1
|
Qian D, Li T, Zheng C, Wang M, Chen S, Li C, An J, Yang Y, Niu Y, An L, Xiang Y. Heat-stable protein PGSL1 enhances pollen germination and tube growth at high temperature. Nat Commun 2025; 16:3642. [PMID: 40240780 PMCID: PMC12003775 DOI: 10.1038/s41467-025-58869-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Global warming intensifies extreme heat events, threatening crop reproduction by impairing pollen development, germination, and tube growth. However, the mechanisms underlying pollen heat responses remain elusive. The actin cytoskeleton and actin-binding proteins (ABPs) are crucial in these processes, yet their roles under heat stress are poorly understood. Here, we identify a mutant, pollen germination sensitive to LatB (pgsl1), via forward genetic screening. PGSL1 encodes a heat-stable, plant-specific ABP that binds and stabilizes actin filaments (F-actin), preventing heat-induced denaturation. High temperatures reduce F-actin content but promote bundling in pollen tubes. Notably, pgsl1 mutants exhibit decreased F-actin abundance and bundling under heat stress compared to wild-type plants. These findings highlight PGSL1 as a key regulator of actin dynamics, essential for pollen heat tolerance, offering potential strategies to enhance crop resilience in a warming climate.
Collapse
Affiliation(s)
- Dong Qian
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Tian Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Chen Zheng
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Muxuan Wang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Shuyuan Chen
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Chengying Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jiale An
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yang Yang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yue Niu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Lizhe An
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yun Xiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
2
|
Yu H, Maoliniyazi M, Han X, Yang H, Zhang Z, Guo Y, Tang X, Li H, Cao Q, Wang S, Wang X. YUCCA3 interacts with ADF4 to regulate Arabidopsis hypocotyl elongation by organizing actin arrays. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109877. [PMID: 40220667 DOI: 10.1016/j.plaphy.2025.109877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/15/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025]
Abstract
Hypocotyl elongation is critical for plants emerging from the soil, and serves as a model for investigating cell elongation mechanism. It has been reported that auxin biosynthesis enzyme YUCCAs (YUCs) and the cytoskeleton are involved in the regulation of hypocotyl elongation in Arabidopsis. However, whether and how the cytoskeleton is involved in YUCs-regulated hypocotyl elongation is not well understood. Here, we report that YUC3 directly interacted with Actin Depolymerizing Factor 4 (ADF4) to regulate hypocotyl elongation. The yuc3 mutant seedlings produced shorter hypocotyls, while YUC3-OEs seedlings showed longer hypocotyls. Pharmacological analysis showed that microfilament but not microtubule was involved in YUC3-regulated hypocotyl elongation. Consistent with this, defects in actin arrays were observed in the yuc3 seedlings. In addition, YUC3 interacted with ADF4 but not ADF1 in vitro and in vivo. Knock out of ADF4 partially rescued the defects of yuc3 mutant hypocotyl elongation and actin arrays. In summary, our results demonstrate that YUC3 mediates the organization of actin filaments possibly by interacting with ADF4 and affecting its actin depolymerizing/severing activity in the regulation of hypocotyl elongation.
Collapse
Affiliation(s)
- Haiyang Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Mairepaiti Maoliniyazi
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xueping Han
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Hui Yang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ziheng Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yongchao Guo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiwen Tang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Huiru Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Qijiang Cao
- College of Life Science and Bioengineering, Shenyang University, Shenyang, 110044, China
| | - Shucai Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi, 276000, China.
| | - Xianling Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
3
|
Wang W, Qu G, Sun Y, Chen J, Feng H, Gao Y. Genome-wide identification of ADF gene family in Chinese cabbage (Brassica rapa L. ssp. pekinensis) and functional characterization of BrADF11 under heat stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109796. [PMID: 40120152 DOI: 10.1016/j.plaphy.2025.109796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/06/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Actin depolymerizing factors (ADFs), which function as essential actin-binding proteins (ABPs), are fundamental to plant growth, development, and stress responses by depolymerizing or severing actin filaments. However, research on the ADF gene family in Chinese cabbage remains relatively scarce. In Chinese cabbage, we identified 18 BrADF genes unevenly distributed across eight chromosomes. Phylogenetic analysis revealed that BrADF genes can be classified into four subfamilies. Cis-regulatory elements related to stress response and hormone signaling response were distributed in the promoter sequences of these genes. Expression analysis showed variability in the expression patterns of BrADF genes across different tissues, with most genes responding to heat stress; notably, BrADF11 showed significant upregulation under heat stress conditions. Furthermore, transient silencing and transient overexpression experiments proved that BrADF11 plays a negative regulatory role in the heat tolerance of Chinese cabbage. In conclusion, this study not only systematically analyzed the characteristics of ADF gene family in Chinese cabbage, but also laid a solid foundation for studying the function of Chinese Cabbage ADF genes under abiotic stress.
Collapse
Affiliation(s)
- Wei Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Gaoyang Qu
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yifei Sun
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jingyi Chen
- College of Software, Shenyang Normal University, Shenyang, 110034, China
| | - Hui Feng
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yue Gao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China; College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
4
|
Li X, Yu Q, Hua X, He J, Liu J, Peng L, Wang J, Li X, Yang Y. Phosphorylation of ADF7-Mediated by AGC1.7 Regulates Pollen Germination in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2025; 48:1149-1161. [PMID: 39412187 DOI: 10.1111/pce.15192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 01/04/2025]
Abstract
Actin depolymerizing factors (ADFs), like other actin-binding proteins (ABPs), are modified by phosphorylation to regulate the dynamics of the actin filaments, thereby functioning in various processes throughout the plant lifecycle. In this study, we found that the Arabidopsis thaliana cytoplasmic kinase AGC1.7 interacts with ADF7 in vitro and in vivo. AGC1.7 phosphorylates ADF7 at its Ser-6, Ser-103 and Ser-104 residues in vitro, while replacing these residues with alanine promotes ADF7-mediated actin depolymerization in vitro. Expression of the phosphorylation-mimetic mutant protein ADF7S6/103/104D driven by the pollen-specific LAT52 promoter fully rescues the defects in germination rate, silique length and seeds per silique in both adf7-2 and agc1.5 agc1.7 (agcdm) mutants. Our data establish a model whereby AGC1.7-mediated ADF7 phosphorylation plays an important role in pollen germination and pollen tube growth.
Collapse
Affiliation(s)
- Xiaoyi Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Qin Yu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xinyue Hua
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Juan He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiajia Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Lu Peng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jianmei Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xufeng Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yi Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Qiu T, Su Y, Guo N, Zhang X, Jia P, Mao T, Wang X. MYB52 negatively regulates ADF9-meditated actin filament bundling in Arabidopsis pavement cell morphogenesis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2379-2394. [PMID: 39136601 PMCID: PMC11583842 DOI: 10.1111/jipb.13762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/30/2024] [Accepted: 07/21/2024] [Indexed: 11/24/2024]
Abstract
It has been proposed that cortical fine actin filaments are needed for the morphogenesis of pavement cells (PCs). However, the precise role and regulation mechanisms of actin filaments in PC morphogenesis are not well understood. Here, we found that Arabidopsis thaliana ACTIN DEPOLYMERIZING FACTOR9 (ADF9) is required for the morphogenesis of PC, which is negatively regulated by the R2R3 MYELOBLASTOSIS (MYB) transcription factor MYB52. In adf9 mutants, the lobe number of cotyledon PCs was significantly reduced, while the average lobe length did not differ significantly compared to that of wild type (Col-0), except for the variations in cell area and circularity, whereas the PC shapes in ADF9 overexpression seedlings showed different results. ADF9 decorated actin filaments, and colocalized with plasma membrane. The extent of filament bundling and actin filament bundling activity in adf9 mutant decreased. In addition, MYB52 directly targeted the promoter of ADF9 and negatively regulated its expression. The myb52-2 mutant showed increased lobe number and cell area, reduced cell circularity of PCs, and the PC phenotypes were suppressed when ADF9 was knocked out. Taken together, our data demonstrate that actin filaments play an important role in the morphogenesis of PC and reveal a transcriptional mechanism underlying MYB52 regulation of ADF9-mediated actin filament bundling in PC morphogenesis.
Collapse
Affiliation(s)
- Tianqi Qiu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yuanyuan Su
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Nannan Guo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xinyuan Zhang
- College of Biological Science, China Agricultural University, Beijing, 100091, China
| | - Pengfei Jia
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Tonglin Mao
- College of Biological Science, China Agricultural University, Beijing, 100091, China
| | - Xianling Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| |
Collapse
|
6
|
Lv Y, Liu S, Zhang J, Cheng J, Wang J, Wang L, Li M, Wang L, Bi S, Liu W, Zhang L, Liu S, Yan D, Diao C, Zhang S, He M, Gao Y, Wang C. Genome-wide identification of actin-depolymerizing factor family genes in melon ( Cucumis melo L.) and CmADF1 plays an important role in low temperature tolerance. FRONTIERS IN PLANT SCIENCE 2024; 15:1419719. [PMID: 39239192 PMCID: PMC11374638 DOI: 10.3389/fpls.2024.1419719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/02/2024] [Indexed: 09/07/2024]
Abstract
Actin depolymerizing factors (ADFs), as the important actin-binding proteins (ABPs) with depolymerizing/severing actin filaments, play a critical role in plant growth and development, and in response to biotic and abiotic stresses. However, the information and function of the ADF family in melon remains unclear. In this study, 9 melon ADF genes (CmADFs) were identified, distributed in 4 subfamilies, and located on 6 chromosomes respectively. Promoter analysis revealed that the CmADFs contained a large number of cis-acting elements related to hormones and stresses. The similarity of CmADFs with their Arabidopsis homologue AtADFs in sequence, structure, important sites and tissue expression confirmed that ADFs were conserved. Gene expression analysis showed that CmADFs responded to low and high temperature stresses, as well as ABA and SA signals. In particular, CmADF1 was significantly up-regulated under above all stress and hormone treatments, indicating that CmADF1 plays a key role in stress and hormone signaling responses, so CmADF1 was selected to further study the mechanism in plant tolerance low temperature. Under low temperature, virus-induced gene silencing (VIGS) of CmADF1 in oriental melon plants showed increased sensitivity to low temperature stress. Consistently, the stable genetic overexpression of CmADF1 in Arabidopsis improved their low temperature tolerance, possibly due to the role of CmADF1 in the depolymerization of actin filaments. Overall, our findings indicated that CmADF genes, especially CmADF1, function in response to abiotic stresses in melon.
Collapse
Affiliation(s)
- Yanling Lv
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Institute of Vegetable, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Shihang Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Jiawang Zhang
- Institute of Vegetable, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Jianing Cheng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Jinshu Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Lina Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Mingyang Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Lu Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Shuangtian Bi
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Wei Liu
- Institute of Vegetable, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Lili Zhang
- Institute of Vegetable, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Shilei Liu
- Institute of Vegetable, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Dabo Yan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Chengxuan Diao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Shaobin Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Ming He
- Institute of Vegetable, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Yue Gao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Che Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
7
|
Wang D, Du M, Lyu P, Li J, Meng H, Liu X, Shi M, Gong Y, Sha Q, Men Q, Li X, Sun Y, Guo S. Functional Characterization of the Soybean Glycine max Actin Depolymerization Factor GmADF13 for Plant Resistance to Drought Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:1651. [PMID: 38931083 PMCID: PMC11207668 DOI: 10.3390/plants13121651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Abiotic stress significantly affects plant growth and has devastating effects on crop production. Drought stress is one of the main abiotic stressors. Actin is a major component of the cytoskeleton, and actin-depolymerizing factors (ADFs) are conserved actin-binding proteins in eukaryotes that play critical roles in plant responses to various stresses. In this study, we found that GmADF13, an ADF gene from the soybean Glycine max, showed drastic upregulation under drought stress. Subcellular localization experiments in tobacco epidermal cells and tobacco protoplasts showed that GmADF13 was localized in the nucleus and cytoplasm. We characterized its biological function in transgenic Arabidopsis and hairy root composite soybean plants. Arabidopsis plants transformed with GmADF13 displayed a more robust drought tolerance than wild-type plants, including having a higher seed germination rate, longer roots, and healthy leaves under drought conditions. Similarly, GmADF13-overexpressing (OE) soybean plants generated via the Agrobacterium rhizogenes-mediated transformation of the hairy roots showed an improved drought tolerance. Leaves from OE plants showed higher relative water, chlorophyll, and proline contents, had a higher antioxidant enzyme activity, and had decreased malondialdehyde, hydrogen peroxide, and superoxide anion levels compared to those of control plants. Furthermore, under drought stress, GmADF13 OE activated the transcription of several drought-stress-related genes, such as GmbZIP1, GmDREB1A, GmDREB2, GmWRKY13, and GmANK114. Thus, GmADF13 is a positive regulator of the drought stress response, and it may play an essential role in plant growth under drought stress conditions. These results provide new insights into the functional elucidation of soybean ADFs. They may be helpful for breeding new soybean cultivars with a strong drought tolerance and further understanding how ADFs help plants adapt to abiotic stress.
