chromatin-remodeling complex. Genetic interaction analyses showed that atchz1a-1atchz1b-1 was hypostatic to arp6-1. Consistently, genome-wide profiling analyses revealed partially overlapping genes and fewer misregulated genes and H2A.Z-reduced chromatin regions in atchz1a-1atchz1b-1 compared with arp6-1. Together, our results demonstrate that AtChz1A and AtChz1B act as histone chaperones to assist the deposition of H2A.Z into chromatin via interacting with SWR1, thereby playing critical roles in the transcription of genes involved in flowering and many other processes.
Collapse
Affiliation(s)
- Jiabing Wu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yue Yang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jiachen Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Youchao Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Liufan Yin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Zengxuan An
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Kangxi Du
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yan Zhu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Ji Qi
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Wen-Hui Shen
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg Cédex, France
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| |
Collapse
|
22
|
Sun Y, Jia X, Yang Z, Fu Q, Yang H, Xu X. Genome-Wide Identification of PEBP Gene Family in Solanum lycopersicum. Int J Mol Sci 2023; 24:ijms24119185. [PMID: 37298136 DOI: 10.3390/ijms24119185] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
The PEBP gene family is crucial for the growth and development of plants, the transition between vegetative and reproductive growth, the response to light, the production of florigen, and the reaction to several abiotic stressors. The PEBP gene family has been found in numerous species, but the SLPEBP gene family has not yet received a thorough bioinformatics investigation, and the members of this gene family are currently unknown. In this study, bioinformatics was used to identify 12 members of the SLPEBP gene family in tomato and localize them on the chromosomes. The physicochemical characteristics of the proteins encoded by members of the SLPEBP gene family were also examined, along with their intraspecific collinearity, gene structure, conserved motifs, and cis-acting elements. In parallel, a phylogenetic tree was built and the collinear relationships of the PEBP gene family among tomato, potato, pepper, and Arabidopsis were examined. The expression of 12 genes in different tissues and organs of tomato was analyzed using transcriptomic data. It was also hypothesized that SLPEBP3, SLPEBP5, SLPEBP6, SLPEBP8, SLPEBP9, and SLPEBP10 might be related to tomato flowering and that SLPEBP2, SLPEBP3, SLPEBP7, and SLPEBP11 might be related to ovary development based on the tissue-specific expression analysis of SLPEBP gene family members at five different stages during flower bud formation to fruit set. This article's goal is to offer suggestions and research directions for further study of tomato PEBP gene family members.
Collapse
Affiliation(s)
- Yimeng Sun
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Mucai Street 59, Harbin 150030, China
| | - Xinyi Jia
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Mucai Street 59, Harbin 150030, China
| | - Zhenru Yang
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Mucai Street 59, Harbin 150030, China
| | - Qingjun Fu
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Mucai Street 59, Harbin 150030, China
| | - Huanhuan Yang
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Mucai Street 59, Harbin 150030, China
| | - Xiangyang Xu
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Mucai Street 59, Harbin 150030, China
| |
Collapse
|
23
|
Martignago D, da Silveira Falavigna V, Lombardi A, Gao H, Korwin Kurkowski P, Galbiati M, Tonelli C, Coupland G, Conti L. The bZIP transcription factor AREB3 mediates FT signalling and floral transition at the Arabidopsis shoot apical meristem. PLoS Genet 2023; 19:e1010766. [PMID: 37186640 PMCID: PMC10212096 DOI: 10.1371/journal.pgen.1010766] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/25/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023] Open
Abstract
The floral transition occurs at the shoot apical meristem (SAM) in response to favourable external and internal signals. Among these signals, variations in daylength (photoperiod) act as robust seasonal cues to activate flowering. In Arabidopsis, long-day photoperiods stimulate production in the leaf vasculature of a systemic florigenic signal that is translocated to the SAM. According to the current model, FLOWERING LOCUS T (FT), the main Arabidopsis florigen, causes transcriptional reprogramming at the SAM, so that lateral primordia eventually acquire floral identity. FT functions as a transcriptional coregulator with the bZIP transcription factor FD, which binds DNA at specific promoters. FD can also interact with TERMINAL FLOWER 1 (TFL1), a protein related to FT that acts as a floral repressor. Thus, the balance between FT-TFL1 at the SAM influences the expression levels of floral genes targeted by FD. Here, we show that the FD-related bZIP transcription factor AREB3, which was previously studied in the context of phytohormone abscisic acid signalling, is expressed at the SAM in a spatio-temporal pattern that strongly overlaps with FD and contributes to FT signalling. Mutant analyses demonstrate that AREB3 relays FT signals redundantly with FD, and the presence of a conserved carboxy-terminal SAP motif is required for downstream signalling. AREB3 shows unique and common patterns of expression with FD, and AREB3 expression levels are negatively regulated by FD thus forming a compensatory feedback loop. Mutations in another bZIP, FDP, further aggravate the late flowering phenotypes of fd areb3 mutants. Therefore, multiple florigen-interacting bZIP transcription factors have redundant functions in flowering at the SAM.
Collapse
Affiliation(s)
- Damiano Martignago
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | | | | | - He Gao
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Massimo Galbiati
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Chiara Tonelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - George Coupland
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Lucio Conti
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
24
|
Laanen P, Cuypers A, Saenen E, Horemans N. Flowering under enhanced ionising radiation conditions and its regulation through epigenetic mechanisms. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:246-259. [PMID: 36731286 DOI: 10.1016/j.plaphy.2023.01.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
As sessile organisms, plants have to deal with unfavourable conditions by acclimating or adapting in order to survive. Regulation of flower induction is one such mechanism to ensure reproduction and species survival. Flowering is a tightly regulated process under the control of a network of genes, which can be affected by environmental cues and stress. The effects of ionising radiation (IR) on flowering, however, have been poorly studied. Understanding the effects of ionising radiation on flowering, including the timing, gene pathways, and epigenetics involved, is crucial in the continuing effort of environmental radiation protection. The review shows that plants alter their flowering pattern in response to IR, with various flowering related genes (eg. FLOWERING LOCUS C (FLC), FLOWERING LOCUS T (FT), CONSTANS (CO), GIGANTEA (GI), APETALA1 (AP1), LEAFY (LFY)) and epigenetic processes (DNA methylation, and miRNA expression eg. miRNA169, miR156, miR172) being affected. Thereby, showing a hypothetical IR-induced flowering mechanism. Further research on the interaction between IR and flowering in plants is, however, needed to elucidate the mechanisms behind the stress-induced flowering response.
