1
|
Li Y, Cao T, Guo Y, Grimm B, Li X, Duanmu D, Lin R. Regulatory and retrograde signaling networks in the chlorophyll biosynthetic pathway. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:887-911. [PMID: 39853950 PMCID: PMC12016751 DOI: 10.1111/jipb.13837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/08/2024] [Indexed: 01/26/2025]
Abstract
Plants, algae and photosynthetic bacteria convert light into chemical energy by means of photosynthesis, thus providing food and energy for most organisms on Earth. Photosynthetic pigments, including chlorophylls (Chls) and carotenoids, are essential components that absorb the light energy necessary to drive electron transport in photosynthesis. The biosynthesis of Chl shares several steps in common with the biosynthesis of other tetrapyrroles, including siroheme, heme and phycobilins. Given that many tetrapyrrole precursors possess photo-oxidative properties that are deleterious to macromolecules and can lead to cell death, tetrapyrrole biosynthesis (TBS) requires stringent regulation under various developmental and environmental conditions. Thanks to decades of research on model plants and algae, we now have a deeper understanding of the regulatory mechanisms that underlie Chl synthesis, including (i) the many factors that control the activity and stability of TBS enzymes, (ii) the transcriptional and post-translational regulation of the TBS pathway, and (iii) the complex roles of tetrapyrrole-mediated retrograde signaling from chloroplasts to the cytoplasm and the nucleus. Based on these new findings, Chls and their derivatives will find broad applications in synthetic biology and agriculture in the future.
Collapse
Affiliation(s)
- Yuhong Li
- Key Laboratory of Photobiology, Institute of Botanythe Chinese Academy of SciencesBeijing100093China
| | - Tianjun Cao
- School of Life SciencesWestlake UniversityHangzhou310030China
- Institute of BiologyWestlake Institute for Advanced StudyHangzhou310024China
| | - Yunling Guo
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Bernhard Grimm
- Institute of Biology/Plant PhysiologyHumboldt‐Universität zu BerlinBerlin10115Germany
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityKaifeng475004China
| | - Xiaobo Li
- School of Life SciencesWestlake UniversityHangzhou310030China
- Institute of BiologyWestlake Institute for Advanced StudyHangzhou310024China
| | - Deqiang Duanmu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botanythe Chinese Academy of SciencesBeijing100093China
- Institute of Biotechnology, Xianghu LaboratoryHangzhou311231China
| |
Collapse
|
2
|
Fang X, Zhao L, Li J, Ma Z, Zhang F, Zheng P, Wang Z, Liu Y, Wang L. AcGLK1 promotes chloroplast division through regulating AcFtsZ1 in Actinidia chinensis. PLANTA 2024; 261:17. [PMID: 39690269 DOI: 10.1007/s00425-024-04592-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/06/2024] [Indexed: 12/19/2024]
Abstract
MAIN CONCLUSION This study unravels a new regulatory member (AcGLK1) that regulates chloroplast division by affecting the expression levels of cytoskeletal filamenting temperature-sensitive Z (FtsZ) in Actinidia chinensis. GOLDEN 2-LIKE (GLK) transcription factor members of GARP subfamily play an irreplaceable role in regulating chloroplast biogenesis and development. Here we report the functional characterization of a novel GLK1 homolog (AcGLK1) isolated from kiwifruit (Actinidia chinensis cultivar 'Hongyang'). Transgenic lines overexpressing AcGLK1 (AcGLK1OE) resulted in an increase of chloroplast number, size and nutrients accumulation in a tomato variety Micro-Tom (Solanum lycopersicum). Transcriptomic data revealed a series of DEGs related to chloroplast division, in which a tomato FtsZ1 homolog (SlFtsZ1) was significantly upregulated in the transgenic lines and could be directly activated by AcGLK1. Furthermore, AcGLK1 was shown to transcriptionally activate expression of kiwifruit FtsZ1 homologous genes (Achv4p23g035689 and Achv4p19g029547) through Y1H and GUS assays. Taken together, we provide evidence showing that AcGLK1 promotes chloroplast division probably through positively regulation of the transcription of FtsZ1 homologs.
Collapse
Affiliation(s)
- Xue Fang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Lili Zhao
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Jian Li
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Zhiwen Ma
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Feng Zhang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Pengpeng Zheng
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Ziyu Wang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Yongsheng Liu
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, Sichuan, China.
| | - Lihuan Wang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
3
|
Vedalankar P, Tripathy BC. Light dependent protochlorophyllide oxidoreductase: a succinct look. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:719-731. [PMID: 38846463 PMCID: PMC11150229 DOI: 10.1007/s12298-024-01454-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/01/2024] [Accepted: 04/29/2024] [Indexed: 06/09/2024]
Abstract
Reducing protochlorophyllide (Pchlide) to chlorophyllide (Chlide) is a major regulatory step in the chlorophyll biosynthesis pathway. This reaction is catalyzed by light-dependent protochlorophyllide oxidoreductase (LPOR) in oxygenic phototrophs, particularly angiosperms. LPOR-NADPH and Pchlide form a ternary complex to be efficiently photo-transformed to synthesize Chlide and, subsequently, chlorophyll during the transition from skotomorphogenesis to photomorphogenesis. Besides lipids, carotenoids and poly-cis xanthophylls influence the formation of the photoactive LPOR complexes and the PLBs. The crystal structure of LPOR reveals evolutionarily conserved cysteine residues implicated in the Pchlide binding and catalysis around the active site. Different isoforms of LPOR viz PORA, PORB, and PORC expressed at different stages of chloroplast development play a photoprotective role by quickly transforming the photosensitive Pchlide to Chlide. Non-photo-transformed Pchlide acts as a photosensitizer to generate singlet oxygen that causes oxidative stress and cell death. Therefore, different isoforms of LPOR have evolved and differentially expressed during plant development to protect plants from photodamage and thus play a pivotal role during photomorphogenesis. This review brings out the salient features of LPOR structure, structure-function relationships, and ultra-fast photo transformation of Pchlide to Chlide by oligomeric and polymeric forms of LPOR.
Collapse
Affiliation(s)
| | - Baishnab C. Tripathy
- Department of Biotechnology, Sharda University, Greater Noida, Uttar Pradesh 201310 India
| |
Collapse
|
4
|
Herbst J, Pang X, Roling L, Grimm B. A novel tetratricopeptide-repeat protein, TTP1, forms complexes with glutamyl-tRNA reductase and protochlorophyllide oxidoreductase during tetrapyrrole biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2027-2045. [PMID: 38070484 PMCID: PMC10967246 DOI: 10.1093/jxb/erad491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/08/2023] [Indexed: 03/28/2024]
Abstract
The biosynthesis of the tetrapyrrole end-products chlorophyll and heme depends on a multifaceted control mechanism that acts primarily at the post-translational level upon the rate-limiting step of 5-aminolevulinic acid synthesis and upon light-dependent protochlorophyllide oxidoreductase (POR). These regulatory processes require auxiliary factors that modulate the activity, stability, complex formation, and subplastidal localization of the relevant proteins. Together, they ensure optimal metabolic flow during the day and at night. As an Arabidopsis homolog of the POR-interacting tetratricopeptide-repeat protein (Pitt) first reported in Synechocystis, we characterize tetrapyrrole biosynthesis-regulating tetratricopeptide-repeat protein1 (TTP1). TTP1 is a plastid-localized, membrane-bound factor that interacts with POR, the Mg protoporphyrin monomethylester cyclase CHL27, glutamyl-tRNA reductase (GluTR), GluTR-binding protein, and FLUORESCENCE IN BLUE LIGHT. Lack of TTP1 leads to accumulation of GluTR, enhanced 5-aminolevulinic acid synthesis and lower levels of POR. Knockout mutants show enhanced sensitivity to reactive oxygen species and a slower greening of etiolated seedlings. Based on our studies, the interaction of TTP1 with GluTR and POR does not directly inhibit their enzymatic activity and contribute to the control of 5-aminolevulinic acid synthesis. Instead, we propose that TTP1 sequesters a fraction of these proteins on the thylakoid membrane, and contributes to their stability.