Collapse
Affiliation(s)
- Deying Wang
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252059, China; (D.W.); (M.D.); (P.L.); (J.L.); (H.M.); (X.L.); (M.S.); (Y.G.); (Q.S.); (Q.M.); (X.L.)
| | - Mengxue Du
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252059, China; (D.W.); (M.D.); (P.L.); (J.L.); (H.M.); (X.L.); (M.S.); (Y.G.); (Q.S.); (Q.M.); (X.L.)
| | - Peng Lyu
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252059, China; (D.W.); (M.D.); (P.L.); (J.L.); (H.M.); (X.L.); (M.S.); (Y.G.); (Q.S.); (Q.M.); (X.L.)
| | - Jingyu Li
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252059, China; (D.W.); (M.D.); (P.L.); (J.L.); (H.M.); (X.L.); (M.S.); (Y.G.); (Q.S.); (Q.M.); (X.L.)
| | - Huiran Meng
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252059, China; (D.W.); (M.D.); (P.L.); (J.L.); (H.M.); (X.L.); (M.S.); (Y.G.); (Q.S.); (Q.M.); (X.L.)
| | - Xinxin Liu
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252059, China; (D.W.); (M.D.); (P.L.); (J.L.); (H.M.); (X.L.); (M.S.); (Y.G.); (Q.S.); (Q.M.); (X.L.)
| | - Mengmeng Shi
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252059, China; (D.W.); (M.D.); (P.L.); (J.L.); (H.M.); (X.L.); (M.S.); (Y.G.); (Q.S.); (Q.M.); (X.L.)
| | - Yujie Gong
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252059, China; (D.W.); (M.D.); (P.L.); (J.L.); (H.M.); (X.L.); (M.S.); (Y.G.); (Q.S.); (Q.M.); (X.L.)
| | - Qi Sha
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252059, China; (D.W.); (M.D.); (P.L.); (J.L.); (H.M.); (X.L.); (M.S.); (Y.G.); (Q.S.); (Q.M.); (X.L.)
| | - Qingmei Men
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252059, China; (D.W.); (M.D.); (P.L.); (J.L.); (H.M.); (X.L.); (M.S.); (Y.G.); (Q.S.); (Q.M.); (X.L.)
| | - Xiaofei Li
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252059, China; (D.W.); (M.D.); (P.L.); (J.L.); (H.M.); (X.L.); (M.S.); (Y.G.); (Q.S.); (Q.M.); (X.L.)
| | - Yongwang Sun
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252059, China; (D.W.); (M.D.); (P.L.); (J.L.); (H.M.); (X.L.); (M.S.); (Y.G.); (Q.S.); (Q.M.); (X.L.)
| | - Shangjing Guo
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252059, China; (D.W.); (M.D.); (P.L.); (J.L.); (H.M.); (X.L.); (M.S.); (Y.G.); (Q.S.); (Q.M.); (X.L.)
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
8
|
Lv G, Li Y, Wu Z, Zhang Y, Li X, Wang T, Ren W, Liu L, Chen J, Zhang Y. Maize actin depolymerizing factor 1 (ZmADF1) negatively regulates pollen development. Biochem Biophys Res Commun 2024; 703:149637. [PMID: 38354464 DOI: 10.1016/j.bbrc.2024.149637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
The normal development of pollen grains and the completion of double fertilization in embryos are crucial for both the sexual reproduction of angiosperms and grain production. Actin depolymerizing factor (ADF) regulates growth, development, and responses to biotic and abiotic stress by binding to actin in plants. In this study, the function of the ZmADF1 gene was validated through bioinformatic analysis, subcellular localization, overexpression in maize and Arabidopsis, and knockout via CRISPR/Cas9. The amino acid sequence of ZmADF1 exhibited high conservation and a similar tertiary structure to that of ADF homologs. Subcellular localization analysis revealed that ZmADF1 is localized mainly to the nucleus and cytoplasm. The ZmADF1 gene was specifically expressed in maize pollen, and overexpression of the ZmADF1 gene decreased the number of pollen grains in the anthers of transgenic Arabidopsis plants. The germination rate of pollen and the empty seed shell rate in the fruit pods of the overexpressing plants were significantly greater than those in the wild-type (WT) plants. In maize, the pollen viability of the knockout lines was significantly greater than that of both the WT and the overexpressing lines. Our results confirmed that the ZmADF1 gene was specifically expressed in pollen and negatively regulated pollen quantity, vigor, germination rate, and seed setting rate. This study provides insights into ADF gene function and possible pathways for improving high-yield maize breeding.
Collapse
Affiliation(s)
- Guihua Lv
- Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310004, China
| | - Yunfeng Li
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Zhengxin Wu
- Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310004, China
| | - Yahui Zhang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Xiangnan Li
- Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310004, China
| | - Tingzheng Wang
- Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310004, China
| | - Wenchuang Ren
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Lei Liu
- College of Life Science & Biotechnology, Mianyang Normal University, Mianyang, 621000, China
| | - Jianjian Chen
- Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310004, China.
| | - Yuanyuan Zhang
- College of Life Science & Biotechnology, Mianyang Normal University, Mianyang, 621000, China.
| |
Collapse
|
9
|
Qian D, Li T, Chen S, Wan D, He Y, Zheng C, Li J, Sun Z, Li J, Sun J, Niu Y, Li H, Wang M, Niu Y, Yang Y, An L, Xiang Y. Evolution of the thermostability of actin-depolymerizing factors enhances the adaptation of pollen germination to high temperature. THE PLANT CELL 2024; 36:881-898. [PMID: 37941457 PMCID: PMC10980419 DOI: 10.1093/plcell/koad280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/14/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023]
Abstract
Double fertilization in many flowering plants (angiosperms) often occurs during the hot summer season, but the mechanisms that enable angiosperms to adapt specifically to high temperatures are largely unknown. The actin cytoskeleton is essential for pollen germination and the polarized growth of pollen tubes, yet how this process responds to high temperatures remains unclear. Here, we reveal that the high thermal stability of 11 Arabidopsis (Arabidopsis thaliana) actin-depolymerizing factors (ADFs) is significantly different: ADFs that specifically accumulate in tip-growing cells (pollen and root hairs) exhibit high thermal stability. Through ancestral protein reconstruction, we found that subclass II ADFs (expressed specifically in pollen) have undergone a dynamic wave-like evolution of the retention, loss, and regeneration of thermostable sites. Additionally, the sites of AtADF7 with high thermal stability are conserved in ADFs specific to angiosperm pollen. Moreover, the high thermal stability of ADFs is required to regulate actin dynamics and turnover at high temperatures to promote pollen germination. Collectively, these findings suggest strategies for the adaptation of sexual reproduction to high temperature in angiosperms at the cell biology level.
Collapse
Affiliation(s)
- Dong Qian
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tian Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shuyuan Chen
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Dongshi Wan
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Yongxing He
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chen Zheng
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jiajing Li
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Zhenping Sun
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Jiejie Li
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Junxia Sun
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yingzhi Niu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hongxia Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Muxuan Wang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yue Niu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yang Yang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lizhe An
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yun Xiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
10
|
Qian D, Li T, Zheng C, Niu Y, Niu Y, Li C, Wang M, Yang Y, An L, Xiang Y. Actin-depolymerizing factors 8 and 11 promote root hair elongation at high pH. PLANT COMMUNICATIONS 2024; 5:100787. [PMID: 38158655 PMCID: PMC10943588 DOI: 10.1016/j.xplc.2023.100787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/26/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
A root hair is a polarly elongated single-celled structure that derives from a root epidermal cell and functions in uptake of water and nutrients from the surrounding environment. Previous reports have demonstrated that short periods of high pH inhibit root hair extension; but the effects of long-term high-pH treatment on root hair growth are still unclear. Here, we report that the duration of root hair elongation is significantly prolonged with increasing external pH, which counteracts the effect of decreasing root hair elongation rate and ultimately produces longer root hairs, whereas loss of actin-depolymerizing factor 8 and 11 (ADF8/11) function causes shortening of root hair length at high pH (pH 7.4). Accumulation of ADF8/11 at the tips of root hairs is inhibited by high pH, and increasing environmental pH affects the actin filament (F-actin) meshwork at the root hair tip. At high pH, the tip-focused F-actin meshwork is absent in root hairs of the adf8/11 mutant, actin filaments are disordered at the adf8/11 root hair tips, and actin turnover is attenuated. Secretory and recycling vesicles do not aggregate in the apical region of adf8/11 root hairs at high pH. Together, our results suggest that, under long-term exposure to high extracellular pH, ADF8/11 may establish and maintain the tip-focused F-actin meshwork to regulate polar trafficking of secretory/recycling vesicles at the root hair tips, thereby promoting root hair elongation.
Collapse
Affiliation(s)
- Dong Qian
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tian Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chen Zheng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yue Niu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yingzhi Niu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chengying Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Muxuan Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yang Yang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lizhe An
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yun Xiang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
11
|
Liu B, Wang N, Yang R, Wang X, Luo P, Chen Y, Wang F, Li M, Weng J, Zhang D, Yong H, Han J, Zhou Z, Zhang X, Hao Z, Li X. ZmADF5, a Maize Actin-Depolymerizing Factor Conferring Enhanced Drought Tolerance in Maize. PLANTS (BASEL, SWITZERLAND) 2024; 13:619. [PMID: 38475468 DOI: 10.3390/plants13050619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 03/14/2024]
Abstract
Drought stress is seriously affecting the growth and production of crops, especially when agricultural irrigation still remains quantitatively restricted in some arid and semi-arid areas. The identification of drought-tolerant genes is important for improving the adaptability of maize under stress. Here, we found that a new member of the actin-depolymerizing factor (ADF) family; the ZmADF5 gene was tightly linked with a consensus drought-tolerant quantitative trait locus, and the significantly associated signals were detected through genome wide association analysis. ZmADF5 expression could be induced by osmotic stress and the application of exogenous abscisic acid. Its overexpression in Arabidopsis and maize helped plants to keep a higher survival rate after water-deficit stress, which reduced the stomatal aperture and the water-loss rate, as well as improved clearance of reactive oxygen species. Moreover, seventeen differentially expressed genes were identified as regulated by both drought stress and ZmADF5, four of which were involved in the ABA-dependent drought stress response. ZmADF5-overexpressing plants were also identified as sensitive to ABA during the seed germination and seedling stages. These results suggested that ZmADF5 played an important role in the response to drought stress.
