1
|
Nguyen CX, Dohnalkova A, Hancock CN, Kirk KR, Stacey G, Stacey MG. Critical role for uricase and xanthine dehydrogenase in soybean nitrogen fixation and nodule development. THE PLANT GENOME 2023; 16:e20171. [PMID: 34904377 DOI: 10.1002/tpg2.20172] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/22/2021] [Indexed: 06/14/2023]
Abstract
De novo purine biosynthesis is required for the incorporation of fixed nitrogen in ureide exporting nodules, as formed on soybean [Glycine max (L.) Merr.] roots. However, in many cases, the enzymes involved in this pathway have been deduced strictly from genome annotations with little direct genetic evidence, such as mutant studies, to confirm their biochemical function or importance to nodule development. While efforts to develop large mutant collections of soybean are underway, research on this plant is still hampered by the inability to obtain mutations in any specific gene of interest. Using a forward genetic approach, as well as CRISPR/Cas9 gene editing via Agrobacterium rhizogenes-mediated hairy root transformation, we identified and characterized the role of GmUOX (Uricase) and GmXDH (Xanthine Dehydrogenase) in nitrogen fixation and nodule development in soybean. The gmuox knockout soybean mutants displayed nitrogen deficiency chlorosis and early nodule senescence, as exemplified by the reduced nitrogenase (acetylene reduction) activity in nodules, the internal greenish-white internal appearance of nodules, and diminished leghemoglobin production. In addition, gmuox1 nodules showed collapsed infected cells with degraded cytoplasm, aggregated bacteroids with no discernable symbiosome membranes, and increased formation of poly-β-hydroxybutyrate granules. Similarly, knockout gmxdh mutant nodules, generated with the CRISPR/Cas9 system, also exhibited early nodule senescence. These genetic studies confirm the critical role of the de novo purine metabolisms pathway not only in the incorporation of fixed nitrogen but also in the successful development of a functional, nitrogen-fixing nodule. Furthermore, these studies demonstrate the great utility of the CRISPR/Cas9 system for studying root-associated gene traits when coupled with hairy root transformation.
Collapse
Affiliation(s)
- Cuong X Nguyen
- Division of Plant Sciences, Univ. of Missouri, Columbia, MO, 65211, USA
| | - Alice Dohnalkova
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - C Nathan Hancock
- Dep. of Biology & Geology, Univ. of South Carolina, Aiken, SC, 29801, USA
| | - Kendall R Kirk
- Edisto Research & Education Center, Clemson Univ., Blackville, SC, 29817, USA
| | - Gary Stacey
- Division of Plant Sciences, Univ. of Missouri, Columbia, MO, 65211, USA
- Division of Biochemistry, Univ. of Missouri, Columbia, MO, 65211, USA
| | - Minviluz G Stacey
- Division of Plant Sciences, Univ. of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
2
|
Corpas FJ, Palma JM. Assay of Reactive Oxygen/Nitrogen Species (ROS/RNS) in Arabidopsis Peroxisomes Through Fluorescent Protein Containing a Type 1 Peroxisomal Targeting Signal (PTS1). Methods Mol Biol 2023; 2643:149-160. [PMID: 36952184 DOI: 10.1007/978-1-0716-3048-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Plant peroxisomes have an active nitro-oxidative metabolism. However, the assay of reactive oxygen and nitrogen species (ROS/RNS) could be a challenge since the purification of peroxisomes is technically a high time-consuming approach that needs to be optimized for each tissue/organ (root, leaf, fruit) and plant species. Arabidopsis thaliana, as a model plant for biochemical and molecular studies, has become a useful tool to study the basic metabolism, including also that of ROS/RNS. The combination of specific fluorescent probes with Arabidopsis plants expressing a fluorescent protein containing a type 1 peroxisomal targeting signal (PTS1) is a powerful tool to address the profile of ROS/RNS in peroxisomes by confocal laser scanning microscope (CLSM). This chapter provides a detailed description to detect the content and distribution of ROS and RNS in Arabidopsis peroxisomes, together with a critical analysis of their potentialities and limitations, since these approaches require appropriate controls to corroborate the obtained data.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain.
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
| |
Collapse
|
3
|
Mutation of OsSAC3, Encoding the Xanthine Dehydrogenase, Caused Early Senescence in Rice. Int J Mol Sci 2022; 23:ijms231911053. [PMID: 36232356 PMCID: PMC9569572 DOI: 10.3390/ijms231911053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/25/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022] Open
Abstract
In both animals and higher plants, xanthine dehydrogenase is a highly conserved housekeeping enzyme in purine degradation where it oxidizes hypoxanthine to xanthine and xanthine to uric acid. Previous reports demonstrated that xanthine dehydrogenase played a vital role in N metabolism and stress response. Is xanthine dehydrogenase involved in regulating leaf senescence? A recessive early senescence mutant with excess sugar accumulation, ossac3, was isolated previously by screening the EMS-induced mutant library. Here, we show that xanthine dehydrogenase not only plays a role in N metabolism but also involved in regulating carbon metabolism in rice. Based on map-based cloning, OsSAC3 was identified, which encodes the xanthine dehydrogenase. OsSAC3 was constitutively expressed in all examined tissues and the OsSAC3 protein located in the cytoplasm. Transcriptional analysis revealed purine metabolism, chlorophyll metabolism, photosynthesis, sugar metabolism and redox balance were affected in the ossac3 mutant. Moreover, carbohydrate distribution was changed, leading to the accumulation of sucrose and starch in the leaves containing ossac3 on account of decreased expression of OsSWEET3a, OsSWEET6a and OsSWEET14 and oxidized inactivation of starch degradation enzymes in ossac3. These results indicated that OsSAC3 played a vital role in leaf senescence by regulating carbon metabolism in rice.
Collapse
|
4
|
Enzymes and cellular interplay required for flux of fixed nitrogen to ureides in bean nodules. Nat Commun 2022; 13:5331. [PMID: 36088455 PMCID: PMC9464200 DOI: 10.1038/s41467-022-33005-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/29/2022] [Indexed: 11/27/2022] Open
Abstract
Tropical legumes transport fixed nitrogen in form of ureides (allantoin and allantoate) over long distances from the nodules to the shoot. Ureides are formed in nodules from purine mononucleotides by a partially unknown reaction network that involves bacteroid-infected and uninfected cells. Here, we demonstrate by metabolic analysis of CRISPR mutant nodules of Phaseolus vulgaris defective in either xanthosine monophosphate phosphatase (XMPP), guanosine deaminase (GSDA), the nucleoside hydrolases 1 and 2 (NSH1, NSH2) or xanthine dehydrogenase (XDH) that nodule ureide biosynthesis involves these enzymes and requires xanthosine and guanosine but not inosine monophosphate catabolism. Interestingly, promoter reporter analyses revealed that XMPP, GSDA and XDH are expressed in infected cells, whereas NSH1, NSH2 and the promoters of the downstream enzymes urate oxidase (UOX) and allantoinase (ALN) are active in uninfected cells. The data suggest a complex cellular organization of ureide biosynthesis with three transitions between infected and uninfected cells. Tropical legumes export fixed nitrogen from nodules as ureides. Here, the authors describe how ureides are produced by several biosynthetic enzymes in different nodule cell types and provide explanations for metabolic compartmentation.
Collapse
|
5
|
Huang L, Liu Y, Wang X, Jiang C, Zhao Y, Lu M, Zhang J. Peroxisome-Mediated Reactive Oxygen Species Signals Modulate Programmed Cell Death in Plants. Int J Mol Sci 2022; 23:ijms231710087. [PMID: 36077484 PMCID: PMC9456327 DOI: 10.3390/ijms231710087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Peroxisomes are a class of simple organelles that play an important role in plant reactive oxygen species (ROS) metabolism. Experimental evidence reveals the involvement of ROS in programmed cell death (PCD) in plants. Plant PCD is crucial for the regulation of plant growth, development and environmental stress resistance. However, it is unclear whether the ROS originated from peroxisomes participated in cellular PCD. Enzymes involved in the peroxisomal ROS metabolic pathways are key mediators to figure out the relationship between peroxisome-derived ROS and PCD. Here, we summarize the peroxisomal ROS generation and scavenging pathways and explain how peroxisome-derived ROS participate in PCD based on recent progress in the functional study of enzymes related to peroxisomal ROS generation or scavenging. We aimed to elucidate the role of the peroxisomal ROS regulatory system in cellular PCD to show its potential in terms of accurate PCD regulation, which contribute to environmental stress resistance.
