1
|
Mukherjee A, Han L, Mukhopadhyay S, Kopriva S, Swarup S. Sulfur traits in the plant microbiome: implications for sustainable agriculture. Trends Microbiol 2025:S0966-842X(25)00033-2. [PMID: 40074579 DOI: 10.1016/j.tim.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/04/2025] [Accepted: 02/04/2025] [Indexed: 03/14/2025]
Abstract
Owing to its biochemical flexibility, sulfur (S) is uniquely poised to fulfill versatile roles in plant-microbe interactions - impacting their metabolism with significant consequences for plant health and the global S cycle. We present evidence that the diversity of S-metabolic genes in plant-associated microbiomes (phytobiomes) is underappreciated, and plant niches are hotspots of bacterial S-metabolism with implications for S emissions. Building upon emerging findings, we posit that coordination of S-metabolism between plants and phytobiomes is a common mechanism for plant-microbe homeostasis and agriculturally beneficial microbial services. Finally, we summarize strategies to harness S-metabolic traits of plants and phytobiomes to sustainably enhance agricultural productivity under the stresses associated with climate change.
Collapse
Affiliation(s)
- Arijit Mukherjee
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore 117456, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Li Han
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Sourav Mukhopadhyay
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore; NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Stanislav Kopriva
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Sanjay Swarup
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore 117456, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore; NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore.
| |
Collapse
|
2
|
Wang L, Ju C, Han C, Yu Z, Bai MY, Wang C. The interaction of nutrient uptake with biotic and abiotic stresses in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:455-487. [PMID: 39783785 DOI: 10.1111/jipb.13827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/21/2024] [Indexed: 01/12/2025]
Abstract
Plants depend heavily on efficient nutrient uptake and utilization for optimal growth and development. However, plants are constantly subjected to a diverse array of biotic stresses, such as pathogen infections, insect pests, and herbivory, as well as abiotic stress like drought, salinity, extreme temperatures, and nutrient imbalances. These stresses significantly impact the plant's ability to take up nutrient and use it efficiency. Understanding how plants maintain nutrient uptake and use efficiency under biotic and abiotic stress conditions is crucial for improving crop resilience and sustainability. This review explores the recent advancements in elucidating the mechanisms underlying nutrient uptake and utilization efficiency in plants under such stress conditions. Our aim is to offer a comprehensive perspective that can guide the breeding of stress-tolerant and nutrition-efficient crop varieties, ultimately contributing to the advancement of sustainable agriculture.
Collapse
Affiliation(s)
- Lingyan Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Chuanfeng Ju
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chao Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Zhenghao Yu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ming-Yi Bai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Cun Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
3
|
Liu W, Zhang W, Cheng H, Ding Y, Yao B, Shangguan Z, Wei G, Chen J. Rhizobia cystathionine γ-lyase-derived H2S delays nodule senescence in soybean. PLANT PHYSIOLOGY 2024; 196:2232-2250. [PMID: 39133896 DOI: 10.1093/plphys/kiae411] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 07/11/2024] [Indexed: 12/14/2024]
Abstract
Hydrogen sulfide (H2S) is required for optimal establishment of soybean (Glycine max)-Sinorhizobium fredii symbiotic interaction, yet its role in regulating the nitrogen fixation-senescence transition remains poorly understood. A S. fredii cystathionine γ-lyase (CSE) mutant deficient in H2S synthesis showed early nodule senescence characterized by reduced nitrogenase activity, structural changes in nodule cells, and accelerated bacteroid death. In parallel, the CSE mutant facilitated the generation of reactive oxygen species (ROS) and elicited antioxidant responses. We observed that H2S-mediated persulfidation of cysteine C31/C80 in ascorbate peroxidase (APX) and C32 in APX2-modulated enzyme activity, thereby participating in hydrogen peroxide (H2O2) detoxification and delaying nodule senescence. Comparative transcriptomic analysis revealed a significant upregulation of GmMYB128, an MYB transcription factor (TF), in the CSE mutant nodules. Functional analysis through overexpression and RNAi lines of GmMYB128 demonstrated its role as a positive regulator in nodule senescence. MYB128-OE inoculated with the CSE mutant strain exhibited a reduction in nitrogenase activity and a significant increase in DD15 expression, both of which were mitigated by NaHS addition. Changes at the protein level encompassed the activation of plant defenses alongside turnover in carbohydrates and amino acids. Our results suggest that H2S plays an important role in maintaining efficient symbiosis and preventing premature senescence of soybean nodules.