Collapse
Affiliation(s)
- Pol Laanen
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium; Centre for Environmental Research, University of Hasselt, Martelarenlaan 42, 3500, Hasselt, Belgium.
| | - Ann Cuypers
- Centre for Environmental Research, University of Hasselt, Martelarenlaan 42, 3500, Hasselt, Belgium.
| | - Eline Saenen
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium.
| | - Nele Horemans
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium; Centre for Environmental Research, University of Hasselt, Martelarenlaan 42, 3500, Hasselt, Belgium.
| |
Collapse
|
25
|
Ortega MA, Zhou R, Chen MSS, Bewg WP, Simon B, Tsai C. In vitro floral development in poplar: insights into seed trichome regulation and trimonoecy. THE NEW PHYTOLOGIST 2023; 237:1078-1081. [PMID: 36385612 PMCID: PMC10107547 DOI: 10.1111/nph.18624] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/14/2022] [Indexed: 05/24/2023]
Affiliation(s)
- María A. Ortega
- Warnell School of Forestry and Natural ResourceUniversity of GeorgiaAthensGA30602USA
- Department of Plant BiologyUniversity of GeorgiaAthensGA30602USA
- Department of GeneticsUniversity of GeorgiaAthensGA30602USA
| | - Ran Zhou
- Warnell School of Forestry and Natural ResourceUniversity of GeorgiaAthensGA30602USA
- Department of Plant BiologyUniversity of GeorgiaAthensGA30602USA
- Department of GeneticsUniversity of GeorgiaAthensGA30602USA
| | - Margot S. S. Chen
- Warnell School of Forestry and Natural ResourceUniversity of GeorgiaAthensGA30602USA
- Department of Plant BiologyUniversity of GeorgiaAthensGA30602USA
- Department of GeneticsUniversity of GeorgiaAthensGA30602USA
| | - William Patrick Bewg
- Warnell School of Forestry and Natural ResourceUniversity of GeorgiaAthensGA30602USA
- Department of Plant BiologyUniversity of GeorgiaAthensGA30602USA
- Department of GeneticsUniversity of GeorgiaAthensGA30602USA
| | - Bindu Simon
- Warnell School of Forestry and Natural ResourceUniversity of GeorgiaAthensGA30602USA
- Department of Plant BiologyUniversity of GeorgiaAthensGA30602USA
- Department of GeneticsUniversity of GeorgiaAthensGA30602USA
| | - Chung‐Jui Tsai
- Warnell School of Forestry and Natural ResourceUniversity of GeorgiaAthensGA30602USA
- Department of Plant BiologyUniversity of GeorgiaAthensGA30602USA
- Department of GeneticsUniversity of GeorgiaAthensGA30602USA
| |
Collapse
|
26
|
Gretsova M, Surkova S, Kanapin A, Samsonova A, Logacheva M, Shcherbakov A, Logachev A, Bankin M, Nuzhdin S, Samsonova M. Transcriptomic Analysis of Flowering Time Genes in Cultivated Chickpea and Wild Cicer. Int J Mol Sci 2023; 24:ijms24032692. [PMID: 36769014 PMCID: PMC9916832 DOI: 10.3390/ijms24032692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Chickpea (Cicer arietinum L.) is a major grain legume and a good source of plant-based protein. However, comprehensive knowledge of flowering time control in Cicer is lacking. In this study, we acquire high-throughput transcriptome sequencing data and analyze changes in gene expression during floral transition in the early flowering cultivar ICCV 96029, later flowering C. arietinum accessions, and two wild species, C. reticulatum and C. echinospermum. We identify Cicer orthologs of A. thaliana flowering time genes and analyze differential expression of 278 genes between four species/accessions, three tissue types, and two conditions. Our results show that the differences in gene expression between ICCV 96029 and other cultivated chickpea accessions are vernalization-dependent. In addition, we highlight the role of FTa3, an ortholog of FLOWERING LOCUS T in Arabidopsis, in the vernalization response of cultivated chickpea. A common set of differentially expressed genes was found for all comparisons between wild species and cultivars. The direction of expression change for different copies of the FT-INTERACTING PROTEIN 1 gene was variable in different comparisons, which suggests complex mechanisms of FT protein transport. Our study makes a contribution to the understanding of flowering time control in Cicer, and can provide genetic strategies to further improve this important agronomic trait.
Collapse
Affiliation(s)
- Maria Gretsova
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Svetlana Surkova
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Alexander Kanapin
- Centre for Computational Biology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Anastasia Samsonova
- Centre for Computational Biology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Maria Logacheva
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Andrey Shcherbakov
- Laboratory of Microbial Technology, All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia
| | - Anton Logachev
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Mikhail Bankin
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Sergey Nuzhdin
- Section of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Maria Samsonova
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
27
|
Tang Q, Zhao YN, Luo S, Lu S. AKR2A is involved in the flowering process of Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2022; 17:2100685. [PMID: 35867124 PMCID: PMC9311315 DOI: 10.1080/15592324.2022.2100685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Flowering at an appropriate time is crucial for plant development and reproduction. In Arabidopsis, the flowering process is managed by a regulatory network composed of at least 6 independent pathways. As a core protein in flowering regulation, FLOWERING LOCUS T (FT) participates in almost all these pathways. ANKYRIN REPEAT-CONTAINING PROTEIN 2A (AKR2A) was initially discovered as a 14-3-3-interacting protein. It was then found to be involved in the transportation of chloroplast outer membrane proteins and the resistance to low-temperature stress. Here, we identified an akr2a null mutant with a delayed flowering phenotype. Through the quantitative real-time PCR (qRT-PCR) and bimolecular fluorescence complementation (BiFC) assays, we demonstrated that AKR2A modulates the flowering process through its interaction with FT.
Collapse
Affiliation(s)
- Qian Tang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ya-Nan Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shan Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shan Lu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
28
|
Wu B, Zhang X, Hu K, Zheng H, Zhang S, Liu X, Ma M, Zhao H. Two alternative splicing variants of a wheat gene TaNAK1, TaNAK1.1 and TaNAK1.2, differentially regulate flowering time and plant architecture leading to differences in seed yield of transgenic Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:1014176. [PMID: 36531344 PMCID: PMC9751850 DOI: 10.3389/fpls.2022.1014176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
In wheat production, appropriate flowering time and ideal plant architecture are the prerequisites for high grain yield. Alternative splicing (AS) is a vital process that regulates gene expression at the post-transcriptional level, and AS events in wheat have been found to be closely related to grain-related traits and abiotic stress tolerance. However, AS events and their biological roles in regulating flowering time and plant architecture in wheat remain unclear. In this study, we report that TaNAK1 undergoes AS, producing three splicing variants. Molecular characterization of TaNAK1 and its splicing variants demonstrated that all three protein isoforms have a conserved NB-ARC domain and a protein kinase domain, but the positions of these two domains and the length of the protein kinase domains are different among them, implying that they may have different three-dimensional structures and therefore have different functions. Further investigations showed that the two splicing variants of TaNAK1, TaNAK1.1 and TaNAK1.2, exhibited different expression patterns during wheat growth and development, while the other one, TaNAK1.3, was not detected. Subcellular localization demonstrated that TaNAK1.1 was mainly localized in the cytoplasm, while TaNAK1.2 was localized in the nucleus and cytoplasm. Both TaNAK1.1 and TaNAK1.2 exhibit protein kinase activity in vitro. Ectopic expression of TaNAK1.1 and TaNAK1.2 in Arabidopsis demonstrated that these two splicing variants play opposite roles in regulating flowering time and plant architecture, resulting in different seed yields. TaNAK1.2 positive regulates the transition from vegetative to reproductive growth, plant height, branching number, seed size, and seed yield of Arabidopsis, while TaNAK1.1 negatively regulates these traits. Our findings provide new gene resource for regulating flowering time and plant architecture in crop breeding for high grain yield.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Meng Ma
- *Correspondence: Huixian Zhao, ; Meng Ma,
| | | |
Collapse
|
29
|
Wechsler T, Bakhshian O, Engelen C, Dag A, Ben-Ari G, Samach A. Determining Reproductive Parameters, which Contribute to Variation in Yield of Olive Trees from Different Cultivars, Irrigation Regimes, Age and Location. PLANTS 2022; 11:plants11182414. [PMID: 36145815 PMCID: PMC9504372 DOI: 10.3390/plants11182414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/25/2022]
Abstract
Olive (Olea europaea L.) trees can reach a very old age and still bear fruit. Although traditional groves are planted at low density and are rainfed, many newer groves are planted at higher densities and irrigated. As expected, initial yields per area are larger in high density plantations, yet some farmers claim they experience a reduction in productivity with grove age, even in well maintained trees. In order to test the accuracy of this claim and its underlying cause, we measured several productivity parameters in selected branches of trees in seven sites differing in cultivar (‘Barnea’ or ‘Souri’), location and irrigation regime (rainfed or irrigated) for two consecutive years. For each site (cultivar/location/regime), we compared neighboring groves of different ages, altogether 14 groves. There was no consistent reduction in productivity in older groves. Differences in productivity between irrigated cultivars were mostly due to variation in the percentage of inflorescences that formed fruit. Several parameters were higher in irrigated, compared to rainfed ‘Souri’. Differences in productivity between years within the same grove was mostly due to variation in the percentage of nodes forming inflorescences. We studied the expression of OeFT2 encoding a FLOWERING LOCUS T protein involved in olive flower induction in leaves of trees of different ages, including juvenile seedlings. Expression increased during winter in mature trees and correlated with the percentage of inflorescences formed. The leaves of juvenile seedlings expressed higher levels of two genes encoding APETALA2-like proteins, potential inhibitors of OeFT2 expression. The buds of juvenile seedlings expressed higher levels of OeTFL1, encoding a TERMINAL FLOWER 1 protein, a potential inhibitor of OeFT2 function in the meristem. Our results suggest that olives, once past the juvenile phase, can retain a similar level of productivity even in densely planted well maintained groves.