Collapse
Affiliation(s)
- Josephine Herbst
- Humboldt-Universität zu Berlin, Institute of Biology—Plant Physiology, Philippstr. 13, Building 12, 10099 Berlin, Germany
- VIB-U Gent Center for Plant Systems Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Xiaoqing Pang
- Humboldt-Universität zu Berlin, Institute of Biology—Plant Physiology, Philippstr. 13, Building 12, 10099 Berlin, Germany
| | - Lena Roling
- Humboldt-Universität zu Berlin, Institute of Biology—Plant Physiology, Philippstr. 13, Building 12, 10099 Berlin, Germany
| | - Bernhard Grimm
- Humboldt-Universität zu Berlin, Institute of Biology—Plant Physiology, Philippstr. 13, Building 12, 10099 Berlin, Germany
| |
Collapse
|
5
|
Zheng L, Zhou P, Pan Y, Li B, Shen R, Lan P. Proteomic profile of the germinating seeds reveals enhanced seedling growth in Arabidopsis rpp1a mutant. PLANT MOLECULAR BIOLOGY 2023; 113:105-120. [PMID: 37804450 DOI: 10.1007/s11103-023-01378-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/14/2023] [Indexed: 10/09/2023]
Abstract
Ribosomal phosphoprotein P1 (RPP1) is an integral component of the P-protein stalk in the 60S subunit of eukaryotic ribosomes and is required for the efficient elongation of translation. Previously, Arabidopsis RPP1A was revealed to be involved in the regulation of seed size and seed storage protein accumulation. In this work, the seedling growth analysis shows that the knockout mutation of Arabidopsis RPP1A significantly promoted seedling growth, particularly in the shoots. The label-free quantitative proteomic analysis demonstrated that a total of 593 proteins were differentially accumulated between the germinating seeds of the wild-type Col-0 and rpp1a mutant. And these proteins were significantly enriched in the intracellular transport, nitrogen compound transport, protein transport, and organophosphate metabolic process. The abundance of proteins involved in the RNA and protein processing processes, including ncRNA processing and protein folding, were significantly increased in the rpp1a mutant. Mutation in RPP1A highlighted the effects on the ribosome, energy metabolism, and nitrogen metabolism. The abundance of enzymes involved in glycolysis and pyruvate mechanism was decreased in the germinating seeds of the rpp1a mutant. Whereas the processes of amino acid biosynthesis, protein processing in endoplasmic reticulum, and biosynthesis of cofactors were enhanced in the germinating seeds of the rpp1a mutant. Taken together, the lack of RPP1A triggered changes in other ribosomal proteins, and the higher amino acid contents in the seedlings of the rpp1a mutant probably contributed to enhanced biosynthesis, processing, and transport of proteins, resulting in accelerated growth. Our results show the novel role of a P-protein and shed new light on the regulatory mechanism of seedling growth.
Collapse
Affiliation(s)
- Lu Zheng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Peijun Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yilin Pan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bingjuan Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Renfang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ping Lan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Ji S, Grimm B, Wang P. Chloroplast SRP43 and SRP54 independently promote thermostability and membrane binding of light-dependent protochlorophyllide oxidoreductases. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1583-1598. [PMID: 37269173 DOI: 10.1111/tpj.16339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/18/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023]
Abstract
Protochlorophyllide oxidoreductase (POR), which converts protochlorophyllide into chlorophyllide, is the only light-dependent enzyme in chlorophyll biosynthesis. While its catalytic reaction and importance for chloroplast development are well understood, little is known about the post-translational control of PORs. Here, we show that cpSRP43 and cpSRP54, two components of the chloroplast signal recognition particle pathway, play distinct roles in optimizing the function of PORB, the predominant POR isoform in Arabidopsis. The chaperone cpSRP43 stabilizes the enzyme and provides appropriate amounts of PORB during leaf greening and heat shock, whereas cpSRP54 enhances its binding to the thylakoid membrane, thereby ensuring adequate levels of metabolic flux in late chlorophyll biosynthesis. Furthermore, cpSRP43 and the DnaJ-like protein CHAPERONE-LIKE PROTEIN of POR1 concurrently act to stabilize PORB. Overall, these findings enhance our understanding of the coordinating role of cpSPR43 and cpSRP54 in the post-translational control of chlorophyll synthesis and assembly of photosynthetic chlorophyll-binding proteins.
Collapse
Affiliation(s)
- Shuiling Ji
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Philippstr.13, Building 12, 10099, Berlin, Germany
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, 430079, Wuhan, China
| | - Bernhard Grimm
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Philippstr.13, Building 12, 10099, Berlin, Germany
| | - Peng Wang
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Philippstr.13, Building 12, 10099, Berlin, Germany
- School of Biological Sciences, The University of Hong Kong, Hong Kong, 999077, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, 999077, Hong Kong, China
| |
Collapse
|
7
|
Osborne AN, Osagiede A, Storm AR, Hulse-Kemp AM, Stoeckman AK. Gossypium hirsutum gene of unknown function Gohir.A03G0737001 encodes a potential Chaperone-like Protein of protochlorophyllide oxidoreductase (CPP1). MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000867. [PMID: 37583451 PMCID: PMC10423991 DOI: 10.17912/micropub.biology.000867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/23/2023] [Accepted: 07/27/2023] [Indexed: 08/17/2023]
Abstract
A gene of unknown function identified in Gossypium hirsutum , Gohir.A03G0737001.1, was studied using sequence and bioinformatic tools. The encoded protein (referred to here as GhCPP1-A0A1U8HKT6) was predicted to function as a Chaperone-like protein of protochlorophyllide oxidoreductase (CPP1), which is involved with initiation of photochemical reactions of chlorophyll biosynthesis. Sequence analysis indicates it is embedded in the chloroplast envelope membrane through four transmembrane regions and contains a J-like domain that is structurally similar to the J domain of DnaJ/Hsp40 "holdase" chaperone proteins.
Collapse
Affiliation(s)
- Alana N. Osborne
- Chemistry, Bethel University, Saint Paul, Minnesota, United States
| | - Andrew Osagiede
- Chemistry, Bethel University, Saint Paul, Minnesota, United States
| | | | - Amanda M. Hulse-Kemp
- Genomics and Bioinformatics Research Unit, USDA-ARS, Raleigh, NC
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, United States
| | - Angela K. Stoeckman
- Chemistry Department, Bethel University, Saint Paul, Minnesota, United States
| |
Collapse
|
8
|
Establishment of a Virus-Induced Gene-Silencing (VIGS) System in Tea Plant and Its Use in the Functional Analysis of CsTCS1. Int J Mol Sci 2022; 24:ijms24010392. [PMID: 36613837 PMCID: PMC9820744 DOI: 10.3390/ijms24010392] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/09/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Tea (Camellia sinensis [L.] O. Kuntze) is an important global economic crop and is considered to enhance health. However, the functions of many genes in tea plants are unknown. Virus-induced gene silencing (VIGS) mediated by tobacco rattle virus (TRV) is an effective tool for the analysis of gene functions, although this method has rarely been reported in tea plants. In this study, we established an effective VIGS-mediated gene knockout technology to understand the functional identification of large-scale genomic sequences in tea plants. The results showed that the VIGS system was verified by detecting the virus and using a real-time quantitative reverse transcription PCR (qRT-PCR) analysis. The reporter gene CsPOR1 (protochlorophyllide oxidoreductase) was silenced using the vacuum infiltration method, and typical photobleaching and albino symptoms were observed in newly sprouted leaves at the whole plant level of tea after infection for 12 d and 25 d. After optimization, the VIGS system was successfully used to silence the tea plant CsTCS1 (caffeine synthase) gene. The results showed that the relative caffeine content was reduced 6.26-fold compared with the control, and the level of expression of CsPOR1 decreased by approximately 3.12-fold in plants in which CsPOR1 was silenced. These results demonstrate that VIGS can be quickly and efficiently used to analyze the function of genes in tea plants. The successful establishment of VIGS could eliminate the need for tissue culture by providing an effective method to study gene function in tea plants and accelerate the process of functional genome research in tea.
Collapse
|
9
|
Yuan J, Ma T, Ji S, Hedtke B, Grimm B, Lin R. Two chloroplast-localized MORF proteins act as chaperones to maintain tetrapyrrole biosynthesis. THE NEW PHYTOLOGIST 2022; 235:1868-1883. [PMID: 35615903 DOI: 10.1111/nph.18273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Tetrapyrroles have essential functions as pigments and cofactors during plant growth and development, and the tetrapyrrole biosynthesis pathway is tightly controlled. Multiple organellar RNA editing factors (MORFs) are required for editing of a wide variety of RNA sites in chloroplasts and mitochondria, but their biochemical properties remain elusive. Here, we uncovered the roles of chloroplast-localized MORF2 and MORF9 in modulating tetrapyrrole biosynthesis and embryogenesis in Arabidopsis thaliana. The lack or reduced transcripts of MORF2 or MORF9 significantly affected biosynthesis of the tetrapyrrole precursor 5-aminolevulinic acid and accumulation of Chl and other tetrapyrrole intermediates. MORF2 directly interacts with multiple tetrapyrrole biosynthesis enzymes and regulators, including NADPH:PROTOCHLOROPHYLLIDE OXIDOREDUCTASE B (PORB) and GENOMES UNCOUPLED4 (GUN4). Strikingly, MORF2 and MORF9 display holdase chaperone activity, alleviate the aggregation of PORB in vitro, and are essential for POR accumulation in vivo. Moreover, both MORF2 and MORF9 significantly stimulate magnesium chelatase activity. Our findings reveal a previously unknown biochemical property of MORF proteins as chaperones and point to a new layer of post-translational control of the tightly regulated tetrapyrrole biosynthesis in plants.
