1
|
Zhou Q, Ding X, Wang H, Farooq Z, Wang L, Yang S. A novel in-situ-process technique constructs whole circular cpDNA library. PLANT METHODS 2024; 20:2. [PMID: 38172924 PMCID: PMC10763311 DOI: 10.1186/s13007-023-01126-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND The chloroplast genome (cp genome) is directly related to the study and analysis of molecular phylogeny and evolution of plants in the phylogenomics era. The cp genome, whereas, is highly plastic and exists as a heterogeneous mixture of sizes and physical conformations. It is advantageous to purify/enrich the circular chloroplast DNA (cpDNA) to reduce sequence complexity in cp genome research. Large-insert, ordered DNA libraries are more practical for genomics research than conventional, unordered ones. From this, a technique of constructing the ordered BAC library with the goal-insert cpDNA fragment is developed in this paper. RESULTS This novel in-situ-process technique will efficiently extract circular cpDNA from crops and construct a high-quality cpDNA library. The protocol combines the in-situ chloroplast lysis for the high-purity circular cpDNA with the in-situ substitute/ligation for the high-quality cpDNA library. Individually, a series of original buffers/solutions and optimized procedures for chloroplast lysis in-situ is different than bacterial lysis in-situ; the in-situ substitute/ligation that reacts on the MCE membrane is suitable for constructing the goal-insert, ordered cpDNA library while preventing the large-insert cpDNA fragment breakage. The goal-insert, ordered cpDNA library is arrayed on the microtiter plate by three colonies with the definite cpDNA fragment that are homologous-corresponds to the whole circular cpDNA of the chloroplast. CONCLUSION The novel in-situ-process technique amply furtherance of research in genome-wide functional analysis and characterization of chloroplasts, such as genome sequencing, bioinformatics analysis, cloning, physical mapping, molecular phylogeny and evolution.
Collapse
Affiliation(s)
- Qiang Zhou
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture of the People's Republic of China, Zhongshan Biological Breeding Laboratory (ZSBBL), National Innovation Platform for Soybean Breeding and Industry-Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Soybean Research Institute, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Xianlong Ding
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture of the People's Republic of China, Zhongshan Biological Breeding Laboratory (ZSBBL), National Innovation Platform for Soybean Breeding and Industry-Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Soybean Research Institute, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Hongjie Wang
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture of the People's Republic of China, Zhongshan Biological Breeding Laboratory (ZSBBL), National Innovation Platform for Soybean Breeding and Industry-Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Soybean Research Institute, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Zunaira Farooq
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture of the People's Republic of China, Zhongshan Biological Breeding Laboratory (ZSBBL), National Innovation Platform for Soybean Breeding and Industry-Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Soybean Research Institute, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Liang Wang
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture of the People's Republic of China, Zhongshan Biological Breeding Laboratory (ZSBBL), National Innovation Platform for Soybean Breeding and Industry-Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Soybean Research Institute, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Shouping Yang
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture of the People's Republic of China, Zhongshan Biological Breeding Laboratory (ZSBBL), National Innovation Platform for Soybean Breeding and Industry-Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Soybean Research Institute, College of Agriculture, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
2
|
Tripathi D, Oldenburg DJ, Bendich AJ. Oxidative and Glycation Damage to Mitochondrial DNA and Plastid DNA during Plant Development. Antioxidants (Basel) 2023; 12:antiox12040891. [PMID: 37107266 PMCID: PMC10135910 DOI: 10.3390/antiox12040891] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Oxidative damage to plant proteins, lipids, and DNA caused by reactive oxygen species (ROS) has long been studied. The damaging effects of reactive carbonyl groups (glycation damage) to plant proteins and lipids have also been extensively studied, but only recently has glycation damage to the DNA in plant mitochondria and plastids been reported. Here, we review data on organellar DNA maintenance after damage from ROS and glycation. Our focus is maize, where tissues representing the entire range of leaf development are readily obtained, from slow-growing cells in the basal meristem, containing immature organelles with pristine DNA, to fast-growing leaf cells, containing mature organelles with highly-fragmented DNA. The relative contributions to DNA damage from oxidation and glycation are not known. However, the changing patterns of damage and damage-defense during leaf development indicate tight coordination of responses to oxidation and glycation events. Future efforts should be directed at the mechanism by which this coordination is achieved.