Collapse
Affiliation(s)
- Tahel Wechsler
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | - Ortal Bakhshian
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | - Chaim Engelen
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | - Arnon Dag
- Gilat Research Center, Agricultural Research Organization (ARO), Volcani Center, Gilat, Mobile Post Negev 2, Negev 85280, Israel
| | - Giora Ben-Ari
- Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion 7528809, Israel
| | - Alon Samach
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
- Correspondence: author:
| |
Collapse
|
30
|
BnGF14-2c Positively Regulates Flowering via the Vernalization Pathway in Semi-Winter Rapeseed. PLANTS 2022; 11:plants11172312. [PMID: 36079694 PMCID: PMC9460199 DOI: 10.3390/plants11172312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/12/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022]
Abstract
14-3-3s are general regulatory factors (GF14s or GRFs) involved in a variety of physiological regulations in plants, including the control of flowering time. However, there are poorly relevant reports in rapeseed so far. In this study, we identified a homologous 14-3-3 gene BnGF14-2c (AtGRF2_Like in Brassica napus) in rapeseed based on bioinformatic analysis by using the sequences of the flowering-related 14-3-3s in other plant species. Then, we found that overexpression of BnGF14-2c in the semi-winter rapeseed “93275” promoted flowering without vernalization. Moreover, both yeast two-hybrid and bimolecular fluorescence complementation analysis indicated that BnGF14-2c may interact with two vernalization-related flowering regulators BnFT.A02 and BnFLC.A10., respectively. qPCR analysis showed that the expression of BnFT (AtFT_Like) was increased and the expression of two selected vernalization-related genes were reduced in the overexpression transgenic plants. Further investigation on subcellular localization demonstrated that BnGF14-2c localized in the nucleus and cytoplasm. The results of RNA-seq analysis and GUS staining indicated that BnGF14-2c is ubiquitously expressed except for mature seed coat. In general, the interaction of 14-3-3 and FLC was firstly documented in this study, indicating BnGF14-2c may act as a positive regulator of flowering in rapeseed, which is worthy for more in-depth exploration.
Collapse
|
31
|
Xu Y, Zhang J, Ma C, Lei Y, Shen G, Jin J, Eaton DAR, Wu J. Comparative genomics of orobanchaceous species with different parasitic lifestyles reveals the origin and stepwise evolution of plant parasitism. MOLECULAR PLANT 2022; 15:1384-1399. [PMID: 35854658 DOI: 10.1016/j.molp.2022.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/27/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Orobanchaceae is the largest family of parasitic plants, containing autotrophic and parasitic plants with all degrees of parasitism. This makes it by far the best family for studying the origin and evolution of plant parasitism. Here we provide three high-quality genomes of orobanchaceous plants, the autotrophic Lindenbergia luchunensis and the holoparasitic plants Phelipanche aegyptiaca and Orobanche cumana. Phylogenomic analysis of these three genomes together with those previously published and the transcriptomes of other orobanchaceous species created a robust phylogenetic framework for Orobanchaceae. We found that an ancient whole-genome duplication (WGD; about 73.48 million years ago), which occurred earlier than the origin of Orobanchaceae, might have contributed to the emergence of parasitism. However, no WGD events occurred in any lineage of orobanchaceous parasites except for Striga after divergence from their autotrophic common ancestor, suggesting that, in contrast with previous speculations, WGD is not associated with the emergence of holoparasitism. We detected evident convergent gene loss in all parasites within Orobanchaceae and between Orobanchaceae and dodder Cuscuta australis. The gene families in the orobanchaceous parasites showed a clear pattern of recent gains and expansions. The expanded gene families are enriched in functions related to the development of the haustorium, suggesting that recent gene family expansions may have facilitated the adaptation of orobanchaceous parasites to different hosts. This study illustrates a stepwise pattern in the evolution of parasitism in the orobanchaceous parasites and will facilitate future studies on parasitism and the control of parasitic plants in agriculture.
Collapse
Affiliation(s)
- Yuxing Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jingxiong Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Canrong Ma
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunting Lei
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Guojing Shen
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jianjun Jin
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY 10027, USA
| | - Deren A R Eaton
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY 10027, USA
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
32
|
The evening complex integrates photoperiod signals to control flowering in rice. Proc Natl Acad Sci U S A 2022; 119:e2122582119. [PMID: 35733265 DOI: 10.1073/pnas.2122582119] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Plants use photoperiodism to activate flowering in response to a particular daylength. In rice, flowering is accelerated in short-day conditions, and even a brief exposure to light during the dark period (night-break) is sufficient to delay flowering. Although many of the genes involved in controlling flowering in rice have been uncovered, how the long- and short-day flowering pathways are integrated, and the mechanism of photoperiod perception is not understood. While many of the signaling components controlling photoperiod-activated flowering are conserved between Arabidopsis and rice, flowering in these two systems is activated by opposite photoperiods. Here we establish that photoperiodism in rice is controlled by the evening complex (EC). We show that mutants in the EC genes LUX ARRYTHMO (LUX) and EARLY FLOWERING3 (ELF3) paralogs abolish rice flowering. We also show that the EC directly binds and suppresses the expression of flowering repressors, including PRR37 and Ghd7. We further demonstrate that light acts via phyB to cause a rapid and sustained posttranslational modification of ELF3-1. Our results suggest a mechanism by which the EC is able to control both long- and short-day flowering pathways.