Collapse
Affiliation(s)
- Jiarui Yuan
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tingting Ma
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Shuiling Ji
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Berlin, D-10099, Germany
| | - Boris Hedtke
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Berlin, D-10099, Germany
| | - Bernhard Grimm
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Berlin, D-10099, Germany
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
10
|
Zhao L, Jia T, Jiao Q, Hu X. Research Progress in J-Proteins in the Chloroplast. Genes (Basel) 2022; 13:1469. [PMID: 36011380 PMCID: PMC9407819 DOI: 10.3390/genes13081469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
The J-proteins, also called DNAJ-proteins or heat shock protein 40 (HSP40), are one of the famous molecular chaperones. J-proteins, HSP70s and other chaperones work together as constitute ubiquitous types of molecular chaperone complex, which function in a wide variety of physiological processes. J-proteins are widely distributed in major cellular compartments. In the chloroplast of higher plants, around 18 J-proteins and multiple J-like proteins are present; however, the functions of most of them remain unclear. During the last few years, important progress has been made in the research on their roles in plants. There is increasing evidence that the chloroplast J-proteins play essential roles in chloroplast development, photosynthesis, seed germination and stress response. Here, we summarize recent research advances on the roles of J-proteins in the chloroplast, and discuss the open questions that remain in this field.
Collapse
Affiliation(s)
- Lu Zhao
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Ting Jia
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Qingsong Jiao
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Xueyun Hu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
11
|
Wang P, Ji S, Grimm B. Post-translational regulation of metabolic checkpoints in plant tetrapyrrole biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4624-4636. [PMID: 35536687 PMCID: PMC9992760 DOI: 10.1093/jxb/erac203] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/06/2022] [Indexed: 06/02/2023]
Abstract
Tetrapyrrole biosynthesis produces metabolites that are essential for critical reactions in photosynthetic organisms, including chlorophylls, heme, siroheme, phytochromobilins, and their derivatives. Due to the paramount importance of tetrapyrroles, a better understanding of the complex regulation of tetrapyrrole biosynthesis promises to improve plant productivity in the context of global climate change. Tetrapyrrole biosynthesis is known to be controlled at multiple levels-transcriptional, translational and post-translational. This review addresses recent advances in our knowledge of the post-translational regulation of tetrapyrrole biosynthesis and summarizes the regulatory functions of the various auxiliary factors involved. Intriguingly, the post-translational network features three prominent metabolic checkpoints, located at the steps of (i) 5-aminolevulinic acid synthesis (the rate-limiting step in the pathway), (ii) the branchpoint between chlorophyll and heme synthesis, and (iii) the light-dependent enzyme protochlorophyllide oxidoreductase. The regulation of protein stability, enzymatic activity, and the spatial organization of the committed enzymes in these three steps ensures the appropriate flow of metabolites through the tetrapyrrole biosynthesis pathway during photoperiodic growth. In addition, we offer perspectives on currently open questions for future research on tetrapyrrole biosynthesis.
Collapse
Affiliation(s)
- Peng Wang
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Philippstraße 13 (Haus 12), 10115 Berlin, Germany
| | - Shuiling Ji
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Philippstraße 13 (Haus 12), 10115 Berlin, Germany
| | | |
Collapse
|
12
|
Tamadaddi C, Verma AK, Zambare V, Vairagkar A, Diwan D, Sahi C. J-like protein family of Arabidopsis thaliana: the enigmatic cousins of J-domain proteins. PLANT CELL REPORTS 2022; 41:1343-1355. [PMID: 35290497 DOI: 10.1007/s00299-022-02857-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
J-like proteins (JLPs) are emerging as ancillaries to the cellular chaperone network. They modulate functions of Hsp70:J-domain protein (JDP) systems in novel ways thereby having key roles in diverse plant processes. J-domain proteins (JDPs) form an obligate co-chaperone partnership with Hsp70s with their highly conserved J-domain to steer protein quality control processes in the cell. The HPD motif between helix II and helix III of the J-domain is crucial for JDP's interaction with Hsp70s. According to the most recent classification, J-like proteins (JLPs) form an extended class of the JDP family possessing a degenerate J-domain with the HPD motif non-conservatively replaced by other amino acid residues and hence are not able to interact with Hsp70s. Considering this most updated and acceptable JLP classification, we identified 21 JLPs in Arabidopsis thaliana that share a structurally conserved J-like domain (JLD), but lack the HPD motif. Analysis of publicly available gene expression data as well as real-time quantitative PCR performed for a few selected JLPs implicated some of these proteins in growth, development and stress response. Here, we summarize the current state of knowledge on plant JLPs and their involvement in vital plant cellular/metabolic processes, including chloroplast division, mitochondrial protein import and flowering. Finally, we propose possible modes of action for these highly elusive proteins and other DnaJ-related proteins (DNAJRs) in regulating the Hsp70 chaperone network.
Collapse
Affiliation(s)
- Chetana Tamadaddi
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
- Department of Biology, Eberly College of Science, The Pennsylvania State University, University Park, PA, USA
| | - Amit K Verma
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Vyankatesh Zambare
- School of Biotechnology and Bioinformatics, D Y Patil Deemed to be University, Navi Mumbai, India
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Avanti Vairagkar
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Danish Diwan
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
- Department of Biology, University of Alabama, Birmingham, AL, USA
| | - Chandan Sahi
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India.
- IISER Bhopal, Room Number 117, AB3, Bhopal Bypass Road, Bhopal, 462066, MP, India.
| |
Collapse
|
13
|
Lee HS, Choi I, Jeon Y, Ahn HK, Cho H, Kim J, Kim JH, Lee JM, Lee S, Bünting J, Seo DH, Lee T, Lee DH, Lee I, Oh MH, Kim TW, Belkhadir Y, Pai HS. Chaperone-like protein DAY plays critical roles in photomorphogenesis. Nat Commun 2021; 12:4194. [PMID: 34234144 PMCID: PMC8263706 DOI: 10.1038/s41467-021-24446-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 06/16/2021] [Indexed: 11/08/2022] Open
Abstract
Photomorphogenesis, light-mediated development, is an essential feature of all terrestrial plants. While chloroplast development and brassinosteroid (BR) signaling are known players in photomorphogenesis, proteins that regulate both pathways have yet to be identified. Here we report that DE-ETIOLATION IN THE DARK AND YELLOWING IN THE LIGHT (DAY), a membrane protein containing DnaJ-like domain, plays a dual-role in photomorphogenesis by stabilizing the BR receptor, BRI1, as well as a key enzyme in chlorophyll biosynthesis, POR. DAY localizes to both the endomembrane and chloroplasts via its first transmembrane domain and chloroplast transit peptide, respectively, and interacts with BRI1 and POR in their respective subcellular compartments. Using genetic analysis, we show that DAY acts independently on BR signaling and chlorophyll biogenesis. Collectively, this work uncovers DAY as a factor that simultaneously regulates BR signaling and chloroplast development, revealing a key regulator of photomorphogenesis that acts across cell compartments.