Collapse
Affiliation(s)
- Diwaker Tripathi
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | | | - Arnold J. Bendich
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
3
|
Lyko P, Wicke S. Genomic reconfiguration in parasitic plants involves considerable gene losses alongside global genome size inflation and gene births. PLANT PHYSIOLOGY 2021; 186:1412-1423. [PMID: 33909907 PMCID: PMC8260112 DOI: 10.1093/plphys/kiab192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/13/2021] [Indexed: 05/02/2023]
Abstract
Parasitic plant genomes and transcriptomes reveal numerous genetic innovations, the functional-evolutionary relevance and roles of which open unprecedented research avenues.
Collapse
Affiliation(s)
- Peter Lyko
- Institute for Biology, Humboldt-University of Berlin, Germany
| | - Susann Wicke
- Institute for Biology, Humboldt-University of Berlin, Germany
- Author for communication:
| |
Collapse
|
4
|
Sanjaya A, Kazama Y, Ishii K, Muramatsu R, Kanamaru K, Ohbu S, Abe T, Fujiwara MT. An Argon-Ion-Induced Pale Green Mutant of Arabidopsis Exhibiting Rapid Disassembly of Mesophyll Chloroplast Grana. PLANTS (BASEL, SWITZERLAND) 2021; 10:848. [PMID: 33922223 PMCID: PMC8145761 DOI: 10.3390/plants10050848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 01/13/2023]
Abstract
Argon-ion beam is an effective mutagen capable of inducing a variety of mutation types. In this study, an argon ion-induced pale green mutant of Arabidopsis thaliana was isolated and characterized. The mutant, designated Ar50-33-pg1, exhibited moderate defects of growth and greening and exhibited rapid chlorosis in photosynthetic tissues. Fluorescence microscopy confirmed that mesophyll chloroplasts underwent substantial shrinkage during the chlorotic process. Genetic and whole-genome resequencing analyses revealed that Ar50-33-pg1 contained a large 940 kb deletion in chromosome V that encompassed more than 100 annotated genes, including 41 protein-coding genes such as TYRAAt1/TyrA1, EGY1, and MBD12. One of the deleted genes, EGY1, for a thylakoid membrane-localized metalloprotease, was the major contributory gene responsible for the pale mutant phenotype. Both an egy1 mutant and F1 progeny of an Ar50-33-pg1 × egy1 cross-exhibited chlorotic phenotypes similar to those of Ar50-33-pg1. Furthermore, ultrastructural analysis of mesophyll cells revealed that Ar50-33-pg1 and egy1 initially developed wild type-like chloroplasts, but these were rapidly disassembled, resulting in thylakoid disorganization and fragmentation, as well as plastoglobule accumulation, as terminal phenotypes. Together, these data support the utility of heavy-ion mutagenesis for plant genetic analysis and highlight the importance of EGY1 in the structural maintenance of grana in mesophyll chloroplasts.
Collapse
Affiliation(s)
- Alvin Sanjaya
- Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda, Tokyo 102-8554, Japan; (A.S.); (R.M.)
| | - Yusuke Kazama
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (K.I.); (S.O.); (T.A.)
- Faculty of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuoka-Kenjojima, Eiheiji, Yoshida, Fukui 910-1195, Japan
| | - Kotaro Ishii
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (K.I.); (S.O.); (T.A.)
| | - Ryohsuke Muramatsu
- Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda, Tokyo 102-8554, Japan; (A.S.); (R.M.)
| | - Kengo Kanamaru
- Faculty of Agriculture, Kobe University, Nada, Kobe, Hyogo 657-8501, Japan;
| | - Sumie Ohbu
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (K.I.); (S.O.); (T.A.)
| | - Tomoko Abe
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (K.I.); (S.O.); (T.A.)
| | - Makoto T. Fujiwara
- Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda, Tokyo 102-8554, Japan; (A.S.); (R.M.)