Collapse
|
6
|
Vasilev J, Mix AK, Heimerl T, Maier UG, Moog D. Inferred Subcellular Localization of Peroxisomal Matrix Proteins of Guillardia theta Suggests an Important Role of Peroxisomes in Cryptophytes. FRONTIERS IN PLANT SCIENCE 2022; 13:889662. [PMID: 35783940 PMCID: PMC9244630 DOI: 10.3389/fpls.2022.889662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Peroxisomes participate in several important metabolic processes in eukaryotic cells, such as the detoxification of reactive oxygen species (ROS) or the degradation of fatty acids by β-oxidation. Recently, the presence of peroxisomes in the cryptophyte Guillardia theta and other "chromalveolates" was revealed by identifying proteins for peroxisomal biogenesis. Here, we investigated the subcellular localization of candidate proteins of G. theta in the diatom Phaeodactylum tricornutum, either possessing a putative peroxisomal targeting signal type 1 (PTS1) sequence or factors lacking a peroxisomal targeting signal but known to be involved in β-oxidation. Our results indicate important contributions of the peroxisomes of G. theta to the carbohydrate, ether phospholipid, nucleotide, vitamin K, ROS, amino acid, and amine metabolisms. Moreover, our results suggest that in contrast to many other organisms, the peroxisomes of G. theta are not involved in the β-oxidation of fatty acids, which exclusively seems to occur in the cryptophyte's mitochondria.
Collapse
Affiliation(s)
- Jana Vasilev
- Laboratory for Cell Biology, Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Ann-Kathrin Mix
- Laboratory for Cell Biology, Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Thomas Heimerl
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Uwe G. Maier
- Laboratory for Cell Biology, Department of Biology, Philipps-University Marburg, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Daniel Moog
- Laboratory for Cell Biology, Department of Biology, Philipps-University Marburg, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
7
|
Chodasiewicz M, Kerber O, Gorka M, Moreno JC, Maruri-Lopez I, Minen RI, Sampathkumar A, Nelson ADL, Skirycz A. 2',3'-cAMP treatment mimics the stress molecular response in Arabidopsis thaliana. PLANT PHYSIOLOGY 2022; 188:1966-1978. [PMID: 35043968 PMCID: PMC8968299 DOI: 10.1093/plphys/kiac013] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/01/2021] [Indexed: 05/12/2023]
Abstract
The role of the RNA degradation product 2',3'-cyclic adenosine monophosphate (2',3'-cAMP) is poorly understood. Recent studies have identified 2',3'-cAMP in plant material and determined its role in stress signaling. The level of 2',3'-cAMP increases upon wounding, in the dark, and under heat, and 2',3'-cAMP binding to an RNA-binding protein, Rbp47b, promotes stress granule (SG) assembly. To gain further mechanistic insights into the function of 2',3'-cAMP, we used a multi-omics approach by combining transcriptomics, metabolomics, and proteomics to dissect the response of Arabidopsis (Arabidopsis thaliana) to 2',3'-cAMP treatment. We demonstrated that 2',3'-cAMP is metabolized into adenosine, suggesting that the well-known cyclic nucleotide-adenosine pathway of human cells might also exist in plants. Transcriptomics analysis revealed only minor overlap between 2',3'-cAMP- and adenosine-treated plants, suggesting that these molecules act through independent mechanisms. Treatment with 2',3'-cAMP changed the levels of hundreds of transcripts, proteins, and metabolites, many previously associated with plant stress responses, including protein and RNA degradation products, glucosinolates, chaperones, and SG components. Finally, we demonstrated that 2',3'-cAMP treatment influences the movement of processing bodies, confirming the role of 2',3'-cAMP in the formation and motility of membraneless organelles.
Collapse
Affiliation(s)
| | - Olga Kerber
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Michal Gorka
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Juan C Moreno
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Israel Maruri-Lopez
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Romina I Minen
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853, USA
| | - Arun Sampathkumar
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Andrew D L Nelson
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
8
|
Tang M, Li J, Cai X, Sun T, Chen C. Single-atom Nanozymes for Biomedical Applications: Recent Advances and Challenges. Chem Asian J 2022; 17:e202101422. [PMID: 35143111 DOI: 10.1002/asia.202101422] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/08/2022] [Indexed: 11/07/2022]
Abstract
Nanozymes have received extensive attention in the fields of sensing and detection, medical therapy, industry, and agriculture thanks to the combination of the catalytic properties of natural enzymes and the physicochemical properties of nanomaterials, coupled with superior stability and ease of preparation. Despite the promise of nanozymes, conventional nanozymes are constrained by their oversized size and low catalytic capacity in sophisticated practical application environments. single-atom nanozymes (SAzymes) were characterized as nanozymes with high catalytic efficiency by uniformly distributed single atoms as catalysis sites, thus effectively addressing the defects of conventional nanozymes. This paper reviews the activity improvement scheme and catalytic mechanism of SAzymes and highlights the latest research progress of SAzymes in the fields of biomedical sensing and therapy. Eventually, the challenges and future directions of SAzymes are discussed in this paper.
Collapse
Affiliation(s)
- Minglu Tang
- Northeast Forestry University, Department of chemistry, CHINA
| | - Jingqi Li
- Northeast Forestry University, Department of chemistry, CHINA
| | - Xinda Cai
- Northeast Forestry University, Department of chemistry, CHINA
| | - Tiedong Sun
- Northeast Forestry University, 26 Hexing road, Xiangfang district, Harbin city, Heilongjiang province, 150040, Harbin, CHINA
| | - Chunxia Chen
- Northeast Forestry University, Department of chemistry, CHINA
| |
Collapse
|
9
|
González-Gordo S, Palma JM, Corpas FJ. Peroxisomal Proteome Mining of Sweet Pepper ( Capsicum annuum L.) Fruit Ripening Through Whole Isobaric Tags for Relative and Absolute Quantitation Analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:893376. [PMID: 35615143 PMCID: PMC9125320 DOI: 10.3389/fpls.2022.893376] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/21/2022] [Indexed: 05/05/2023]
Abstract
Peroxisomes are ubiquitous organelles from eukaryotic cells characterized by an active nitro-oxidative metabolism. They have a relevant metabolic plasticity depending on the organism, tissue, developmental stage, or physiological/stress/environmental conditions. Our knowledge of peroxisomal metabolism from fruits is very limited but its proteome is even less known. Using sweet pepper (Capsicum annuum L.) fruits at two ripening stages (immature green and ripe red), it was analyzed the proteomic peroxisomal composition by quantitative isobaric tags for relative and absolute quantitation (iTRAQ)-based protein profiling. For this aim, it was accomplished a comparative analysis of the pepper fruit whole proteome obtained by iTRAQ versus the identified peroxisomal protein profile from Arabidopsis thaliana. This allowed identifying 57 peroxisomal proteins. Among these proteins, 49 were located in the peroxisomal matrix, 36 proteins had a peroxisomal targeting signal type 1 (PTS1), 8 had a PTS type 2, 5 lacked this type of peptide signal, and 8 proteins were associated with the membrane of this organelle. Furthermore, 34 proteins showed significant differences during the ripening of the fruits, 19 being overexpressed and 15 repressed. Based on previous biochemical studies using purified peroxisomes from pepper fruits, it could be said that some of the identified peroxisomal proteins were corroborated as part of the pepper fruit antioxidant metabolism (catalase, superoxide dismutase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductaseglutathione reductase, 6-phosphogluconate dehydrogenase and NADP-isocitrate dehydrogenase), the β-oxidation pathway (acyl-coenzyme A oxidase, 3-hydroxyacyl-CoA dehydrogenase, enoyl-CoA hydratase), while other identified proteins could be considered "new" or "unexpected" in fruit peroxisomes like urate oxidase (UO), sulfite oxidase (SO), 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase (METE1), 12-oxophytodienoate reductase 3 (OPR3) or 4-coumarate-CoA ligase (4CL), which participate in different metabolic pathways such as purine, sulfur, L-methionine, jasmonic acid (JA) or phenylpropanoid metabolisms. In summary, the present data provide new insights into the complex metabolic machinery of peroxisomes in fruit and open new windows of research into the peroxisomal functions during fruit ripening.