Collapse
Affiliation(s)
- Wuyu Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, 712100 Yangling, Shaanxi, P.R. China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, 712100 Yangling, Shaanxi, P.R. China
| | - Weiqin Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, 712100 Yangling, Shaanxi, P.R. China
| | - Huaping Cheng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, 712100 Yangling, Shaanxi, P.R. China
| | - Yuxin Ding
- College of Natural Resources and Environment, Northwest A&F University, 712100 Yangling, Shaanxi, P.R. China
| | - Baihui Yao
- College of Natural Resources and Environment, Northwest A&F University, 712100 Yangling, Shaanxi, P.R. China
| | - Zhouping Shangguan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, 712100 Yangling, Shaanxi, P.R. China
| | - Gehong Wei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, 712100 Yangling, Shaanxi, P.R. China
| | - Juan Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, 712100 Yangling, Shaanxi, P.R. China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, 712100 Yangling, Shaanxi, P.R. China
| |
Collapse
|
4
|
Xue C, Liu R, Xia Z, Jia J, Hu B, Rennenberg H. Sulfur availability and nodulation modify the response of Robinia pseudoacacia L. to lead (Pb) exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135612. [PMID: 39182290 DOI: 10.1016/j.jhazmat.2024.135612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Both sulfur (S) supply and legume-rhizobium symbiosis can significantly contribute to enhancing the efficiency of phytoremediation of heavy metals (HMs). However, the regulatory mechanism determining the performance of legumes at lead (Pb) exposure have not been elucidated. Here, we cultivated black locust (Robinia pseudoacacia L.), a leguminous woody pioneer species at three S supply levels (i.e., deficient, moderate, and high S) with rhizobia inoculation and investigated the interaction of these treatments upon Pb exposure. Our results revealed that the root system of Robinia has a strong Pb accumulation and anti-oxidative capacity that protect the leaves from Pb toxicity. Compared with moderate S supply, high S supply significantly increased Pb accumulation in roots by promoting the synthesis of reduced S compounds (i.e., thiols, phytochelatin), and also strengthened the antioxidant system in leaves. Weakened defense at deficient S supply was indicated by enhanced oxidative damage. Rhizobia inoculation alleviated the oxidative damage of its Robinia host by immobilizing Pb to reduce its absorption by root cells. Together with enhanced Pb chelation in leaves, these mechanisms strengthen Pb detoxification in the Robinia-rhizobia symbiosis. Our results indicate that appropriate S supply can improve the defense of legume-rhizobia symbiosis against HM toxicity.
Collapse
Affiliation(s)
- Caixin Xue
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Rui Liu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Zhuyuan Xia
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Jin Jia
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Bin Hu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, PR China.
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
5
|
Siegl A, Afjehi-Sadat L, Wienkoop S. Systemic long-distance sulfur transport and its role in symbiotic root nodule protein turnover. JOURNAL OF PLANT PHYSIOLOGY 2024; 297:154260. [PMID: 38701679 DOI: 10.1016/j.jplph.2024.154260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
Sulfur is an essential nutrient for all plants, but also crucial for the nitrogen fixing symbiosis between legumes and rhizobia. Sulfur limitation can hamper nodule development and functioning. Until now, it remained unclear whether sulfate uptake into nodules is local or mainly systemic via the roots, and if long-distance transport from shoots to roots and into nodules occurs. Therefore, this work investigates the systemic regulation of sulfur transportation in the model legume Lotus japonicus by applying stable isotope labeling to a split-root system. Metabolite and protein extraction together with mass spectrometry analyses were conducted to determine the plants molecular phenotype and relative isotope protein abundances. Data show that treatments of varying sulfate concentrations including the absence of sulfate on one side of a nodulated root was not affecting nodule development as long as the other side of the root system was provided with sufficient sulfate. Concentrations of shoot metabolites did not indicate a significant stress response caused by a lack of sulfur. Further, we did not observe any quantitative changes in proteins involved in biological nitrogen fixation in response to the different sulfate treatments. Relative isotope abundance of 34S confirmed a long-distance transport of sulfur from one side of the roots to the other side and into the nodules. Altogether, these results provide evidence for a systemic long-distance transport of sulfur via the upper part of the plant to the nodules suggesting a demand driven sulfur distribution for the maintenance of symbiotic N-fixation.
Collapse
Affiliation(s)
- Alina Siegl
- Plant-Microsymbiont Interaction Lab, Division of Molecular Systems Biology, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria; Research Support Facilities, Mass Spectrometry Unit UBB, University of Vienna, Vienna, Austria
| | - Leila Afjehi-Sadat
- Research Support Facilities, Mass Spectrometry Unit UBB, University of Vienna, Vienna, Austria
| | - Stefanie Wienkoop
- Plant-Microsymbiont Interaction Lab, Division of Molecular Systems Biology, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria.
| |
Collapse
|
6
|
de Jager N, Shukla V, Koprivova A, Lyčka M, Bilalli L, You Y, Zeier J, Kopriva S, Ristova D. Traits linked to natural variation of sulfur content in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1036-1050. [PMID: 37831920 PMCID: PMC10837017 DOI: 10.1093/jxb/erad401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/12/2023] [Indexed: 10/15/2023]
Abstract
Sulfur (S) is an essential mineral nutrient for plant growth and development; it is important for primary and specialized plant metabolites that are crucial for biotic and abiotic interactions. Foliar S content varies up to 6-fold under a controlled environment, suggesting an adaptive value under certain natural environmental conditions. However, a major quantitative regulator of S content in Arabidopsis thaliana has not been identified yet, pointing to the existence of either additional genetic factors controlling sulfate/S content or of many minor quantitative regulators. Here, we use overlapping information of two separate ionomics studies to select groups of accessions with low, mid, and high foliar S content. We quantify series of metabolites, including anions (sulfate, phosphate, and nitrate), thiols (cysteine and glutathione), and seven glucosinolates, gene expression of 20 genes, sulfate uptake, and three biotic traits. Our results suggest that S content is tightly connected with sulfate uptake, the concentration of sulfate and phosphate anions, and glucosinolate and glutathione synthesis. Additionally, our results indicate that the growth of pathogenic bacteria is enhanced in the A. thaliana accessions containing higher S in their leaves, suggesting a complex regulation between S homeostasis, primary and secondary metabolism, and biotic pressures.