Collapse
|
33
|
Moraes TS, Immink RGH, Martinelli AP, Angenent GC, van Esse W, Dornelas MC. Passiflora organensis FT/TFL1 gene family and their putative roles in phase transition and floral initiation. PLANT REPRODUCTION 2022; 35:105-126. [PMID: 34748087 DOI: 10.1007/s00497-021-00431-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Comprehensive analysis of the FT/TFL1 gene family in Passiflora organensis results in understanding how these genes might be involved in the regulation of the typical plant architecture presented by Passiflora species. Passion fruit (Passiflora spp) is an economic tropical fruit crop, but there is hardly any knowledge available about the molecular control of phase transition and flower initiation in this species. The florigen agent FLOWERING LOCUS T (FT) interacts with the bZIP protein FLOWERING LOCUS D (FD) to induce flowering in the model species Arabidopsis thaliana. Current models based on research in rice suggest that this interaction is bridged by 14-3-3 proteins. We identified eight FT/TFL1 family members in Passiflora organensis and characterized them by analyzing their phylogeny, gene structure, expression patterns, protein interactions and putative biological roles by heterologous expression in Arabidopsis. PoFT was highest expressed during the adult vegetative phase and it is supposed to have an important role in flowering induction. In contrast, its paralogs PoTSFs were highest expressed in the reproductive phase. While ectopic expression of PoFT in transgenic Arabidopsis plants induced early flowering and inflorescence determinacy, the ectopic expression of PoTSFa caused a delay in flowering. PoTFL1-like genes were highest expressed during the juvenile phase and their ectopic expression caused delayed flowering in Arabidopsis. Our protein-protein interaction studies indicate that the flowering activation complexes in Passiflora might deviate from the hexameric complex found in the model system rice. Our results provide insights into the potential functions of FT/TFL1 gene family members during floral initiation and their implications in the special plant architecture of Passiflora species, contributing to more detailed studies on the regulation of passion fruit reproduction.
Collapse
Affiliation(s)
- Tatiana S Moraes
- Plant Biotechnology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil.
| | - Richard G H Immink
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University & Research, Wageningen, The Netherlands
- Bioscience, Wageningen University & Research, Wageningen, The Netherlands
| | - Adriana P Martinelli
- Plant Biotechnology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Gerco C Angenent
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University & Research, Wageningen, The Netherlands
- Bioscience, Wageningen University & Research, Wageningen, The Netherlands
| | - Wilma van Esse
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Marcelo C Dornelas
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
34
|
Wu YM, Ma YJ, Wang M, Zhou H, Gan ZM, Zeng RF, Ye LX, Zhou JJ, Zhang JZ, Hu CG. Mobility of FLOWERING LOCUS T protein as a systemic signal in trifoliate orange and its low accumulation in grafted juvenile scions. HORTICULTURE RESEARCH 2022; 9:uhac056. [PMID: 35702366 PMCID: PMC9186307 DOI: 10.1093/hr/uhac056] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/21/2022] [Indexed: 05/29/2023]
Abstract
The long juvenile period of perennial woody plants is a major constraint in breeding programs. FLOWERING LOCUS T (FT) protein is an important mobile florigen signal that induces plant flowering. However, whether FT can be transported in woody plants to shorten the juvenile period is unknown, and its transport mechanism remains unclear. In this study, trifoliate orange FT (ToFT) and Arabidopsis FT (AtFT, which has been confirmed to be transportable in Arabidopsis) as a control were transformed into tomato and trifoliate orange, and early flowering was induced in the transgenic plants. Long-distance and two-way (upward and downward) transmission of ToFT and AtFT proteins was confirmed in both tomato and trifoliate orange using grafting and western blot analysis. However, rootstocks of transgenic trifoliate orange could not induce flowering in grafted wild-type juvenile scions because of the low accumulation of total FT protein in the grafted scions. It was further confirmed that endogenous ToFT protein was reduced in trifoliate orange, and the accumulation of the transported ToFT and AtFT proteins was lower than that in grafted juvenile tomato scions. Furthermore, the trifoliate orange FT-INTERACTING PROTEIN1 homolog (ToFTIP1) was isolated by yeast two-hybrid analysis. The FTIP1 homolog may regulate FT transport by interacting with FT in tomato and trifoliate orange. Our findings suggest that FT transport may be conserved between the tomato model and woody plants. However, in woody plants, the transported FT protein did not accumulate in significant amounts in the grafted wild-type juvenile scions and induce the scions to flower.
Collapse
|
35
|
Xu Y, Li Q, Yuan L, Huang Y, Hung FY, Wu K, Yang S. MSI1 and HDA6 function interdependently to control flowering time via chromatin modifications. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:831-843. [PMID: 34807487 DOI: 10.1111/tpj.15596] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/26/2021] [Accepted: 11/16/2021] [Indexed: 05/14/2023]
Abstract
MULTICOPY SUPPRESSOR OF IRA1 (MSI1) is a conserved subunit of Polycomb Repressive Complex 2 (PRC2), which mediates gene silencing by histone H3 lysine 27 trimethylation (H3K27Me3). Here, we demonstrated that MSI1 interacts with the RPD3-like histone deacetylase HDA6 both in vitro and in vivo. MSI1 and HDA6 are involved in flowering and repress the expression of FLC, MAF4, and MAF5 by removing H3K9 acetylation but adding H3K27Me3. Chromatin immunoprecipitation analysis showed that HDA6 and MSI1 interdependently bind to the chromatin of FLC, MAF4, and MAF5. Furthermore, H3K9 deacetylation mediated by HDA6 is dependent on MSI1, while H3K27Me3 mediated by PRC2 containing MSI1 is also dependent on HDA6. Taken together, these data indicate that MSI1 and HDA6 act interdependently to repress the expression of FLC, MAF4, and MAF5 through histone modifications. Our findings reveal that the HDA6-MSI1 module mediates the interaction between histone H3 deacetylation and H3K27Me3 to repress gene expression involved in flowering time control.