Collapse
|
10
|
Initiation of cytosolic plant purine nucleotide catabolism involves a monospecific xanthosine monophosphate phosphatase. Nat Commun 2021; 12:6846. [PMID: 34824243 PMCID: PMC8616923 DOI: 10.1038/s41467-021-27152-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/02/2021] [Indexed: 12/05/2022] Open
Abstract
In plants, guanosine monophosphate (GMP) is synthesized from adenosine monophosphate via inosine monophosphate and xanthosine monophosphate (XMP) in the cytosol. It has been shown recently that the catabolic route for adenylate-derived nucleotides bifurcates at XMP from this biosynthetic route. Dephosphorylation of XMP and GMP by as yet unknown phosphatases can initiate cytosolic purine nucleotide catabolism. Here we show that Arabidopsis thaliana possesses a highly XMP-specific phosphatase (XMPP) which is conserved in vascular plants. We demonstrate that XMPP catalyzes the irreversible entry reaction of adenylate-derived nucleotides into purine nucleotide catabolism in vivo, whereas the guanylates enter catabolism via an unidentified GMP phosphatase and guanosine deaminase which are important to maintain purine nucleotide homeostasis. We also present a crystal structure and mutational analysis of XMPP providing a rationale for its exceptionally high substrate specificity, which is likely required for the efficient catalysis of the very small XMP pool in vivo. Dephosphorylation of xanthosine monophosphate (XMP) initiates purine nucleotide catabolism in plant cells. Here the authors identify an XMP phosphatase from Arabidopsis that channels XMP towards catabolism in vivo and demonstrate the structural basis for its XMP specificity.
Collapse
|
11
|
Jiménez A, Sevilla F, Martí MC. Reactive oxygen species homeostasis and circadian rhythms in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5825-5840. [PMID: 34270727 DOI: 10.1093/jxb/erab318] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Elucidation of the molecular mechanisms by which plants sense and respond to environmental stimuli that influence their growth and yield is a prerequisite for understanding the adaptation of plants to climate change. Plants are sessile organisms and one important factor for their successful acclimation is the temporal coordination of the 24 h daily cycles and the stress response. The crosstalk between second messengers, such as Ca2+, reactive oxygen species (ROS), and hormones is a fundamental aspect in plant adaptation and survival under environmental stresses. In this sense, the circadian clock, in conjunction with Ca2+- and hormone-signalling pathways, appears to act as an important mechanism controlling plant adaptation to stress. The relationship between the circadian clock and ROS-generating and ROS-scavenging mechanisms is still not fully understood, especially at the post-transcriptional level and in stress situations in which ROS levels increase and changes in cell redox state occur. In this review, we summarize the information regarding the relationship between the circadian clock and the ROS homeostasis network. We pay special attention not only to the transcriptional regulation of ROS-generating and ROS-scavenging enzymes, but also to the few studies that have been performed at the biochemical level and those conducted under stress conditions.
Collapse
Affiliation(s)
- Ana Jiménez
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, Centre of Edaphology and Applied Biology of Segura (CEBAS-CSIC), Murcia, Spain
| | - Francisca Sevilla
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, Centre of Edaphology and Applied Biology of Segura (CEBAS-CSIC), Murcia, Spain
| | - María Carmen Martí
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, Centre of Edaphology and Applied Biology of Segura (CEBAS-CSIC), Murcia, Spain
| |
Collapse
|
12
|
Liu Y, Qin Y, Zhang Q, Zou W, Jin L, Guo R. Arginine-rich peptide/platinum hybrid colloid nanoparticle cluster: A single nanozyme mimicking multi-enzymatic cascade systems in peroxisome. J Colloid Interface Sci 2021; 600:37-48. [PMID: 34010774 DOI: 10.1016/j.jcis.2021.05.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/27/2022]
Abstract
Recently, nanozymes have attracted sustained attention for facilitating next generation of artificial enzymatic cascade systems (ECSs). However, the fabrication of integrated multi-ECSs based on a single nanozyme remains a great challenge. Here, inspired by the biological function and self-assembling ability of arginine (R), we synthesized arginine-rich peptide-Pt nanoparticle cluster (ARP-PtNC) nanozymes that mimic two typical enzymatic cascade systems of uricase/catalase and superoxide dismutase/catalase in natural peroxisome. ARPs containing at least 10 arginine residues contribute to the cluster formation based on hydrogen bonding and coordination. The well-designed peptide-Pt hybrid nanozyme not only possesses excellent uricase-mimicking activity to degrade uric acid effectively, but also serves as a desired scavenger for reactive oxygen species (ROS) harnessing two efficient enzyme cascade catalysis of uricase/catalase and superoxide dismutase/catalase. The surface microenvironment of the hybrid nanozymes provided by arginine-rich peptides and the cluster structure contribute to the efficient multiply enzyme-like activities. Fascinatingly, the hybrid nanozyme can inhibit the formation of monosodium urate monohydrate effectively based on the architecture of ARP-PtNCs. Thus, ARP-PtNC nanozyme has the potential in gout and hyperuricemia therapy. Rational design of ingenious peptide-metal hybrid nanozyme with unique physicochemical surface properties provides a versatile and designed strategy to fabricate multi-enzymatic cascade systems, which opens new avenues to broaden the application of nanozymes in practice.
Collapse
Affiliation(s)
- Yan Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, PR China.
| | - Yuling Qin
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, PR China
| | - Qianya Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, PR China
| | - Wenting Zou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, PR China
| | - Lingcen Jin
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, PR China
| | - Rong Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, PR China.
| |
Collapse
|
13
|
Corpas FJ, González-Gordo S, Palma JM. Nitric Oxide (NO) Scaffolds the Peroxisomal Protein-Protein Interaction Network in Higher Plants. Int J Mol Sci 2021; 22:2444. [PMID: 33671021 PMCID: PMC7957770 DOI: 10.3390/ijms22052444] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/26/2022] Open
Abstract
The peroxisome is a single-membrane subcellular compartment present in almost all eukaryotic cells from simple protists and fungi to complex organisms such as higher plants and animals. Historically, the name of the peroxisome came from a subcellular structure that contained high levels of hydrogen peroxide (H2O2) and the antioxidant enzyme catalase, which indicated that this organelle had basically an oxidative metabolism. During the last 20 years, it has been shown that plant peroxisomes also contain nitric oxide (NO), a radical molecule than leads to a family of derived molecules designated as reactive nitrogen species (RNS). These reactive species can mediate post-translational modifications (PTMs) of proteins, such as S-nitrosation and tyrosine nitration, thus affecting their function. This review aims to provide a comprehensive overview of how NO could affect peroxisomal metabolism and its internal protein-protein interactions (PPIs). Remarkably, many of the identified NO-target proteins in plant peroxisomes are involved in the metabolism of reactive oxygen species (ROS), either in its generation or its scavenging. Therefore, it is proposed that NO is a molecule with signaling properties with the capacity to modulate the peroxisomal protein-protein network and consequently the peroxisomal functions, especially under adverse environmental conditions.
Collapse
Affiliation(s)
- Francisco J. Corpas
- Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture Group, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), C/ Profesor Albareda, 1, E-18008 Granada, Spain; (S.G.-G.); (J.M.P.)
| | | | | |
Collapse
|
14
|
McLoughlin F, Marshall RS, Ding X, Chatt EC, Kirkpatrick LD, Augustine RC, Li F, Otegui MS, Vierstra RD. Autophagy Plays Prominent Roles in Amino Acid, Nucleotide, and Carbohydrate Metabolism during Fixed-Carbon Starvation in Maize. THE PLANT CELL 2020; 32:2699-2724. [PMID: 32616663 PMCID: PMC7474275 DOI: 10.1105/tpc.20.00226] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/04/2020] [Accepted: 06/27/2020] [Indexed: 05/31/2023]
Abstract
Autophagic recycling of proteins, lipids, nucleic acids, carbohydrates, and organelles is essential for cellular homeostasis and optimal health, especially under nutrient-limiting conditions. To better understand how this turnover affects plant growth, development, and survival upon nutrient stress, we applied an integrated multiomics approach to study maize (Zea mays) autophagy mutants subjected to fixed-carbon starvation induced by darkness. Broad metabolic alterations were evident in leaves missing the core autophagy component ATG12 under normal growth conditions (e.g., lipids and secondary metabolism), while changes in amino acid-, carbohydrate-, and nucleotide-related metabolites selectively emerged during fixed-carbon starvation. Through combined proteomic and transcriptomic analyses, we identified numerous autophagy-responsive proteins, which revealed processes underpinning the various metabolic changes seen during carbon stress as well as potential autophagic cargo. Strikingly, a strong upregulation of various catabolic processes was observed in the absence of autophagy, including increases in simple carbohydrate levels with a commensurate drop in starch levels, elevated free amino acid levels with a corresponding reduction in intact protein levels, and a strong increase in the abundance of several nitrogen-rich nucleotide catabolites. Altogether, this analysis showed that fixed-carbon starvation in the absence of autophagy adjusts the choice of respiratory substrates, promotes the transition of peroxisomes to glyoxysomes, and enhances the retention of assimilated nitrogen.