Collapse
Affiliation(s)
- Nicholas de Jager
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, D-50674 Cologne, Germany
| | - Varsa Shukla
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, D-50674 Cologne, Germany
| | - Anna Koprivova
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, D-50674 Cologne, Germany
| | - Martin Lyčka
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Lorina Bilalli
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, D-50674 Cologne, Germany
| | - Yanrong You
- Institute for Molecular Ecophysiology of Plants, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Jürgen Zeier
- Institute for Molecular Ecophysiology of Plants, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Stanislav Kopriva
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, D-50674 Cologne, Germany
| | - Daniela Ristova
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, D-50674 Cologne, Germany
| |
Collapse
|
7
|
Hakim S, Imran A, Hussain MS, Mirza MS. RNA-Seq analysis of mung bean (Vigna radiata L.) roots shows differential gene expression and predicts regulatory pathways responding to taxonomically different rhizobia. Microbiol Res 2023; 275:127451. [PMID: 37478540 DOI: 10.1016/j.micres.2023.127451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/23/2023]
Abstract
Symbiotic interaction among legume and rhizobia is a complex phenomenon which results in the formation of nitrogen-fixing nodules. Mung bean is promiscuous host however expression profile of this important legume plant in response to rhizobial infection was particularly lacking and urgently needed. We have demonstrated the pattern of gene expression of mung bean roots inoculated with two symbionts Bradyrhizobium yuanmingense Vr50 and Sinorhizobium (Ensifer) aridi Vr33 and non-inoculated control (CK). The RNA-Seq data analyzed at two growth stages i.e., 1-3 h and 10-16 days post inoculation revealed significantly higher number of differentially expressed genes (DEGs) at nodulation stage. The DEGs encoding receptor kinases identified at early stage might be involved in perception of Nod factors produced by different rhizobia. At nodulation stage important genes involved in plant hormone signal transduction, nitrogen and sulfur metabolism were identified. KEGG pathway enrichment analysis showed that metabolic pathways were most prominent in both groups (Group 1: Vr33 vs CK; Group 2: Vr50 vs CK), followed by biosynthesis of secondary metabolites, plant hormone signal transduction and biosynthesis of amino acids. Furthermore, DEGs involved in cell communication and plant hormone signal transduction were found to be different among two symbiotic systems while DEGs involved in carbon, nitrogen and sulfur metabolism were similar but their expression varied in response to two rhizobial strains. This study provides the first insight into the mechanisms underlying interactions of mung bean host with two taxonomically different symbionts (Bradyrhizobium and Sinorhizobium) and the candidate genes for better understanding the mechanisms of symbiotic host-specificity.
Collapse
Affiliation(s)
- Sughra Hakim
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| | - Asma Imran
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Faisalabad, Pakistan
| | | | - M Sajjad Mirza
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Faisalabad, Pakistan.
| |
Collapse
|
8
|
Wilkinson H, Coppock A, Richmond BL, Lagunas B, Gifford ML. Plant-Environment Response Pathway Regulation Uncovered by Investigating Non-Typical Legume Symbiosis and Nodulation. PLANTS (BASEL, SWITZERLAND) 2023; 12:1964. [PMID: 37653881 PMCID: PMC10223263 DOI: 10.3390/plants12101964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 09/02/2023]
Abstract
Nitrogen is an essential element needed for plants to survive, and legumes are well known to recruit rhizobia to fix atmospheric nitrogen. In this widely studied symbiosis, legumes develop specific structures on the roots to host specific symbionts. This review explores alternate nodule structures and their functions outside of the more widely studied legume-rhizobial symbiosis, as well as discussing other unusual aspects of nodulation. This includes actinorhizal-Frankia, cycad-cyanobacteria, and the non-legume Parasponia andersonii-rhizobia symbioses. Nodules are also not restricted to the roots, either, with examples found within stems and leaves. Recent research has shown that legume-rhizobia nodulation brings a great many other benefits, some direct and some indirect. Rhizobial symbiosis can lead to modifications in other pathways, including the priming of defence responses, and to modulated or enhanced resistance to biotic and abiotic stress. With so many avenues to explore, this review discusses recent discoveries and highlights future directions in the study of nodulation.
Collapse
Affiliation(s)
- Helen Wilkinson
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Alice Coppock
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | - Beatriz Lagunas
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Miriam L. Gifford
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
9
|
Wang W, Liu J, Mishra B, Mukhtar MS, McDowell JM. Sparking a sulfur war between plants and pathogens. TRENDS IN PLANT SCIENCE 2022; 27:1253-1265. [PMID: 36028431 DOI: 10.1016/j.tplants.2022.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 07/03/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
The biochemical versatility of sulfur (S) lends itself to myriad roles in plant-pathogen interactions. This review evaluates the current understanding of mechanisms by which pathogens acquire S from their plant hosts and highlights new evidence that plants can limit S availability during the immune responses. We discuss the discovery of host disease-susceptibility genes related to S that can be genetically manipulated to create new crop resistance. Finally, we summarize future research challenges and propose a research agenda that leverages systems biology approaches for a holistic understanding of this important element's diverse roles in plant disease resistance and susceptibility.