Collapse
Affiliation(s)
- Ho-Seok Lee
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
- Department of Systems biology, Yonsei University, Seoul, South Korea
| | - Ilyeong Choi
- Department of Systems biology, Yonsei University, Seoul, South Korea
| | - Young Jeon
- Department of Systems biology, Yonsei University, Seoul, South Korea
| | - Hee-Kyung Ahn
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| | - Huikyong Cho
- BPMP, University of Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier, France
| | - JiWoo Kim
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Jae-Hee Kim
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Jung-Min Lee
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - SungHee Lee
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Julian Bünting
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Dong Hye Seo
- Department of Systems biology, Yonsei University, Seoul, South Korea
| | - Tak Lee
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Du-Hwa Lee
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Insuk Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea
| | - Man-Ho Oh
- Plant Developmental Genetics, Department of Biological Science, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Tae-Wuk Kim
- Department of Life Science, Hanyang University, Seoul, South Korea
| | - Youssef Belkhadir
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria.
| | - Hyun-Sook Pai
- Department of Systems biology, Yonsei University, Seoul, South Korea.
| |
Collapse
|
14
|
Solymosi K, Mysliwa-Kurdziel B. The Role of Membranes and Lipid-Protein Interactions in the Mg-Branch of Tetrapyrrole Biosynthesis. FRONTIERS IN PLANT SCIENCE 2021; 12:663309. [PMID: 33995458 PMCID: PMC8113382 DOI: 10.3389/fpls.2021.663309] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/22/2021] [Indexed: 05/31/2023]
Abstract
Chlorophyll (Chl) is essential for photosynthesis and needs to be produced throughout the whole plant life, especially under changing light intensity and stress conditions which may result in the destruction and elimination of these pigments. All steps of the Mg-branch of tetrapyrrole biosynthesis leading to Chl formation are carried out by enzymes associated with plastid membranes. Still the significance of these protein-membrane and protein-lipid interactions in Chl synthesis and chloroplast differentiation are not very well-understood. In this review, we provide an overview on Chl biosynthesis in angiosperms with emphasis on its association with membranes and lipids. Moreover, the last steps of the pathway including the reduction of protochlorophyllide (Pchlide) to chlorophyllide (Chlide), the biosynthesis of the isoprenoid phytyl moiety and the esterification of Chlide are also summarized. The unique biochemical and photophysical properties of the light-dependent NADPH:protochlorophyllide oxidoreductase (LPOR) enzyme catalyzing Pchlide photoreduction and located to peculiar tubuloreticular prolamellar body (PLB) membranes of light-deprived tissues of angiosperms and to envelope membranes, as well as to thylakoids (especially grana margins) are also reviewed. Data about the factors influencing tubuloreticular membrane formation within cells, the spectroscopic properties and the in vitro reconstitution of the native LPOR enzyme complexes are also critically discussed.
Collapse
Affiliation(s)
- Katalin Solymosi
- Department of Plant Anatomy, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Beata Mysliwa-Kurdziel
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
15
|
Liu Q, Li L, Feng Z, Yu S. Uncovering Novel Genomic Regions and Candidate Genes for Senescence-Related Traits by Genome-Wide Association Studies in Upland Cotton ( Gossypium hirsutum L.). FRONTIERS IN PLANT SCIENCE 2021; 12:809522. [PMID: 35069667 PMCID: PMC8766411 DOI: 10.3389/fpls.2021.809522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/10/2021] [Indexed: 05/06/2023]
Abstract
Senescence in plants is a complex trait, which is controlled by both genetic and environmental factors and can affect the yield and quality of cotton. However, the genetic basis of cotton senescence remains relatively unknown. In this study, we reported genome-wide association studies (GWAS) based on 185 accessions of upland cotton and 26,999 high-quality single-nucleotide polymorphisms (SNPs) to reveal the genetic basis of cotton senescence. To determine cotton senescence, we evaluated eight traits/indices. Our results revealed a high positive correlation (r>0.5) among SPAD value 20 days after topping (SPAD20d), relative difference of SPAD (RSPAD), nodes above white flower on topping day (NAWF0d), nodes above white flower 7 days after topping (NAWF7d), and number of open bolls on the upper four branches (NB), and genetic analysis revealed that all traits had medium or high heritability ranging from 0.53 to 0.86. Based on a multi-locus method (FASTmrMLM), a total of 63 stable and significant quantitative trait nucleotides (QTNs) were detected, which represented 50 genomic regions (GWAS risk loci) associated with cotton senescence. We observed three reliable loci located on chromosomes A02 (A02_105891088_107196428), D03 (D03_37952328_38393621) and D13 (D13_59408561_60730103) because of their high repeatability. One candidate gene (Ghir_D03G011060) was found in the locus D03_37952328_38393621, and its Arabidopsis thaliana homologous gene (AT5G23040) encodes a cell growth defect factor-like protein (CDF1), which might be involved in chlorophyll synthesis and cell death. Moreover, qRT-PCR showed that the transcript level of Ghir_D03G011060 was down-regulated in old cotton leaves, and virus-induced gene silencing (VIGS) indicated that silencing of Ghir_D03G011060 resulted in leaf chlorosis and promoted leaf senescence. In addition, two candidate genes (Ghir_A02G017660 and Ghir_D13G021720) were identified in loci A02_105891088_107196428 and D13_59408561_60730103, respectively. These results provide new insights into the genetic basis of cotton senescence and will serve as an important reference for the development and implementation of strategies to prevent premature senescence in cotton breeding programs.
Collapse
Affiliation(s)
- Qibao Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Libei Li
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Zhen Feng
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
- *Correspondence: Zhen Feng
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
- Shuxun Yu
| |
Collapse
|
16
|
Medina CA, Hawkins C, Liu XP, Peel M, Yu LX. Genome-Wide Association and Prediction of Traits Related to Salt Tolerance in Autotetraploid Alfalfa ( Medicago sativa L.). Int J Mol Sci 2020; 21:ijms21093361. [PMID: 32397526 PMCID: PMC7247575 DOI: 10.3390/ijms21093361%20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 05/28/2023] Open
Abstract
Soil salinity is a growing problem in world production agriculture. Continued improvement in crop salt tolerance will require the implementation of innovative breeding strategies such as marker-assisted selection (MAS) and genomic selection (GS). Genetic analyses for yield and vigor traits under salt stress in alfalfa breeding populations with three different phenotypic datasets was assessed. Genotype-by-sequencing (GBS) developed markers with allele dosage and phenotypic data were analyzed by genome-wide association studies (GWAS) and GS using different models. GWAS identified 27 single nucleotide polymorphism (SNP) markers associated with salt tolerance. Mapping SNPs markers against the Medicago truncatula reference genome revealed several putative candidate genes based on their roles in response to salt stress. Additionally, eight GS models were used to estimate breeding values of the training population under salt stress. Highest prediction accuracies and root mean square errors were used to determine the best prediction model. The machine learning methods (support vector machine and random forest) performance best with the prediction accuracy of 0.793 for yield. The marker loci and candidate genes identified, along with optimized GS prediction models, were shown to be useful in improvement of alfalfa with enhanced salt tolerance. DNA markers and the outcome of the GS will be made available to the alfalfa breeding community in efforts to accelerate genetic gains, in the development of biotic stress tolerant and more productive modern-day alfalfa cultivars.
Collapse
Affiliation(s)
- Cesar Augusto Medina
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, Prosser, WA 99350, USA; (C.A.M.); (C.H.); (X.-P.L.)
| | - Charles Hawkins
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, Prosser, WA 99350, USA; (C.A.M.); (C.H.); (X.-P.L.)
- Current address: Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Xiang-Ping Liu
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, Prosser, WA 99350, USA; (C.A.M.); (C.H.); (X.-P.L.)
- Current address: College of Animal Science & Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163316, Heilongjiang, China
| | - Michael Peel
- United States Department of Agriculture-Agricultural Research Service, Forage and Range Research Lab, Logan, UT 84322, USA;
| | - Long-Xi Yu
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, Prosser, WA 99350, USA; (C.A.M.); (C.H.); (X.-P.L.)
| |
Collapse
|
17
|
Medina CA, Hawkins C, Liu XP, Peel M, Yu LX. Genome-Wide Association and Prediction of Traits Related to Salt Tolerance in Autotetraploid Alfalfa ( Medicago sativa L.). Int J Mol Sci 2020; 21:E3361. [PMID: 32397526 PMCID: PMC7247575 DOI: 10.3390/ijms21093361] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
Soil salinity is a growing problem in world production agriculture. Continued improvement in crop salt tolerance will require the implementation of innovative breeding strategies such as marker-assisted selection (MAS) and genomic selection (GS). Genetic analyses for yield and vigor traits under salt stress in alfalfa breeding populations with three different phenotypic datasets was assessed. Genotype-by-sequencing (GBS) developed markers with allele dosage and phenotypic data were analyzed by genome-wide association studies (GWAS) and GS using different models. GWAS identified 27 single nucleotide polymorphism (SNP) markers associated with salt tolerance. Mapping SNPs markers against the Medicago truncatula reference genome revealed several putative candidate genes based on their roles in response to salt stress. Additionally, eight GS models were used to estimate breeding values of the training population under salt stress. Highest prediction accuracies and root mean square errors were used to determine the best prediction model. The machine learning methods (support vector machine and random forest) performance best with the prediction accuracy of 0.793 for yield. The marker loci and candidate genes identified, along with optimized GS prediction models, were shown to be useful in improvement of alfalfa with enhanced salt tolerance. DNA markers and the outcome of the GS will be made available to the alfalfa breeding community in efforts to accelerate genetic gains, in the development of biotic stress tolerant and more productive modern-day alfalfa cultivars.