Collapse
Affiliation(s)
- Bojuan Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Nan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding 071000, China
| | - Ruisi Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaonan Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ping Luo
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yong Chen
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fei Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mingshun Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianfeng Weng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Degui Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongjun Yong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jienan Han
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhiqiang Zhou
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuecai Zhang
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Texcoco 06600, Mexico
| | - Zhuanfang Hao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xinhai Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
12
|
Wang L, Qian Y, Wu L, Wei K, Wang L. The MADS-box transcription factor CsAGL9 plays essential roles in seed setting in Camellia sinensis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108301. [PMID: 38232497 DOI: 10.1016/j.plaphy.2023.108301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/19/2024]
Abstract
The number of seed setting (NSS) is an important biological trait that affects tea propagation and yield. In this study, the NSS of an F1 tea population (n = 324) generated via a cross between 'Longjing 43' and 'Baihaozao' was investigated at two locations in two consecutive years. Quantitative trait locus (QTL) mapping of the NSS was performed, and 10 major QTLs were identified. In total, 318 genes were found in these 10 QTLs intervals, and 11 key candidate genes were preliminarily identified. Among them, the MADS-box transcription factor AGAMOUS LIKE 9 (CsAGL9, CSS0037962) located in the most stable QTL (qNSS2) was identified as a key gene affecting the NSS. CsAGL9 overexpression in Arabidopsis promoted early flowering and significantly decreased the length and number of pods and number of seeds per pod. Transcriptome analysis demonstrated that the auxin pathway, a key hormone pathway regulating plant reproduction, was highly affected in the transgenic lines. The auxin pathway was likewise the most prominent in the gene co-expression network study of CsAGL9 in tea plants. In summary, we identified CsAGL9 is essential for seed setting using QTL mapping integrated with RNA-seq, which shed a new light on the mechanism NSS of seed setting in tea plants.
Collapse
Affiliation(s)
- Liubin Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yinhong Qian
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Liyun Wu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, 310008, China
| | - Kang Wei
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, 310008, China.
| | - Liyuan Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, 310008, China.
| |
Collapse
|
13
|
Sun Y, Shi M, Wang D, Gong Y, Sha Q, Lv P, Yang J, Chu P, Guo S. Research progress on the roles of actin-depolymerizing factor in plant stress responses. FRONTIERS IN PLANT SCIENCE 2023; 14:1278311. [PMID: 38034575 PMCID: PMC10687421 DOI: 10.3389/fpls.2023.1278311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023]
Abstract
Actin-depolymerizing factors (ADFs) are highly conserved small-molecule actin-binding proteins found throughout eukaryotic cells. In land plants, ADFs form a small gene family that displays functional redundancy despite variations among its individual members. ADF can bind to actin monomers or polymerized microfilaments and regulate dynamic changes in the cytoskeletal framework through specialized biochemical activities, such as severing, depolymerizing, and bundling. The involvement of ADFs in modulating the microfilaments' dynamic changes has significant implications for various physiological processes, including plant growth, development, and stress response. The current body of research has greatly advanced our comprehension of the involvement of ADFs in the regulation of plant responses to both biotic and abiotic stresses, particularly with respect to the molecular regulatory mechanisms that govern ADF activity during the transmission of stress signals. Stress has the capacity to directly modify the transcription levels of ADF genes, as well as indirectly regulate their expression through transcription factors such as MYB, C-repeat binding factors, ABF, and 14-3-3 proteins. Furthermore, apart from their role in regulating actin dynamics, ADFs possess the ability to modulate the stress response by influencing downstream genes associated with pathogen resistance and abiotic stress response. This paper provides a comprehensive overview of the current advancements in plant ADF gene research and suggests that the identification of plant ADF family genes across a broader spectrum, thorough analysis of ADF gene regulation in stress resistance of plants, and manipulation of ADF genes through genome-editing techniques to enhance plant stress resistance are crucial avenues for future investigation in this field.
Collapse
|
14
|
Wang J, Shen J, Xu Y, Jiang Y, Qu X, Zhao W, Wang Y, Huang S. Differential sensitivity of ADF isovariants to a pH gradient promotes pollen tube growth. J Cell Biol 2023; 222:e202206074. [PMID: 37610419 PMCID: PMC10445753 DOI: 10.1083/jcb.202206074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/20/2022] [Accepted: 08/09/2023] [Indexed: 08/24/2023] Open
Abstract
The actin cytoskeleton is one of the targets of the pH gradient in tip-growing cells, but how cytosolic pH regulates the actin cytoskeleton remains largely unknown. We here demonstrate that Arabidopsis ADF7 and ADF10 function optimally at different pH levels when disassembling actin filaments. This differential pH sensitivity allows ADF7 and ADF10 to respond to the cytosolic pH gradient to regulate actin dynamics in pollen tubes. ADF7 is an unusual actin-depolymerizing factor with a low optimum pH in in vitro actin depolymerization assays. ADF7 plays a dominant role in promoting actin turnover at the pollen tube apex. ADF10 has a typically high optimum pH in in vitro assays and plays a dominant role in regulating the turnover and organization of subapical actin filaments. Thus, functional specification and cooperation of ADF isovariants with different pH sensitivities enable the coordination of the actin cytoskeleton with the cytosolic pH gradient to support pollen tube growth.
Collapse
Affiliation(s)
- Juan Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jiangfeng Shen
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yanan Xu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuxiang Jiang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaolu Qu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wanying Zhao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yingjie Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
15
|
Yuan G, Gao H, Yang T. Exploring the Role of the Plant Actin Cytoskeleton: From Signaling to Cellular Functions. Int J Mol Sci 2023; 24:15480. [PMID: 37895158 PMCID: PMC10607326 DOI: 10.3390/ijms242015480] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/06/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
The plant actin cytoskeleton is characterized by the basic properties of dynamic array, which plays a central role in numerous conserved processes that are required for diverse cellular functions. Here, we focus on how actins and actin-related proteins (ARPs), which represent two classical branches of a greatly diverse superfamily of ATPases, are involved in fundamental functions underlying signal regulation of plant growth and development. Moreover, we review the structure, assembly dynamics, and biological functions of filamentous actin (F-actin) from a molecular perspective. The various accessory proteins known as actin-binding proteins (ABPs) partner with F-actin to finely tune actin dynamics, often in response to various cell signaling pathways. Our understanding of the significance of the actin cytoskeleton in vital cellular activities has been furthered by comparison of conserved functions of actin filaments across different species combined with advanced microscopic techniques and experimental methods. We discuss the current model of the plant actin cytoskeleton, followed by examples of the signaling mechanisms under the supervision of F-actin related to cell morphogenesis, polar growth, and cytoplasmic streaming. Determination of the theoretical basis of how the cytoskeleton works is important in itself and is beneficial to future applications aimed at improving crop biomass and production efficiency.
Collapse
Affiliation(s)
| | | | - Tao Yang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (G.Y.); (H.G.)
| |
Collapse
|
16
|
Cui X, Zou M, Li J. Basally distributed actin array drives embryonic hypocotyl elongation during the seed-to-seedling transition in Arabidopsis. THE NEW PHYTOLOGIST 2023; 240:191-206. [PMID: 37537721 DOI: 10.1111/nph.19149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/27/2023] [Indexed: 08/05/2023]
Abstract
Seed germination is a vital developmental transition for the production of progeny by sexual reproduction in spermatophytes. The seed-to-seedling transition is predominately driven by hypocotyl cell elongation. However, the mechanism that underlies hypocotyl growth remains largely unknown. In this study, we characterized the actin array reorganization in embryonic hypocotyl epidermal cells. Live-cell imaging revealed a basally organized actin array formed during hypocotyl cell elongation. This polarized actin assembly is a barrel-shaped network, which comprises a backbone of longitudinally aligned actin cables and a fine actin cap linking these cables. We provide genetic evidence that the basal actin array formation requires formin-mediated actin polymerization and directional movement of actin filaments powered by myosin XIs. In fh1-1 and xi3ko mutants, actin filaments failed to reorganize into the basal actin array, and the hypocotyl cell elongation was inhibited compared with wild-type plants. Collectively, our work uncovers the molecular mechanisms for basal actin array assembly and demonstrates the connection between actin polarization and hypocotyl elongation during seed-to-seedling transition.
Collapse
Affiliation(s)
- Xuan Cui
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing, 100875, China
| | - Minxia Zou
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing, 100875, China
| | - Jiejie Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing, 100875, China
- Key Laboratory of Cell Proliferation and Regulation of Ministry of Education, College of Life Science, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
17
|
Zhang R, Xu Y, Yi R, Shen J, Huang S. Actin cytoskeleton in the control of vesicle transport, cytoplasmic organization, and pollen tube tip growth. PLANT PHYSIOLOGY 2023; 193:9-25. [PMID: 37002825 DOI: 10.1093/plphys/kiad203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/08/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Pollen tubes extend rapidly via tip growth. This process depends on a dynamic actin cytoskeleton, which has been implicated in controlling organelle movements, cytoplasmic streaming, vesicle trafficking, and cytoplasm organization in pollen tubes. In this update review, we describe the progress in understanding the organization and regulation of the actin cytoskeleton and the function of the actin cytoskeleton in controlling vesicle traffic and cytoplasmic organization in pollen tubes. We also discuss the interplay between ion gradients and the actin cytoskeleton that regulates the spatial arrangement and dynamics of actin filaments and the organization of the cytoplasm in pollen tubes. Finally, we describe several signaling components that regulate actin dynamics in pollen tubes.
Collapse
Affiliation(s)
- Ruihui Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanan Xu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ran Yi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiangfeng Shen
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
18
|
Xu HX, Meng D, Yang Q, Chen T, Qi M, Li XY, Ge H, Chen JW. Sorbitol induces flower bud formation via the MADS-box transcription factor EjCAL in loquat. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1241-1261. [PMID: 36541724 DOI: 10.1111/jipb.13439] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 12/19/2022] [Indexed: 05/13/2023]
Abstract
Sorbitol is an important signaling molecule in fruit trees. Here, we observed that sorbitol increased during flower bud differentiation (FBD) in loquat (Eriobotrya japonica Lindl.). Transcriptomic analysis suggested that bud formation was associated with the expression of the MADS-box transcription factor (TF) family gene, EjCAL. RNA fluorescence in situ hybridization showed that EjCAL was enriched in flower primordia but hardly detected in the shoot apical meristem. Heterologous expression of EjCAL in Nicotiana benthamiana plants resulted in early FBD. Yeast-one-hybrid analysis identified the ERF12 TF as a binding partner of the EjCAL promoter. Chromatin immunoprecipitation-PCR confirmed that EjERF12 binds to the EjCAL promoter, and β-glucuronidase activity assays indicated that EjERF12 regulates EjCAL expression. Spraying loquat trees with sorbitol promoted flower bud formation and was associated with increased expression of EjERF12 and EjCAL. Furthermore, we identified EjUF3GaT1 as a target gene of EjCAL and its expression was activated by EjCAL. Function characterization via overexpression and RNAi reveals that EjUF3GaT1 is a biosynthetic gene of flavonoid hyperoside. The concentration of the flavonoid hyperoside mirrored that of sorbitol during FBD and exogenous hyperoside treatment also promoted loquat bud formation. We identified a mechanism whereby EjCAL might regulate hyperoside biosynthesis and confirmed the involvement of EjCAL in flower bud formation in planta. Together, these results provide insight into bud formation in loquat and may be used in efforts to increase yield.