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (K.I.); (S.O.); (T.A.)
| |
Collapse
|
5
|
Greiner S, Golczyk H, Malinova I, Pellizzer T, Bock R, Börner T, Herrmann RG. Chloroplast nucleoids are highly dynamic in ploidy, number, and structure during angiosperm leaf development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:730-746. [PMID: 31856320 DOI: 10.1111/tpj.14658] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/20/2019] [Accepted: 12/10/2019] [Indexed: 05/19/2023]
Abstract
Chloroplast nucleoids are large, compact nucleoprotein structures containing multiple copies of the plastid genome. Studies on structural and quantitative changes of plastid DNA (ptDNA) during leaf development are scarce and have produced controversial data. We have systematically investigated nucleoid dynamics and ptDNA quantities in the mesophyll of Arabidopsis, tobacco, sugar beet, and maize from the early post-meristematic stage until necrosis. DNA of individual nucleoids was quantified by DAPI-based supersensitive epifluorescence microscopy. Nucleoids occurred in scattered, stacked, or ring-shaped arrangements and in recurring patterns during leaf development that was remarkably similar between the species studied. Nucleoids per organelle varied from a few in meristematic plastids to >30 in mature chloroplasts (corresponding to about 20-750 nucleoids per cell). Nucleoid ploidies ranged from haploid to >20-fold even within individual organelles, with average values between 2.6-fold and 6.7-fold and little changes during leaf development. DNA quantities per organelle increased gradually from about a dozen plastome copies in tiny plastids of apex cells to 70-130 copies in chloroplasts of about 7 μm diameter in mature mesophyll tissue, and from about 80 plastome copies in meristematic cells to 2600-3300 copies in mature diploid mesophyll cells without conspicuous decline during leaf development. Pulsed-field electrophoresis, restriction of high-molecular-weight DNA from chloroplasts and gerontoplasts, and CsCl equilibrium centrifugation of single-stranded and double-stranded ptDNA revealed no noticeable fragmentation of the organelle DNA during leaf development, implying that plastid genomes in mesophyll tissues are remarkably stable until senescence.
Collapse
Affiliation(s)
- Stephan Greiner
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Hieronim Golczyk
- Department of Molecular Biology, Institute of Biotechnology, John Paul II Catholic University of Lublin, Konstantynów 1i, 20-708, Lublin, Poland
| | - Irina Malinova
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Tommaso Pellizzer
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Thomas Börner
- Institut für Biologie/Molekulare Genetik, Humboldt-Universität zu Berlin, Rhoda Erdmann Haus, Philippstr. 13, D-10115, Berlin, Germany
| | - Reinhold G Herrmann
- Department für Biologie I, Ludwig-Maximilians-Universität München, Bereich Botanik, Menzinger Str. 67, D-80638, Munich, Germany
| |
Collapse
|
6
|
Johnston IG. Tension and Resolution: Dynamic, Evolving Populations of Organelle Genomes within Plant Cells. MOLECULAR PLANT 2019; 12:764-783. [PMID: 30445187 DOI: 10.1016/j.molp.2018.11.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/25/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
Mitochondria and plastids form dynamic, evolving populations physically embedded in the fluctuating environment of the plant cell. Their evolutionary heritage has shaped how the cell controls the genetic structure and the physical behavior of its organelle populations. While the specific genes involved in these processes are gradually being revealed, the governing principles underlying this controlled behavior remain poorly understood. As the genetic and physical dynamics of these organelles are central to bioenergetic performance and plant physiology, this challenges both fundamental biology and strategies to engineer better-performing plants. This article reviews current knowledge of the physical and genetic behavior of mitochondria and chloroplasts in plant cells. An overarching hypothesis is proposed whereby organelles face a tension between genetic robustness and individual control and responsiveness, and different species resolve this tension in different ways. As plants are immobile and thus subject to fluctuating environments, their organelles are proposed to favor individual responsiveness, sacrificing genetic robustness. Several notable features of plant organelles, including large genomes, mtDNA recombination, fragmented organelles, and plastid/mitochondrial differences may potentially be explained by this hypothesis. Finally, the ways that quantitative and systems biology can help shed light on the plethora of open questions in this field are highlighted.