Collapse
Affiliation(s)
- Wei Wang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Jinbao Liu
- Department of Biology, University of Alabama-Birmingham, Birmingham, AL 35294, USA
| | - Bharat Mishra
- Department of Biology, University of Alabama-Birmingham, Birmingham, AL 35294, USA
| | - M Shahid Mukhtar
- Department of Biology, University of Alabama-Birmingham, Birmingham, AL 35294, USA
| | - John M McDowell
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
10
|
Komaitis F, Kalliampakou K, Botou M, Nikolaidis M, Kalloniati C, Skliros D, Du B, Rennenberg H, Amoutzias GD, Frillingos S, Flemetakis E. Molecular and physiological characterization of the monosaccharide transporters gene family in Medicago truncatula. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3110-3125. [PMID: 32016431 DOI: 10.1093/jxb/eraa055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
Monosaccharide transporters (MSTs) represent key components of the carbon transport and partitioning mechanisms in plants, mediating the cell-to-cell and long-distance distribution of a wide variety of monosaccharides. In this study, we performed a thorough structural, molecular, and physiological characterization of the monosaccharide transporter gene family in the model legume Medicago truncatula. The complete set of MST family members was identified with a novel bioinformatic approach. Prolonged darkness was used as a test condition to identify the relevant transcriptomic and metabolic responses combining MST transcript profiling and metabolomic analysis. Our results suggest that MSTs play a pivotal role in the efficient partitioning and utilization of sugars, and possibly in the mechanisms of carbon remobilization in nodules upon photosynthate-limiting conditions, as nodules are forced to acquire a new role as a source of both C and N.
Collapse
Affiliation(s)
- Fotios Komaitis
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Katerina Kalliampakou
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Maria Botou
- Laboratory of Biological Chemistry, Department of Medicine, University of Ioannina, Ioannina, Greece
| | - Marios Nikolaidis
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Chrysanthi Kalloniati
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Dimitrios Skliros
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Baoguo Du
- Institute of Forest Sciences, Faculty of Environment and Natural Resources, Albert Ludwig University of Freiburg, Freiburg, Germany
| | - Heinz Rennenberg
- Institute of Forest Sciences, Faculty of Environment and Natural Resources, Albert Ludwig University of Freiburg, Freiburg, Germany
- College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Grigoris D Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Stathis Frillingos
- Laboratory of Biological Chemistry, Department of Medicine, University of Ioannina, Ioannina, Greece
| | - Emmanouil Flemetakis
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
11
|
Speck JJ, James EK, Sugawara M, Sadowsky MJ, Gyaneshwar P. An Alkane Sulfonate Monooxygenase Is Required for Symbiotic Nitrogen Fixation by Bradyrhizobium diazoefficiens (syn. Bradyrhizobium japonicum) USDA110 T. Appl Environ Microbiol 2019; 85:e01552-19. [PMID: 31562172 PMCID: PMC6881790 DOI: 10.1128/aem.01552-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/25/2019] [Indexed: 01/18/2023] Open
Abstract
Sulfur (S)-containing molecules play an important role in symbiotic nitrogen fixation and are critical components of nitrogenase and other iron-S proteins. S deficiency inhibits symbiotic nitrogen fixation by rhizobia. However, despite its importance, little is known about the sources of S that rhizobia utilize during symbiosis. We previously showed that Bradyrhizobium diazoefficiens USDA110T can assimilate both inorganic and organic S and that genes involved in organic S utilization are expressed during symbiosis. Here, we show that a B. diazoefficiens USDA110T mutant with a sulfonate monooxygenase (ssuD) insertion is defective in nitrogen fixation. Microscopy analyses revealed that the ΔssuD mutant was defective in root hair infection and that ΔssuD mutant bacteroids showed degradation compared to the wild-type strain. Moreover, the ΔssuD mutant was significantly more sensitive to hydrogen peroxide-mediated oxidative stress than the wild-type strain. Taken together, these results show that the ability of rhizobia to utilize organic S plays an important role in symbiotic nitrogen fixation. Since nodules have been reported to be an important source of reduced S used during symbiosis and nitrogen fixation, further research will be needed to determine the mechanisms involved in the regulation of S assimilation by rhizobia.IMPORTANCE Rhizobia form symbiotic associations with legumes that lead to the formation of nitrogen-fixing nodules. Sulfur-containing molecules play a crucial role in nitrogen fixation; thus, the rhizobia inside nodules require large amounts of sulfur. Rhizobia can assimilate both inorganic (sulfate) and organic (sulfonates) sources of sulfur. However, very little is known about rhizobial sulfur metabolism during symbiosis. In this report, we show that sulfonate utilization by Bradyrhizobium diazoefficiens is important for symbiotic nitrogen fixation in both soybean and cowpea. The symbiotic defect is probably due to increased sensitivity to oxidative stress from sulfur deficiency in the mutant strain defective for sulfonate utilization. The results of this study can be extended to other rhizobium-legume symbioses, as sulfonate utilization genes are widespread in these bacteria.