Collapse
Affiliation(s)
- Fionn McLoughlin
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Richard S Marshall
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Xinxin Ding
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706
- Center for Quantitative Cell Imaging, University of Wisconsin, Madison, Wisconsin 53706
| | - Elizabeth C Chatt
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Liam D Kirkpatrick
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Robert C Augustine
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Faqiang Li
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Marisa S Otegui
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706
- Center for Quantitative Cell Imaging, University of Wisconsin, Madison, Wisconsin 53706
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
15
|
Corpas FJ, González-Gordo S, Palma JM. Plant Peroxisomes: A Factory of Reactive Species. FRONTIERS IN PLANT SCIENCE 2020; 11:853. [PMID: 32719691 PMCID: PMC7348659 DOI: 10.3389/fpls.2020.00853] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/27/2020] [Indexed: 05/19/2023]
Abstract
Plant peroxisomes are organelles enclosed by a single membrane whose biochemical composition has the capacity to adapt depending on the plant tissue, developmental stage, as well as internal and external cellular stimuli. Apart from the peroxisomal metabolism of reactive oxygen species (ROS), discovered several decades ago, new molecules with signaling potential, including nitric oxide (NO) and hydrogen sulfide (H2S), have been detected in these organelles in recent years. These molecules generate a family of derived molecules, called reactive nitrogen species (RNS) and reactive sulfur species (RSS), whose peroxisomal metabolism is autoregulated through posttranslational modifications (PTMs) such as S-nitrosation, nitration and persulfidation. The peroxisomal metabolism of these reactive species, which can be weaponized against pathogens, is susceptible to modification in response to external stimuli. This review aims to provide up-to-date information on crosstalk between these reactive species families and peroxisomes, as well as on their cellular environment in light of the well-recognized signaling properties of H2O2, NO and H2S.
Collapse
Affiliation(s)
- Francisco J. Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | | | | |
Collapse
|
16
|
Pan R, Liu J, Wang S, Hu J. Peroxisomes: versatile organelles with diverse roles in plants. THE NEW PHYTOLOGIST 2020; 225:1410-1427. [PMID: 31442305 DOI: 10.1111/nph.16134] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/08/2019] [Indexed: 05/18/2023]
Abstract
Peroxisomes are small, ubiquitous organelles that are delimited by a single membrane and lack genetic material. However, these simple-structured organelles are highly versatile in morphology, abundance and protein content in response to various developmental and environmental cues. In plants, peroxisomes are essential for growth and development and perform diverse metabolic functions, many of which are carried out coordinately by peroxisomes and other organelles physically interacting with peroxisomes. Recent studies have added greatly to our knowledge of peroxisomes, addressing areas such as the diverse proteome, regulation of division and protein import, pexophagy, matrix protein degradation, solute transport, signaling, redox homeostasis and various metabolic and physiological functions. This review summarizes our current understanding of plant peroxisomes, focusing on recent discoveries. Current problems and future efforts required to better understand these organelles are also discussed. An improved understanding of peroxisomes will be important not only to the understanding of eukaryotic cell biology and metabolism, but also to agricultural efforts aimed at improving crop performance and defense.
Collapse
Affiliation(s)
- Ronghui Pan
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jun Liu
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Saisai Wang
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jianping Hu
- MSU-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Plant Biology Department, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
17
|
Witte CP, Herde M. Nucleotide Metabolism in Plants. PLANT PHYSIOLOGY 2020; 182:63-78. [PMID: 31641078 PMCID: PMC6945853 DOI: 10.1104/pp.19.00955] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/15/2019] [Indexed: 05/14/2023]
Abstract
Nucleotide metabolism is an essential function in plants.
Collapse
Affiliation(s)
- Claus-Peter Witte
- Leibniz Universität Hannover, Department of Molecular Nutrition and Biochemistry of Plants, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| | - Marco Herde
- Leibniz Universität Hannover, Department of Molecular Nutrition and Biochemistry of Plants, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| |
Collapse
|
18
|
Uawisetwathana U, Chevallier OP, Xu Y, Kamolsukyeunyong W, Nookaew I, Somboon T, Toojinda T, Vanavichit A, Goodacre R, Elliott CT, Karoonuthaisiri N. Global metabolite profiles of rice brown planthopper-resistant traits reveal potential secondary metabolites for both constitutive and inducible defenses. Metabolomics 2019; 15:151. [PMID: 31741127 DOI: 10.1007/s11306-019-1616-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 11/11/2019] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Brown planthopper (BPH) is a phloem feeding insect that causes annual disease outbreaks, called hopper burn in many countries throughout Asia, resulting in severe damage to rice production. Currently, mechanistic understanding of BPH resistance in rice plant is limited, which has caused slow progression on developing effective rice varieties as well as effective farming practices against BPH infestation. OBJECTIVE To reveal rice metabolic responses during 8 days of BPH attack, this study examined polar metabolome extracts of BPH-susceptible (KD) and its BPH-resistant isogenic line (IL308) rice leaves. METHODS Ultra high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QToF-MS) was combined with multi-block PCA to analyze potential metabolites in response to BPH attack. RESULTS This multivariate statistical model revealed different metabolic response patterns between the BPH-susceptible and BPH-resistant varieties during BPH infestation. The metabolite responses of the resistant IL308 variety occurred on Day 1, which was significantly earlier than those of the susceptible KD variety which showed an induced response by Days 4 and 8. BPH infestation caused metabolic perturbations in purine, phenylpropanoid, flavonoid, and terpenoid pathways. While found in both susceptible and resistant rice varieties, schaftoside (1.8 fold), iso-schaftoside (1.7 fold), rhoifolin (3.4 fold) and apigenin 6-C-α-L-arabinoside-8-C-β-L-arabinoside levels (1.6 fold) were significantly increased in the resistant variety by Day 1 post-infestation. 20-hydroxyecdysone acetate (2.5 fold) and dicaffeoylquinic acid (4.7 fold) levels were considerably higher in the resistant rice variety than those in the susceptible variety, both before and after infestation, suggesting that these secondary metabolites play important roles in inducible and constitutive defenses against the BPH infestation. CONCLUSIONS These potential secondary metabolites will be useful as metabolite markers and/or bioactive compounds for effective and durable approaches to address the BPH problem.
Collapse
Affiliation(s)
- Umaporn Uawisetwathana
- Microarray Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathumthani, 12120, Thailand.
| | - Olivier P Chevallier
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
| | - Yun Xu
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 3BX, UK
| | - Wintai Kamolsukyeunyong
- Rice Gene Discovery and Utilization Laboratory, Innovative Plant Biotechnology and Precision Agriculture Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, Thailand
| | - Intawat Nookaew
- College of Medicine, Department Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Thapakorn Somboon
- Microarray Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathumthani, 12120, Thailand
| | - Theerayut Toojinda
- Rice Gene Discovery and Utilization Laboratory, Innovative Plant Biotechnology and Precision Agriculture Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, Thailand
- Integrative Crop Biotechnology and Management Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, Thailand
| | - Apichart Vanavichit
- Agronomy Department, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, Thailand
| | - Royston Goodacre
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 3BX, UK
| | - Christopher T Elliott
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
| | - Nitsara Karoonuthaisiri
- Microarray Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathumthani, 12120, Thailand
| |
Collapse
|
19
|
Coleto I, Pineda M, Alamillo JM. Molecular and biochemical analysis of XDH from Phaseolus vulgaris suggest that uric acid protects the enzyme against the inhibitory effects of nitric oxide in nodules. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 143:364-374. [PMID: 31542638 DOI: 10.1016/j.plaphy.2019.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 09/04/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
Xanthine dehydrogenase (XDH) is essential for the assimilation of symbiotically fixed nitrogen in ureidic legumes. Uric acid, produced in the reaction catalyzed by XDH, is the precursor of the ureides, allantoin and allantoate, which are the main N-transporting molecules in these plants. XDH and uric acid have been reported to be involved in the response to stress, both in plants and animals. However, the physiological role of XDH under stressful conditions in ureidic legumes remains largely unexplored. In vitro assays showed that Phaseolus vulgaris XDH (PvXDH) can behave as a dehydrogenase or as an oxidase. Therefore, it could potentially protect against oxidative radicals or, in contrast, it could increase their production. In silico analysis of the upstream genomic region of XDH coding gene from P. vulgaris revealed the presence of several stress-related cis-regulatory elements. PvXDH mRNA and enzymatic activity in plants treated with stress-related phytohormones or subjected to dehydration and stressful temperatures showed several fold induction. However, PvXDH activity was in vivo and in vitro inhibited by nitric oxide in leaves but not in nodules. In extracts from RNAi PvXDH silenced nodules, with lower levels of uric acid, XDH activity was inhibited by SNP which indicates that uric acid produced by XDH in the nodules of this ureidic legume could help to protect XDH against the inhibitory effects of nitric oxide.