Collapse
Affiliation(s)
- Yingchao Xu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Li
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agricultural Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Lianyu Yuan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Yisui Huang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Fu-Yu Hung
- Institute of Plant Biology, National Taiwan University, Taipei, 10617, Taiwan
| | - Keqiang Wu
- Institute of Plant Biology, National Taiwan University, Taipei, 10617, Taiwan
| | - Songguang Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| |
Collapse
|
36
|
Chávez-Hernández EC, Quiroz S, García-Ponce B, Álvarez-Buylla ER. The flowering transition pathways converge into a complex gene regulatory network that underlies the phase changes of the shoot apical meristem in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:852047. [PMID: 36017258 PMCID: PMC9396034 DOI: 10.3389/fpls.2022.852047] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/04/2022] [Indexed: 05/08/2023]
Abstract
Post-embryonic plant development is characterized by a period of vegetative growth during which a combination of intrinsic and extrinsic signals triggers the transition to the reproductive phase. To understand how different flowering inducing and repressing signals are associated with phase transitions of the Shoot Apical Meristem (SAM), we incorporated available data into a dynamic gene regulatory network model for Arabidopsis thaliana. This Flowering Transition Gene Regulatory Network (FT-GRN) formally constitutes a dynamic system-level mechanism based on more than three decades of experimental data on flowering. We provide novel experimental data on the regulatory interactions of one of its twenty-three components: a MADS-box transcription factor XAANTAL2 (XAL2). These data complement the information regarding flowering transition under short days and provides an example of the type of questions that can be addressed by the FT-GRN. The resulting FT-GRN is highly connected and integrates developmental, hormonal, and environmental signals that affect developmental transitions at the SAM. The FT-GRN is a dynamic multi-stable Boolean system, with 223 possible initial states, yet it converges into only 32 attractors. The latter are coherent with the expression profiles of the FT-GRN components that have been experimentally described for the developmental stages of the SAM. Furthermore, the attractors are also highly robust to initial states and to simulated perturbations of the interaction functions. The model recovered the meristem phenotypes of previously described single mutants. We also analyzed the attractors landscape that emerges from the postulated FT-GRN, uncovering which set of signals or components are critical for reproductive competence and the time-order transitions observed in the SAM. Finally, in the context of such GRN, the role of XAL2 under short-day conditions could be understood. Therefore, this model constitutes a robust biological module and the first multi-stable, dynamical systems biology mechanism that integrates the genetic flowering pathways to explain SAM phase transitions.
Collapse
Affiliation(s)
- Elva C. Chávez-Hernández
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Stella Quiroz
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- *Correspondence: Berenice García-Ponce,
| | - Elena R. Álvarez-Buylla
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Elena R. Álvarez-Buylla,
| |
Collapse
|
37
|
FitzGerald C, Keener JP. Bifurcation Analysis of a Heat-Sensitive Epigenetic Regulatory Network. Bull Math Biol 2021; 84:14. [PMID: 34870767 DOI: 10.1007/s11538-021-00960-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 10/20/2021] [Indexed: 10/19/2022]
Abstract
An epigenetic regulatory network that influences transgenerational inheritance of a heat-altered phenotype was recently discovered in Arabidopsis. Our analysis shows that transgenerational inheritance of the heat-altered phenotype operates in a switch-like manner and can be turned on or off as a function of heat. We also show that trans-acting small interfering RNAs act as an "inverse amplifier" of HTT5, the protein that controls the heat-altered phenotype by a currently unknown mechanism. Our analysis uses the resultant to find an analytic expression for a cusp curve in parameter space and to find a parameter bound on switch-like behavior.
Collapse
Affiliation(s)
- Cody FitzGerald
- NSF-Simons Center for Quantitative Biology, Northwestern University, 2200 Campus Drive, Evanston, IL, 60208, USA.
| | - James P Keener
- Department of Mathematics, University of Utah, 155 1400 E, Salt Lake City, UT, 84112, USA.,Department of Biomedical Engineering, University of Utah, 36 S Wasatch Drive, Salt Lake City, UT, 84112, USA
| |
Collapse
|
38
|
Gaarslev N, Swinnen G, Soyk S. Meristem transitions and plant architecture-learning from domestication for crop breeding. PLANT PHYSIOLOGY 2021; 187:1045-1056. [PMID: 34734278 PMCID: PMC8566237 DOI: 10.1093/plphys/kiab388] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/19/2021] [Indexed: 05/20/2023]
Abstract
Genetic networks that regulate meristem transitions were recurrent targets of selection during crop domestication and allow fine-tuning of plant architecture for improved crop productivity.
Collapse
Affiliation(s)
- Natalia Gaarslev
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Gwen Swinnen
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Sebastian Soyk
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
39
|
Azpeitia E, Tichtinsky G, Le Masson M, Serrano-Mislata A, Lucas J, Gregis V, Gimenez C, Prunet N, Farcot E, Kater MM, Bradley D, Madueño F, Godin C, Parcy F. Cauliflower fractal forms arise from perturbations of floral gene networks. Science 2021; 373:192-197. [PMID: 34244409 DOI: 10.1126/science.abg5999] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/03/2021] [Indexed: 11/02/2022]
Abstract
Throughout development, plant meristems regularly produce organs in defined spiral, opposite, or whorl patterns. Cauliflowers present an unusual organ arrangement with a multitude of spirals nested over a wide range of scales. How such a fractal, self-similar organization emerges from developmental mechanisms has remained elusive. Combining experimental analyses in an Arabidopsis thaliana cauliflower-like mutant with modeling, we found that curd self-similarity arises because the meristems fail to form flowers but keep the "memory" of their transient passage in a floral state. Additional mutations affecting meristem growth can induce the production of conical structures reminiscent of the conspicuous fractal Romanesco shape. This study reveals how fractal-like forms may emerge from the combination of key, defined perturbations of floral developmental programs and growth dynamics.
Collapse
Affiliation(s)
- Eugenio Azpeitia
- Laboratoire de Reproduction et Développement des Plantes, Univ. Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, F-69364 Lyon, France
| | - Gabrielle Tichtinsky
- Laboratoire Physiologie Cellulaire et Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, F-38054 Grenoble, France
| | - Marie Le Masson
- Laboratoire Physiologie Cellulaire et Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, F-38054 Grenoble, France
| | - Antonio Serrano-Mislata
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Politécnica de Valencia (UPV), 46022 Valencia, Spain
| | - Jérémy Lucas
- Laboratoire Physiologie Cellulaire et Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, F-38054 Grenoble, France
| | - Veronica Gregis
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy
| | - Carlos Gimenez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Politécnica de Valencia (UPV), 46022 Valencia, Spain
| | - Nathanaël Prunet
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.,Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Etienne Farcot
- School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Martin M Kater
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy
| | - Desmond Bradley
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Francisco Madueño
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Politécnica de Valencia (UPV), 46022 Valencia, Spain
| | - Christophe Godin
- Laboratoire de Reproduction et Développement des Plantes, Univ. Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, F-69364 Lyon, France.
| | - Francois Parcy
- Laboratoire Physiologie Cellulaire et Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, F-38054 Grenoble, France.
| |
Collapse
|
40
|
Huang R, Huang T, Irish VF. Do Epigenetic Timers Control Petal Development? FRONTIERS IN PLANT SCIENCE 2021; 12:709360. [PMID: 34295349 PMCID: PMC8290480 DOI: 10.3389/fpls.2021.709360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Epigenetic modifications include histone modifications and DNA methylation; such modifications can induce heritable changes in gene expression by altering DNA accessibility and chromatin structure. A number of studies have demonstrated that epigenetic factors regulate plant developmental timing in response to environmental changes. However, we still have an incomplete picture of how epigenetic factors can regulate developmental events such as organogenesis. The small number of cell types and the relatively simple developmental progression required to form the Arabidopsis petal makes it a good model to investigate the molecular mechanisms driving plant organogenesis. In this minireview, we summarize recent studies demonstrating the epigenetic control of gene expression during various developmental transitions, and how such regulatory mechanisms can potentially act in petal growth and differentiation.
