1
|
Barragán‐Rosillo AC, Chávez Montes RA, Herrera‐Estrella L. The role of DNA content in shaping chromatin architecture and gene expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70116. [PMID: 40127924 PMCID: PMC11932763 DOI: 10.1111/tpj.70116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/26/2025]
Abstract
Whole-genome duplication is an evolutionary force that drives speciation in all living kingdoms and is notably prevalent in plants. The evolutionary history of plants involved at least two genomic duplications that significantly expanded the plant morphology and physiology spectrum. Many important crops are polyploids, showing valuable features relative to morphological and stress response traits. After genome duplication, diploidization processes facilitate genomic adjustments to restore disomic inheritance. However, little is known about the chromatin changes triggered by nuclear DNA content alterations. Here, we report that synthetically induced genome duplication leads to chromatinization and significant changes in gene expression, resulting in a transcriptional landscape resembling a natural tetraploid. Interestingly, synthetic diploidization elicits only minor alterations in transcriptional activity and chromatin accessibility compared to the more pronounced effects of tetraploidization. We identified epigenetic factors, including specific histone variants, that showed increased expression following genome duplication and decreased expression after genome reduction. These changes may play a key role in the epigenetic mechanisms underlying the phenotypic complexity after tetraploidization in plants. Our findings shed light on the mechanisms that modulate chromatin accessibility remodeling and gene transcription regulation underlying plant genome adaptation in response to changes in genome size.
Collapse
Affiliation(s)
- Alfonso Carlos Barragán‐Rosillo
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress ToleranceTexas Tech UniversityLubbockTexasUSA
| | - Ricardo A. Chávez Montes
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress ToleranceTexas Tech UniversityLubbockTexasUSA
| | - Luis Herrera‐Estrella
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress ToleranceTexas Tech UniversityLubbockTexasUSA
- Unidad de Genómica Avanzada del Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalIrapuatoGuanajuatoMexico
| |
Collapse
|
2
|
Lavie O, Williams LE. Using Callus as an Ex Vivo System for Chromatin Analysis. Methods Mol Biol 2025; 2873:333-347. [PMID: 39576610 DOI: 10.1007/978-1-0716-4228-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Next-generation sequencing has revolutionized epigenetics research, enabling a comprehensive analysis of DNA methylation and histone modification profiles to explore complex biological systems at unprecedented depth. Deciphering the intricate epigenetic mechanisms that regulate gene activity presents significant challenges, including the issue of analyzing heterogeneous cell populations in bulk. Bulk analysis introduces bias and can obscure crucial information by averaging readouts from distinct cells. Various approaches have been developed to address this issue, such as cell-type-specific enrichment or single-cell sequencing techniques. However, the need for transgenic lines with fluorescent markers, along with technical challenges such as efficient protoplast isolation and low yield, limits their widespread adoption and use in multi-omic studies. This review discusses the pros and cons of these approaches, providing a valuable basis for selecting the most suitable strategy to minimize heterogeneity. We will also highlight the use of cotyledon-derived callus as an ex vivo system as a simple, accessible, and robust platform for enabling high-throughput multi-omic analyses.
Collapse
Affiliation(s)
- Orly Lavie
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Leor Eshed Williams
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
3
|
Maugarny A, Vialette A, Adroher B, Sarthou AS, Mathy-Franchet N, Azzopardi M, Nicolas A, Roudier F, Laufs P. MIR164B ensures robust Arabidopsis leaf development by compensating for compromised POLYCOMB REPRESSIVE COMPLEX2 function. THE PLANT CELL 2024; 36:koae260. [PMID: 39374868 PMCID: PMC11638556 DOI: 10.1093/plcell/koae260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 08/22/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024]
Abstract
Robustness is pervasive throughout biological systems, enabling them to maintain persistent outputs despite perturbations in their components. Here, we reveal a mechanism contributing to leaf morphology robustness in the face of genetic perturbations. In Arabidopsis (Arabidopsis thaliana), leaf shape is established during early development through the quantitative action of the CUP-SHAPED COTYLEDON2 (CUC2) protein, whose encoding gene is negatively regulated by the co-expressed MICRORNA164A (MIR164A) gene. Compromised epigenetic regulation due to defective Polycomb Repressive Complex 2 (PRC2) function results in the transcriptional derepression of CUC2 but has no impact on CUC2 protein dynamics or early morphogenesis. We solve this apparent paradox by showing that compromised PRC2 function simultaneously derepresses the expression of another member of the MIR164 gene family, MIR164B. This mechanism dampens CUC2 protein levels, thereby compensating for compromised PRC2 function and canalizing early leaf morphogenesis. Furthermore, we show that this compensation mechanism is active under different environmental conditions. Our findings shed light on how the interplay between different steps of gene expression regulation can contribute to developmental robustness.