Collapse
Affiliation(s)
- Inmaculada Coleto
- Departamento de Botánica, Ecología y Fisiología Vegetal, Grupo de Fisiología Molecular y Biotecnología de Plantas, Campus de Excelencia Internacional Agroalimentario, CEIA3, Campus de Rabanales, Edif. Severo Ochoa, Universidad de Córdoba, 14071, Córdoba, Spain.
| | - Manuel Pineda
- Departamento de Botánica, Ecología y Fisiología Vegetal, Grupo de Fisiología Molecular y Biotecnología de Plantas, Campus de Excelencia Internacional Agroalimentario, CEIA3, Campus de Rabanales, Edif. Severo Ochoa, Universidad de Córdoba, 14071, Córdoba, Spain.
| | - Josefa M Alamillo
- Departamento de Botánica, Ecología y Fisiología Vegetal, Grupo de Fisiología Molecular y Biotecnología de Plantas, Campus de Excelencia Internacional Agroalimentario, CEIA3, Campus de Rabanales, Edif. Severo Ochoa, Universidad de Córdoba, 14071, Córdoba, Spain.
| |
Collapse
|
20
|
Dimou S, Kourkoulou A, Amillis S, Percudani R, Diallinas G. The peroxisomal SspA protein is redundant for purine utilization but essential for peroxisome localization in septal pores in Aspergillus nidulans. Fungal Genet Biol 2019; 132:103259. [PMID: 31394175 DOI: 10.1016/j.fgb.2019.103259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/22/2019] [Accepted: 07/25/2019] [Indexed: 10/26/2022]
Abstract
In an in silico search for correlated gene loss with fungal peroxisomal uric acid oxidase (UOX), we identified PMP22-like proteins, some of which function as promiscuous channels in organellar membranes. To investigate whether PMP22 channels have a role in peroxisomal uric acid transport and catabolism, we functionally analyzed the closest homologue in Aspergillus nidulans, named SspA. We confirmed that SspA is a peroxisomal membrane protein that co-localizes significantly with PTS1-tagged mRFP, UOX or HexA, the latter considered a protein of Woronin bodies (WB), organelles originating from peroxisomes that dynamically plug septal pores in ascomycetes. Our results suggest that in A. nidulans, unlike some other ascomycetes, there is no strict protein segregation of peroxisomal and WB-specific proteins. Importantly, genetic deletion of sspA, but not of hexA, led to lack of peroxisomal localization at septal pores, suggesting that SspA is a key factor for septal pore functioning. Additionally, ΔsspA resulted in increased sensitivity to oxidative stress, apparently as a consequence of not only the inability to plug septal pores, but also a recorded reduction in peroxisome biogenesis. However, deleting sspA had no effect on uric acid or purine utilization, as we hypothesized, a result also in line with the observation that expression of SspA was not affected by regulatory mutants and conditions known to control purine catabolic enzymes. Our results are discussed within the framework of previous studies of SspA homologues in other fungi, as well as, the observed gene losses of PMP22 and peroxisomal uric acid oxidase.
Collapse
Affiliation(s)
- Sofia Dimou
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784 Athens, Greece
| | - Anezia Kourkoulou
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784 Athens, Greece
| | - Sotiris Amillis
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784 Athens, Greece
| | - Riccardo Percudani
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - George Diallinas
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784 Athens, Greece.
| |
Collapse
|
21
|
Corpas FJ, Del Río LA, Palma JM. Plant peroxisomes at the crossroad of NO and H 2 O 2 metabolism. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:803-816. [PMID: 30609289 DOI: 10.1111/jipb.12772] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/26/2018] [Indexed: 06/09/2023]
Abstract
Plant peroxisomes are subcellular compartments involved in many biochemical pathways during the life cycle of a plant but also in the mechanism of response against adverse environmental conditions. These organelles have an active nitro-oxidative metabolism under physiological conditions but this could be exacerbated under stress situations. Furthermore, peroxisomes have the capacity to proliferate and also undergo biochemical adaptations depending on the surrounding cellular status. An important characteristic of peroxisomes is that they have a dynamic metabolism of reactive nitrogen and oxygen species (RNS and ROS) which generates two key molecules, nitric oxide (NO) and hydrogen peroxide (H2 O2 ). These molecules can exert signaling functions by means of post-translational modifications that affect the functionality of target molecules like proteins, peptides or fatty acids. This review provides an overview of the endogenous metabolism of ROS and RNS in peroxisomes with special emphasis on polyamine and uric acid metabolism as well as the possibility that these organelles could be a source of signal molecules involved in the functional interconnection with other subcellular compartments.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, E-18008 Granada, Spain
| | - Luis A Del Río
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, E-18008 Granada, Spain
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, E-18008 Granada, Spain
| |
Collapse
|
22
|
Pan R, Liu J, Hu J. Peroxisomes in plant reproduction and seed-related development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:784-802. [PMID: 30578613 DOI: 10.1111/jipb.12765] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/18/2018] [Indexed: 05/21/2023]
Abstract
Peroxisomes are small multi-functional organelles essential for plant development and growth. Plant peroxisomes play various physiological roles, including phytohormone biosynthesis, lipid catabolism, reactive oxygen species metabolism and many others. Mutant analysis demonstrated key roles for peroxisomes in plant reproduction, seed development and germination and post-germinative seedling establishment; however, the underlying mechanisms remain to be fully elucidated. This review summarizes findings that reveal the importance and complexity of the role of peroxisomes in the pertinent processes. The β-oxidation pathway plays a central role, whereas other peroxisomal pathways are also involved. Understanding the biochemical and molecular mechanisms of these peroxisomal functions will be instrumental to the improvement of crop plants.
Collapse
Affiliation(s)
- Ronghui Pan
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jun Liu
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jianping Hu
- MSU-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Plant Biology Department, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
23
|
Baccolini C, Witte CP. AMP and GMP Catabolism in Arabidopsis Converge on Xanthosine, Which Is Degraded by a Nucleoside Hydrolase Heterocomplex. THE PLANT CELL 2019; 31:734-751. [PMID: 30787180 PMCID: PMC6482636 DOI: 10.1105/tpc.18.00899] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/28/2019] [Accepted: 02/14/2019] [Indexed: 05/17/2023]
Abstract
Plants can fully catabolize purine nucleotides. A firmly established central intermediate is the purine base xanthine. In the current widely accepted model of plant purine nucleotide catabolism, xanthine can be generated in various ways involving either inosine and hypoxanthine or guanosine and xanthosine as intermediates. In a comprehensive mutant analysis involving single and multiple mutants of urate oxidase, xanthine dehydrogenase, nucleoside hydrolases, guanosine deaminase, and hypoxanthine guanine phosphoribosyltransferase, we demonstrate that purine nucleotide catabolism in Arabidopsis (Arabidopsis thaliana) mainly generates xanthosine, but not inosine and hypoxanthine, and that xanthosine is derived from guanosine deamination and a second source, likely xanthosine monophosphate dephosphorylation. Nucleoside hydrolase 1 (NSH1) is known to be essential for xanthosine hydrolysis, but the in vivo function of a second cytosolic nucleoside hydrolase, NSH2, is unclear. We demonstrate that NSH1 activates NSH2 in vitro and in vivo, forming a complex with almost two orders of magnitude higher catalytic efficiency for xanthosine hydrolysis than observed for NSH1 alone. Remarkably, an inactive NSH1 point mutant can activate NSH2 in vivo, fully preventing purine nucleoside accumulation in nsh1 background. Our data lead to an altered model of purine nucleotide catabolism that includes an NSH heterocomplex as a central component.