Collapse
Affiliation(s)
- Ruirui Huang
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, United States
| | - Tengbo Huang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Vivian F. Irish
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, United States
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| |
Collapse
|
41
|
Nashima K, Shirasawa K, Ghelfi A, Hirakawa H, Isobe S, Suyama T, Wada T, Kurokura T, Uemachi T, Azuma M, Akutsu M, Kodama M, Nakazawa Y, Namai K. Genome sequence of Hydrangea macrophylla and its application in analysis of the double flower phenotype. DNA Res 2021; 28:5974207. [PMID: 33175097 PMCID: PMC7934569 DOI: 10.1093/dnares/dsaa026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
Owing to its high ornamental value, the double flower phenotype of hydrangea (Hydrangea macrophylla) is one of its most important traits. In this study, genome sequence information was obtained to explore effective DNA markers and the causative genes for double flower production in hydrangea. Single-molecule real-time sequencing data followed by a Hi-C analysis were employed. Two haplotype-phased sequences were obtained from the heterozygous genome of hydrangea. One assembly consisted of 3,779 scaffolds (2.256 Gb in length and N50 of 1.5 Mb), the other also contained 3,779 scaffolds (2.227 Gb in length, and N50 of 1.4 Mb). A total of 36,930 genes were predicted in the sequences, of which 32,205 and 32,222 were found in each haplotype. A pair of 18 pseudomolecules was constructed along with a high-density single-nucleotide polymorphism (SNP) genetic linkage map. Using the genome sequence data, and two F2 populations, the SNPs linked to double flower loci (djo and dsu) were discovered. DNA markers linked to djo and dsu were developed, and these could distinguish the recessive double flower allele for each locus, respectively. The LEAFY gene is a very likely candidate as the causative gene for dsu, since frameshift was specifically observed in the double flower accession with dsu.
Collapse
Affiliation(s)
- Kenji Nashima
- Department of Bioagricultural Sciences, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Kenta Shirasawa
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0813Japan
| | - Andrea Ghelfi
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0813Japan
| | - Hideki Hirakawa
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0813Japan
| | - Sachiko Isobe
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0813Japan
| | - Takuro Suyama
- Fukuoka Agriculture and Forestry Research Center, Chikushino, Fukuoka 818-8549, Japan
| | - Takuya Wada
- Fukuoka Agriculture and Forestry Research Center, Chikushino, Fukuoka 818-8549, Japan
| | - Takeshi Kurokura
- Department of Agrobiology and Bioresources, Faculty of Agriculture, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan
| | - Tatuya Uemachi
- Department of Biological Resources Management, School of Environmental Science, University of Shiga Prefecture, Hikone, Shiga 522-0057, Japan
| | - Mirai Azuma
- Department of Bioagricultural Sciences, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Midori Akutsu
- Tochigi Prefectural Agricultural Experimental Station, Utsunomiya, Tochigi 320-0002, Japan
| | - Masaharu Kodama
- Tochigi Prefectural Agricultural Experimental Station, Utsunomiya, Tochigi 320-0002, Japan
| | - Yoshiko Nakazawa
- Tochigi Prefectural Agricultural Experimental Station, Utsunomiya, Tochigi 320-0002, Japan
| | - Kiyoshi Namai
- Tochigi Prefectural Agricultural Experimental Station, Utsunomiya, Tochigi 320-0002, Japan
| |
Collapse
|
42
|
Alvarez JM, Brooks MD, Swift J, Coruzzi GM. Time-Based Systems Biology Approaches to Capture and Model Dynamic Gene Regulatory Networks. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:105-131. [PMID: 33667112 PMCID: PMC9312366 DOI: 10.1146/annurev-arplant-081320-090914] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
All aspects of transcription and its regulation involve dynamic events. However, capturing these dynamic events in gene regulatory networks (GRNs) offers both a promise and a challenge. The promise is that capturing and modeling the dynamic changes in GRNs will allow us to understand how organisms adapt to a changing environment. The ability to mount a rapid transcriptional response to environmental changes is especially important in nonmotile organisms such as plants. The challenge is to capture these dynamic, genome-wide events and model them in GRNs. In this review, we cover recent progress in capturing dynamic interactions of transcription factors with their targets-at both the local and genome-wide levels-and how they are used to learn how GRNs operate as a function of time. We also discuss recent advances that employ time-based machine learning approaches to forecast gene expression at future time points, a key goal of systems biology.
Collapse
Affiliation(s)
- Jose M Alvarez
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- ANID-Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Matthew D Brooks
- Global Change and Photosynthesis Research Unit, US Department of Agriculture Agricultural Research Service, Urbana, Illinois 61801, USA
| | - Joseph Swift
- Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Gloria M Coruzzi
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA;
| |
Collapse
|
43
|
Beyond the Genetic Pathways, Flowering Regulation Complexity in Arabidopsis thaliana. Int J Mol Sci 2021; 22:ijms22115716. [PMID: 34071961 PMCID: PMC8198774 DOI: 10.3390/ijms22115716] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Flowering is one of the most critical developmental transitions in plants’ life. The irreversible change from the vegetative to the reproductive stage is strictly controlled to ensure the progeny’s success. In Arabidopsis thaliana, seven flowering genetic pathways have been described under specific growth conditions. However, the evidence condensed here suggest that these pathways are tightly interconnected in a complex multilevel regulatory network. In this review, we pursue an integrative approach emphasizing the molecular interactions among the flowering regulatory network components. We also consider that the same regulatory network prevents or induces flowering phase change in response to internal cues modulated by environmental signals. In this sense, we describe how during the vegetative phase of development it is essential to prevent the expression of flowering promoting genes until they are required. Then, we mention flowering regulation under suboptimal growing temperatures, such as those in autumn and winter. We next expose the requirement of endogenous signals in flowering, and finally, the acceleration of this transition by long-day photoperiod and temperature rise signals allowing A. thaliana to bloom in spring and summer seasons. With this approach, we aim to provide an initial systemic view to help the reader integrate this complex developmental process.
Collapse
|
44
|
Dutta S, Deb A, Biswas P, Chakraborty S, Guha S, Mitra D, Geist B, Schäffner AR, Das M. Identification and functional characterization of two bamboo FD gene homologs having contrasting effects on shoot growth and flowering. Sci Rep 2021; 11:7849. [PMID: 33846519 PMCID: PMC8041875 DOI: 10.1038/s41598-021-87491-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 03/26/2021] [Indexed: 02/01/2023] Open
Abstract
Bamboos, member of the family Poaceae, represent many interesting features with respect to their fast and extended vegetative growth, unusual, yet divergent flowering time across species, and impact of sudden, large scale flowering on forest ecology. However, not many studies have been conducted at the molecular level to characterize important genes that regulate vegetative and flowering habit in bamboo. In this study, two bamboo FD genes, BtFD1 and BtFD2, which are members of the florigen activation complex (FAC) have been identified by sequence and phylogenetic analyses. Sequence comparisons identified one important amino acid, which was located in the DNA-binding basic region and was altered between BtFD1 and BtFD2 (Ala146 of BtFD1 vs. Leu100 of BtFD2). Electrophoretic mobility shift assay revealed that this alteration had resulted into ten times higher binding efficiency of BtFD1 than BtFD2 to its target ACGT motif present at the promoter of the APETALA1 gene. Expression analyses in different tissues and seasons indicated the involvement of BtFD1 in flower and vegetative development, while BtFD2 was very lowly expressed throughout all the tissues and conditions studied. Finally, a tenfold increase of the AtAP1 transcript level by p35S::BtFD1 Arabidopsis plants compared to wild type confirms a positively regulatory role of BtFD1 towards flowering. However, constitutive expression of BtFD1 had led to dwarfisms and apparent reduction in the length of flowering stalk and numbers of flowers/plant, whereas no visible phenotype was observed for BtFD2 overexpression. This signifies that timely expression of BtFD1 may be critical to perform its programmed developmental role in planta.