Collapse
Affiliation(s)
- Cesar Augusto Medina
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, Prosser, WA 99350, USA; (C.A.M.); (C.H.); (X.-P.L.)
| | - Charles Hawkins
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, Prosser, WA 99350, USA; (C.A.M.); (C.H.); (X.-P.L.)
- Current address: Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Xiang-Ping Liu
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, Prosser, WA 99350, USA; (C.A.M.); (C.H.); (X.-P.L.)
- Current address: College of Animal Science & Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163316, Heilongjiang, China
| | - Michael Peel
- United States Department of Agriculture-Agricultural Research Service, Forage and Range Research Lab, Logan, UT 84322, USA;
| | - Long-Xi Yu
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, Prosser, WA 99350, USA; (C.A.M.); (C.H.); (X.-P.L.)
| |
Collapse
|
18
|
Trentmann O, Mühlhaus T, Zimmer D, Sommer F, Schroda M, Haferkamp I, Keller I, Pommerrenig B, Neuhaus HE. Identification of Chloroplast Envelope Proteins with Critical Importance for Cold Acclimation. PLANT PHYSIOLOGY 2020; 182:1239-1255. [PMID: 31932409 PMCID: PMC7054872 DOI: 10.1104/pp.19.00947] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/20/2019] [Indexed: 05/04/2023]
Abstract
The ability of plants to withstand cold temperatures relies on their photosynthetic activity. Thus, the chloroplast is of utmost importance for cold acclimation and acquisition of freezing tolerance. During cold acclimation, the properties of the chloroplast change markedly. To provide the most comprehensive view of the protein repertoire of the chloroplast envelope, we analyzed this membrane system in Arabidopsis (Arabidopsis thaliana) using mass spectrometry-based proteomics. Profiling chloroplast envelope membranes was achieved by a cross comparison of protein intensities across the plastid and the enriched membrane fraction under both normal and cold conditions. We used multivariable logistic regression to model the probabilities for the classification of an envelope localization. In total, we identified 38 envelope membrane intrinsic or associated proteins exhibiting altered abundance after cold acclimation. These proteins comprise several solute carriers, such as the ATP/ADP antiporter nucleotide transporter2 (NTT2; substantially increased abundance) or the maltose exporter MEX1 (substantially decreased abundance). Remarkably, analysis of the frost recovery of ntt loss-of-function and mex1 overexpressor mutants confirmed that the comparative proteome is well suited to identify key factors involved in cold acclimation and acquisition of freezing tolerance. Moreover, for proteins with known physiological function, we propose scenarios explaining their possible roles in cold acclimation. Furthermore, spatial proteomics introduces an additional layer of complexity and enables the identification of proteins differentially localized at the envelope membrane under the changing environmental regime.
Collapse
Affiliation(s)
- Oliver Trentmann
- Technische Universität Kaiserslautern, Department of Biology, Plant Physiology, 67653 Kaiserslautern, Germany
| | - Timo Mühlhaus
- Technische Universität Kaiserslautern, Department of Biology, Computational Systems Biology, 67653 Kaiserslautern, Germany
| | - David Zimmer
- Technische Universität Kaiserslautern, Department of Biology, Computational Systems Biology, 67653 Kaiserslautern, Germany
| | - Frederik Sommer
- Technische Universität Kaiserslautern, Department of Biology, Molecular Biotechnology and Systems Biology, 67653 Kaiserslautern, Germany
| | - Michael Schroda
- Technische Universität Kaiserslautern, Department of Biology, Molecular Biotechnology and Systems Biology, 67653 Kaiserslautern, Germany
| | - Ilka Haferkamp
- Technische Universität Kaiserslautern, Department of Biology, Plant Physiology, 67653 Kaiserslautern, Germany
| | - Isabel Keller
- Technische Universität Kaiserslautern, Department of Biology, Plant Physiology, 67653 Kaiserslautern, Germany
| | - Benjamin Pommerrenig
- Technische Universität Kaiserslautern, Department of Biology, Plant Physiology, 67653 Kaiserslautern, Germany
| | - Horst Ekkehard Neuhaus
- Technische Universität Kaiserslautern, Department of Biology, Plant Physiology, 67653 Kaiserslautern, Germany
| |
Collapse
|
19
|
Sun T, Zhou F, Huang XQ, Chen WC, Kong MJ, Zhou CF, Zhuang Z, Li L, Lu S. ORANGE Represses Chloroplast Biogenesis in Etiolated Arabidopsis Cotyledons via Interaction with TCP14. THE PLANT CELL 2019; 31:2996-3014. [PMID: 31604812 PMCID: PMC6925005 DOI: 10.1105/tpc.18.00290] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/12/2019] [Accepted: 10/09/2019] [Indexed: 05/17/2023]
Abstract
The conversion of etioplasts into chloroplasts in germinating cotyledons is a crucial transition for higher plants, enabling photoautotrophic growth upon illumination. Tight coordination of chlorophyll biosynthesis and photosynthetic complex assembly is critical for this process. ORANGE (OR), a DnaJ-like zinc finger domain-containing protein, was reported to trigger the biogenesis of carotenoid-accumulating plastids by promoting carotenoid biosynthesis and sequestration. Both nuclear and plastidic localizations of OR have been observed. Here, we show that Arabidopsis (Arabidopsis thaliana) OR physically interacts with the transcription factor TCP14 in the nucleus and represses its transactivation activity. Through this interaction, the nucleus-localized OR negatively regulates expression of EARLY LIGHT-INDUCIBLE PROTEINS (ELIPs), reduces chlorophyll biosynthesis, and delays development of thylakoid membranes in the plastids of germinating cotyledons. Nuclear abundance of OR decreased upon illumination. Together with an accumulation of TCP14 in the nucleus, this derepresses chloroplast biogenesis during de-etiolation. TCP14 is epistatic to OR and expression of ELIPs is directly regulated by the binding of TCP14 to Up1 elements in the ELIP promoter regions. Our results demonstrate that the interaction between OR and TCP14 in the nucleus leads to repression of chloroplast biogenesis in etiolated seedlings and provide new insights into the regulation of early chloroplast development.plantcell;31/12/2996/FX1F1fx1.
Collapse
Affiliation(s)
- Tianhu Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Robert W. Holley Center for Agriculture and Health, U.S. Department of Agriculture-Agricultural Research Service, and Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | - Fei Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xing-Qi Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Wei-Cai Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Meng-Juan Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Chang-Fang Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zhong Zhuang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, U.S. Department of Agriculture-Agricultural Research Service, and Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | - Shan Lu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
20
|
Kronfel CM, Biswas A, Frick JP, Gutu A, Blensdorf T, Karty JA, Kehoe DM, Schluchter WM. The roles of the chaperone-like protein CpeZ and the phycoerythrobilin lyase CpeY in phycoerythrin biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:549-561. [PMID: 31173730 DOI: 10.1016/j.bbabio.2019.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/26/2019] [Accepted: 06/02/2019] [Indexed: 02/08/2023]
Abstract
Phycoerythrin (PE) present in the distal ends of light-harvesting phycobilisome rods in Fremyella diplosiphon (Tolypothrix sp. PCC 7601) contains five phycoerythrobilin (PEB) chromophores attached to six cysteine residues for efficient green light capture for photosynthesis. Chromophore ligation on PE subunits occurs through bilin lyase catalyzed reactions, but the characterization of the roles of all bilin lyases for phycoerythrin is not yet complete. To gain a more complete understanding about the individual functions of CpeZ and CpeY in PE biogenesis in cyanobacteria, we examined PE and phycobilisomes purified from wild type F. diplosiphon, cpeZ and cpeY knockout mutants. We find that the cpeZ and cpeY mutants accumulate less PE than wild type cells. We show that in the cpeZ mutant, chromophorylation of both PE subunits is affected, especially the Cys-80 and Cys-48/Cys-59 sites of CpeB, the beta-subunit of PE. The cpeY mutant showed reduced chromophorylation at Cys-82 of CpeA. We also show that, in vitro, CpeZ stabilizes PE subunits and assists in refolding of CpeB after denaturation. Taken together, we conclude that CpeZ acts as a chaperone-like protein, assisting in the folding/stability of PE subunits, allowing bilin lyases such as CpeY and CpeS to attach PEB to their PE subunit.