Collapse
Affiliation(s)
- Chiara Baccolini
- Department of Molecular Nutrition and Biochemistry of Plants, Institute of Plant Nutrition, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
| | - Claus-Peter Witte
- Department of Molecular Nutrition and Biochemistry of Plants, Institute of Plant Nutrition, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
| |
Collapse
|
24
|
Takagi H, Watanabe S, Tanaka S, Matsuura T, Mori IC, Hirayama T, Shimada H, Sakamoto A. Disruption of ureide degradation affects plant growth and development during and after transition from vegetative to reproductive stages. BMC PLANT BIOLOGY 2018; 18:287. [PMID: 30458716 PMCID: PMC6245725 DOI: 10.1186/s12870-018-1491-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/19/2018] [Indexed: 05/08/2023]
Abstract
BACKGROUND The ureides allantoin and allantoate are major metabolic intermediates of purine catabolism with high nitrogen-to-carbon ratios. Ureides play a key role in nitrogen utilization in ureide-type legumes, but their effects on growth and development in non-legume plants are poorly understood. Here, we examined the effects of knocking out genes encoding ureide-degrading enzymes, allantoinase (ALN) and allantoate amidohydrolase (AAH), on the vegetative-to-reproductive transition and subsequent growth of Arabidopsis plants. RESULTS The ureide-degradation mutants (aln and aah) showed symptoms similar to those of nitrogen deficiency: early flowering, reduced size at maturity, and decreased fertility. Consistent with these phenotypes, carbon-to-nitrogen ratios and nitrogen-use efficiencies were significantly decreased in ureide-degradation mutants; however, adding nitrogen to irrigation water did not alleviate the reduced growth of these mutants. In addition to nitrogen status, levels of indole-3-acetic acid and gibberellin in five-week-old plants were also affected by the aln mutations. To test the possibility that ureides are remobilized from source to sink organs, we measured ureide levels in various organs. In wild-type plants, allantoate accumulated predominantly in inflorescence stems and siliques; this accumulation was augmented by disruption of its catabolism. Mutants lacking ureide transporters, ureide permeases 1 and 2 (UPS1 and UPS2), exhibited phenotypes similar to those of the ureide-degradation mutants, but had decreased allantoate levels in the reproductive organs. Transcript analysis in wild-type plants suggested that genes involved in allantoate synthesis and ureide transport were coordinately upregulated in senescing leaves. CONCLUSIONS This study demonstrates that ureide degradation plays an important role in supporting healthy growth and development in non-legume Arabidopsis during and after transition from vegetative to reproductive stages.
Collapse
Affiliation(s)
- Hiroshi Takagi
- Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526 Japan
- Present Address: Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, MN 55108 USA
| | - Shunsuke Watanabe
- Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526 Japan
- Present Address: Center for Sustainable Resource Science, RIKEN, Yokohama, 230-0045 Japan
| | - Shoma Tanaka
- Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526 Japan
| | - Takakazu Matsuura
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046 Japan
| | - Izumi C. Mori
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046 Japan
| | - Takashi Hirayama
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046 Japan
| | - Hiroshi Shimada
- Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526 Japan
| | - Atsushi Sakamoto
- Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526 Japan
| |
Collapse
|
25
|
Soltabayeva A, Srivastava S, Kurmanbayeva A, Bekturova A, Fluhr R, Sagi M. Early Senescence in Older Leaves of Low Nitrate-Grown Atxdh1 Uncovers a Role for Purine Catabolism in N Supply. PLANT PHYSIOLOGY 2018; 178:1027-1044. [PMID: 30190419 PMCID: PMC6236613 DOI: 10.1104/pp.18.00795] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/25/2018] [Indexed: 05/19/2023]
Abstract
The nitrogen (N)-rich ureides allantoin and allantoate, which are products of purine catabolism, play a role in N delivery in Leguminosae. Here, we examined their role as an N source in nonlegume plants using Arabidopsis (Arabidopsis thaliana) plants mutated in XANTHINE DEHYDROGENASE1 (AtXDH1), a catalytic bottleneck in purine catabolism. Older leaves of the Atxdh1 mutant exhibited early senescence, lower soluble protein, and lower organic N levels as compared with wild-type older leaves when grown with 1 mm nitrate but were comparable to the wild type under 5 mm nitrate. Similar nitrate-dependent senescence phenotypes were evident in the older leaves of allantoinase (Ataln) and allantoate amidohydrolase (Ataah) mutants, which also are impaired in purine catabolism. Under low-nitrate conditions, xanthine accumulated in older leaves of Atxdh1, whereas allantoin accumulated in both older and younger leaves of Ataln but not in wild-type leaves, indicating the remobilization of xanthine-degraded products from older to younger leaves. Supporting this notion, ureide transporter expression was enhanced in older leaves of the wild type in low-nitrate as compared with high-nitrate conditions. Elevated transcripts and proteins of AtXDH and AtAAH were detected in low-nitrate-grown wild-type plants, indicating regulation at protein and transcript levels. The higher nitrate reductase activity in Atxdh1 leaves compared with wild-type leaves indicated a need for nitrate assimilation products. Together, these results indicate that the absence of remobilized purine-degraded N from older leaves of Atxdh1 caused senescence symptoms, a result of higher chloroplastic protein degradation in older leaves of low-nitrate-grown plants.
Collapse
Affiliation(s)
- Aigerim Soltabayeva
- Plant Stress Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel
| | - Sudhakar Srivastava
- Plant Stress Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel
| | - Assylay Kurmanbayeva
- Plant Stress Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel
| | - Aizat Bekturova
- Plant Stress Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel
| | - Robert Fluhr
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Moshe Sagi
- Plant Stress Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel
| |
Collapse
|
26
|
Schroeder RY, Zhu A, Eubel H, Dahncke K, Witte CP. The ribokinases of Arabidopsis thaliana and Saccharomyces cerevisiae are required for ribose recycling from nucleotide catabolism, which in plants is not essential to survive prolonged dark stress. THE NEW PHYTOLOGIST 2018; 217:233-244. [PMID: 28921561 DOI: 10.1111/nph.14782] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/05/2017] [Indexed: 06/07/2023]
Abstract
Nucleotide catabolism in Arabidopsis thaliana and Saccharomyces cerevisiae leads to the release of ribose, which requires phosphorylation to ribose-5-phosphate mediated by ribokinase (RBSK). We aimed to characterize RBSK in plants and yeast, to quantify the contribution of plant nucleotide catabolism to the ribose pool, and to investigate whether ribose carbon contributes to dark stress survival of plants. We performed a phylogenetic analysis and determined the kinetic constants of plant-expressed Arabidopsis and yeast RBSKs. Using mass spectrometry, several metabolites were quantified in AtRBSK mutants and double mutants with genes of nucleoside catabolism. Additionally, the dark stress performance of several nucleotide metabolism mutants and rbsk was compared. The plant PfkB family of sugar kinases forms nine major clades likely representing distinct biochemical functions, one of them RBSK. Nucleotide catabolism is the dominant ribose source in plant metabolism and is highly induced by dark stress. However, rbsk cannot be discerned from the wild type in dark stress. Interestingly, the accumulation of guanosine in a guanosine deaminase mutant strongly enhances dark stress symptoms. Although nucleotide catabolism contributes to carbon mobilization upon darkness and is the dominant source of ribose, the contribution appears to be of minor importance for dark stress survival.
Collapse
Affiliation(s)
- Rebekka Y Schroeder
- Department of Molecular Nutrition and Biochemistry of Plants, Institute of Plant Nutrition, Leibniz University Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany
| | - Anting Zhu
- Department of Molecular Nutrition and Biochemistry of Plants, Institute of Plant Nutrition, Leibniz University Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany
| | - Holger Eubel
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz University Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany
| | - Kathleen Dahncke
- Dahlem Centre of Plant Sciences, Freie Universität Berlin, Albrecht-Thaer-Weg 6, Berlin, 14195, Germany
| | - Claus-Peter Witte
- Department of Molecular Nutrition and Biochemistry of Plants, Institute of Plant Nutrition, Leibniz University Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany
| |
Collapse
|
27
|
Karwur FF, Pujiastuti DR. Review Article: URIC ACID HOMEOSTASIS AND DISTURBANCES. FOLIA MEDICA INDONESIANA 2017. [DOI: 10.20473/fmi.v53i4.7164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
This review examined the homeostasis of uric acid in human body and analyzed recent studies of the affecting major variables. Normal uric acid concentration in male is 3.5-7.2 mg/dL and in female is 2.6-6 mg/dL. Daily turnover of normal uric acid ranges from 498-1392 mg/day, miscible pool is 767-1650 mg, reabsorption is 8064 mg/day, renal excretion is 262-620 mg/day and intestine 186-313 mg/day. The dynamics of uric acid is influenced by factors of food, drink, age, history of disease, and genetic. High purine dietary consumption increases blood uric acid by 1-2 mg/dL, 213-290 g/day fructose drinks increases 0.52-1.7 mg/dL, 1.5 g/kgBW sucrose increases 0.61 mg/dL, and 10-20 ml/kgBW beer increases 0.50-0.92 mg/dL. The ABCG2 gene plays a role in bringing uric acid out of the body by 114.31-162.73 mg/dL, SLC2A9 of 5.43-20.17 mg/dL, and SLC22A12 of 5.77-6.71 mg/dL. The data described the homeostasis of uric acid and the magnitude of the impact of environmental (consumption of food, beverages, and lifestyle) and genetic factors. Understanding uric acid homeostasis and its disturbances is important in managing diseases as a consequence of hyperuricemia and hypouryscemia
Collapse
|
28
|
Myrach T, Zhu A, Witte CP. The assembly of the plant urease activation complex and the essential role of the urease accessory protein G (UreG) in delivery of nickel to urease. J Biol Chem 2017; 292:14556-14565. [PMID: 28710280 PMCID: PMC5582847 DOI: 10.1074/jbc.m117.780403] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 07/11/2017] [Indexed: 12/24/2022] Open
Abstract
Urease is a ubiquitous nickel metalloenzyme. In plants, its activation requires three urease accessory proteins (UAPs), UreD, UreF, and UreG. In bacteria, the UAPs interact with urease and facilitate activation, which involves the channeling of two nickel ions into the active site. So far this process has not been investigated in eukaryotes. Using affinity pulldowns of Strep-tagged UAPs from Arabidopsis and rice transiently expressed in planta, we demonstrate that a urease-UreD-UreF-UreG complex exists in plants and show its stepwise assembly. UreG is crucial for nickel delivery because UreG-dependent urease activation in vitro was observed only with UreG obtained from nickel-sufficient plants. This activation competence could not be generated in vitro by incubation of UreG with nickel, bicarbonate, and GTP. Compared with their bacterial orthologs, plant UreGs possess an N-terminal extension containing a His- and Asp/Glu-rich hypervariable region followed by a highly conserved sequence comprising two potential HXH metal-binding sites. Complementing the ureG-1 mutant of Arabidopsis with N-terminal deletion variants of UreG demonstrated that the hypervariable region has a minor impact on activation efficiency, whereas the conserved region up to the first HXH motif is highly beneficial and up to the second HXH motif strictly required for activation. We also show that urease reaches its full activity several days after nickel becomes available in the leaves, indicating that urease activation is limited by nickel accessibility in vivo Our data uncover the crucial role of UreG for nickel delivery during eukaryotic urease activation, inciting further investigations of the details of this process.