Collapse
Affiliation(s)
- Smritikana Dutta
- grid.412537.60000 0004 1768 2925Department of Life Sciences, Presidency University, Kolkata, India
| | - Anwesha Deb
- grid.412537.60000 0004 1768 2925Department of Life Sciences, Presidency University, Kolkata, India
| | - Prasun Biswas
- grid.412537.60000 0004 1768 2925Department of Life Sciences, Presidency University, Kolkata, India ,grid.411826.80000 0001 0559 4125Department of Botany, Kalna College, Kalna, West Bengal India
| | - Sukanya Chakraborty
- grid.412537.60000 0004 1768 2925Department of Life Sciences, Presidency University, Kolkata, India
| | - Suman Guha
- grid.412537.60000 0004 1768 2925Department of Statistics, Presidency University, Kolkata, India
| | - Devrani Mitra
- grid.412537.60000 0004 1768 2925Department of Life Sciences, Presidency University, Kolkata, India
| | - Birgit Geist
- grid.4567.00000 0004 0483 2525Institute of Biochemical Plant Pathology, Department of Environmental Sciences, Helmholtz Zentrum München, München, Germany
| | - Anton R. Schäffner
- grid.4567.00000 0004 0483 2525Institute of Biochemical Plant Pathology, Department of Environmental Sciences, Helmholtz Zentrum München, München, Germany
| | - Malay Das
- grid.412537.60000 0004 1768 2925Department of Life Sciences, Presidency University, Kolkata, India
| |
Collapse
|
45
|
Amin I, Rasool S, Mir MA, Wani W, Masoodi KZ, Ahmad P. Ion homeostasis for salinity tolerance in plants: a molecular approach. PHYSIOLOGIA PLANTARUM 2021; 171:578-594. [PMID: 32770745 DOI: 10.1111/ppl.13185] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/23/2020] [Accepted: 08/06/2020] [Indexed: 05/07/2023]
Abstract
Soil salinity is one of the major environmental stresses faced by the plants. Sodium chloride is the most important salt responsible for inducing salt stress by disrupting the osmotic potential. Due to various innate mechanisms, plants adapt to the sodic niche around them. Genes and transcription factors regulating ion transport and exclusion such as salt overly sensitive (SOS), Na+ /H+ exchangers (NHXs), high sodium affinity transporter (HKT) and plasma membrane protein (PMP) are activated during salinity stress and help in alleviating cells of ion toxicity. For salt tolerance in plants signal transduction and gene expression is regulated via transcription factors such as NAM (no apical meristem), ATAF (Arabidopsis transcription activation factor), CUC (cup-shaped cotyledon), Apetala 2/ethylene responsive factor (AP2/ERF), W-box binding factor (WRKY) and basic leucine zipper domain (bZIP). Cross-talk between all these transcription factors and genes aid in developing the tolerance mechanisms adopted by plants against salt stress. These genes and transcription factors regulate the movement of ions out of the cells by opening various membrane ion channels. Mutants or knockouts of all these genes are known to be less salt-tolerant compared to wild-types. Using novel molecular techniques such as analysis of genome, transcriptome, ionome and metabolome of a plant, can help in expanding the understanding of salt tolerance mechanism in plants. In this review, we discuss the genes responsible for imparting salt tolerance under salinity stress through transport dynamics of ion balance and need to integrate high-throughput molecular biology techniques to delineate the issue.
Collapse
Affiliation(s)
- Insha Amin
- Molecular Biology Lab, Division of Veterinary Biochemistry, FVSc & A.H., SKUAST, Shuhama, India
| | - Saiema Rasool
- Department of School Education, Govt. of Jammu & Kashmir, Srinagar, 190001, India
| | - Mudasir A Mir
- Transcriptomics Lab, Division of Plant Biotechnology, SKUAST-Kashmir, Shalimar, 190025, India
| | - Wasia Wani
- Transcriptomics Lab, Division of Plant Biotechnology, SKUAST-Kashmir, Shalimar, 190025, India
| | - Khalid Z Masoodi
- Transcriptomics Lab, Division of Plant Biotechnology, SKUAST-Kashmir, Shalimar, 190025, India
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
- Department of Botany, S. P. College, Srinagar, Jammu and Kashmir, 190001, India
| |
Collapse
|
46
|
Zhu Y, Klasfeld S, Wagner D. Molecular regulation of plant developmental transitions and plant architecture via PEPB family proteins: an update on mechanism of action. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2301-2311. [PMID: 33449083 DOI: 10.1093/jxb/eraa598] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
This year marks the 100th anniversary of the experiments by Garner and Allard that showed that plants measure the duration of the night and day (the photoperiod) to time flowering. This discovery led to the identification of Flowering Locus T (FT) in Arabidopsis and Heading Date 3a (Hd3a) in rice as a mobile signal that promotes flowering in tissues distal to the site of cue perception. FT/Hd3a belong to the family of phosphatidylethanolamine-binding proteins (PEBPs). Collectively, these proteins control plant developmental transitions and plant architecture. Several excellent recent reviews have focused on the roles of PEBPs in diverse plant species; here we will primarily highlight recent advances that enhance our understanding of the mechanism of action of PEBPs and discuss critical open questions.
Collapse
Affiliation(s)
- Yang Zhu
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Samantha Klasfeld
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
- Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
47
|
Pavlinova P, Samsonova MG, Gursky VV. Dynamical Modeling of the Core Gene Network Controlling Transition to Flowering in Pisum sativum. Front Genet 2021; 12:614711. [PMID: 33777095 PMCID: PMC7990781 DOI: 10.3389/fgene.2021.614711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/28/2021] [Indexed: 11/29/2022] Open
Abstract
Transition to flowering is an important stage of plant development. Many regulatory modules that control floral transition are conservative across plants. This process is best studied for the model plant Arabidopsis thaliana. The homologues of Arabidopsis genes responsible for the flowering initiation in legumes have been identified, and available data on their expression provide a good basis for gene network modeling. In this study, we developed several dynamical models of a gene network controlling transition to flowering in pea (Pisum sativum) using two different approaches. We used differential equations for modeling a previously proposed gene regulation scheme of floral initiation in pea and tested possible alternative hypothesis about some regulations. As the second approach, we applied neural networks to infer interactions between genes in the network directly from gene expression data. All models were verified on previously published experimental data on the dynamic expression of the main genes in the wild type and in three mutant genotypes. Based on modeling results, we made conclusions about the functionality of the previously proposed interactions in the gene network and about the influence of different growing conditions on the network architecture. It was shown that regulation of the PIM, FTa1, and FTc genes in pea does not correspond to the previously proposed hypotheses. The modeling suggests that short- and long-day growing conditions are characterized by different gene network architectures. Overall, the results obtained can be used to plan new experiments and create more accurate models to study the flowering initiation in pea and, in a broader context, in legumes.
