1
|
Culver JN, Vallar M, Burchard E, Kamens S, Lair S, Qi Y, Collum TD, Dardick C, El-Mohtar CA, Rogers EE. Citrus phloem specific transcriptional profiling through the development of a citrus tristeza virus expressed translating ribosome affinity purification system. PLANT METHODS 2025; 21:49. [PMID: 40211356 PMCID: PMC11983876 DOI: 10.1186/s13007-025-01368-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 04/01/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND The analysis of translationally active mRNAs, or translatome, is a useful approach for monitoring cellular and plant physiological responses. One such method is the translating ribosome affinity purification (TRAP) system, which utilizes tagged ribosomal proteins to isolate ribosome-associated transcripts. This approach enables spatial and temporal gene expression analysis by driving the expression of tagged ribosomal proteins with tissue- or development-specific promoters. In plants, TRAP has enhanced our understanding of physiological responses to various biotic and abiotic factors. However, its utility is hampered by the necessity to generate transgenic plants expressing the tagged ribosomal protein, making this approach particularly challenging in perennial crops such as citrus. RESULTS This study involved the construction of a citrus tristeza virus (CTV) vector to express an immuno-tagged ribosome protein (CTV-hfRPL18). CTV, limited to the phloem, has been used for expressing marker and therapeutic sequences, making it suitable for analyzing citrus vascular tissue responses, including those related to huanglongbing disease. CTV-hfRPL18 successfully expressed a clementine-derived hfRPL18 peptide, and polysome purifications demonstrated enrichment for the hfRPL18 peptide. Subsequent translatome isolations from infected Nicotiana benthamiana and Citrus macrophylla showed enrichment for phloem-associated genes. CONCLUSION The CTV-hfRPL18 vector offers a transgene-free and rapid system for TRAP expression and translatome analysis of phloem tissues within citrus.
Collapse
Affiliation(s)
- James N Culver
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA.
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA.
| | - Meinhart Vallar
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
| | - Erik Burchard
- USDA, Agricultural Research Service, Appalachian Fruit Research Station, Kearneysville, WV, USA
| | - Sophie Kamens
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
| | - Sebastien Lair
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Tamara D Collum
- USDA, Agricultural Research Service, Appalachian Fruit Research Station, Kearneysville, WV, USA
| | - Christopher Dardick
- USDA, Agricultural Research Service, Appalachian Fruit Research Station, Kearneysville, WV, USA
| | - Choaa A El-Mohtar
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, Gainesville, FL, USA
| | - Elizabeth E Rogers
- USDA, Agricultural Research Service, Foreign Disease-Weed Science Research Unit, Frederick, MD, USA
| |
Collapse
|
2
|
Traubenik S, Reynoso MA, Hobecker K, Lancia M, Hummel M, Rosen B, Town C, Bailey-Serres J, Blanco F, Zanetti ME. Reprogramming of Root Cells during Nitrogen-Fixing Symbiosis Involves Dynamic Polysome Association of Coding and Noncoding RNAs. THE PLANT CELL 2020; 32:352-373. [PMID: 31748328 PMCID: PMC7008484 DOI: 10.1105/tpc.19.00647] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/11/2019] [Accepted: 11/20/2019] [Indexed: 05/04/2023]
Abstract
Translational control is a widespread mechanism that allows the cell to rapidly modulate gene expression in order to provide flexibility and adaptability to eukaryotic organisms. We applied translating ribosome affinity purification combined with RNA sequencing to characterize translational regulation of mRNAs at early stages of the nitrogen-fixing symbiosis established between Medicago truncatula and Sinorhizobium meliloti Our analysis revealed a poor correlation between transcriptional and translational changes and identified hundreds of regulated protein-coding and long noncoding RNAs (lncRNAs), some of which are regulated in specific cell types. We demonstrated that a short variant of the lncRNA Trans-acting small interference RNA3 (TAS3) increased its association to the translational machinery in response to rhizobia. Functional analysis revealed that this short variant of TAS3 might act as a target mimic that captures microRNA390, contributing to reduce trans acting small interference Auxin Response Factor production and modulating nodule formation and rhizobial infection. The analysis of alternative transcript variants identified a translationally upregulated mRNA encoding subunit 3 of the SUPERKILLER complex (SKI3), which participates in mRNA decay. Knockdown of SKI3 decreased nodule initiation and development, as well as the survival of bacteria within nodules. Our results highlight the importance of translational control and mRNA decay pathways for the successful establishment of the nitrogen-fixing symbiosis.
Collapse
Affiliation(s)
- Soledad Traubenik
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900-La Plata, Argentina
| | - Mauricio Alberto Reynoso
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900-La Plata, Argentina
| | - Karen Hobecker
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900-La Plata, Argentina
| | - Marcos Lancia
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900-La Plata, Argentina
| | - Maureen Hummel
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521
| | | | | | - Julia Bailey-Serres
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521
| | - Flavio Blanco
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900-La Plata, Argentina
| | - María Eugenia Zanetti
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900-La Plata, Argentina
| |
Collapse
|