Collapse
Affiliation(s)
- Justin J Speck
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | | | - Masayuki Sugawara
- Biotechnology Institute, Department of Soil, Water & Climate, University of Minnesota, Saint Paul, Minnesota, USA
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- Biotechnology Institute, Department of Plant & Microbial Biology, University of Minnesota, Saint Paul, Minnesota, USA
| | - Michael J Sadowsky
- Biotechnology Institute, Department of Soil, Water & Climate, University of Minnesota, Saint Paul, Minnesota, USA
- Biotechnology Institute, Department of Plant & Microbial Biology, University of Minnesota, Saint Paul, Minnesota, USA
| | - Prasad Gyaneshwar
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
12
|
Effect of Biochar and Irrigation on the Interrelationships among Soybean Growth, Root Nodulation, Plant P Uptake, and Soil Nutrients in a Sandy Field. SUSTAINABILITY 2019. [DOI: 10.3390/su11236542] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To investigate the interrelationships among biochar, soil nutrients, and soybean plant growth in more detail, the root nodulation response of soybean (Glycine max L.) to biochar application was analyzed in a field study. We further examined the biochar effect on soil phosphatase activity to elucidate the relationships among biochar, phosphatase activity, and plant phosphorus uptake. Soybean was planted in a sandy field wherein the biochar and irrigation conditions were considered the two treatment factors. In our result, irrigation increased the pod number and plant height by 20.7% and 11.1%, respectively. Irrigation reduced the shoot and root dry matter content by 67.9% and 75.1%, respectively. The nodule number increased by 37% due to biochar addition under irrigated conditions. The soil carbon concentration was elevated by 13.4% with biochar application under rainfed conditions. Acid phosphomonoesterase (APM) was increased by 21.8% in the biochar-incorporated plots under the irrigated condition. Principal component analysis and redundancy analysis suggested that biochar application enhanced the relationships between the nodule number and soil potassium and magnesium concentrations. The correlation between soil sulfur content and nodule number was eliminated by biochar application. APM activity was associated with higher shoot and root phosphorus content and shoot dry weight after biochar application.
Collapse
|
13
|
Courbet G, Gallardo K, Vigani G, Brunel-Muguet S, Trouverie J, Salon C, Ourry A. Disentangling the complexity and diversity of crosstalk between sulfur and other mineral nutrients in cultivated plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4183-4196. [PMID: 31055598 DOI: 10.1093/jxb/erz214] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/29/2019] [Indexed: 05/02/2023]
Abstract
A complete understanding of ionome homeostasis requires a thorough investigation of the dynamics of the nutrient networks in plants. This review focuses on the complexity of interactions occurring between S and other nutrients, and these are addressed at the level of the whole plant, the individual tissues, and the cellular compartments. With regards to macronutrients, S deficiency mainly acts by reducing plant growth, which in turn restricts the root uptake of, for example, N, K, and Mg. Conversely, deficiencies in N, K, or Mg reduce uptake of S. TOR (target of rapamycin) protein kinase, whose involvement in the co-regulation of C/N and S metabolism has recently been unravelled, provides a clue to understanding the links between S and plant growth. In legumes, the original crosstalk between N and S can be found at the level of nodules, which show high requirements for S, and hence specifically express a number of sulfate transporters. With regards to micronutrients, except for Fe, their uptake can be increased under S deficiency through various mechanisms. One of these results from the broad specificity of root sulfate transporters that are up-regulated during S deficiency, which can also take up some molybdate and selenate. A second mechanism is linked to the large accumulation of sulfate in the leaf vacuoles, with its reduced osmotic contribution under S deficiency being compensated for by an increase in Cl uptake and accumulation. A third group of broader mechanisms that can explain at least some of the interactions between S and micronutrients concerns metabolic networks where several nutrients are essential, such as the synthesis of the Mo co-factor needed by some essential enzymes, which requires S, Fe, Zn and Cu for its synthesis, and the synthesis and regulation of Fe-S clusters. Finally, we briefly review recent developments in the modelling of S responses in crops (allocation amongst plant parts and distribution of mineral versus organic forms) in order to provide perspectives on prediction-based approaches that take into account the interactions with other minerals such as N.
Collapse
Affiliation(s)
- Galatéa Courbet
- Normandie Université, UNICAEN, INRA, UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, Esplanade de la Paix, Caen Cedex, France
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne, Franche-Comté, Dijon, France
| | - Karine Gallardo
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne, Franche-Comté, Dijon, France
| | - Gianpiero Vigani
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Sophie Brunel-Muguet
- Normandie Université, UNICAEN, INRA, UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, Esplanade de la Paix, Caen Cedex, France
| | - Jacques Trouverie
- Normandie Université, UNICAEN, INRA, UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, Esplanade de la Paix, Caen Cedex, France
| | - Christophe Salon
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne, Franche-Comté, Dijon, France
| | - Alain Ourry
- Normandie Université, UNICAEN, INRA, UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, Esplanade de la Paix, Caen Cedex, France
| |
Collapse
|
14
|
Schneider S, Schintlmeister A, Becana M, Wagner M, Woebken D, Wienkoop S. Sulfate is transported at significant rates through the symbiosome membrane and is crucial for nitrogenase biosynthesis. PLANT, CELL & ENVIRONMENT 2019; 42:1180-1189. [PMID: 30443991 PMCID: PMC6446814 DOI: 10.1111/pce.13481] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 05/03/2023]
Abstract
Legume-rhizobia symbioses play a major role in food production for an ever growing human population. In this symbiosis, dinitrogen is reduced ("fixed") to ammonia by the rhizobial nitrogenase enzyme complex and is secreted to the plant host cells, whereas dicarboxylic acids derived from photosynthetically produced sucrose are transported into the symbiosomes and serve as respiratory substrates for the bacteroids. The symbiosome membrane contains high levels of SST1 protein, a sulfate transporter. Sulfate is an essential nutrient for all living organisms, but its importance for symbiotic nitrogen fixation and nodule metabolism has long been underestimated. Using chemical imaging, we demonstrate that the bacteroids take up 20-fold more sulfate than the nodule host cells. Furthermore, we show that nitrogenase biosynthesis relies on high levels of imported sulfate, making sulfur as essential as carbon for the regulation and functioning of symbiotic nitrogen fixation. Our findings thus establish the importance of sulfate and its active transport for the plant-microbe interaction that is most relevant for agriculture and soil fertility.