Collapse
Affiliation(s)
- Hong-Xia Xu
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Dong Meng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100000, China
- College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Qing Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100000, China
- College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Ting Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100000, China
- College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Meng Qi
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100000, China
- College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Xiao-Ying Li
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Hang Ge
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jun-Wei Chen
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| |
Collapse
|
19
|
Zhang Q, Wang B, Kong X, Li K, Huang Y, Peng L, Chen L, Liu J, Yu Q, He J, Yang Y, Li X, Wang J. Knockout of cyclase-associated protein CAP1 confers tolerance towards salt and osmotic stress in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2023; 285:153978. [PMID: 37087999 DOI: 10.1016/j.jplph.2023.153978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 05/03/2023]
Abstract
As a regulator of actin filament turnover, Arabidopsis thaliana CAP1 plays an important role in plant growth and development. Here, we analyzed the phenotypes of two Arabidopsis cap1 mutants: cap1-1 (a T-DNA insertion mutant) and Cas9-CAP1 (generated by CRISPR-Cas9 gene editing). Phenotypic analysis demonstrated that loss of CAP1 results in defects in seed germination and seedling morphology, with some seedlings exhibiting one or three cotyledons. The cap1-1 mutant took longer than the wild type to complete its life cycle, but its flowering time was normal, indicating that loss of CAP1 prolongs reproductive but not vegetative growth. Moreover, loss of CAP1 severely reduces seed production in self-pollinated plants, due to disruption of pollen tube elongation. RNA-seq and qRT-PCR analyses demonstrated that CAP1 may be involved in osmotic stress responses. Indeed, the cap1-1 mutant showed increased tolerance of salt and mannitol treatment, indicating that CAP1 plays a negative role in osmotic stress tolerance in Arabidopsis. Taken together, our results demonstrate that CAP1 functions not only in plant growth and development, but also in Arabidopsis responses to osmotic stress.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Boya Wang
- Southwest University of Science and Technology, School of Life Science and Engineering, Mianyang, China
| | - Xiangge Kong
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Kexuan Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Yaling Huang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Lu Peng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Li Chen
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Jiajia Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Qin Yu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Juan He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Yi Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Xiaoyi Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Jianmei Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China.
| |
Collapse
|
20
|
Wang Q, Xu Y, Zhao S, Jiang Y, Yi R, Guo Y, Huang S. Activation of actin-depolymerizing factor by CDPK16-mediated phosphorylation promotes actin turnover in Arabidopsis pollen tubes. PLoS Biol 2023; 21:e3002073. [PMID: 37011088 PMCID: PMC10101649 DOI: 10.1371/journal.pbio.3002073] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/13/2023] [Accepted: 03/11/2023] [Indexed: 04/05/2023] Open
Abstract
As the stimulus-responsive mediator of actin dynamics, actin-depolymerizing factor (ADF)/cofilin is subject to tight regulation. It is well known that kinase-mediated phosphorylation inactivates ADF/cofilin. Here, however, we found that the activity of Arabidopsis ADF7 is enhanced by CDPK16-mediated phosphorylation. We found that CDPK16 interacts with ADF7 both in vitro and in vivo, and it enhances ADF7-mediated actin depolymerization and severing in vitro in a calcium-dependent manner. Accordingly, the rate of actin turnover is reduced in cdpk16 pollen and the amount of actin filaments increases significantly at the tip of cdpk16 pollen tubes. CDPK16 phosphorylates ADF7 at Serine128 both in vitro and in vivo, and the phospho-mimetic mutant ADF7S128D has enhanced actin-depolymerizing activity compared to ADF7. Strikingly, we found that failure in the phosphorylation of ADF7 at Ser128 impairs its function in promoting actin turnover in vivo, which suggests that this phospho-regulation mechanism is biologically significant. Thus, we reveal that CDPK16-mediated phosphorylation up-regulates ADF7 to promote actin turnover in pollen.
Collapse
Affiliation(s)
- Qiannan Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yanan Xu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shuangshuang Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Plant Stress, Life Science College, Shandong Normal University, Jinan, China
| | - Yuxiang Jiang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ran Yi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
21
|
Wang L, Cheng J, Bi S, Wang J, Cheng X, Liu S, Gao Y, Lan Q, Shi X, Wang Y, Zhao X, Qi X, Xu S, Wang C. Actin Depolymerization Factor ADF1 Regulated by MYB30 Plays an Important Role in Plant Thermal Adaptation. Int J Mol Sci 2023; 24:ijms24065675. [PMID: 36982748 PMCID: PMC10051699 DOI: 10.3390/ijms24065675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 03/18/2023] Open
Abstract
Actin filaments are essential for plant adaptation to high temperatures. However, the molecular mechanisms of actin filaments in plant thermal adaptation remain unclear. Here, we found that the expression of Arabidopsis actin depolymerization factor 1 (AtADF1) was repressed by high temperatures. Compared with wild-type seedlings (WT), the mutation of AtADF1 and the overexpression of AtADF1 led to promoted and inhibited plant growth under high temperature conditions, respectively. Further, high temperatures induced the stability of actin filaments in plants. Compared with WT, Atadf1-1 mutant seedlings showed more stability of actin filaments under normal and high temperature conditions, while the AtADF1 overexpression seedlings showed the opposite results. Additionally, AtMYB30 directly bound to the promoter of AtADF1 at a known AtMYB30 binding site, AACAAAC, and promoted the transcription of AtADF1 under high temperature treatments. Genetic analysis further indicated that AtMYB30 regulated AtADF1 under high temperature treatments. Chinese cabbage ADF1 (BrADF1) was highly homologous with AtADF1. The expression of BrADF1 was inhibited by high temperatures. BrADF1 overexpression inhibited plant growth and reduced the percentage of actin cable and the average length of actin filaments in Arabidopsis, which were similar to those of AtADF1 overexpression seedlings. AtADF1 and BrADF1 also affected the expression of some key heat response genes. In conclusion, our results indicate that ADF1 plays an important role in plant thermal adaptation by blocking the high-temperature-induced stability of actin filaments and is directly regulated by MYB30.
Collapse
Affiliation(s)
- Lu Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (L.W.); (J.C.); (S.B.); (J.W.); (X.C.); (S.L.); (Y.G.)
- Institute of Germplasm Resource and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China; (Q.L.); (X.S.); (Y.W.); (X.Z.); (X.Q.); (S.X.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300392, China
| | - Jianing Cheng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (L.W.); (J.C.); (S.B.); (J.W.); (X.C.); (S.L.); (Y.G.)
| | - Shuangtian Bi
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (L.W.); (J.C.); (S.B.); (J.W.); (X.C.); (S.L.); (Y.G.)
| | - Jinshu Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (L.W.); (J.C.); (S.B.); (J.W.); (X.C.); (S.L.); (Y.G.)
| | - Xin Cheng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (L.W.); (J.C.); (S.B.); (J.W.); (X.C.); (S.L.); (Y.G.)
| | - Shihang Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (L.W.); (J.C.); (S.B.); (J.W.); (X.C.); (S.L.); (Y.G.)
| | - Yue Gao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (L.W.); (J.C.); (S.B.); (J.W.); (X.C.); (S.L.); (Y.G.)
| | - Qingkuo Lan
- Institute of Germplasm Resource and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China; (Q.L.); (X.S.); (Y.W.); (X.Z.); (X.Q.); (S.X.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300392, China
| | - Xiaowei Shi
- Institute of Germplasm Resource and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China; (Q.L.); (X.S.); (Y.W.); (X.Z.); (X.Q.); (S.X.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300392, China
| | - Yong Wang
- Institute of Germplasm Resource and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China; (Q.L.); (X.S.); (Y.W.); (X.Z.); (X.Q.); (S.X.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300392, China
| | - Xin Zhao
- Institute of Germplasm Resource and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China; (Q.L.); (X.S.); (Y.W.); (X.Z.); (X.Q.); (S.X.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300392, China
| | - Xin Qi
- Institute of Germplasm Resource and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China; (Q.L.); (X.S.); (Y.W.); (X.Z.); (X.Q.); (S.X.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300392, China
| | - Shiyong Xu
- Institute of Germplasm Resource and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China; (Q.L.); (X.S.); (Y.W.); (X.Z.); (X.Q.); (S.X.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300392, China
| | - Che Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (L.W.); (J.C.); (S.B.); (J.W.); (X.C.); (S.L.); (Y.G.)
- Correspondence:
| |
Collapse
|
22
|
Lu Q, Liu X, Qu X, Huang S. Visualization and Quantification of the Dynamics of Actin Filaments in Arabidopsis Pollen Tubes. Methods Mol Biol 2023; 2604:285-295. [PMID: 36773243 DOI: 10.1007/978-1-0716-2867-6_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The actin cytoskeleton plays an essential role in the regulation of polarized pollen tube growth, and its functions are dictated by its spatial organization and dynamics. Here we describe an assay to monitor the dynamics of actin filaments decorated with Lifeact-mEGFP in Arabidopsis pollen tubes using spinning disk confocal microscopy and measuring the parameters associated with their dynamics. The method allows us to assess the dynamics of actin filaments in growing Arabidopsis pollen tubes.
Collapse
Affiliation(s)
- Qiaonan Lu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaonan Liu
- School of Life Sciences, Qilu Normal University, Jinan, China
| | - Xiaolu Qu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China.
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
23
|
Peng L, He J, Yao H, Yu Q, Zhang Q, Li K, Huang Y, Chen L, Li X, Yang Y, Li X. CARK3-mediated ADF4 regulates hypocotyl elongation and soil drought stress in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:1065677. [PMID: 36618656 PMCID: PMC9811263 DOI: 10.3389/fpls.2022.1065677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Actin depolymerization factors (ADFs), as actin-binding proteins, act a crucial role in plant development and growth, as well as in response to abiotic and biotic stresses. Here, we found that CARK3 plays a role in regulating hypocotyl development and links a cross-talk between actin filament and drought stress through interaction with ADF4. By using bimolecular fluorescence complementation (BiFC) and GST pull-down, we confirmed that CARK3 interacts with ADF4 in vivo and in vitro. Next, we generated and characterized double mutant adf4cark3-4 and OE-ADF4:cark3-4. The hypocotyl elongation assay indicated that the cark3-4 mutant seedlings were slightly longer hypocotyls when compared with the wild type plants (WT), while CARK3 overexpressing seedlings had no difference with WT. In addition, overexpression of ADF4 significantly inhibited long hypocotyls of cark3-4 mutants. Surprisingly, we found that overexpression of ADF4 markedly enhance drought resistance in soil when compared with WT. On the other hand, drought tolerance analysis showed that overexpression of CARK3 could rescue adf4 drought susceptibility. Taken together, our results suggest that CARK3 acts as a regulator in hypocotyl elongation and drought tolerance likely via regulating ADF4 phosphorylation.
Collapse
|
24
|
Actin depolymerizing factor ADF7 inhibits actin bundling protein VILLIN1 to regulate root hair formation in response to osmotic stress in Arabidopsis. PLoS Genet 2022; 18:e1010338. [PMID: 36095000 PMCID: PMC9499291 DOI: 10.1371/journal.pgen.1010338] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 09/22/2022] [Accepted: 07/12/2022] [Indexed: 11/25/2022] Open
Abstract
Actin cytoskeleton is essential for root hair formation. However, the underlying molecular mechanisms of actin dynamics in root hair formation in response to abiotic stress are largely undiscovered. Here, genetic analysis showed that actin-depolymerizing protein ADF7 and actin-bundling protein VILLIN1 (VLN1) were positively and negatively involved in root hair formation of Arabidopsis respectively. Moreover, RT-qPCR, GUS staining, western blotting, and genetic analysis revealed that ADF7 played an important role in inhibiting the expression and function of VLN1 during root hair formation. Filament actin (F-actin) dynamics observation and actin pharmacological experiments indicated that ADF7-inhibited-VLN1 pathway led to the decline of F-actin bundling and thick bundle formation, as well as the increase of F-actin depolymerization and turnover to promote root hair formation. Furthermore, the F-actin dynamics mediated by ADF7-inhibited-VLN1 pathway was associated with the reactive oxygen species (ROS) accumulation in root hair formation. Finally, ADF7-inhibited-VLN1 pathway was critical for osmotic stress-induced root hair formation. Our work demonstrates that ADF7 inhibits VLN1 to regulate F-actin dynamics in root hair formation in response to osmotic stress, providing the novel evidence on the F-actin dynamics and their molecular mechanisms in root hair formation and in abiotic stress. Root hairs are required for plants to absorb nutrients and water. The dynamics of cytoskeleton such as actin filaments (F-actin) are necessary for the formation of root hairs, which is regulated by different kinds of cytoskeleton-binding proteins. At the same time, the dynamics of cytoskeleton are also involved in plant abiotic stress tolerance. However, there are few studies on the underlying molecular mechanisms of F-actin dynamics in root hair formation in response to abiotic stress. Actin depolymerization factor 7 (ADF7) and actin bunding protein Villin 1 (VLN1) are important actin-binding proteins in Arabidopsis. Here, we describe a pathway that ADF7 inhibits VLN1 to regulate F-actin dynamics in root hair formation in response to osmotic stress, providing a new evidence for the studies on the molecular mechanisms of F-actin dynamics in root hair formation and in plant abiotic stress tolerance.