Collapse
Affiliation(s)
- Aude Maugarny
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France
- Université Paris-Saclay, 91405 Orsay, France
| | - Aurélie Vialette
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRAE, F-69342, Lyon, France
| | - Bernard Adroher
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France
| | - Anne-Sophie Sarthou
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France
| | - Nathalie Mathy-Franchet
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRAE, F-69342, Lyon, France
| | - Marianne Azzopardi
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France
| | - Antoine Nicolas
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France
- Université Paris-Saclay, 91405 Orsay, France
| | - François Roudier
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRAE, F-69342, Lyon, France
| | - Patrick Laufs
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France
| |
Collapse
|
4
|
Zanetti ME, Blanco F, Ferrari M, Ariel F, Benoit M, Niebel A, Crespi M. Epigenetic control during root development and symbiosis. PLANT PHYSIOLOGY 2024; 196:697-710. [PMID: 38865442 DOI: 10.1093/plphys/kiae333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/02/2024] [Accepted: 05/24/2024] [Indexed: 06/14/2024]
Abstract
The roots of plants play multiple functions that are essential for growth and development, including anchoring to the soil as well as water and nutrient acquisition. These underground organs exhibit the plasticity to modify their root system architecture in response to environmental cues, allowing adaptation to change in water and nutrient availability. In addition, roots enter in mutualistic interactions with soil microorganisms, for example, the root nodule symbiosis (RNS) established between a limited group of plants and nitrogen-fixing soil bacteria and the arbuscular mycorrhiza symbiosis involving most land plants and fungi of the Glomeromycetes phylum. In the past 20 years, genetic approaches allowed the identification and functional characterization of genes required for the specific programs of root development, root nodule, and arbuscular mycorrhiza symbioses. These genetic studies provided evidence that the program of the RNS recruited components of the arbuscular mycorrhiza symbiosis and the root developmental programs. The execution of these programs is strongly influenced by epigenetic changes-DNA methylation and histone post-translational modifications-that alter chromatin conformation modifying the expression of key genes. In this review, we summarize recent advances that highlight how DNA methylation and histone post-translational modifications, as well as chromatin remodeling factors and long noncoding RNAs, shape the root system architecture and allow the successful establishment of both root nodule and arbuscular mycorrhiza symbioses. We anticipate that the analysis of dynamic epigenetic changes and chromatin 3D structure in specific single cells or tissue types of root organs will illuminate our understanding of how root developmental and symbiotic programs are orchestrated, opening exciting questions and new perspectives to modulate agronomical and ecological traits linked to nutrient acquisition.
Collapse
Affiliation(s)
- María Eugenia Zanetti
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata and Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata 1900, Argentina
| | - Flavio Blanco
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata and Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata 1900, Argentina
| | - Milagros Ferrari
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata and Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata 1900, Argentina
| | - Federico Ariel
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, and Consejo Nacional de Investigaciones Científicas y Técnicas CONICET, Buenos Aires C1428EGA, Argentina
| | - Matthias Benoit
- Laboratoire des Interactions Plantes-Microorganismes (LIPME), INRAE, CNRS, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan 31326, France
| | - Andreas Niebel
- Laboratoire des Interactions Plantes-Microorganismes (LIPME), INRAE, CNRS, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan 31326, France
| | - Martin Crespi
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette 91190, France
- Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette 91190, France
| |
Collapse
|
5
|
Nalini Chandran AK, Paul P, Dhatt BK, Sandhu J, Irvin L, Oguro S, Shi Y, Zhang C, Walia H. Phenotypic and transcriptomic responses of diverse rice accessions to transient heat stress during early grain development. FRONTIERS IN PLANT SCIENCE 2024; 15:1429697. [PMID: 39211842 PMCID: PMC11358087 DOI: 10.3389/fpls.2024.1429697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
Heat stress (HS) occurring during the grain-filling period has a detrimental effect on grain yield and quality in rice (Oryza sativa). The development of heat-resilient cultivars could partly solve this issue if tolerant alleles can be identified and incorporated into the germplasm. In this study, we posit that some of the phenotypic variations for heat resilience during grain development could be due to variations in gene expression among accessions. To test this, we characterized the HS response of 10 diverse rice accessions from three major sub-populations using physiological and transcriptome analyses. At a single-grain level, grain width and grain thickness emerged as the most heat-sensitive traits. During a transient HS, IND-3 was categorized as highly sensitive, while five accessions exhibited moderate heat sensitivity, and four accessions were tolerant. Only a core set of 29.4% of the differentially expressed genes was common to the three rice sub-populations. Heat-tolerant accession TEJ-5 uniquely triggered an unfolded protein response (UPR) under HS, as evident from the induction of OsbZIP50 and downstream UPR genes. OsbZIP58, a gene that positively regulates grain filling, was more highly induced by HS in IND-2 despite its moderate heat sensitivity. Collectively, our analysis suggests that both unique gene expression responses and variation in the level of responses for a given pathway distinguish diverse accessions. Only some of these responses are associated with single-grain phenotypes in a manner consistent with the known roles of these genes and pathways.