Collapse
Affiliation(s)
- Polina Pavlinova
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great Saint Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Maria G Samsonova
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great Saint Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Vitaly V Gursky
- Theoretical Department, Ioffe Institute, Saint Petersburg, Russia
| |
Collapse
|
48
|
Cheng X, Li G, Krom N, Tang Y, Wen J. Genetic regulation of flowering time and inflorescence architecture by MtFDa and MtFTa1 in Medicago truncatula. PLANT PHYSIOLOGY 2021; 185:161-178. [PMID: 33631796 PMCID: PMC8133602 DOI: 10.1093/plphys/kiaa005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/11/2020] [Indexed: 05/29/2023]
Abstract
Regulation of floral transition and inflorescence development is crucial for plant reproductive success. FLOWERING LOCUS T (FT) is one of the central players in the flowering genetic regulatory network, whereas FLOWERING LOCUS D (FD), an interactor of FT and TERMINAL FLOWER 1 (TFL1), plays significant roles in both floral transition and inflorescence development. Here we show the genetic regulatory networks of floral transition and inflorescence development in Medicago truncatula by characterizing MtFTa1 and MtFDa and their genetic interactions with key inflorescence meristem (IM) regulators. Both MtFTa1 and MtFDa promote flowering; the double mutant mtfda mtfta1 does not proceed to floral transition. RNAseq analysis reveals that a broad range of genes involved in flowering regulation and flower development are up- or downregulated by MtFTa1 and/or MtFDa mutations. Furthermore, mutation of MtFDa also affects the inflorescence architecture. Genetic analyses of MtFDa, MtFTa1, MtTFL1, and MtFULc show that MtFDa is epistatic to MtFULc and MtTFL1 in controlling IM identity. Our results demonstrate that MtFTa1 and MtFDa are major flowering regulators in M. truncatula, and MtFDa is essential both in floral transition and secondary inflorescence development. The study will advance our understanding of the genetic regulation of flowering time and inflorescence development in legumes.
Collapse
Affiliation(s)
- Xiaofei Cheng
- Noble Research Institute, Ardmore, Oklahoma 73401, USA
| | - Guifen Li
- Noble Research Institute, Ardmore, Oklahoma 73401, USA
| | - Nick Krom
- Noble Research Institute, Ardmore, Oklahoma 73401, USA
| | - Yuhong Tang
- Noble Research Institute, Ardmore, Oklahoma 73401, USA
| | - Jiangqi Wen
- Noble Research Institute, Ardmore, Oklahoma 73401, USA
| |
Collapse
|
49
|
Gol L, Haraldsson EB, von Korff M. Ppd-H1 integrates drought stress signals to control spike development and flowering time in barley. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:122-136. [PMID: 32459309 PMCID: PMC7816852 DOI: 10.1093/jxb/eraa261] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/21/2020] [Indexed: 05/10/2023]
Abstract
Drought impairs growth and spike development, and is therefore a major cause of yield losses in the temperate cereals barley and wheat. Here, we show that the photoperiod response gene PHOTOPERIOD-H1 (Ppd-H1) interacts with drought stress signals to modulate spike development. We tested the effects of a continuous mild and a transient severe drought stress on developmental timing and spike development in spring barley cultivars with a natural mutation in ppd-H1 and derived introgression lines carrying the wild-type Ppd-H1 allele from wild barley. Mild drought reduced the spikelet number and delayed floral development in spring cultivars but not in the introgression lines with a wild-type Ppd-H1 allele. Similarly, drought-triggered reductions in plant height, and tiller and spike number were more pronounced in the parental lines compared with the introgression lines. Transient severe stress halted growth and floral development; upon rewatering, introgression lines, but not the spring cultivars, accelerated development so that control and stressed plants flowered almost simultaneously. These genetic differences in development were correlated with a differential down-regulation of the flowering promotors FLOWERING LOCUS T1 and the BARLEY MADS-box genes BM3 and BM8. Our findings therefore demonstrate that Ppd-H1 affects developmental plasticity in response to drought in barley.
Collapse
Affiliation(s)
- Leonard Gol
- Institute for Plant Genetics, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Max-Planck-Institute for Plant Breeding Research, Cologne, Germany
| | - Einar B Haraldsson
- Institute for Plant Genetics, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Maria von Korff
- Institute for Plant Genetics, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Max-Planck-Institute for Plant Breeding Research, Cologne, Germany
- Cluster of Excellence on Plant Sciences, ‘SMART Plants for Tomorrows Needs’, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Correspondence:
| |
Collapse
|
50
|
Cerise M, Giaume F, Galli M, Khahani B, Lucas J, Podico F, Tavakol E, Parcy F, Gallavotti A, Brambilla V, Fornara F. OsFD4 promotes the rice floral transition via florigen activation complex formation in the shoot apical meristem. THE NEW PHYTOLOGIST 2021; 229:429-443. [PMID: 32737885 DOI: 10.1111/nph.16834] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
In rice, the florigens Heading Date 3a (Hd3a) and Rice Flowering Locus T 1 (RFT1), OsFD-like basic leucine zipper (bZIP) transcription factors, and Gf14 proteins assemble into florigen activation/repressor complexes (FACs/FRCs), which regulate transition to flowering in leaves and apical meristem. Only OsFD1 has been described as part of complexes promoting flowering at the meristem, and little is known about the role of other bZIP transcription factors, the combinatorial complexity of FAC formation, and their DNA-binding properties. Here, we used mutant analysis, protein-protein interaction assays and DNA affinity purification (DAP) sequencing coupled to in silico prediction of binding syntaxes to study several bZIP proteins that assemble into FACs or FRCs. We identified OsFD4 as a component of a FAC promoting flowering at the shoot apical meristem, downstream of OsFD1. The osfd4 mutants are late flowering and delay expression of genes promoting inflorescence development. Protein-protein interactions indicate an extensive network of contacts between several bZIPs and Gf14 proteins. Finally, we identified genomic regions bound by bZIPs with promotive and repressive effects on flowering. We conclude that distinct bZIPs orchestrate floral induction at the meristem and that FAC formation is largely combinatorial. While binding to the same consensus motif, their DNA-binding syntax is different, suggesting discriminatory functions.
Collapse
Affiliation(s)
- Martina Cerise
- Department of Biosciences, University of Milan, Milan, 20123, Italy
- Department of Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, D-50829, Germany
| | - Francesca Giaume
- Department of Biosciences, University of Milan, Milan, 20123, Italy
| | - Mary Galli
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Bahman Khahani
- Department of Crop Production and Plant Breeding, College of Agriculture, Shiraz University, Shiraz, 71441-65186, Iran
| | - Jérémy Lucas
- CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, University Grenoble Alpes, 17 avenue des martyrs, Grenoble, F-38054, France
| | - Federico Podico
- Department of Biosciences, University of Milan, Milan, 20123, Italy
| | - Elahe Tavakol
- Department of Crop Production and Plant Breeding, College of Agriculture, Shiraz University, Shiraz, 71441-65186, Iran
| | - François Parcy
- CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, University Grenoble Alpes, 17 avenue des martyrs, Grenoble, F-38054, France
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Vittoria Brambilla
- Department of Agricultural and Environmental Sciences, University of Milan, Milan, 20123, Italy
| | - Fabio Fornara
- Department of Biosciences, University of Milan, Milan, 20123, Italy
| |
Collapse
|