Collapse
|
25
|
Yao H, Li X, Peng L, Hua X, Zhang Q, Li K, Huang Y, Ji H, Wu X, Chen Y, Yang Y, Wang J. Binding of 14-3-3κ to ADF4 is involved in the regulation of hypocotyl growth and response to osmotic stress in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 320:111261. [PMID: 35643603 DOI: 10.1016/j.plantsci.2022.111261] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/12/2022] [Accepted: 03/19/2022] [Indexed: 06/15/2023]
Abstract
14-3-3 proteins, a family of conserved molecules in eukaryotes, target a number of protein clients through their ability to recognize well-defined phosphorylated motifs. ADF4, as one of Actin-Depolymerizing Factor (ADF) family of proteins, is involved in plant development, and response to biotic and abiotic stresses. Here, we show that 14-3-3κ specially interacted with ADF4 in vitro and in vivo. The 14-3-3κ×adf4 double mutant displayed less F-actin bundle and shorter hypocotyl compared with adf4 mutant, indicating that 14-3-3κ acts upstream of ADF4 to mediate the hypocotyl growth in the dark-grown seedlings. Under the osmotic stress, 14-3-3κ mutants displayed less survival rate than wild-type plants. The adf4 mutants exhibited markedly enhanced survival rate under osmotic treatment, while ADF4-overexpressing plants displayed the opposite results, indicating that ADF4 plays a negative role in response to osmotic stress in Arabidopsis. The interaction between ADF4 and 14-3-3κ inhibited the association of ADF4 with actin filament. Moreover, the in vitro phosphorylation assay demonstrates that the phosphorylation of ADF4 by CASEIN KINASE1-LIKE PROTEIN2 (CKL2) was enhanced by binding 14-3-3κ. Collectively, our data infer a fundamental role for the interaction between 14-3-3κ and ADF4 in regulating hypocotyl growth and osmotic tolerance of plants.
Collapse
Affiliation(s)
- Huan Yao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xiaoyi Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Lu Peng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xinyue Hua
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Qian Zhang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Kexuan Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yaling Huang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Hao Ji
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xiaobo Wu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yihong Chen
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yi Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jianmei Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
26
|
Jiang Y, Lu Q, Huang S. Functional non-equivalence of pollen ADF isovariants in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1068-1081. [PMID: 35233873 DOI: 10.1111/tpj.15723] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
ADF/cofilin is a central regulator of actin dynamics. We previously demonstrated that two closely related Arabidopsis class IIa ADF isovariants, ADF7 and ADF10, are involved in the enhancement of actin turnover in pollen, but whether they have distinct functions remains unknown. Here, we further demonstrate that they exhibit distinct functions in regulating actin turnover both in vitro and in vivo. We found that ADF7 binds to ADP-G-actin with lower affinity, and severs and depolymerizes actin filaments less efficiently in vitro than ADF10. Accordingly, in pollen grains, ADF7 more extensively decorates actin filaments and is less freely distributed in the cytoplasm compared to ADF10. We further demonstrate that ADF7 and ADF10 show distinct intracellular localizations during pollen germination, and they have non-equivalent functions in promoting actin turnover in pollen. We thus propose that cooperation and labor division of ADF7 and ADF10 enable pollen cells to achieve exquisite control of the turnover of different actin structures to meet different cellular needs.
Collapse
Affiliation(s)
- Yuxiang Jiang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qiaonan Lu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
27
|
Xu R, Li Y, Liu C, Shen N, Zhang Q, Cao T, Qin M, Han L, Tang D. Twinfilin regulates actin assembly and Hexagonal peroxisome 1 (Hex1) localization in the pathogenesis of rice blast fungus Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2021; 22:1641-1655. [PMID: 34519407 PMCID: PMC8578832 DOI: 10.1111/mpp.13136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 08/06/2021] [Accepted: 08/18/2021] [Indexed: 05/06/2023]
Abstract
Actin assembly at the hyphal tip is key for polar growth and pathogenesis of the rice blast fungus Magnaporthe oryzae. The mechanism of its precise assemblies and biological functions is not understood. Here, we characterized the role of M. oryzae Twinfilin (MoTwf) in M. oryzae infection through organizing the actin cables that connect to Spitzenkörper (Spk) at the hyphal tip. MoTwf could bind and bundle the actin filaments. It formed a complex with Myosin2 (MoMyo2) and the Woronin body protein Hexagonal peroxisome 1 (MoHex1). Enrichment of MoMyo2 and MoHex1 in the hyphal apical region was disrupted in a ΔMotwf loss-of-function mutant, which also showed a decrease in the number and width of actin cables. These findings indicate that MoTwf participates in the virulence of M. oryzae by organizing Spk-connected actin filaments and regulating MoHex1 distribution at the hyphal tip.
Collapse
Affiliation(s)
- Rui Xu
- State Key Laboratory of Ecological Control of Fujian‐Taiwan Crop PestsKey Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsPlant Immunity CenterFujian Agriculture and Forestry UniversityFuzhouChina
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yuan‐Bao Li
- State Key Laboratory of Ecological Control of Fujian‐Taiwan Crop PestsKey Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsPlant Immunity CenterFujian Agriculture and Forestry UniversityFuzhouChina
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Chengyu Liu
- State Key Laboratory of Ecological Control of Fujian‐Taiwan Crop PestsKey Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsPlant Immunity CenterFujian Agriculture and Forestry UniversityFuzhouChina
- College of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Ningning Shen
- State Key Laboratory of Ecological Control of Fujian‐Taiwan Crop PestsKey Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsPlant Immunity CenterFujian Agriculture and Forestry UniversityFuzhouChina
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Qian Zhang
- State Key Laboratory of Ecological Control of Fujian‐Taiwan Crop PestsKey Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsPlant Immunity CenterFujian Agriculture and Forestry UniversityFuzhouChina
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Tingyan Cao
- State Key Laboratory of Ecological Control of Fujian‐Taiwan Crop PestsKey Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsPlant Immunity CenterFujian Agriculture and Forestry UniversityFuzhouChina
- College of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Minghui Qin
- State Key Laboratory of Ecological Control of Fujian‐Taiwan Crop PestsKey Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsPlant Immunity CenterFujian Agriculture and Forestry UniversityFuzhouChina
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Li‐Bo Han
- State Key Laboratory of Ecological Control of Fujian‐Taiwan Crop PestsKey Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsPlant Immunity CenterFujian Agriculture and Forestry UniversityFuzhouChina
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian‐Taiwan Crop PestsKey Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsPlant Immunity CenterFujian Agriculture and Forestry UniversityFuzhouChina
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
28
|
Wang L, Qiu T, Yue J, Guo N, He Y, Han X, Wang Q, Jia P, Wang H, Li M, Wang C, Wang X. Arabidopsis ADF1 is Regulated by MYB73 and is Involved in Response to Salt Stress Affecting Actin Filament Organization. PLANT & CELL PHYSIOLOGY 2021; 62:1387-1395. [PMID: 34086948 DOI: 10.1093/pcp/pcab081] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/26/2021] [Accepted: 06/03/2021] [Indexed: 06/12/2023]
Abstract
Actin cytoskeleton and transcription factors play key roles in plant response to salt stress; however, little is known about the link between the two regulators in response to salt stress. Actin-depolymerizing factors (ADFs) are conserved actin-binding proteins in eukaryotes. Here, we revealed that the expression level of ADF1 was induced by salt stress. The adf1 mutants showed significantly reduced survival rate, increased percentage of actin cable and reduced density of actin filaments, while ADF1 overexpression seedlings displayed the opposite results when compared with WT under the same condition. Furthermore, biochemical assays revealed that MYB73, a R2R3 MYB transcription factor, binds to the promoter of ADF1 and represses its expression via the MYB-binding site core motif ACCTAC. Taken together, our results indicate that ADF1 participates in salt stress by regulating actin organization and may also serve as a potential downstream target of MYB73, which is a negative regulator of salt stress.
Collapse
Affiliation(s)
- Lu Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
- College of Horticulture, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| | - Tianqi Qiu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| | - Jianru Yue
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| | - Nannan Guo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| | - Yunjian He
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| | - Xueping Han
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| | - Qiuyang Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| | - Pengfei Jia
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| | - Hongdan Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| | - Muzi Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| | - Che Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| | - Xianling Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| |
Collapse
|
29
|
Byun MY, Cui LH, Lee A, Oh HG, Yoo YH, Lee J, Kim WT, Lee H. Abiotic Stress-Induced Actin-Depolymerizing Factor 3 From Deschampsia antarctica Enhanced Cold Tolerance When Constitutively Expressed in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:734500. [PMID: 34650582 PMCID: PMC8506025 DOI: 10.3389/fpls.2021.734500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
The Antarctic flowering plant Deschampsia antarctica is highly sensitive to climate change and has shown rapid population increases during regional warming of the Antarctic Peninsula. Several studies have examined the physiological and biochemical changes related to environmental stress tolerance that allow D. antarctica to colonize harsh Antarctic environments; however, the molecular mechanisms of its responses to environmental changes remain poorly understood. To elucidate the survival strategies of D. antarctica in Antarctic environments, we investigated the functions of actin depolymerizing factor (ADF) in this species. We identified eight ADF genes in the transcriptome that were clustered into five subgroups by phylogenetic analysis. DaADF3, which belongs to a monocot-specific clade together with cold-responsive ADF in wheat, showed significant transcriptional induction in response to dehydration and cold, as well as under Antarctic field conditions. Multiple drought and low-temperature responsive elements were identified as possible binding sites of C-repeat-binding factors in the promoter region of DaADF3, indicating a close relationship between DaADF3 transcription control and abiotic stress responses. To investigate the functions of DaADF3 related to abiotic stresses in vivo, we generated transgenic rice plants overexpressing DaADF3. These transgenic plants showed greater tolerance to low-temperature stress than the wild-type in terms of survival rate, leaf chlorophyll content, and electrolyte leakage, accompanied by changes in actin filament organization in the root tips. Together, our results imply that DaADF3 played an important role in the enhancement of cold tolerance in transgenic rice plants and in the adaptation of D. antarctica to its extreme environment.
Collapse
Affiliation(s)
- Mi Young Byun
- Division of Life Sciences, Korea Polar Research Institute, Incheon, South Korea
| | - Li Hua Cui
- Division of Life Science, Department of Systems Biology, Yonsei University, Seoul, South Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Andosung Lee
- Division of Life Science, Department of Systems Biology, Yonsei University, Seoul, South Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Hyung Geun Oh
- Division of Life Science, Department of Systems Biology, Yonsei University, Seoul, South Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Yo-Han Yoo
- Division of Life Sciences, Korea Polar Research Institute, Incheon, South Korea
| | - Jungeun Lee
- Division of Life Sciences, Korea Polar Research Institute, Incheon, South Korea
| | - Woo Taek Kim
- Division of Life Science, Department of Systems Biology, Yonsei University, Seoul, South Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Hyoungseok Lee
- Division of Life Sciences, Korea Polar Research Institute, Incheon, South Korea
- Polar Science, University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
30
|
Hayashi M, Palmgren M. The quest for the central players governing pollen tube growth and guidance. PLANT PHYSIOLOGY 2021; 185:682-693. [PMID: 33793904 PMCID: PMC8133568 DOI: 10.1093/plphys/kiaa092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/06/2020] [Indexed: 05/02/2023]
Abstract
Recent insights into the mechanism of pollen tube growth and guidance point to the importance of H+ dynamics, which are regulated by the plasma membrane H+-ATPase.