Collapse
Affiliation(s)
- Iain G Johnston
- School of Biosciences, University of Birmingham, Birmingham, UK; Birmingham Institute for Forest Research, University of Birmingham, Birmingham, UK.
| |
Collapse
|
7
|
Takami T, Ohnishi N, Kurita Y, Iwamura S, Ohnishi M, Kusaba M, Mimura T, Sakamoto W. Organelle DNA degradation contributes to the efficient use of phosphate in seed plants. NATURE PLANTS 2018; 4:1044-1055. [PMID: 30420711 DOI: 10.1038/s41477-018-0291-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 09/27/2018] [Indexed: 06/09/2023]
Abstract
Mitochondria and chloroplasts (plastids) both harbour extranuclear DNA that originates from the ancestral endosymbiotic bacteria. These organelle DNAs (orgDNAs) encode limited genetic information but are highly abundant, with multiple copies in vegetative tissues, such as mature leaves. Abundant orgDNA constitutes a substantial pool of organic phosphate along with RNA in chloroplasts, which could potentially contribute to phosphate recycling when it is degraded and relocated. However, whether orgDNA is degraded nucleolytically in leaves remains unclear. In this study, we revealed the prevailing mechanism in which organelle exonuclease DPD1 degrades abundant orgDNA during leaf senescence. The DPD1 degradation system is conserved in seed plants and, more remarkably, we found that it was correlated with the efficient use of phosphate when plants were exposed to nutrient-deficient conditions. The loss of DPD1 compromised both the relocation of phosphorus to upper tissues and the response to phosphate starvation, resulting in reduced plant fitness. Our findings highlighted that DNA is also an internal phosphate-rich reservoir retained in organelles since their endosymbiotic origin.
Collapse
Affiliation(s)
- Tsuneaki Takami
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Norikazu Ohnishi
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Yuko Kurita
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
- Faculty of Agriculture, Ryukoku University, Otsu, Japan
| | - Shoko Iwamura
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Miwa Ohnishi
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Makoto Kusaba
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Tetsuro Mimura
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan.
| |
Collapse
|
8
|
Sakamoto W, Takami T. Chloroplast DNA Dynamics: Copy Number, Quality Control and Degradation. PLANT & CELL PHYSIOLOGY 2018; 59:1120-1127. [PMID: 29860378 DOI: 10.1093/pcp/pcy084] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/01/2018] [Indexed: 05/16/2023]
Abstract
Endosymbiotically originated chloroplast DNA (cpDNA) encodes part of the genetic information needed to fulfill chloroplast function, including fundamental processes such as photosynthesis. In the last two decades, advances in genome analysis led to the identification of a considerable number of cpDNA sequences from various species. While these data provided the consensus features of cpDNA organization and chloroplast evolution in plants, how cpDNA is maintained through development and is inherited remains to be fully understood. In particular, the fact that cpDNA exists as multiple copies despite its limited genetic capacity raises the important question of how copy number is maintained or whether cpDNA is subjected to quantitative fluctuation or even developmental degradation. For example, cpDNA is abundant in leaves, where it forms punctate structures called nucleoids, which seemingly alter their morphologies and numbers depending on the developmental status of the chloroplast. In this review, we summarize our current understanding of 'cpDNA dynamics', focusing on the changes in DNA abundance. A special focus is given to the cpDNA degradation mechanism, which appears to be mediated by Defective in Pollen organelle DNA degradation 1 (DPD1), a recently discovered organelle exonuclease. The physiological significance of cpDNA degradation in flowering plants is also discussed.
Collapse
Affiliation(s)
- Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046 Japan
| | - Tsuneaki Takami
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046 Japan
| |
Collapse
|
9
|
Van Dingenen J, Blomme J, Gonzalez N, Inzé D. Plants grow with a little help from their organelle friends. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:6267-6281. [PMID: 27815330 DOI: 10.1093/jxb/erw399] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Chloroplasts and mitochondria are indispensable for plant development. They not only provide energy and carbon sources to cells, but also have evolved to become major players in a variety of processes such as amino acid metabolism, hormone biosynthesis and cellular signalling. As semi-autonomous organelles, they contain a small genome that relies largely on nuclear factors for its maintenance and expression. An intensive crosstalk between the nucleus and the organelles is therefore essential to ensure proper functioning, and the nuclear genes encoding organellar proteins involved in photosynthesis and oxidative phosphorylation are obviously crucial for plant growth. Organ growth is determined by two main cellular processes: cell proliferation and cell expansion. Here, we review how plant growth is affected in mutants of organellar proteins that are differentially expressed during leaf and root development. Our findings indicate a clear role for organellar proteins in plant organ growth, primarily during cell proliferation. However, to date, the role of the nuclear-encoded organellar proteins in the cellular processes driving organ growth has not been investigated in much detail. We therefore encourage researchers to extend their phenotypic characterization beyond macroscopic features in order to get a better view on how chloroplasts and mitochondria regulate the basic processes of cell proliferation and cell expansion, essential to driving growth.