Collapse
Affiliation(s)
| | - Puneet Paul
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, United States
| | - Balpreet K. Dhatt
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, United States
| | - Jaspreet Sandhu
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, United States
| | - Larissa Irvin
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, United States
| | - Shohei Oguro
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, United States
| | - Yu Shi
- Department of Biological Science, University of Nebraska, Lincoln, NE, United States
| | - Chi Zhang
- Department of Biological Science, University of Nebraska, Lincoln, NE, United States
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, United States
| | - Harkamal Walia
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, United States
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, United States
| |
Collapse
|
6
|
Ju J, Li Y, Ling P, Luo J, Wei W, Yuan W, Wang C, Su J. H3K36 methyltransferase GhKMT3;1a and GhKMT3;2a promote flowering in upland cotton. BMC PLANT BIOLOGY 2024; 24:739. [PMID: 39095699 PMCID: PMC11295449 DOI: 10.1186/s12870-024-05457-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND The SET domain group (SDG) genes encode histone lysine methyltransferases, which regulate gene transcription by altering chromatin structure and play pivotal roles in plant flowering determination. However, few studies have investigated their role in the regulation of flowering in upland cotton. RESULTS A total of 86 SDG genes were identified through genome-wide analysis in upland cotton (Gossypium hirsutum). These genes were unevenly distributed across 25 chromosomes. Cluster analysis revealed that the 86 GhSDGs were divided into seven main branches. RNA-seq data and qRT‒PCR analysis revealed that lysine methyltransferase 3 (KMT3) genes were expressed at high levels in stamens, pistils and other floral organs. Using virus-induced gene silencing (VIGS), functional characterization of GhKMT3;1a and GhKMT3;2a revealed that, compared with those of the controls, the GhKMT3;1a- and GhKMT3;2a-silenced plants exhibited later budding and flowering and lower plant heightwere shorter. In addition, the expression of flowering-related genes (GhAP1, GhSOC1 and GhFT) significantly decreased and the expression level of GhSVP significantly increased in the GhKMT3;1a- and GhKMT3;2a-silenced plants compared with the control plants. CONCLUSION A total of 86 SDG genes were identified in upland cotton, among which GhKMT3;1a and GhKMT3;2a might regulate flowering by affecting the expression of GhAP1, GhSOC1, GhFT and GhSVP. These findings will provide genetic resources for advanced molecular breeding in the future.
Collapse
Affiliation(s)
- Jisheng Ju
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ying Li
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Pingjie Ling
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jin Luo
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wei Wei
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wenmin Yuan
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Caixiang Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Junji Su
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
7
|
Teano G, Concia L, Wolff L, Carron L, Biocanin I, Adamusová K, Fojtová M, Bourge M, Kramdi A, Colot V, Grossniklaus U, Bowler C, Baroux C, Carbone A, Probst AV, Schrumpfová PP, Fajkus J, Amiard S, Grob S, Bourbousse C, Barneche F. Histone H1 protects telomeric repeats from H3K27me3 invasion in Arabidopsis. Cell Rep 2023; 42:112894. [PMID: 37515769 DOI: 10.1016/j.celrep.2023.112894] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 12/02/2022] [Accepted: 07/13/2023] [Indexed: 07/31/2023] Open
Abstract
While the pivotal role of linker histone H1 in shaping nucleosome organization is well established, its functional interplays with chromatin factors along the epigenome are just starting to emerge. Here we show that, in Arabidopsis, as in mammals, H1 occupies Polycomb Repressive Complex 2 (PRC2) target genes where it favors chromatin condensation and H3K27me3 deposition. We further show that, contrasting with its conserved function in PRC2 activation at genes, H1 selectively prevents H3K27me3 accumulation at telomeres and large pericentromeric interstitial telomeric repeat (ITR) domains by restricting DNA accessibility to Telomere Repeat Binding (TRB) proteins, a group of H1-related Myb factors mediating PRC2 cis recruitment. This study provides a mechanistic framework by which H1 avoids the formation of gigantic H3K27me3-rich domains at telomeric sequences and contributes to safeguard nucleus architecture.