Collapse
Affiliation(s)
- Maki Hayashi
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Copenhagen, Denmark
| | - Michael Palmgren
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Copenhagen, Denmark
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000,China
- Author for communication:
| |
Collapse
|
31
|
Xu K, Zhao Y, Zhao S, Liu H, Wang W, Zhang S, Yang X. Genome-Wide Identification and Low Temperature Responsive Pattern of Actin Depolymerizing Factor (ADF) Gene Family in Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2021; 12:618984. [PMID: 33719289 PMCID: PMC7943747 DOI: 10.3389/fpls.2021.618984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/05/2021] [Indexed: 05/07/2023]
Abstract
The actin depolymerizing factor (ADF) gene family, which is conserved in eukaryotes, is important for plant development, growth, and stress responses. Cold stress restricts wheat growth, development, and distribution. However, genome-wide identification and functional analysis of the ADF family in wheat is limited. Further, because of the promising role of ADF genes in cold response, there is need for an understanding of the function of this family on wheat under cold stress. In this study, 25 ADF genes (TaADFs) were identified in the wheat genome and they are distributed on 15 chromosomes. The TaADF gene structures, duplication events, encoded conversed motifs, and cis-acting elements were investigated. Expression profiles derived from RNA-seq data and real-time quantitative PCR analysis revealed the tissue- and temporal-specific TaADF expression patterns. In addition, the expression levels of TaADF13/16/17/18/20/21/22 were significantly affected by cold acclimation or freezing conditions. Overexpression of TaADF16 increased the freezing tolerance of transgenic Arabidopsis, possibly because of enhanced ROS scavenging and changes to the osmotic regulation in cells. The expression levels of seven cold-responsive genes were up-regulated in the transgenic Arabidopsis plants, regardless of whether the plants were exposed to low temperature. These findings provide fundamental information about the wheat ADF genes and may help to elucidate the regulatory effects of the encoded proteins on plant development and responses to low-temperature stress.
Collapse
Affiliation(s)
- Ke Xu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Yong Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Sihang Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Haodong Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Weiwei Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Cangzhou Academy of Agriculture and Forestry Sciences, Cangzhou, China
| | - Shuhua Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Xueju Yang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| |
Collapse
|
32
|
Zhang P, Qian D, Luo C, Niu Y, Li T, Li C, Xiang Y, Wang X, Niu Y. Arabidopsis ADF5 Acts as a Downstream Target Gene of CBFs in Response to Low-Temperature Stress. Front Cell Dev Biol 2021; 9:635533. [PMID: 33585491 PMCID: PMC7876393 DOI: 10.3389/fcell.2021.635533] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Low temperature is a major adverse environment that affects normal plant growth. Previous reports showed that the actin cytoskeleton plays an important role in the plant response to low-temperature stress, but the regulatory mechanism of the actin cytoskeleton in this process is not clear. C-repeat binding factors (CBFs) are the key molecular switches for plants to adapt to cold stress. However, whether CBFs are involved in the regulation of the actin cytoskeleton has not been reported. We found that Arabidopsis actin depolymerizing factor 5 (ADF5), an ADF that evolved F-actin bundling function, was up-regulated at low temperatures. We also demonstrated that CBFs bound to the ADF5 promoter directly in vivo and in vitro. The cold-induced expression of ADF5 was significantly inhibited in the cbfs triple mutant. The freezing resistance of the adf5 knockout mutant was weaker than that of wild type (WT) with or without cold acclimation. After low-temperature treatment, the actin cytoskeleton of WT was relatively stable, but the actin cytoskeletons of adf5, cbfs, and adf5 cbfs were disturbed to varying degrees. Compared to WT, the endocytosis rate of the amphiphilic styryl dye FM4-64 in adf5, cbfs, and adf5 cbfs at low temperature was significantly reduced. In conclusion, CBFs directly combine with the CRT/DRE DNA regulatory element of the ADF5 promoter after low-temperature stress to transcriptionally activate the expression of ADF5; ADF5 further regulates the actin cytoskeleton dynamics to participate in the regulation of plant adaptation to a low-temperature environment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yue Niu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
33
|
Yang Y, Li HG, Wang J, Wang HL, He F, Su Y, Zhang Y, Feng CH, Niu M, Li Z, Liu C, Yin W, Xia X. ABF3 enhances drought tolerance via promoting ABA-induced stomatal closure by directly regulating ADF5 in Populus euphratica. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:7270-7285. [PMID: 32822499 DOI: 10.1093/jxb/eraa383] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 08/17/2020] [Indexed: 05/20/2023]
Abstract
Water availability is a main limiting factor for plant growth, development, and distribution throughout the world. Stomatal movement mediated by abscisic acid (ABA) is particularly important for drought adaptation, but the molecular mechanisms in trees are largely unclear. Here, we isolated an ABA-responsive element binding factor, PeABF3, in Populus euphratica. PeABF3 was preferentially expressed in the xylem and young leaves, and was induced by dehydration and ABA treatments. PeABF3 showed transactivation activity and was located in the nucleus. To study its functional mechanism in poplar responsive to drought stress, transgenic triploid white poplars (Populus tomentosa 'YiXianCiZhu B385') overexpressing PeABF3 were generated. PeABF3 overexpression significantly enhanced stomatal sensitivity to exogenous ABA. When subjected to drought stress, PeABF3 overexpression maintained higher photosynthetic activity and promoted cell membrane integrity, resulting in increased water-use efficiency and enhanced drought tolerance compared with wild-type controls. Moreover, a yeast one-hybrid assay and an electrophoretic mobility shift assay revealed that PeABF3 activated the expression of Actin-Depolymerizing Factor-5 (PeADF5) by directly binding to its promoter, promoting actin cytoskeleton remodeling and stomatal closure in poplar under drought stress. Taken together, our results indicate that PeABF3 enhances drought tolerance via promoting ABA-induced stomatal closure by directly regulating PeADF5 expression.
Collapse
Affiliation(s)
- Yanli Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hui-Guang Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jie Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hou-Ling Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Fang He
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yanyan Su
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Ying Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Cong-Hua Feng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Mengxue Niu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Zhonghai Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Chao Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Weilun Yin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xinli Xia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
34
|
Xu Y, Huang S. Control of the Actin Cytoskeleton Within Apical and Subapical Regions of Pollen Tubes. Front Cell Dev Biol 2020; 8:614821. [PMID: 33344460 PMCID: PMC7744591 DOI: 10.3389/fcell.2020.614821] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/13/2020] [Indexed: 01/07/2023] Open
Abstract
In flowering plants, sexual reproduction involves a double fertilization event, which is facilitated by the delivery of two non-motile sperm cells to the ovule by the pollen tube. Pollen tube growth occurs exclusively at the tip and is extremely rapid. It strictly depends on an intact actin cytoskeleton, and is therefore an excellent model for uncovering the molecular mechanisms underlying dynamic actin cytoskeleton remodeling. There has been a long-term debate about the organization and dynamics of actin filaments within the apical and subapical regions of pollen tube tips. By combining state-of-the-art live-cell imaging with the usage of mutants which lack different actin-binding proteins, our understanding of the origin, spatial organization, dynamics and regulation of actin filaments within the pollen tube tip has greatly improved. In this review article, we will summarize the progress made in this area.
Collapse
Affiliation(s)
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
35
|
Wang X, Bi S, Wang L, Li H, Gao BA, Huang S, Qu X, Cheng J, Wang S, Liu C, Jiang Y, Zhang B, Liu X, Zhang S, Fu Y, Zhang Z, Wang C. GLABRA2 Regulates Actin Bundling Protein VILLIN1 in Root Hair Growth in Response to Osmotic Stress. PLANT PHYSIOLOGY 2020; 184:176-193. [PMID: 32636342 PMCID: PMC7479883 DOI: 10.1104/pp.20.00480] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/28/2020] [Indexed: 05/04/2023]
Abstract
Actin binding proteins and transcription factors are essential in regulating plant root hair growth in response to various environmental stresses; however, the interaction between these two factors in regulating root hair growth remains poorly understood. Apical and subapical thick actin bundles are necessary for terminating rapid elongation of root hair cells. Here, we show that Arabidopsis (Arabidopsis thaliana) actin-bundling protein Villin1 (VLN1) decorates filaments in shank, subapical, and apical hairs. vln1 mutants displayed significantly longer hairs with longer hair growing time and defects in the thick actin bundles and bundling activities in the subapical and apical regions, whereas seedlings overexpressing VLN1 showed different results. Genetic analysis showed that the transcription factor GLABRA2 (Gl2) played a regulatory role similar to that of VLN1 in hair growth and actin dynamics. Moreover, further analyses demonstrated that VLN1 overexpression suppresses the gl2 mutant phenotypes regarding hair growth and actin dynamics; GL2 directly recognizes the promoter of VLN1 and positively regulates VLN1 expression in root hairs; and the GL2-mediated VLN1 pathway is involved in the root hair growth response to osmotic stress. Our results demonstrate that the GL2-mediated VLN1 pathway plays an important role in the root hair growth response to osmotic stress, and they describe a transcriptional mechanism that regulates actin dynamics and thereby modulates cell tip growth in response to environmental signals.
Collapse
Affiliation(s)
- Xianling Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Shuangtian Bi
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Lu Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Hongpeng Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Bi-ao Gao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaolu Qu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- College of Horticulture and Forestry, Huazhong Agricultural University, WuHan 430072, China
| | - Jianing Cheng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Shucai Wang
- College of Life Science, Linyi University, Linyi 276000, China
| | - Caiyuan Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Yikuo Jiang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Bing Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaoyu Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Shaobin Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Ying Fu
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100083, China
| | - Zhihong Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Che Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
36
|
Liu Y, Song Y, Zhang S, Diao M, Huang S, Li S, Tan X. PSGL-1 inhibits HIV-1 infection by restricting actin dynamics and sequestering HIV envelope proteins. Cell Discov 2020; 6:53. [PMID: 32802403 PMCID: PMC7400672 DOI: 10.1038/s41421-020-0184-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/18/2020] [Indexed: 01/22/2023] Open
Abstract
PSGL-1 has recently been identified as an HIV restriction factor that inhibits HIV DNA synthesis and more potently, virion infectivity. But the underlying mechanisms of these inhibitions are unknown. Here we show that PSGL-1 directly binds to cellular actin filaments (F-actin) to restrict actin dynamics, which leads to inhibition of HIV DNA synthesis. PSGL-1 is incorporated into nascent virions and restricts actin dynamics in the virions, which partially accounts for the inhibition of virion infectivity. More potently, PSGL-1 inhibits incorporation of Env proteins into nascent virions, causing a loss of envelope spikes on the virions as shown by Cryo-electron microscopy and super-resolution imaging. This loss is associated with a profound defect in viral entry. Mechanistically, PSGL-1 binds gp41 and sequesters gp41 at the plasma membrane, explaining the inhibition of Env incorporation in nascent virions. PSGL-1’s dual anti-HIV mechanisms represent novel strategies of human cells to defend against HIV infection.
Collapse
Affiliation(s)
- Ying Liu
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Yutong Song
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Siyu Zhang
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Min Diao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Sai Li
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xu Tan
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
37
|
Wang L, Triviño M, Lin Z, Carli J, Eaves DJ, Van Damme D, Nowack MK, Franklin-Tong VE, Bosch M. New opportunities and insights into Papaver self-incompatibility by imaging engineered Arabidopsis pollen. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2451-2463. [PMID: 32100005 PMCID: PMC7178406 DOI: 10.1093/jxb/eraa092] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/25/2020] [Indexed: 05/05/2023]
Abstract
Pollen tube growth is essential for plant reproduction. Their rapid extension using polarized tip growth provides an exciting system for studying this specialized type of growth. Self-incompatibility (SI) is a genetically controlled mechanism to prevent self-fertilization. Mechanistically, one of the best-studied SI systems is that of Papaver rhoeas (poppy). This utilizes two S-determinants: stigma-expressed PrsS and pollen-expressed PrpS. Interaction of cognate PrpS-PrsS triggers a signalling network, causing rapid growth arrest and programmed cell death (PCD) in incompatible pollen. We previously demonstrated that transgenic Arabidopsis thaliana pollen expressing PrpS-green fluorescent protein (GFP) can respond to Papaver PrsS with remarkably similar responses to those observed in incompatible Papaver pollen. Here we describe recent advances using these transgenic plants combined with genetically encoded fluorescent probes to monitor SI-induced cellular alterations, including cytosolic calcium, pH, the actin cytoskeleton, clathrin-mediated endocytosis (CME), and the vacuole. This approach has allowed us to study the SI response in depth, using multiparameter live-cell imaging approaches that were not possible in Papaver. This lays the foundations for new opportunities to elucidate key mechanisms involved in SI. Here we establish that CME is disrupted in self-incompatible pollen. Moreover, we reveal new detailed information about F-actin remodelling in pollen tubes after SI.
