1
|
Nguyen NH, Trotel-Aziz P, Clément C, Jeandet P, Baillieul F, Aziz A. Camalexin accumulation as a component of plant immunity during interactions with pathogens and beneficial microbes. PLANTA 2022; 255:116. [PMID: 35511374 DOI: 10.1007/s00425-022-03907-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
This review provides an overview on the role of camalexin in plant immunity taking into account various plant-pathogen and beneficial microbe interactions, regulation mechanisms and the contribution in basal and induced plant resistance. In a hostile environment, plants evolve complex and sophisticated defense mechanisms to counteract invading pathogens and herbivores. Several lines of evidence support the assumption that secondary metabolites like phytoalexins which are synthesized de novo, play an important role in plant defenses and contribute to pathogens' resistance in a wide variety of plant species. Phytoalexins are synthesized and accumulated in plants upon pathogen challenge, root colonization by beneficial microbes, following treatment with chemical elicitors or in response to abiotic stresses. Their protective properties against pathogens have been reported in various plant species as well as their contribution to human health. Phytoalexins are synthesized through activation of particular sets of genes encoding specific pathways. Camalexin (3'-thiazol-2'-yl-indole) is the primary phytoalexin produced by Arabidopsis thaliana after microbial infection or abiotic elicitation and an iconic representative of the indole phytoalexin family. The synthesis of camalexin is an integral part of cruciferous plant defense mechanisms. Although the pathway leading to camalexin has been largely elucidated, the regulatory networks that control the induction of its biosynthetic steps by pathogens with different lifestyles or by beneficial microbes remain mostly unknown. This review thus presents current knowledge regarding camalexin biosynthesis induction during plant-pathogen and beneficial microbe interactions as well as in response to microbial compounds and provides an overview on its regulation and interplay with signaling pathways. The contribution of camalexin to basal and induced plant resistance and its detoxification by some pathogens to overcome host resistance are also discussed.
Collapse
Affiliation(s)
- Ngoc Huu Nguyen
- Induced Resistance and Plant Bioprotection, USC INRAE 1488, University of Reims, UFR Sciences, Campus Moulin de la Housse, 51687 Cedex 02, Reims, France
- Department of Plant Biology, Faculty of Agriculture and Forestry, Tay Nguyen University, 567 Le Duan, Buon Ma Thuot, Daklak, Vietnam
| | - Patricia Trotel-Aziz
- Induced Resistance and Plant Bioprotection, USC INRAE 1488, University of Reims, UFR Sciences, Campus Moulin de la Housse, 51687 Cedex 02, Reims, France
| | - Christophe Clément
- Induced Resistance and Plant Bioprotection, USC INRAE 1488, University of Reims, UFR Sciences, Campus Moulin de la Housse, 51687 Cedex 02, Reims, France
| | - Philippe Jeandet
- Induced Resistance and Plant Bioprotection, USC INRAE 1488, University of Reims, UFR Sciences, Campus Moulin de la Housse, 51687 Cedex 02, Reims, France
| | - Fabienne Baillieul
- Induced Resistance and Plant Bioprotection, USC INRAE 1488, University of Reims, UFR Sciences, Campus Moulin de la Housse, 51687 Cedex 02, Reims, France
| | - Aziz Aziz
- Induced Resistance and Plant Bioprotection, USC INRAE 1488, University of Reims, UFR Sciences, Campus Moulin de la Housse, 51687 Cedex 02, Reims, France.
| |
Collapse
|
2
|
Mackelprang R, Okrent RA, Wildermuth MC. Preference of Arabidopsis thaliana GH3.5 acyl amido synthetase for growth versus defense hormone acyl substrates is dictated by concentration of amino acid substrate aspartate. PHYTOCHEMISTRY 2017; 143:19-28. [PMID: 28743075 DOI: 10.1016/j.phytochem.2017.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/29/2017] [Accepted: 07/04/2017] [Indexed: 06/07/2023]
Abstract
The GH3 family of adenylating enzymes conjugate acyl substrates such as the growth hormone indole-3-acetic acid (IAA) to amino acids via a two-step reaction of acyl substrate adenylation followed by amino acid conjugation. Arabidopsis thaliana GH3.5 was previously shown to be unusual in that it could adenylate both IAA and the defense hormone salicylic acid (SA, 2-hydroxybenzoate). Our detailed studies of the kinetics of GH3.5 on a variety of auxin and benzoate substrates provides insight into the acyl preference and reaction mechanism of GH3.5. For example, we found GH3.5 activity on substituted benzoates is not defined by the substitution position as it is for GH3.12/PBS3. Most importantly, we show that GH3.5 strongly prefers Asp as the amino acid conjugate and that the concentration of Asp dictates the functional activity of GH3.5 on IAA vs. SA. Not only is Asp used in amino acid biosynthesis, but it also plays an important role in nitrogen mobilization and in the production of downstream metabolites, including pipecolic acid which propagates defense systemically. During active growth, [IAA] and [Asp] are high and the catalytic efficiency (kcat/Km) of GH3.5 for IAA is 360-fold higher than with SA. GH3.5 is expressed under these conditions and conversion of IAA to inactive IAA-Asp would provide fine spatial and temporal control over local auxin developmental responses. By contrast, [SA] is dramatically elevated in response to (hemi)-biotrophic pathogens which also induce GH3.5 expression. Under these conditions, [Asp] is low and GH3.5 has equal affinity (Km) for SA and IAA with similar catalytic efficiencies. However, the concentration of IAA tends to be very low, well below the Km for IAA. Therefore, GH3.5 catalyzed formation of SA-Asp would occur, fine-tuning localized defensive responses through conversion of active free SA to SA-Asp. Taken together, we show how GH3.5, with dual activity on IAA and SA, can integrate cellular metabolic status via Asp to provide fine control of growth vs. defense outcomes and hormone homeostasis.
Collapse
Affiliation(s)
- Rebecca Mackelprang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA
| | - Rachel A Okrent
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA
| | - Mary C Wildermuth
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA.
| |
Collapse
|
3
|
Huang Y, Tan H, Guo Z, Wu X, Zhang Q, Zhang L, Diao Y. The biosynthesis and genetic engineering of bioactive indole alkaloids in plants. JOURNAL OF PLANT BIOLOGY 2016. [PMID: 0 DOI: 10.1007/s12374-016-0032-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
|
4
|
Pivato M, Fabrega-Prats M, Masi A. Low-molecular-weight thiols in plants: Functional and analytical implications. Arch Biochem Biophys 2014; 560:83-99. [DOI: 10.1016/j.abb.2014.07.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 01/15/2023]
|