Collapse
Affiliation(s)
- Sebastian Schneider
- Division of Molecular Systems Biology, Department of Ecogenomics and Systems BiologyUniversity of ViennaViennaAustria
| | - Arno Schintlmeister
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network “Chemistry Meets Microbiology”University of ViennaViennaAustria
- Large‐Instrument Facility for Advanced Isotope ResearchUniversity of ViennaViennaAustria
| | | | - Michael Wagner
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network “Chemistry Meets Microbiology”University of ViennaViennaAustria
- Large‐Instrument Facility for Advanced Isotope ResearchUniversity of ViennaViennaAustria
| | - Dagmar Woebken
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network “Chemistry Meets Microbiology”University of ViennaViennaAustria
| | - Stefanie Wienkoop
- Division of Molecular Systems Biology, Department of Ecogenomics and Systems BiologyUniversity of ViennaViennaAustria
| |
Collapse
|
15
|
Alloing G, Mandon K, Boncompagni E, Montrichard F, Frendo P. Involvement of Glutaredoxin and Thioredoxin Systems in the Nitrogen-Fixing Symbiosis between Legumes and Rhizobia. Antioxidants (Basel) 2018; 7:E182. [PMID: 30563061 PMCID: PMC6315971 DOI: 10.3390/antiox7120182] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 01/08/2023] Open
Abstract
Leguminous plants can form a symbiotic relationship with Rhizobium bacteria, during which plants provide bacteria with carbohydrates and an environment appropriate to their metabolism, in return for fixed atmospheric nitrogen. The symbiotic interaction leads to the formation of a new organ, the root nodule, where a coordinated differentiation of plant cells and bacteria occurs. The establishment and functioning of nitrogen-fixing symbiosis involves a redox control important for both the plant-bacteria crosstalk and the regulation of nodule metabolism. In this review, we discuss the involvement of thioredoxin and glutaredoxin systems in the two symbiotic partners during symbiosis. The crucial role of glutathione in redox balance and S-metabolism is presented. We also highlight the specific role of some thioredoxin and glutaredoxin systems in bacterial differentiation. Transcriptomics data concerning genes encoding components and targets of thioredoxin and glutaredoxin systems in connection with the developmental step of the nodule are also considered in the model system Medicago truncatula⁻Sinorhizobium meliloti.
Collapse
Affiliation(s)
| | | | | | - Françoise Montrichard
- IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, 42 rue Georges Morel, 49071 Beaucouzé CEDEX, France.
| | | |
Collapse
|
16
|
Becana M, Wienkoop S, Matamoros MA. Sulfur Transport and Metabolism in Legume Root Nodules. FRONTIERS IN PLANT SCIENCE 2018; 9:1434. [PMID: 30364181 PMCID: PMC6192434 DOI: 10.3389/fpls.2018.01434] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/10/2018] [Indexed: 05/10/2023]
Abstract
Sulfur is an essential nutrient in plants as a constituent element of some amino acids, metal cofactors, coenzymes, and secondary metabolites. Not surprisingly, sulfur deficiency decreases plant growth, photosynthesis, and seed yield in both legumes and non-legumes. In nodulated legumes, sulfur supply is positively linked to symbiotic nitrogen fixation (SNF) and sulfur starvation causes three additional major effects: decrease of nodulation, inhibition of SNF, and slowing down of nodule metabolism. These effects are due, at least in part, to the impairment of nitrogenase biosynthesis and activity, the accumulation of nitrogen-rich amino acids, and the decline in leghemoglobin, ferredoxin, ATP, and glucose in nodules. During the last decade, some major advances have been made about the uptake and metabolism of sulfur in nodules. These include the identification of the sulfate transporter SST1 in the symbiosomal membrane, the finding that glutathione produced in the bacteroids and host cells is essential for nodule activity, and the demonstration that sulfur assimilation in the whole plant is reprogrammed during symbiosis. However, many crucial questions still remain and some examples follow. In the first place, it is of paramount importance to elucidate the mechanism by which sulfur deficiency limits SNF. It is unknown why homoglutahione replaces glutathione as a major water-soluble antioxidant, redox buffer, and sulfur reservoir, among other relevant functions, only in certain legumes and also in different tissues of the same legume species. Much more work is required to identify oxidative post-translational modifications entailing cysteine and methionine residues and to determine how these modifications affect protein function and metabolism in nodules. Likewise, most interactions of antioxidant metabolites and enzymes bearing redox-active sulfur with transcription factors need to be defined. Solving these questions will pave the way to decipher sulfur-dependent mechanisms that regulate SNF, thereby gaining a deep insight into how nodulated legumes adapt to the fluctuating availability of nutrients in the soil.