Collapse
Affiliation(s)
- Ludi Wang
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth, UK
| | - Marina Triviño
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth, UK
- Department of Plant Biotechnology and Genetics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Zongcheng Lin
- Department of Plant Biotechnology and Genetics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - José Carli
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth, UK
| | - Deborah J Eaves
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Daniёl Van Damme
- Department of Plant Biotechnology and Genetics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Moritz K Nowack
- Department of Plant Biotechnology and Genetics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Vernonica E Franklin-Tong
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
- Correspondence: or
| | - Maurice Bosch
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth, UK
- Correspondence: or
| |
Collapse
|
38
|
Zhu K, Zhang W, Sarwa R, Xu S, Li K, Yang Y, Li Y, Wang Z, Cao J, Li Y, Tan X. Proteomic analysis of a clavata-like phenotype mutant in Brassica napus. Genet Mol Biol 2020; 43:e20190305. [PMID: 32154828 PMCID: PMC7198001 DOI: 10.1590/1678-4685-gmb-2019-0305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/08/2020] [Indexed: 12/29/2022] Open
Abstract
Rapeseed is one of important oil crops in China. Better understanding of the
regulation network of main agronomic traits of rapeseed could improve the
yielding of rapeseed. In this study, we obtained an influrescence mutant that
showed a fusion phenotype, similar with the Arabidopsis
clavata-like phenotype, so we named the mutant as
Bnclavata-like (Bnclv-like). Phenotype
analysis illustrated that abnormal development of the inflorescence meristem
(IM) led to the fused-inflorescence phenotype. At the stage of protein
abundance, major regulators in metabolic processes, ROS metabolism, and
cytoskeleton formation were seen to be altered in this mutant. These results not
only revealed the relationship between biological processes and inflorescence
meristem development, but also suggest bioengineering strategies for the
improved breeding and production of Brassica napus.
Collapse
Affiliation(s)
- Keming Zhu
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China.,Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Wuhan, China
| | - Weiwei Zhang
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China
| | - Rehman Sarwa
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China
| | - Shuo Xu
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China
| | - Kaixia Li
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China
| | - Yanhua Yang
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China
| | - Yulong Li
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China
| | - Zheng Wang
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China
| | - Jun Cao
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China
| | - Yaoming Li
- Jiangsu University, Institute of Agricultural Engineering, Zhenjiang, China
| | - Xiaoli Tan
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China
| |
Collapse
|
39
|
Genome-Wide Identification and Characterization of Actin-Depolymerizing Factor ( ADF) Family Genes and Expression Analysis of Responses to Various Stresses in Zea Mays L. Int J Mol Sci 2020; 21:ijms21051751. [PMID: 32143437 PMCID: PMC7084653 DOI: 10.3390/ijms21051751] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022] Open
Abstract
Actin-depolymerizing factor (ADF) is a small class of actin-binding proteins that regulates the dynamics of actin in cells. Moreover, it is well known that the plant ADF family plays key roles in growth, development and defense-related functions. Results: Thirteen maize (Zea mays L., ZmADFs) ADF genes were identified using Hidden Markov Model. Phylogenetic analysis indicated that the 36 identified ADF genes in Physcomitrella patens, Arabidopsis thaliana, Oryza sativa japonica, and Zea mays were clustered into five groups. Four pairs of segmental genes were found in the maize ADF gene family. The tissue-specific expression of ZmADFs and OsADFs was analyzed using microarray data obtained from the Maize and Rice eFP Browsers. Five ZmADFs (ZmADF1/2/7/12/13) from group V exhibited specifically high expression in tassel, pollen, and anther. The expression patterns of 13 ZmADFs in seedlings under five abiotic stresses were analyzed using qRT-PCR, and we found that the ADFs mainly responded to heat, salt, drought, and ABA. Conclusions: In our study, we identified ADF genes in maize and analyzed the gene structure and phylogenetic relationships. The results of expression analysis demonstrated that the expression level of ADF genes was diverse in various tissues and different stimuli, including abiotic and phytohormone stresses, indicating their different roles in plant growth, development, and response to external stimulus. This report extends our knowledge to understand the function of ADF genes in maize.
Collapse
|
40
|
Qu X, Wang Q, Wang H, Huang S. Visualization of Actin Organization and Quantification in Fixed Arabidopsis Pollen Grains and Tubes. Bio Protoc 2020; 10:e3509. [PMID: 33654717 DOI: 10.21769/bioprotoc.3509] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/10/2019] [Accepted: 12/31/2019] [Indexed: 11/02/2022] Open
Abstract
Although it is widely accepted that actin plays an important role in regulating pollen germination and pollen tube growth, how actin exactly performs functions remains incompletely understood. As the function of actin is dictated by its spatial organization, it is the key to reveal how exactly actin distributes in space in pollen cells. Here we describe the protocol of revealing and quantifying the spatial organization of actin using fluorescent phalloidin-staining in fixed Arabidopsis pollen grains and pollen tubes. We also introduce the method of assessing the stability and/or turnover rate of actin filaments in pollen cells using the treatment of latrunculin B.
Collapse
Affiliation(s)
- Xiaolu Qu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Qiannan Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haiyan Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
41
|
Kim YJ, Zhang D, Jung KH. Molecular Basis of Pollen Germination in Cereals. TRENDS IN PLANT SCIENCE 2019; 24:1126-1136. [PMID: 31610991 DOI: 10.1016/j.tplants.2019.08.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/22/2019] [Accepted: 08/22/2019] [Indexed: 05/22/2023]
Abstract
Understanding the molecular basis of pollen germination in cereals holds great potential to improve yield. Pollen, a highly specialized haploid male gametophyte, transports sperm cells through a pollen tube to the female ovule for fertilization, directly determining grain yield in cereal crops. Although insights into the regulation of pollen germination and gamete interaction have advanced rapidly in the model Arabidopsis thaliana (arabidopsis), the molecular mechanisms in monocot cereals remain largely unknown. Recently, pollen-specific genome-wide and mutant analyses in rice and maize have extended our understanding of monocot regulatory components. We highlight conserved and diverse mechanisms underlying pollen hydration, germination, and tube growth in cereals that provide ideas for translating this research from arabidopsis. Recent developments in gene-editing systems may facilitate further functional genetic research.
Collapse
Affiliation(s)
- Yu-Jin Kim
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea
| | - Dabing Zhang
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea; Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; School of Agriculture, Food, and Wine, University of Adelaide, South Australia 5064, Australia.
| | - Ki-Hong Jung
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea.
| |
Collapse
|
42
|
Huang S, Peng S, Liu Z, Li C, Tan C, Yao R, Li D, Li X, Hou L, Feng H. Investigation of the genes associated with a male sterility mutant (msm) in Chinese cabbage (Brassica campestris ssp. pekinensis) using RNA-Seq. Mol Genet Genomics 2019; 295:233-249. [PMID: 31673754 DOI: 10.1007/s00438-019-01618-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022]
Abstract
In Chinese cabbage, hybrid seed production is performed using male sterility lines, an important approach to heterosis utilization. In this study, a stably inherited male sterile mutant msm was obtained from the 'FT'-doubled haploid line of Chinese cabbage using isolated microspore culture combined with 60Co γ-ray mutagenesis. The genetic backgrounds of 'FT' and msm were highly consistent; however, compared with wild-type 'FT', msm exhibited completely degenerated stamens and no pollen phenotype. Other characters showed no significant differences. Cytological observations revealed that stamen abortion in msm begins during the tetrad period and that tapetum cells were abnormally expanded and highly vacuolated, leading to microspore abortion. Genetic analysis indicated that the msm mutant phenotype is controlled by a single recessive nuclear gene. Comparative transcriptome analysis of 'FT' and msm flower buds using RNA-Seq technology revealed 1653 differentially expressed genes, among which, a large number associated with male sterility were detected, including 64 pollen development- and pollen tube growth-related genes, 94 pollen wall development-related genes, 11 phytohormone-related genes, and 16 transcription factor-related genes. An overwhelming majority of these genes were down-regulated in msm compared with 'FT'. Furthermore, KEGG pathway analysis indicated that a variety of carbohydrate metabolic and lipid metabolic pathways were significantly enriched, which may be related to pollen abortion. The expression patterns of 24 male sterility-related genes were analyzed using qRT-PCR. In addition, 24,476 single-nucleotide polymorphisms and 413,073 insertion-deletion events were specifically detected in msm. These results will facilitate elucidation of the regulatory mechanisms underlying male sterility in Chinese cabbage.
Collapse
Affiliation(s)
- Shengnan Huang
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Shenling Peng
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Zhiyong Liu
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Chengyu Li
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Chong Tan
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Runpeng Yao
- Department of Horticulture, Tonghua Horticulture Research Institute, Tonghua, 134000, People's Republic of China
| | - Danyang Li
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Xiang Li
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Li Hou
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Hui Feng
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China.
| |
Collapse
|
43
|
Zou M, Ren H, Li J. An Auxin Transport Inhibitor Targets Villin-Mediated Actin Dynamics to Regulate Polar Auxin Transport. PLANT PHYSIOLOGY 2019; 181:161-178. [PMID: 31311831 PMCID: PMC6716258 DOI: 10.1104/pp.19.00064] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/25/2019] [Indexed: 05/14/2023]
Abstract
Auxin transport inhibitors are essential tools for understanding auxin-dependent plant development. One mode of inhibition affects actin dynamics; however, the underlying mechanisms remain unclear. In this study, we characterized the action of 2,3,5-triiodobenzoic acid (TIBA) on actin dynamics in greater mechanistic detail. By surveying mutants for candidate actin-binding proteins with reduced TIBA sensitivity, we determined that Arabidopsis (Arabidopsis thaliana) villins contribute to TIBA action. By directly interacting with the C-terminal headpiece domain of villins, TIBA causes villin to oligomerize, driving excessive bundling of actin filaments. The resulting changes in actin dynamics impair auxin transport by disrupting the trafficking of PIN-FORMED auxin efflux carriers and reducing their levels at the plasma membrane. Collectively, our study provides mechanistic insight into the link between the actin cytoskeleton, vesicle trafficking, and auxin transport.
Collapse
Affiliation(s)
- Minxia Zou
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Haiyun Ren
- Key Laboratory of Cell Proliferation and Regulation of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Jiejie Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
44
|
Diao M, Li X, Huang S. Arabidopsis AIP1-1 regulates the organization of apical actin filaments by promoting their turnover in pollen tubes. SCIENCE CHINA-LIFE SCIENCES 2019; 63:239-250. [PMID: 31240522 DOI: 10.1007/s11427-019-9532-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/02/2019] [Indexed: 11/24/2022]
Abstract
Apical actin filaments are highly dynamic structures that are crucial for rapid pollen tube growth, but the mechanisms regulating their dynamics and spatial organization remain incompletely understood. We here identify that AtAIP1-1 is important for regulating the turnover and organization of apical actin filaments in pollen tubes. AtAIP1-1 is distributed uniformly in the pollen tube and loss of function of AtAIP1-1 affects the organization of the actin cytoskeleton in the pollen tube. Specifically, actin filaments became disorganized within the apical region of aip1-1 pollen tubes. Consistent with the role of apical actin filaments in spatially restricting vesicles in pollen tubes, the apical region occupied by vesicles becomes enlarged in aip1-1 pollen tubes compared to WT. Using ADF1 as a representative actin-depolymerizing factor, we demonstrate that AtAIP1-1 enhances ADF1-mediated actin depolymerization and filament severing in vitro, although AtAIP1-1 alone does not have an obvious effect on actin assembly and disassembly. The dynamics of apical actin filaments are reduced in aip1-1 pollen tubes compared to WT. Our study suggests that AtAIP1-1 works together with ADF to act as a module in regulating the dynamics of apical actin filaments to facilitate the construction of the unique "apical actin structure" in the pollen tube.