Collapse
Affiliation(s)
- Till Myrach
- From the Freie Universität Berlin, Dahlem Centre of Plant Sciences, Department of Plant Biochemistry, Königin-Luise-Strasse 12-16, 14195 Berlin, Germany and
| | - Anting Zhu
- Leibniz Universität Hannover, Institute of Plant Nutrition, Molecular Nutrition and Biochemistry of Plants, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| | - Claus-Peter Witte
- Leibniz Universität Hannover, Institute of Plant Nutrition, Molecular Nutrition and Biochemistry of Plants, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| |
Collapse
|
29
|
Salem M, Bernach M, Bajdzienko K, Giavalisco P. A Simple Fractionated Extraction Method for the Comprehensive Analysis of Metabolites, Lipids, and Proteins from a Single Sample. J Vis Exp 2017. [PMID: 28605387 PMCID: PMC5608179 DOI: 10.3791/55802] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Understanding of complex biological systems requires the measurement, analysis and integration of multiple compound classes of the living cell, usually determined by transcriptomic, proteomic, metabolomics and lipidomic measurements. In this protocol, we introduce a simple method for the reproducible extraction of metabolites, lipids and proteins from biological tissues using a single aliquot per sample. The extraction method is based on a methyl tert-butyl ether: methanol: water system for liquid: liquid partitioning of hydrophobic and polar metabolites into two immiscible phases along with the precipitation of proteins and other macromolecules as a solid pellet. This method, therefore, provides three different fractions of specific molecular composition, which are fully compatible with common high throughput 'omics' technologies such as liquid chromatography (LC) or gas chromatography (GC) coupled to mass spectrometers. Even though the method was initially developed for the analysis of different plant tissue samples, it has proved to be fully compatible for the extraction and analysis of biological samples from systems as diverse as algae, insects, and mammalian tissues and cell cultures.
Collapse
Affiliation(s)
- Mohamed Salem
- Max Planck Institute of Molecular Plant Physiology, Golm, Germany; Department of Pharmacognosy, Faculty of Pharmacy, Cairo University
| | - Michal Bernach
- Max Planck Institute of Molecular Plant Physiology, Golm, Germany
| | | | | |
Collapse
|
30
|
Uric acid in plants and microorganisms: Biological applications and genetics - A review. J Adv Res 2017; 8:475-486. [PMID: 28748114 PMCID: PMC5512154 DOI: 10.1016/j.jare.2017.05.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 05/07/2017] [Accepted: 05/08/2017] [Indexed: 11/23/2022] Open
Abstract
Uric acid increased accumulation and/or reduced excretion in human bodies is closely related to pathogenesis of gout and hyperuricemia. It is highly affected by the high intake of food rich in purine. Uric acid is present in both higher plants and microorganisms with species dependent concentration. Urate-degrading enzymes are found both in plants and microorganisms but the mechanisms by which plant degrade uric acid was found to be different among them. Higher plants produce various metabolites which could inhibit xanthine oxidase and xanthine oxidoreductase, so prohibit the oxidation of hypoxanthine to xanthine then to uric acid in the purine metabolism. However, microorganisms produce group of degrading enzymes uricase, allantoinase, allantoicase and urease, which catalyze the degradation of uric acid to the ammonia. In humans, researchers found that several mutations caused a pseudogenization (silencing) of the uricase gene in ancestral apes which exist as an insoluble crystalloid in peroxisomes. This is in contrast to microorganisms in which uricases are soluble and exist either in cytoplasm or peroxisomes. Moreover, many recombinant uricases with higher activity than the wild type uricases could be induced successfully in many microorganisms. The present review deals with the occurrence of uric acid in plants and other organisms specially microorganisms in addition to the mechanisms by which plant extracts, metabolites and enzymes could reduce uric acid in blood. The genetic and genes encoding for uric acid in plants and microorganisms are also presented.
Collapse
|
31
|
Irani S, Todd CD. Ureide metabolism under abiotic stress in Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2016; 199:87-95. [PMID: 27302009 DOI: 10.1016/j.jplph.2016.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 05/21/2023]
Abstract
Ureides are nitrogenous compounds derived from purine catabolism which contribute to nitrogen recycling in plants. Accumulation of ureide compounds has been reported in a number of plant species under stress conditions, suggesting their involvement in plants' response to stress. In this research a biochemical and molecular approach was applied to address the ureide accumulation under abiotic stress conditions in Arabidopsis thaliana. Ureide concentration and changes in expression of ureide metabolic genes were examined in response to drought, NaCl and mannitol treatments. Additionally, an Arabidopsis allantoinase (ALN) mutant with constitutive accumulation of a ureide compound, allantoin, was used to investigate the impact of high levels of this compound on drought and NaCl stress responses. In the leaf tissue of adult plants allantoin accumulated in response to soil drying. Transcription of urate oxidase (UO), involved in allantoin production, was highly up-regulated under the same conditions. Allantoin and allantoate also accumulated in seedlings following treatment with NaCl or mannitol. aln mutants with enhanced levels of allantoin exhibited higher tolerance to drought and NaCl. Hydrogen peroxide and superoxide did not accumulate in the aln mutant leaves to the same degree in response to drought when compared to the wild-type. Our results suggest that ureide metabolism and accumulation contribute to the abiotic stress response which is regulated, at least in part, at the transcriptional level. Higher concentrations of allantoin in the mutant elevates abiotic stress tolerance, possibly by reducing oxidative damage.
Collapse
Affiliation(s)
- Solmaz Irani
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Christopher D Todd
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada.
| |
Collapse
|
32
|
Chen M, Herde M, Witte CP. Of the Nine Cytidine Deaminase-Like Genes in Arabidopsis, Eight Are Pseudogenes and Only One Is Required to Maintain Pyrimidine Homeostasis in Vivo. PLANT PHYSIOLOGY 2016; 171:799-809. [PMID: 27208239 PMCID: PMC4902590 DOI: 10.1104/pp.15.02031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/31/2016] [Indexed: 05/17/2023]
Abstract
CYTIDINE DEAMINASE (CDA) catalyzes the deamination of cytidine to uridine and ammonia in the catabolic route of C nucleotides. The Arabidopsis (Arabidopsis thaliana) CDA gene family comprises nine members, one of which (AtCDA) was shown previously in vitro to encode an active CDA. A possible role in C-to-U RNA editing or in antiviral defense has been discussed for other members. A comprehensive bioinformatic analysis of plant CDA sequences, combined with biochemical functionality tests, strongly suggests that all Arabidopsis CDA family members except AtCDA are pseudogenes and that most plants only require a single CDA gene. Soybean (Glycine max) possesses three CDA genes, but only two encode functional enzymes and just one has very high catalytic efficiency. AtCDA and soybean CDAs are located in the cytosol. The functionality of AtCDA in vivo was demonstrated with loss-of-function mutants accumulating high amounts of cytidine but also CMP, cytosine, and some uridine in seeds. Cytidine hydrolysis in cda mutants is likely caused by NUCLEOSIDE HYDROLASE1 (NSH1) because cytosine accumulation is strongly reduced in a cda nsh1 double mutant. Altered responses of the cda mutants to fluorocytidine and fluorouridine indicate that a dual specific nucleoside kinase is involved in cytidine as well as uridine salvage. CDA mutants display a reduction in rosette size and have fewer leaves compared with the wild type, which is probably not caused by defective pyrimidine catabolism but by the accumulation of pyrimidine catabolism intermediates reaching toxic concentrations.