Collapse
Affiliation(s)
- Manuel Becana
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
| | - Stefanie Wienkoop
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Manuel A. Matamoros
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
| |
Collapse
|
17
|
Thal B, Braun HP, Eubel H. Proteomic analysis dissects the impact of nodulation and biological nitrogen fixation on Vicia faba root nodule physiology. PLANT MOLECULAR BIOLOGY 2018; 97:233-251. [PMID: 29779088 DOI: 10.1007/s11103-018-0736-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 05/08/2018] [Indexed: 05/25/2023]
Abstract
Symbiotic nitrogen fixation in root nodules of legumes is a highly important biological process which is only poorly understood. Root nodule metabolism differs from that of roots. Differences in root and nodule metabolism are expressed by altered protein abundances and amenable to quantitative proteome analyses. Differences in the proteomes may either be tissue specific and related to the presence of temporary endosymbionts (the bacteroids) or related to nitrogen fixation activity. An experimental setup including WT bacterial strains and strains not able to conduct symbiotic nitrogen fixation as well as root controls enables identification of tissue and nitrogen fixation specific proteins. Root nodules are specialized plant organs housing and regulating the mutual symbiosis of legumes with nitrogen fixing rhizobia. As such, these organs fulfill unique functions in plant metabolism. Identifying the proteins required for the metabolic reactions of nitrogen fixation and those merely involved in sustaining the rhizobia:plant symbiosis, is a challenging task and requires an experimental setup which allows to differentiate between these two physiological processes. Here, quantitative proteome analyses of nitrogen fixing and non-nitrogen fixing nodules as well as fertilized and non-fertilized roots were performed using Vicia faba and Rhizobium leguminosarum. Pairwise comparisons revealed altered enzyme abundance between active and inactive nodules. Similarly, general differences between nodules and root tissue were observed. Together, these results allow distinguishing the proteins directly involved in nitrogen fixation from those related to nodulation. Further observations relate to the control of nodulation by hormones and provide supportive evidence for the previously reported correlation of nitrogen and sulfur fixation in these plant organs. Additionally, data on altered protein abundance relating to alanine metabolism imply that this amino acid may be exported from the symbiosomes of V. faba root nodules in addition to ammonia. Data are available via ProteomeXchange with identifier PXD008548.
Collapse
Affiliation(s)
- Beate Thal
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hanover, Germany
| | - Hans-Peter Braun
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hanover, Germany
| | - Holger Eubel
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hanover, Germany.
| |
Collapse
|
18
|
Krishnan HB, Song B, Oehrle NW, Cameron JC, Jez JM. Impact of overexpression of cytosolic isoform of O-acetylserine sulfhydrylase on soybean nodulation and nodule metabolome. Sci Rep 2018; 8:2367. [PMID: 29402985 PMCID: PMC5799319 DOI: 10.1038/s41598-018-20919-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/25/2018] [Indexed: 01/05/2023] Open
Abstract
Nitrogen-fixing nodules, which are also major sites of sulfur assimilation, contribute significantly to the sulfur needs of whole soybean plants. Nodules are the predominant sites for cysteine accumulation and the activity of O-acetylserine(thiol)lyase (OASS) is central to the sulfur assimilation process in plants. Here, we examined the impact of overexpressing OASS on soybean nodulation and nodule metabolome. Overexpression of OASS did not affect the nodule number, but negatively impacted plant growth. HPLC measurement of antioxidant metabolites demonstrated that levels of cysteine, glutathione, and homoglutathione nearly doubled in OASS overexpressing nodules when compared to control nodules. Metabolite profiling by LC-MS and GC-MS demonstrated that several metabolites related to serine, aspartate, glutamate, and branched-chain amino acid pathways were significantly elevated in OASS overexpressing nodules. Striking differences were also observed in the flavonoid levels between the OASS overexpressing and control soybean nodules. Our results suggest that OASS overexpressing plants compensate for the increase in carbon requirement for sulfur assimilation by reducing the biosynthesis of some amino acids, and by replenishing the TCA cycle through fatty acid hydrolysis. These data may indicate that in OASS overexpressing soybean nodules there is a moderate decease in the supply of energy metabolites to the nodule, which is then compensated by the degradation of cellular components to meet the needs of the nodule energy metabolism.
Collapse
Affiliation(s)
- Hari B Krishnan
- USDA-ARS, Plant Genetics Research Unit, 105 Curtis Hall, University of Missouri, Columbia, MO, 65211, USA.