Collapse
Affiliation(s)
- Judith Van Dingenen
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Jonas Blomme
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Nathalie Gonzalez
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
10
|
Dani KGS, Fineschi S, Michelozzi M, Loreto F. Do cytokinins, volatile isoprenoids and carotenoids synergically delay leaf senescence? PLANT, CELL & ENVIRONMENT 2016; 39:1103-11. [PMID: 26729201 DOI: 10.1111/pce.12705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/06/2015] [Accepted: 12/16/2015] [Indexed: 05/09/2023]
Affiliation(s)
- Kaidala Ganesha Srikanta Dani
- Istituto per lo Studio degli Ecosistemi, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Firenze, Italy
- Istituto di Bioscienze e Biorisorse, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Firenze, Italy
- Department of Biological Sciences, Macquarie University, North Ryde, Sydney, 2109, New South Wales, Australia
| | - Silvia Fineschi
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Firenze, Italy
| | - Marco Michelozzi
- Istituto di Bioscienze e Biorisorse, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Firenze, Italy
| | - Francesco Loreto
- Dipartimento di Scienze Bio-Agroalimentari, Consiglio Nazionale delle Ricerche, Piazzale Aldo Moro 7, 00185, Roma, Italy
| |
Collapse
|
11
|
The linear plastid chromosomes of maize: terminal sequences, structures, and implications for DNA replication. Curr Genet 2015; 62:431-42. [PMID: 26650613 DOI: 10.1007/s00294-015-0548-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 11/15/2015] [Accepted: 11/22/2015] [Indexed: 01/13/2023]
Abstract
The structure of a chromosomal DNA molecule may influence the way in which it is replicated and inherited. For decades plastid DNA (ptDNA) was believed to be circular, with breakage invoked to explain linear forms found upon extraction from the cell. Recent evidence indicates that ptDNA in vivo consists of linear molecules with discrete termini, although these ends were not characterized. We report the sequences of two terminal regions, End1 and End2, for maize (Zea mays L.) ptDNA. We describe structural features of these terminal regions and similarities found in other plant ptDNAs. The terminal sequences are within inverted repeat regions (leading to four genomic isomers) and adjacent to origins of replication. Conceptually, stem-loop structures may be formed following melting of the double-stranded DNA ends. Exonuclease digestion indicates that the ends in maize are unobstructed, but tobacco (Nicotiana tabacum L.) ends may have a 5'-protein. If the terminal structure of ptDNA molecules influences the retention of ptDNA, the unprotected molecular ends in mature leaves of maize may be more susceptible to degradation in vivo than the protected ends in tobacco. The terminal sequences and cumulative GC skew profiles are nearly identical for maize, wheat (Triticum aestivum L.) and rice (Oryza sativa L.), with less similarity among other plants. The linear structure is now confirmed for maize ptDNA and inferred for other plants and suggests a virus-like recombination-dependent replication mechanism for ptDNA. Plastid transformation vectors containing the terminal sequences may increase the chances of success in generating transplastomic cereals.
Collapse
|
12
|
Oldenburg DJ, Bendich AJ. DNA maintenance in plastids and mitochondria of plants. FRONTIERS IN PLANT SCIENCE 2015; 6:883. [PMID: 26579143 PMCID: PMC4624840 DOI: 10.3389/fpls.2015.00883] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/05/2015] [Indexed: 05/02/2023]
Abstract
The DNA molecules in plastids and mitochondria of plants have been studied for over 40 years. Here, we review the data on the circular or linear form, replication, repair, and persistence of the organellar DNA (orgDNA) in plants. The bacterial origin of orgDNA appears to have profoundly influenced ideas about the properties of chromosomal DNA molecules in these organelles to the point of dismissing data inconsistent with ideas from the 1970s. When found at all, circular genome-sized molecules comprise a few percent of orgDNA. In cells active in orgDNA replication, most orgDNA is found as linear and branched-linear forms larger than the size of the genome, likely a consequence of a virus-like DNA replication mechanism. In contrast to the stable chromosomal DNA molecules in bacteria and the plant nucleus, the molecular integrity of orgDNA declines during leaf development at a rate that varies among plant species. This decline is attributed to degradation of damaged-but-not-repaired molecules, with a proposed repair cost-saving benefit most evident in grasses. All orgDNA maintenance activities are proposed to occur on the nucleoid tethered to organellar membranes by developmentally-regulated proteins.