Collapse
Affiliation(s)
- Min Diao
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- iHuman Institute, Shanghai Tech University, Shanghai, 201210, China
| | - Xin Li
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
45
|
Li X, Diao M, Zhang Y, Chen G, Huang S, Chen N. Guard Cell Microfilament Analyzer Facilitates the Analysis of the Organization and Dynamics of Actin Filaments in Arabidopsis Guard Cells. Int J Mol Sci 2019; 20:ijms20112753. [PMID: 31195605 PMCID: PMC6600335 DOI: 10.3390/ijms20112753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/26/2019] [Accepted: 05/28/2019] [Indexed: 11/29/2022] Open
Abstract
The actin cytoskeleton is involved in regulating stomatal movement, which forms distinct actin arrays within guard cells of stomata with different apertures. How those actin arrays are formed and maintained remains largely unexplored. Elucidation of the dynamic behavior of differently oriented actin filaments in guard cells will enhance our understanding in this regard. Here, we initially developed a program called ‘guard cell microfilament analyzer’ (GCMA) that enables the selection of individual actin filaments and analysis of their orientations semiautomatically in guard cells. We next traced the dynamics of individual actin filaments and performed careful quantification in open and closed stomata. We found that de novo nucleation of actin filaments occurs at both dorsal and ventral sides of guard cells from open and closed stomata. Interestingly, most of the nucleated actin filaments elongate radially and longitudinally in open and closed stomata, respectively. Strikingly, radial filaments tend to form bundles whereas longitudinal filaments tend to be removed by severing and depolymerization in open stomata. By contrast, longitudinal filaments tend to form bundles that are severed less frequently in closed stomata. These observations provide insights into the formation and maintenance of distinct actin arrays in guard cells in stomata of different apertures.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Min Diao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
- iHuman Institute, Shanghai Tech University, Shanghai 201210, China.
| | - Yanan Zhang
- OLYMPUS (CHINA) CO., LTD, Beijing 100027, China.
| | - Guanlin Chen
- Baidu Online Network Technology (Beijing) CO., LTD, Beijing 100193, China.
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Naizhi Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
46
|
Zhang R, Qu X, Zhang M, Jiang Y, Dai A, Zhao W, Cao D, Lan Y, Yu R, Wang H, Huang S. The Balance between Actin-Bundling Factors Controls Actin Architecture in Pollen Tubes. iScience 2019; 16:162-176. [PMID: 31181400 PMCID: PMC6556835 DOI: 10.1016/j.isci.2019.05.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/29/2019] [Accepted: 05/21/2019] [Indexed: 11/19/2022] Open
Abstract
How actin-bundling factors cooperatively regulate shank-localized actin bundles remains largely unexplored. Here we demonstrate that FIM5 and PLIM2a/PLIM2b decorate shank-localized actin bundles and that loss of function of PLIM2a and/or PLIM2b suppresses phenotypes associated with fim5 mutants. Specifically, knockout of PLIM2a and/or PLIM2b partially suppresses the disorganized actin bundle and intracellular trafficking phenotype in fim5 pollen tubes. PLIM2a/PLIM2b generates thick but loosely packed actin bundles, whereas FIM5 generates thin but tight actin bundles that tend to be cross-linked into networks in vitro. Furthermore, PLIM2a/PLIM2b and FIM5 compete for binding to actin filaments in vitro, and PLIM2a/PLIM2b decorate disorganized actin bundles in fim5 pollen tubes. These data together suggest that the disorganized actin bundles in fim5 mutants are at least partially due to gain of function of PLIM2a/PLIM2b. Our data suggest that the balance between FIM5 and PLIM2a/PLIM2b is crucial for the normal bundling and organization of shank-localized actin bundles in pollen tubes. The transcription of PLIM2a and PLIM2b is upregulated in fim5 pollen tubes Downregulation of PLIM2a and/or PLIM2b suppresses the defects in fim5 pollen tubes Both FIM5 and PLIM2a/PLIM2b decorate shank-localized actin filaments FIM5 can inhibit the binding of PLIM2a and PLIM2b to actin filaments
Collapse
Affiliation(s)
- Ruihui Zhang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaolu Qu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Meng Zhang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuxiang Jiang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Anbang Dai
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wanying Zhao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Dai Cao
- School of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yaxian Lan
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Rong Yu
- School of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Hongwei Wang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
47
|
Mechanism of CAP1-mediated apical actin polymerization in pollen tubes. Proc Natl Acad Sci U S A 2019; 116:12084-12093. [PMID: 31123151 DOI: 10.1073/pnas.1821639116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Srv2p/CAP1 is an essential regulator of actin turnover, but its exact function in regulating actin polymerization, particularly the contribution of its actin nucleotide exchange activity, remains incompletely understood. We found that, although Arabidopsis CAP1 is distributed uniformly in the cytoplasm, its loss of function has differential effects on the actin cytoskeleton within different regions of the pollen tube. Specifically, the F-actin level increases in the shank but decreases in the apical region of cap1 pollen tubes. The reduction in apical F-actin results mainly from impaired polymerization of membrane-originated actin within cap1 pollen tubes. The actin nucleotide exchange activity of CAP1 is involved in apical actin polymerization. CAP1 acts synergistically with pollen ADF and profilin to promote actin turnover in vitro, and it can overcome the inhibitory effects of ADF and synergize with profilin to promote actin nucleotide exchange. Consistent with its role as a shuttle molecule between ADF and profilin, the cytosolic concentration of CAP1 is much lower than that of ADF and profilin in pollen. Thus, CAP1 synergizes with ADF and profilin to drive actin turnover in pollen and promote apical actin polymerization in pollen tubes in a manner that involves its actin nucleotide exchange activity.
Collapse
|
48
|
Qian D, Zhang Z, He J, Zhang P, Ou X, Li T, Niu L, Nan Q, Niu Y, He W, An L, Jiang K, Xiang Y. Arabidopsis ADF5 promotes stomatal closure by regulating actin cytoskeleton remodeling in response to ABA and drought stress. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:435-446. [PMID: 30476276 PMCID: PMC6322581 DOI: 10.1093/jxb/ery385] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 10/01/2018] [Indexed: 05/20/2023]
Abstract
Stomatal movement plays an essential role in plant responses to drought stress, and the actin cytoskeleton and abscisic acid (ABA) are two important components of this process. Little is known about the mechanism underlying actin cytoskeleton remodeling and the dynamic changes occurring during stomatal movement in response to drought stress/ABA signaling. Actin-depolymerizing factors (ADFs) are conserved actin severing/depolymerizing proteins in eukaryotes, and in angiosperms ADFs have evolved actin-bundling activity. Here, we reveal that the transcriptional expression of neofunctionalized Arabidopsis ADF5 was induced by drought stress and ABA treatment. Furthermore, we demonstrated that ADF5 loss-of-function mutations increased water loss from detached leaves, reduced plant survival rates after drought stress, and delayed stomatal closure by regulating actin cytoskeleton remodeling via its F-actin-bundling activity. Biochemical assays revealed that an ABF/AREB transcription factor, DPBF3, could bind to the ADF5 promoter and activate its transcription via the ABA-responsive element core motif ACGT/C. Taken together, our findings indicate that ADF5 participates in drought stress by regulating stomatal closure, and may also serve as a potential downstream target of the drought stress/ABA signaling pathway via members of the ABF/AREB transcription factors family.
Collapse
Affiliation(s)
- Dong Qian
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zhe Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Juanxia He
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Pan Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xiaobin Ou
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Tian Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lipan Niu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Qiong Nan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yue Niu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Wenliang He
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lizhe An
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Kun Jiang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yun Xiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Correspondence:
| |
Collapse
|
49
|
Zhang S, Wang C, Xie M, Liu J, Kong Z, Su H. Actin Bundles in The Pollen Tube. Int J Mol Sci 2018; 19:ijms19123710. [PMID: 30469514 PMCID: PMC6321563 DOI: 10.3390/ijms19123710] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 12/31/2022] Open
Abstract
The angiosperm pollen tube delivers two sperm cells into the embryo sac through a unique growth strategy, named tip growth, to accomplish fertilization. A great deal of experiments have demonstrated that actin bundles play a pivotal role in pollen tube tip growth. There are two distinct actin bundle populations in pollen tubes: the long, rather thick actin bundles in the shank and the short, highly dynamic bundles near the apex. With the development of imaging techniques over the last decade, great breakthroughs have been made in understanding the function of actin bundles in pollen tubes, especially short subapical actin bundles. Here, we tried to draw an overall picture of the architecture, functions and underlying regulation mechanism of actin bundles in plant pollen tubes.
Collapse
Affiliation(s)
- Shujuan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education College of Life Science, Northwest University, Xi'an 710069, China.
| | - Chunbo Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education College of Life Science, Northwest University, Xi'an 710069, China.
| | - Min Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education College of Life Science, Northwest University, Xi'an 710069, China.
| | - Jinyu Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education College of Life Science, Northwest University, Xi'an 710069, China.
| | - Zhe Kong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education College of Life Science, Northwest University, Xi'an 710069, China.
| | - Hui Su
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education College of Life Science, Northwest University, Xi'an 710069, China.
| |
Collapse
|
50
|
Arabidopsis class I formins control membrane-originated actin polymerization at pollen tube tips. PLoS Genet 2018; 14:e1007789. [PMID: 30418966 PMCID: PMC6258422 DOI: 10.1371/journal.pgen.1007789] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 11/26/2018] [Accepted: 10/25/2018] [Indexed: 12/17/2022] Open
Abstract
A population of dynamic apical actin filaments is required for rapid polarized pollen tube growth. However, the cellular mechanisms driving their assembly remain incompletely understood. It was postulated that formin is a major player in nucleating apical actin assembly, but direct genetic and cytological evidence remains to be firmly established. Here we found that both Arabidopsis formin 3 (AtFH3) and formin 5 (AtFH5) are involved in the regulation of apical actin polymerization and actin array construction in pollen tubes, with AtFH3 playing a more dominant role. We found that both formins have plasma membrane (PM) localization signals but exhibit distinct PM localization patterns in the pollen tube, and loss of their function reduces the amount of apical actin filaments. Live-cell imaging revealed that the reduction in filamentous actin is very likely due to the decrease in filament elongation. Furthermore, we found that the rate of tip-directed vesicle transport is reduced and the pattern of apical vesicle accumulation is altered in formin loss-of-function mutant pollen tubes, which explains to some extent the reduction in pollen tube elongation. Thus, we provide direct genetic and cytological evidence showing that formin is an important player in nucleating actin assembly from the PM at pollen tube tips. Actin polymerization has been implicated in the regulation of rapid polarized pollen tube growth. The important role of actin polymerization is well appreciated, but the mechanisms that regulate rapid actin polymerization in pollen tubes remain incompletely understood. It was postulated that one of the major actin polymerization pathways in pollen tubes involves formin/profilin modules. However, direct genetic and cytological evidence is still required to support the role of formin in this framework. Using state-of-the-art live-cell imaging in combination with reverse genetic approaches, we demonstrate here that two class I formins, Arabidopsis formin 3 (AtFH3) and formin 5 (AtFH5), are involved in the regulation of apical actin polymerization and actin array construction in pollen tubes. In support of the role of AtFH3 and AtFH5 in regulating membrane-originated apical actin polymerization, we found that both of them are localized to the plasma membrane (PM) at pollen tube tips. Live-cell imaging revealed that the reduction in filamentous actin is very likely due to the decrease in elongation of actin filaments originating from the apical membrane. We also found that AtFH3 and AtFH5 exhibit distinct PM localization patterns in the pollen tube, suggesting that they might have distinct roles in regulating actin polymerization in pollen tubes. Our study provides direct genetic and cytological evidence that formins act as important players in regulating apical actin assembly in pollen tubes.
Collapse
|