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA.
| | - Bo Song
- USDA-ARS, Plant Genetics Research Unit, 105 Curtis Hall, University of Missouri, Columbia, MO, 65211, USA
- Key Laboratory of Soybean Biology at the Chinese Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Nathan W Oehrle
- USDA-ARS, Plant Genetics Research Unit, 105 Curtis Hall, University of Missouri, Columbia, MO, 65211, USA
| | - Jeffrey C Cameron
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, 80309-0596, USA
| | - Joseph M Jez
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| |
Collapse
|
19
|
Becana M, Wienkoop S, Matamoros MA. Sulfur Transport and Metabolism in Legume Root Nodules. FRONTIERS IN PLANT SCIENCE 2018. [PMID: 30364181 DOI: 10.3389/fpls.2018:01434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Sulfur is an essential nutrient in plants as a constituent element of some amino acids, metal cofactors, coenzymes, and secondary metabolites. Not surprisingly, sulfur deficiency decreases plant growth, photosynthesis, and seed yield in both legumes and non-legumes. In nodulated legumes, sulfur supply is positively linked to symbiotic nitrogen fixation (SNF) and sulfur starvation causes three additional major effects: decrease of nodulation, inhibition of SNF, and slowing down of nodule metabolism. These effects are due, at least in part, to the impairment of nitrogenase biosynthesis and activity, the accumulation of nitrogen-rich amino acids, and the decline in leghemoglobin, ferredoxin, ATP, and glucose in nodules. During the last decade, some major advances have been made about the uptake and metabolism of sulfur in nodules. These include the identification of the sulfate transporter SST1 in the symbiosomal membrane, the finding that glutathione produced in the bacteroids and host cells is essential for nodule activity, and the demonstration that sulfur assimilation in the whole plant is reprogrammed during symbiosis. However, many crucial questions still remain and some examples follow. In the first place, it is of paramount importance to elucidate the mechanism by which sulfur deficiency limits SNF. It is unknown why homoglutahione replaces glutathione as a major water-soluble antioxidant, redox buffer, and sulfur reservoir, among other relevant functions, only in certain legumes and also in different tissues of the same legume species. Much more work is required to identify oxidative post-translational modifications entailing cysteine and methionine residues and to determine how these modifications affect protein function and metabolism in nodules. Likewise, most interactions of antioxidant metabolites and enzymes bearing redox-active sulfur with transcription factors need to be defined. Solving these questions will pave the way to decipher sulfur-dependent mechanisms that regulate SNF, thereby gaining a deep insight into how nodulated legumes adapt to the fluctuating availability of nutrients in the soil.
Collapse
Affiliation(s)
- Manuel Becana
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
| | - Stefanie Wienkoop
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Manuel A Matamoros
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
| |
Collapse
|
20
|
Larrainzar E, Wienkoop S. A Proteomic View on the Role of Legume Symbiotic Interactions. FRONTIERS IN PLANT SCIENCE 2017; 8:1267. [PMID: 28769967 PMCID: PMC5513976 DOI: 10.3389/fpls.2017.01267] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/05/2017] [Indexed: 05/04/2023]
Abstract
Legume plants are key elements in sustainable agriculture and represent a significant source of plant-based protein for humans and animal feed worldwide. One specific feature of the family is the ability to establish nitrogen-fixing symbiosis with Rhizobium bacteria. Additionally, like most vascular flowering plants, legumes are able to form a mutualistic endosymbiosis with arbuscular mycorrhizal (AM) fungi. These beneficial associations can enhance the plant resistance to biotic and abiotic stresses. Understanding how symbiotic interactions influence and increase plant stress tolerance are relevant questions toward maintaining crop yield and food safety in the scope of climate change. Proteomics offers numerous tools for the identification of proteins involved in such responses, allowing the study of sub-cellular localization and turnover regulation, as well as the discovery of post-translational modifications (PTMs). The current work reviews the progress made during the last decades in the field of proteomics applied to the study of the legume-Rhizobium and -AM symbioses, and highlights their influence on the plant responses to pathogens and abiotic stresses. We further discuss future perspectives and new experimental approaches that are likely to have a significant impact on the field including peptidomics, mass spectrometric imaging, and quantitative proteomics.
Collapse
Affiliation(s)
- Estíbaliz Larrainzar
- Department of Environmental Sciences, Universidad Pública de NavarraPamplona, Spain
- *Correspondence: Estíbaliz Larrainzar
| | - Stefanie Wienkoop
- Department of Ecogenomics and Systems Biology, University of ViennaVienna, Austria
- Stefanie Wienkoop
| |
Collapse
|
21
|
Bohrer AS, Takahashi H. Compartmentalization and Regulation of Sulfate Assimilation Pathways in Plants. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 326:1-31. [PMID: 27572125 DOI: 10.1016/bs.ircmb.2016.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Plants utilize sulfate to synthesize primary and secondary sulfur-containing metabolites required for growth and survival in the environment. Sulfate is taken up into roots from the soil and distributed to various organs through the functions of membrane-bound sulfate transporters, while it is utilized as the primary substrate for synthesizing sulfur-containing metabolites in the sulfate assimilation pathways. Transporters and enzymes for the assimilative conversion of sulfate are regulated in highly organized manners depending on changes in sulfate supply from the environment and demand for biosynthesis of reduced sulfur compounds in the plant systems. Over the past few decades, the effect of sulfur nutrition on gene expression of sulfate transporters and assimilatory enzymes has been extensively studied with the aim of understanding the full landscape of regulatory networks.
Collapse
Affiliation(s)
- A-S Bohrer
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - H Takahashi
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|