Collapse
Affiliation(s)
- Christina M Kronfel
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | - Avijit Biswas
- Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA
| | - Jacob P Frick
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | - Andrian Gutu
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Tyler Blensdorf
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Jonathan A Karty
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - David M Kehoe
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Wendy M Schluchter
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA.
| |
Collapse
|
21
|
Monteagudo A, Casas AM, Cantalapiedra CP, Contreras-Moreira B, Gracia MP, Igartua E. Harnessing Novel Diversity From Landraces to Improve an Elite Barley Variety. FRONTIERS IN PLANT SCIENCE 2019; 10:434. [PMID: 31031782 PMCID: PMC6470277 DOI: 10.3389/fpls.2019.00434] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/22/2019] [Indexed: 05/20/2023]
Abstract
The Spanish Barley Core Collection (SBCC) is a source of genetic variability of potential interest for breeding, particularly for adaptation to Mediterranean environments. Two backcross populations (BC2F5) were developed using the elite cultivar Cierzo as the recurrent parent. The donor parents, namely SBCC042 and SBCC073, were selected from the SBCC lines due to their outstanding yield in drought environments. Flowering time, yield and drought-related traits were evaluated in two field trials in Zaragoza (Spain) during the 2014-15 and 2015-16 seasons and validated in the 2017-18 season. Two hundred sixty-four lines of each population were genotyped with the Barley Illumina iSelect 50k SNP chip. Genetic maps for each population were generated. The map for SBCC042 × Cierzo contains 12,893 SNPs distributed in 9 linkage groups. The map for SBCC073 × Cierzo includes 12,026 SNPs in 7 linkage groups. Both populations shared two QTL hotspots. There are QTLs for flowering time, thousand-kernel weight (TKW), and hectoliter weight on a segment of 23 Mb at ~515 Mb on chromosome 1H, which encompasses the HvFT3 gene. In both populations, flowering was accelerated by the landrace allele, which also increased the TKW. In the same region, better soil coverage was contributed by SBCC042 but coincident with a lower hectoliter weight. The second large hotspot was on chromosome 6H and contained QTLs with wide intervals for grain yield, plant height and TKW. Landrace alleles contributed to increased plant height and TKW and reduced grain yield. Only SBCC042 contributed favorable alleles for "green area," with three significant QTLs that increased ground coverage after winter, which might be exploited as an adaptive trait of this landrace. Some genes of interest found in or very close to the peaks of the QTLs are highlighted. Strategies to deploy the QTLs found for breeding and pre-breeding are proposed.
Collapse
Affiliation(s)
| | - Ana M. Casas
- Aula Dei Experimental Station (EEAD-CSIC), Zaragoza, Spain
| | | | | | | | | |
Collapse
|
22
|
Reinbothe S, Bartsch S, Rossig C, Davis MY, Yuan S, Reinbothe C, Gray J. A Protochlorophyllide (Pchlide) a Oxygenase for Plant Viability. FRONTIERS IN PLANT SCIENCE 2019; 10:593. [PMID: 31156665 PMCID: PMC6530659 DOI: 10.3389/fpls.2019.00593] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 04/24/2019] [Indexed: 05/19/2023]
Abstract
Higher plants contain a small, 5-member family of Rieske non-heme oxygenases that comprise the inner plastid envelope protein TIC55, phaeophorbide a oxygenasee (PAO), chlorophyllide a oxygenase (CAO), choline monooxygenase, and a 52 kDa protein (PTC52) associated with the precursor NADPH:protochlorophyllide (Pchlide) oxidoreductase A (pPORA) A translocon (PTC). Some of these chloroplast proteins have documented roles in chlorophyll biosynthesis (CAO) and degradation (PAO and TIC55), whereas the function of PTC52 remains unresolved. Biochemical evidence provided here identifies PTC52 as Pchlide a oxygenase of the inner plastid envelope linking Pchlide b synthesis to pPORA import. Protochlorophyllide b is the preferred substrate of PORA and its lack no longer allows pPORA import. The Pchlide b-dependent import pathway of pPORA thus operates in etiolated seedlings and is switched off during greening. Using dexamethasone-induced RNA interference (RNAi) we tested if PTC52 is involved in controlling both, pPORA import and Pchlide homeostasis in planta. As shown here, RNAi plants deprived of PTC52 transcript and PTC52 protein were unable to import pPORA and died as a result of excess Pchlide a accumulation causing singlet oxygen formation during greening. In genetic studies, no homozygous ptc52 knock-out mutants could be obtained presumably as a result of embryo lethality, suggesting a role for PTC52 in the initial greening of plant embryos. Phylogenetic studies identified PTC52-like genes amongst unicellular photosynthetic bacteria and higher plants, suggesting that the biochemical function associated with PTC52 may have an ancient evolutionary origin. PTC52 also harbors conserved motifs with bacterial oxygenases such as the terminal oxygenase component of 3-ketosteroid 9-alpha-hydroxylase (KshA) from Rhodococcus rhodochrous. 3D-modeling of PTC52 structure permitted the prediction of amino acid residues that contribute to the substrate specificity of this enzyme. In vitro-mutagenesis was used to test the predicted PTC52 model and provide insights into the reaction mechanism of this Rieske non-heme oxygenase.
Collapse
Affiliation(s)
- Steffen Reinbothe
- Laboratoire de Génétique Moléculaire des Plantes and Biologie Environnementale et Systémique (BEeSy), Université Grenoble Alpes, Grenoble, France
- *Correspondence: Steffen Reinbothe, John Gray,
| | - Sandra Bartsch
- Laboratoire de Génétique Moléculaire des Plantes and Biologie Environnementale et Systémique (BEeSy), Université Grenoble Alpes, Grenoble, France
| | - Claudia Rossig
- Laboratoire de Génétique Moléculaire des Plantes and Biologie Environnementale et Systémique (BEeSy), Université Grenoble Alpes, Grenoble, France
| | | | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Christiane Reinbothe
- Laboratoire de Génétique Moléculaire des Plantes and Biologie Environnementale et Systémique (BEeSy), Université Grenoble Alpes, Grenoble, France
| | - John Gray
- Department of Biological Sciences, The University of Toledo, Toledo, OH, United States
- *Correspondence: Steffen Reinbothe, John Gray,
| |
Collapse
|
23
|
Pulido P, Leister D. Novel DNAJ-related proteins in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2018; 217:480-490. [PMID: 29271039 DOI: 10.1111/nph.14827] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Classical DNAJ proteins are co-chaperones that together with HSP70s control protein homeostasis. All three classical types of DNAJ proteins (DNAJA, DNAJB and DNAJC types) possess the J-domain for interaction with HSP70. DNAJA proteins contain, in addition, both the zinc-finger motif and the C-terminal domain which are involved in substrate binding, while DNAJB retains only the latter and DNAJC comprises only the J-domain. There is increasing evidence that some of the activities of DNAJ proteins do not require the J-domain, highlighting the functional significance of the other two domains. Indeed, the so-called DNAJ-like proteins with a degenerate J-domain have been previously coined as DNAJD proteins, and also proteins containing only a DNAJ-like zinc-finger motif appear to be involved in protein homeostasis. Therefore, we propose to extend the classification of DNAJ-related proteins into three different groups. The DNAJD type comprises proteins with a J-like domain only, and has 15 members in Arabidopsis thaliana, whereas proteins of the DNAJE (33 Arabidopsis members) and DNAJF (three Arabidopsis members) types contain a DNAJA-like zinc-finger domain and DNAJA/B-like C-terminal domain, respectively. Here, we provide an overview of the entire repertoire of these proteins in A. thaliana with respect to their physiological function and possible evolutionary origin.