Collapse
|
13
|
Kumar RA, Oldenburg DJ, Bendich AJ. Changes in DNA damage, molecular integrity, and copy number for plastid DNA and mitochondrial DNA during maize development. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6425-39. [PMID: 25261192 PMCID: PMC4246179 DOI: 10.1093/jxb/eru359] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The amount and structural integrity of organellar DNAs change during plant development, although the mechanisms of change are poorly understood. Using PCR-based methods, we quantified DNA damage, molecular integrity, and genome copy number for plastid and mitochondrial DNAs of maize seedlings. A DNA repair assay was also used to assess DNA impediments. During development, DNA damage increased and molecules with impediments that prevented amplification by Taq DNA polymerase increased, with light causing the greatest change. DNA copy number values depended on the assay method, with standard real-time quantitative PCR (qPCR) values exceeding those determined by long-PCR by 100- to 1000-fold. As the organelles develop, their DNAs may be damaged in oxidative environments created by photo-oxidative reactions and photosynthetic/respiratory electron transfer. Some molecules may be repaired, while molecules with unrepaired damage may be degraded to non-functional fragments measured by standard qPCR but not by long-PCR.
Collapse
Affiliation(s)
- Rachana A Kumar
- Department of Biology, University of Washington, Seattle, WA 98195-5325, USA
| | - Delene J Oldenburg
- Department of Biology, University of Washington, Seattle, WA 98195-5325, USA
| | - Arnold J Bendich
- Department of Biology, University of Washington, Seattle, WA 98195-5325, USA
| |
Collapse
|
14
|
Powikrowska M, Oetke S, Jensen PE, Krupinska K. Dynamic composition, shaping and organization of plastid nucleoids. FRONTIERS IN PLANT SCIENCE 2014; 5:424. [PMID: 25237313 PMCID: PMC4154389 DOI: 10.3389/fpls.2014.00424] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/08/2014] [Indexed: 05/18/2023]
Abstract
In this article recent progress on the elucidation of the dynamic composition and structure of plastid nucleoids is reviewed from a structural perspective. Plastid nucleoids are compact structures of multiple copies of different forms of ptDNA, RNA, enzymes for replication and gene expression as well as DNA binding proteins. Although early electron microscopy suggested that plastid DNA is almost free of proteins, it is now well established that the DNA in nucleoids similarly as in the nuclear chromatin is associated with basic proteins playing key roles in organization of the DNA architecture and in regulation of DNA associated enzymatic activities involved in transcription, replication, and recombination. This group of DNA binding proteins has been named plastid nucleoid associated proteins (ptNAPs). Plastid nucleoids are unique with respect to their variable number, genome copy content and dynamic distribution within different types of plastids. The mechanisms underlying the shaping and reorganization of plastid nucleoids during chloroplast development and in response to environmental conditions involve posttranslational modifications of ptNAPs, similarly to those changes known for histones in the eukaryotic chromatin, as well as changes in the repertoire of ptNAPs, as known for nucleoids of bacteria. Attachment of plastid nucleoids to membranes is proposed to be important not only for regulation of DNA availability for replication and transcription, but also for the coordination of photosynthesis and plastid gene expression.
Collapse
Affiliation(s)
- Marta Powikrowska
- Department of Plant and Environmental Sciences, VILLUM Research Centre for Plant Plasticity and Copenhagen Plant Science Centre, University of CopenhagenCopenhagen, Denmark
| | - Svenja Oetke
- Plant Cell Biology, Institute of Botany, Christian-Albrechts-University of KielKiel, Germany
| | - Poul E. Jensen
- Department of Plant and Environmental Sciences, VILLUM Research Centre for Plant Plasticity and Copenhagen Plant Science Centre, University of CopenhagenCopenhagen, Denmark
| | - Karin Krupinska
- Plant Cell Biology, Institute of Botany, Christian-Albrechts-University of KielKiel, Germany
- *Correspondence: Karin Krupinska, Plant Cell Biology, Institute of Botany, Christian-Albrechts-University of Kiel, Olshausenstrasse 40, 24098 Kiel, Germany e-mail:
| |
Collapse
|