Collapse
Affiliation(s)
- Mingjia Chen
- Leibniz University Hannover, Institute of Plant Nutrition, Department of Molecular Nutrition and Biochemistry of Plants, 30419 Hannover, Germany
| | - Marco Herde
- Leibniz University Hannover, Institute of Plant Nutrition, Department of Molecular Nutrition and Biochemistry of Plants, 30419 Hannover, Germany
| | - Claus-Peter Witte
- Leibniz University Hannover, Institute of Plant Nutrition, Department of Molecular Nutrition and Biochemistry of Plants, 30419 Hannover, Germany
| |
Collapse
|
33
|
Ma X, Wang W, Bittner F, Schmidt N, Berkey R, Zhang L, King H, Zhang Y, Feng J, Wen Y, Tan L, Li Y, Zhang Q, Deng Z, Xiong X, Xiao S. Dual and Opposing Roles of Xanthine Dehydrogenase in Defense-Associated Reactive Oxygen Species Metabolism in Arabidopsis. THE PLANT CELL 2016; 28:1108-26. [PMID: 27152019 PMCID: PMC4904670 DOI: 10.1105/tpc.15.00880] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 04/20/2016] [Accepted: 05/03/2016] [Indexed: 05/18/2023]
Abstract
While plants produce reactive oxygen species (ROS) for stress signaling and pathogen defense, they need to remove excessive ROS induced during stress responses in order to minimize oxidative damage. How can plants fine-tune this balance and meet such conflicting needs? Here, we show that XANTHINE DEHYDROGENASE1 (XDH1) in Arabidopsis thaliana appears to play spatially opposite roles to serve this purpose. Through a large-scale genetic screen, we identified three missense mutations in XDH1 that impair XDH1's enzymatic functions and consequently affect the powdery mildew resistance mediated by RESISTANCE TO POWDERY MILDEW8 (RPW8) in epidermal cells and formation of xanthine-enriched autofluorescent objects in mesophyll cells. Further analyses revealed that in leaf epidermal cells, XDH1 likely functions as an oxidase, along with the NADPH oxidases RbohD and RbohF, to generate superoxide, which is dismutated into H2O2 The resulting enrichment of H2O2 in the fungal haustorial complex within infected epidermal cells helps to constrain the haustorium, thereby contributing to RPW8-dependent and RPW8-independent powdery mildew resistance. By contrast, in leaf mesophyll cells, XDH1 carries out xanthine dehydrogenase activity to produce uric acid in local and systemic tissues to scavenge H2O2 from stressed chloroplasts, thereby protecting plants from stress-induced oxidative damage. Thus, XDH1 plays spatially specified dual and opposing roles in modulation of ROS metabolism during defense responses in Arabidopsis.
Collapse
Affiliation(s)
- Xianfeng Ma
- Institute of Biosciences and Biotechnology Research and Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20850 Hunan Provincial Key Laboratory for Germplasm Innovation and Utilization of Crop, Hunan Agricultural University, Changsha 410128, China Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Wenming Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Florian Bittner
- Department of Plant Biology, Braunschweig University of Technology, 38106 Braunschweig, Germany
| | - Nadine Schmidt
- Department of Plant Biology, Braunschweig University of Technology, 38106 Braunschweig, Germany
| | - Robert Berkey
- Institute of Biosciences and Biotechnology Research and Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20850
| | - Lingli Zhang
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Harlan King
- Institute of Biosciences and Biotechnology Research and Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20850
| | - Yi Zhang
- Institute of Biosciences and Biotechnology Research and Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20850
| | - Jiayue Feng
- Institute of Biosciences and Biotechnology Research and Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20850 College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Yinqiang Wen
- Institute of Biosciences and Biotechnology Research and Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20850 College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Liqiang Tan
- Institute of Biosciences and Biotechnology Research and Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20850
| | - Yue Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742
| | - Qiong Zhang
- Institute of Biosciences and Biotechnology Research and Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20850
| | - Ziniu Deng
- Hunan Provincial Key Laboratory for Germplasm Innovation and Utilization of Crop, Hunan Agricultural University, Changsha 410128, China
| | - Xingyao Xiong
- Hunan Provincial Key Laboratory for Germplasm Innovation and Utilization of Crop, Hunan Agricultural University, Changsha 410128, China The Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shunyuan Xiao
- Institute of Biosciences and Biotechnology Research and Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20850
| |
Collapse
|
34
|
Salem MA, Jüppner J, Bajdzienko K, Giavalisco P. Protocol: a fast, comprehensive and reproducible one-step extraction method for the rapid preparation of polar and semi-polar metabolites, lipids, proteins, starch and cell wall polymers from a single sample. PLANT METHODS 2016; 12:45. [PMID: 27833650 PMCID: PMC5103428 DOI: 10.1186/s13007-016-0146-2] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/26/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND The elucidation of complex biological systems requires integration of multiple molecular parameters. Accordingly, high throughput methods like transcriptomics, proteomics, metabolomics and lipidomics have emerged to provide the tools for successful system-wide investigations. Unfortunately, optimized analysis of different compounds requires specific extraction procedures in combination with specific analytical instrumentation. However, the most efficient extraction protocols often only cover a restricted number of compounds due to the different physico-chemical properties of these biological compounds. Consequently, comprehensive analysis of several molecular components like polar primary metabolites next to lipids or proteins require multiple aliquots to enable the specific extraction procedures required to cover these diverse compound classes. This multi-parallel sample handling of different sample aliquots is therefore not only more sample intensive, it also requires more time and effort to obtain the required extracts. RESULTS To circumvent large sample amounts, distributed into several aliquots for the comprehensive extraction of most relevant biological compounds, we developed a simple, robust and reproducible two-phase liquid-liquid extraction protocol. This one-step extraction protocol allows for the analysis of polar-, semi-polar and hydrophobic metabolites, next to insoluble or precipitated compounds, including proteins, starch and plant cell wall components, from a single sample. The method is scalable regarding the used sample amounts but also the employed volumes and can be performed in microcentrifuge tubes, enabling high throughput analysis. The obtained fractions are fully compatible with common analytical methods, including spectroscopic, chromatographic and mass spectrometry-based techniques. To document the utility of the described protocol, we used 25 mg of Arabidopsis thaliana rosette leaves for the generation of multi-omics data sets, covering lipidomics, metabolomics and proteomics. The obtained data allowed us to measure and annotate more than 200 lipid compounds, 100 primary metabolites, 50 secondary metabolites and 2000 proteins. CONCLUSIONS The described extraction protocol provides a simple and straightforward method for the efficient extraction of lipids, metabolites and proteins from minute amounts of a single sample, enabling the targeted but also untargeted high-throughput analyses of diverse biological tissues and samples.
Collapse
Affiliation(s)
- Mohamed A. Salem
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562 Egypt
| | - Jessica Jüppner
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Krzysztof Bajdzienko
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Patrick Giavalisco
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
35
|
The identification of an integral membrane, cytochrome c urate oxidase completes the catalytic repertoire of a therapeutic enzyme. Sci Rep 2015; 5:13798. [PMID: 26349049 PMCID: PMC4562309 DOI: 10.1038/srep13798] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 08/05/2015] [Indexed: 01/24/2023] Open
Abstract
In living organisms, the conversion of urate into allantoin requires three consecutive enzymes. The pathway was lost in hominid, predisposing humans to hyperuricemia and gout. Among other species, the genomic distribution of the two last enzymes of the pathway is wider than that of urate oxidase (Uox), suggesting the presence of unknown genes encoding Uox. Here we combine gene network analysis with association rule learning to identify the missing urate oxidase. In contrast with the known soluble Uox, the identified gene (puuD) encodes a membrane protein with a C-terminal cytochrome c. The 8-helix transmembrane domain corresponds to DUF989, a family without similarity to known proteins. Gene deletion in a PuuD-encoding organism (Agrobacterium fabrum) abolished urate degradation capacity; the phenotype was fully restored by complementation with a cytosolic Uox from zebrafish. Consistent with H2O2 production by zfUox, urate oxidation in the complemented strain caused a four-fold increase of catalase. No increase was observed in the wild-type, suggesting that urate oxidation by PuuD proceeds through cytochrome c-mediated electron transfer. These findings identify a missing link in purine catabolism, assign a biochemical activity to a domain of unknown function (DUF989), and complete the catalytic repertoire of an enzyme useful for human therapy.
Collapse
|