Collapse
Affiliation(s)
- Pablo Pulido
- Plant Molecular Biology, Department Biology I, Ludwig-Maximilians-Universität München, D-82152, Planegg-Martinsried, Germany
- Copenhagen Plant Science Centre, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Dario Leister
- Plant Molecular Biology, Department Biology I, Ludwig-Maximilians-Universität München, D-82152, Planegg-Martinsried, Germany
| |
Collapse
|
24
|
Rehman L, Su X, Li X, Qi X, Guo H, Cheng H. FreB is involved in the ferric metabolism and multiple pathogenicity-related traits of Verticillium dahliae. Curr Genet 2017; 64:645-659. [PMID: 29177887 DOI: 10.1007/s00294-017-0780-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 10/25/2017] [Accepted: 11/08/2017] [Indexed: 01/31/2023]
Abstract
Ferric reductases are integral membrane proteins involved in the reduction of environmental ferric iron into the biologically available ferrous iron. In the most overwhelming phytopathogenic fungus, Verticillium dahliae, these ferric reductase are not studied in details. In this study we explored the role of FreB gene (VDAG_06616) in the ferric reduction and virulence of V. dahliae by generating the knockout mutants (ΔFreB) and complementary strains (ΔFreB-C) using protoplast transformation. When cultured on media supplemented with FeSO4, FeCl3 and no iron, ΔFreB exhibited significantly reduced growth and spore production especially on media with no iron. Transmembrane ferric reductase activity of ΔFreB was decreased up to 50% than wild type strains (Vd-wt). The activity was fully restored in ΔFreB-C. Meanwhile, the expression levels of other related genes (Frect-4, Frect-5, Frect-6 and Met) were obviously increased in ΔFreB. Compared with the Vd-wt and ΔFreB-C, ΔFreB-1 and ΔFreB-2 were impaired in colony diameter and spore number on different carbon sources (starch, sucrose, galactose and xylose). ΔFreB-1 and ΔFreB-2 were also highly sensitive to oxidative stress as revealed by the plate diffusion assay when 100 µM H2O2 was applied to the fungal culture. When Nicotiana benthamiana plants were inoculated, ΔFreB exhibited less disease symptoms than Vd-wt and ΔFreB-C. In conclusion, the present findings not only indicate that FreB mediates the ferric metabolism and is required for the full virulence in V. dahliae, but would also accelerate future investigation to uncover the pathogenic mechanism of this fungus.
Collapse
Affiliation(s)
- Latifur Rehman
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaofeng Su
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaokang Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiliang Qi
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huiming Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongmei Cheng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
25
|
Liu H, Li Q, Yang F, Zhu F, Sun Y, Tao Y, Lo C. Differential Regulation of Protochlorophyllide Oxidoreductase Abundances by VIRESCENT 5A (OsV5A) and VIRESCENT 5B (OsV5B) in Rice Seedlings. PLANT & CELL PHYSIOLOGY 2016; 57:2392-2402. [PMID: 27565208 DOI: 10.1093/pcp/pcw151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/23/2016] [Indexed: 05/07/2023]
Affiliation(s)
- Hongjia Liu
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Qingzhu Li
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Feng Yang
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Fuyuan Zhu
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
- Present address: School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Yi Sun
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
- Present address: Department of Biology, Concordia University, Montreal, QC H4B, 1R6, Canada
| | - Yuezhi Tao
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Clive Lo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
26
|
Park S, Kim HS, Jung YJ, Kim SH, Ji CY, Wang Z, Jeong JC, Lee HS, Lee SY, Kwak SS. Orange protein has a role in phytoene synthase stabilization in sweetpotato. Sci Rep 2016; 6:33563. [PMID: 27633588 PMCID: PMC5025653 DOI: 10.1038/srep33563] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/30/2016] [Indexed: 01/22/2023] Open
Abstract
Carotenoids have essential roles in light-harvesting processes and protecting the photosynthetic machinery from photo-oxidative damage. Phytoene synthase (PSY) and Orange (Or) are key plant proteins for carotenoid biosynthesis and accumulation. We previously isolated the sweetpotato (Ipomoea batatas) Or gene (IbOr), which is involved in carotenoid accumulation and salt stress tolerance. The molecular mechanism underlying IbOr regulation of carotenoid accumulation was unknown. Here, we show that IbOr has an essential role in regulating IbPSY stability via its holdase chaperone activity both in vitro and in vivo. This protection results in carotenoid accumulation and abiotic stress tolerance. IbOr transcript levels increase in sweetpotato stem, root, and calli after exposure to heat stress. IbOr is localized in the nucleus and chloroplasts, but interacts with IbPSY only in chloroplasts. After exposure to heat stress, IbOr predominantly localizes in chloroplasts. IbOr overexpression in transgenic sweetpotato and Arabidopsis conferred enhanced tolerance to heat and oxidative stress. These results indicate that IbOr holdase chaperone activity protects IbPSY stability, which leads to carotenoid accumulation, and confers enhanced heat and oxidative stress tolerance in plants. This study provides evidence that IbOr functions as a molecular chaperone, and suggests a novel mechanism regulating carotenoid accumulation and stress tolerance in plants.
Collapse
Affiliation(s)
- Seyeon Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, Korea
- Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Daejeon 34113, Korea
| | - Ho Soo Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, Korea
| | - Young Jun Jung
- Division of Applied Life Science (BK21 Plus program), Gyeongsang National University, 501 Jinjudae-ro, Jinju 52828, Korea
- National Institute of Ecology, 1210 Geumgang-ro, Maseo-myeon, Seocheon-gun 33657, Korea
| | - Sun Ha Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, Korea
| | - Chang Yoon Ji
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, Korea
- Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Daejeon 34113, Korea
| | - Zhi Wang
- Institute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water Resources, Northwest A & F University, Shaanxi 712100, China
| | - Jae Cheol Jeong
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, Korea
- Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Daejeon 34113, Korea
| | - Haeng-Soon Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, Korea
- Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Daejeon 34113, Korea
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21 Plus program), Gyeongsang National University, 501 Jinjudae-ro, Jinju 52828, Korea
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, Korea
- Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Daejeon 34113, Korea
| |
Collapse
|
27
|
Gray J, Rustgi S, von Wettstein D, Reinbothe C, Reinbothe S. Common functions of the chloroplast and mitochondrial co-chaperones cpDnaJL (CDF1) and mtDnaJ (PAM16) in protein import and ROS scavenging in Arabidopsis thaliana. Commun Integr Biol 2015; 9:e1119343. [PMID: 27829973 PMCID: PMC5100655 DOI: 10.1080/19420889.2015.1119343] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 10/30/2015] [Accepted: 10/30/2015] [Indexed: 10/26/2022] Open
Abstract
As semi-autonomous cell organelles that contain only limited coding information in their own DNA, chloroplasts and mitochondria must import the vast majority of their protein constituents from the cytosol. Respective protein import machineries have been identified that mediate the uptake of chloroplast and mitochondrial proteins and interact with molecular chaperones of the HEAT-SHOCK PROTEIN (HSP) 70 family operating as import motors. Recent work identified unexpected new functions of 2 DnaJ co-chaperones in mitochondrial and chloroplast protein translocation and suggest a common mechanism of reactive oxygen species (ROS) scavenging that shall be discussed here.
Collapse
Affiliation(s)
- John Gray
- Department of Biological Sciences, University of Toledo , Toledo, OH, USA
| | - Sachin Rustgi
- Department of Crop and Soil Sciences, School of Molecular Biosciences, Center for Reproductive Biology, Washington State University , Pullman, WA, USA
| | - Diter von Wettstein
- Department of Crop and Soil Sciences, School of Molecular Biosciences, Center for Reproductive Biology, Washington State University , Pullman, WA, USA
| | - Christiane Reinbothe
- Biologie Environnementale et systémique (BEeSy), Université Joseph Fourier , Grenoble, France
| | - Steffen Reinbothe
- Biologie Environnementale et systémique (BEeSy), Université Joseph Fourier , Grenoble, France
| |
Collapse
|
28
|
Xu G, Guo H, Zhang D, Chen D, Jiang Z, Lin R. REVEILLE1 promotes NADPH: protochlorophyllide oxidoreductase A expression and seedling greening in Arabidopsis. PHOTOSYNTHESIS RESEARCH 2015; 126:331-40. [PMID: 25910753 DOI: 10.1007/s11120-015-0146-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 04/16/2015] [Indexed: 05/03/2023]
Abstract
Chlorophyll biosynthesis plays a crucial role in the greening process and survival of etiolated seedlings and yet the mechanism underlying the regulation of this process is poorly understood. Upon light stimulation, NADPH: protochlorophyllide oxidoreductase (POR) catalyzes the reduction of protochlorophyllide (Pchlide) to chlorophyllide. Whereas this represents a key step in the chlorophyll biosynthetic pathway, the regulation of POR remains largely unknown. Three POR isoforms exist in Arabidopsis thaliana, i.e., PORA, PORB, and PORC. In this study, we identified a transcription factor, REVEILLE1 (RVE1), that binds directly to the PORA promoter through the EE-box cis-regulatory element. Analysis of PORA expression in RVE1 loss-of-function (rve1) and overexpression (RVE1-OX) Arabidopsis plants showed that RVE1 positively regulates the transcription of PORA. We found that Pchlide levels were reduced in RVE1-OX seedlings. Furthermore, rve1 etiolated seedlings had lower greening rates than the wild type when exposed to light, whereas RVE1-OX seedlings had higher greening rates. In addition, when etiolated seedlings were exposed to light, RVE1-OX plants had less reactive oxygen species (ROS) accumulation and cell death than the wild type, and had reduced levels of ROS-responsive gene expression. Taken together, our study reveals an important role for RVE1 in regulating chlorophyll biosynthesis and promoting seedling greening during early plant growth and development.
Collapse
Affiliation(s)
- Gang Xu
- Key Laboratory of Photobiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiyan Guo
- Key Laboratory of Photobiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Dong Zhang
- Key Laboratory of Photobiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongqin Chen
- Key Laboratory of Photobiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- Institute of Genetics and Developmental Biology, The Chinese Academy of Sciences, Beijing, 1000, China
| | - Zhimin Jiang
- Key Laboratory of Photobiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
29
|
Regulation and function of tetrapyrrole biosynthesis in plants and algae. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:968-85. [PMID: 25979235 DOI: 10.1016/j.bbabio.2015.05.007] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/21/2015] [Accepted: 05/07/2015] [Indexed: 12/20/2022]
Abstract
Tetrapyrroles are macrocyclic molecules with various structural variants and multiple functions in Prokaryotes and Eukaryotes. Present knowledge about the metabolism of tetrapyrroles reflects the complex evolution of the pathway in different kingdoms of organisms, the complexity of structural and enzymatic variations of enzymatic steps, as well as a wide range of regulatory mechanisms, which ensure adequate synthesis of tetrapyrrole end-products at any time of development and environmental condition. This review intends to highlight new findings of research on tetrapyrrole biosynthesis in plants and algae. In the course of the heme and chlorophyll synthesis in these photosynthetic organisms, glutamate, one of the central and abundant metabolites, is converted into highly photoreactive tetrapyrrole intermediates. Thereby, several mechanisms of posttranslational control are thought to be essential for a tight regulation of each enzymatic step. Finally, we wish to discuss the potential role of tetrapyrroles in retrograde signaling and point out perspectives of the formation of macromolecular protein complexes in tetrapyrrole biosynthesis as an efficient mechanism to ensure a fine-tuned metabolic flow in the pathway. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
|
30
|
Cell growth defect factor 1 is crucial for the plastid import of NADPH:protochlorophyllide oxidoreductase A in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2015; 112:5838-43. [PMID: 25901327 DOI: 10.1073/pnas.1506339112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Tetrapyrroles such as chlorophyll, heme, and bacteriochlorophyll play fundamental roles in the energy absorption and transduction of all photosynthetic organisms. They are synthesized via a complex pathway taking place in chloroplasts. Chlorophyll biosynthesis in angiosperms involves 16 steps of which only one is light-requiring and driven by the NADPH:protochlorophyllide oxidoreductase (POR). Three POR isoforms have been identified in Arabidopsis thaliana--designated PORA, PORB, and PORC--that are differentially expressed in etiolated, light-exposed, and light-adapted plants. All three isoforms are encoded by nuclear genes, are synthesized as larger precursors in the cytosol (pPORs), and are imported posttranslationally into the plastid compartment. Import of the precursor to the dark-specific isoform PORA (pPORA) is protochlorophyllide (Pchlide)-dependent and due to the operation of a unique translocon complex dubbed PTC (Pchlide-dependent translocon complex) in the plastid envelope. Here, we identified a ∼30-kDa protein that participates in pPORA import. The ∼30-kDa protein is identical to the previously identified CELL GROWTH DEFECT FACTOR 1 (CDF1) in Arabidopsis that is conserved in higher plants and Synechocystis. CDF1 operates in pPORA import and stabilization and hereby acts as a chaperone for PORA protein translocation. CDF1 permits tight interactions between Pchlide synthesized in the plastid envelope and the importing PORA polypeptide chain such that no photoexcitative damage occurs through the generation of singlet oxygen operating as a cell death inducer. Together, our results identify an ancient mechanism dating back to the endosymbiotic origin of chloroplasts as a key element of Pchlide-dependent pPORA import.
Collapse
|
31
|
Ahn CS, Ahn HK, Pai HS. Overexpression of the PP2A regulatory subunit Tap46 leads to enhanced plant growth through stimulation of the TOR signalling pathway. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:827-40. [PMID: 25399018 PMCID: PMC4321543 DOI: 10.1093/jxb/eru438] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Tap46, a regulatory subunit of protein phosphatase 2A (PP2A), plays an essential role in plant growth and development through a functional link with the Target of Rapamycin (TOR) signalling pathway. Here, we have characterized the molecular mechanisms behind a gain-of-function phenotype of Tap46 and its relationship with TOR to gain further insights into Tap46 function in plants. Constitutive overexpression of Tap46 in Arabidopsis resulted in overall growth stimulation with enlarged organs, such as leaves and siliques. Kinematic analysis of leaf growth revealed that increased cell size was mainly responsible for the leaf enlargement. Tap46 overexpression also enhanced seed size and viability under accelerated ageing conditions. Enhanced plant growth was also observed in dexamethasone (DEX)-inducible Tap46 overexpression Arabidopsis lines, accompanied by increased cellular activities of nitrate-assimilating enzymes. DEX-induced Tap46 overexpression and Tap46 RNAi resulted in increased and decreased phosphorylation of S6 kinase (S6K), respectively, which is a sensitive indicator of endogenous TOR activity, and Tap46 interacted with S6K in planta based on bimolecular fluorescence complementation and co-immunoprecipitation. Furthermore, inactivation of TOR by estradiol-inducible RNAi or rapamycin treatment decreased Tap46 protein levels, but increased PP2A catalytic subunit levels. Real-time quantitative PCR analysis revealed that Tap46 overexpression induced transcriptional modulation of genes involved in nitrogen metabolism, ribosome biogenesis, and lignin biosynthesis. These findings suggest that Tap46 modulates plant growth as a positive effector of the TOR signalling pathway and Tap46/PP2Ac protein abundance is regulated by TOR activity.
Collapse
Affiliation(s)
- Chang Sook Ahn
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Hee-Kyung Ahn
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Hyun-Sook Pai
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
32
|
Li Q, Zhu FY, Gao X, Sun Y, Li S, Tao Y, Lo C, Liu H. Young Leaf Chlorosis 2 encodes the stroma-localized heme oxygenase 2 which is required for normal tetrapyrrole biosynthesis in rice. PLANTA 2014; 240:701-12. [PMID: 25037719 DOI: 10.1007/s00425-014-2116-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 06/21/2014] [Indexed: 05/19/2023]
Abstract
Rice heme oxygenase 2 (OsHO2) mutants are chlorophyll deficient with distinct tetrapyrrole metabolite and transcript profiles, suggesting a potential regulatory role of the stromal-localized OsHO2 in tetrapyrrole biosynthesis. In plants, heme oxygenases (HOs) are classified into the subfamilies HO1 and HO2. HO1 are highly conserved plastid enzymes required for synthesizing the chromophore in phytochromes which mediate a number of light-regulated responses. However, the physiological and biochemical functions of HO2, which are distantly related to HO1, are not well understood, especially in crop plants. From a population of (60)Coγ-irradiated rice mutants, we identified the ylc2 (young leaf chlorosis 2) mutant which displays a chlorosis phenotype in seedlings with substantially reduced chlorophyll content. Normal leaf pigmentation is gradually restored in older plants while newly emerged leaves remain yellow. Transmission electron microscopy further revealed defective chloroplast structures in the ylc2 seedlings. Map-based cloning located the OsYLC2 gene on chromosome 3 and it encodes the OsHO2 protein. The gene identification was confirmed by complementation and T-DNA mutant analyses. Subcellular localization and chloroplast fractionation experiments indicated that OsHO2 resides in the stroma. However, recombinant enzyme assay demonstrated that OsHO2 is not a functional HO enzyme. Analysis of tetrapyrrole metabolites revealed the reduced levels of most chlorophyll and phytochromobilin precursors in the ylc2 mutant. On the other hand, elevated accumulation of 5-aminolevulinic acid and Mg-protoporphyrin IX was observed. These unique metabolite changes are accompanied by consistent changes in the expression levels of the corresponding tetrapyrrole biosynthesis genes. Taken together, our work suggests that OsHO2 has a potential regulatory role for tetrapyrrole biosynthesis in rice.
Collapse
Affiliation(s)
- Qingzhu Li
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | | | | | | | | | | | | | | |
Collapse
|