Collapse
Affiliation(s)
- Gianluca Teano
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France; Université Paris-Saclay, 91190 Orsay, France
| | - Lorenzo Concia
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Léa Wolff
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Léopold Carron
- Sorbonne Université, CNRS, IBPS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), 75005 Paris, France
| | - Ivona Biocanin
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France; Université Paris-Saclay, 91190 Orsay, France
| | - Kateřina Adamusová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Miloslava Fojtová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Michael Bourge
- Cytometry Facility, Imagerie-Gif, Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Amira Kramdi
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Vincent Colot
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Chris Bowler
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Célia Baroux
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Alessandra Carbone
- Sorbonne Université, CNRS, IBPS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), 75005 Paris, France
| | - Aline V Probst
- CNRS UMR6293, Université Clermont Auvergne, INSERM U1103, GReD, CRBC, Clermont-Ferrand, France
| | - Petra Procházková Schrumpfová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Simon Amiard
- CNRS UMR6293, Université Clermont Auvergne, INSERM U1103, GReD, CRBC, Clermont-Ferrand, France
| | - Stefan Grob
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Clara Bourbousse
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Fredy Barneche
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France.
| |
Collapse
|
8
|
Fal K, Berr A, Le Masson M, Faigenboim A, Pano E, Ishkhneli N, Moyal NL, Villette C, Tomkova D, Chabouté ME, Williams LE, Carles CC. Lysine 27 of histone H3.3 is a fine modulator of developmental gene expression and stands as an epigenetic checkpoint for lignin biosynthesis in Arabidopsis. THE NEW PHYTOLOGIST 2023; 238:1085-1100. [PMID: 36779574 DOI: 10.1111/nph.18666] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/28/2022] [Indexed: 06/18/2023]
Abstract
Chromatin is a dynamic platform within which gene expression is controlled by epigenetic modifications, notably targeting amino acid residues of histone H3. Among them is lysine 27 of H3 (H3K27), the trimethylation of which by the Polycomb Repressive Complex 2 (PRC2) is instrumental in regulating spatiotemporal patterns of key developmental genes. H3K27 is also subjected to acetylation and is found at sites of active transcription. Most information on the function of histone residues and their associated modifications in plants was obtained from studies of loss-of-function mutants for the complexes that modify them. To decrypt the genuine function of H3K27, we expressed a non-modifiable variant of H3 at residue K27 (H3.3K27A ) in Arabidopsis, and developed a multi-scale approach combining in-depth phenotypical and cytological analyses, with transcriptomics and metabolomics. We uncovered that the H3.3K27A variant causes severe developmental defects, part of them are reminiscent of PRC2 mutants, part of them are new. They include early flowering, increased callus formation and short stems with thicker xylem cell layer. This latest phenotype correlates with mis-regulation of phenylpropanoid biosynthesis. Overall, our results reveal novel roles of H3K27 in plant cell fates and metabolic pathways, and highlight an epigenetic control point for elongation and lignin composition of the stem.
Collapse
Affiliation(s)
- Kateryna Fal
- Plant and Cell Physiology Lab, IRIG-DBSCI-LPCV, CEA, Grenoble Alpes University - CNRS - INRAE - CEA, 17 rue des Martyrs, bât. C2, 38054, Grenoble Cedex 9, France
| | - Alexandre Berr
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg Cedex, France
| | - Marie Le Masson
- Plant and Cell Physiology Lab, IRIG-DBSCI-LPCV, CEA, Grenoble Alpes University - CNRS - INRAE - CEA, 17 rue des Martyrs, bât. C2, 38054, Grenoble Cedex 9, France
| | - Adi Faigenboim
- Institute of Plant Sciences, ARO Volcani Center, PO Box 15159, Rishon LeZion, 7528809, Israel
| | - Emeline Pano
- Plant and Cell Physiology Lab, IRIG-DBSCI-LPCV, CEA, Grenoble Alpes University - CNRS - INRAE - CEA, 17 rue des Martyrs, bât. C2, 38054, Grenoble Cedex 9, France
| | - Nickolay Ishkhneli
- Robert H. Smith Institute of Plant Sciences & Genetics in Agriculture - Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Netta-Lee Moyal
- Robert H. Smith Institute of Plant Sciences & Genetics in Agriculture - Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Claire Villette
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg Cedex, France
| | - Denisa Tomkova
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg Cedex, France
| | - Marie-Edith Chabouté
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg Cedex, France
| | - Leor Eshed Williams
- Robert H. Smith Institute of Plant Sciences & Genetics in Agriculture - Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Cristel C Carles
- Plant and Cell Physiology Lab, IRIG-DBSCI-LPCV, CEA, Grenoble Alpes University - CNRS - INRAE - CEA, 17 rue des Martyrs, bât. C2, 38054, Grenoble Cedex 9, France
| |
Collapse
|
9
|
Lepri A, Longo C, Messore A, Kazmi H, Madia VN, Di Santo R, Costi R, Vittorioso P. Plants and Small Molecules: An Up-and-Coming Synergy. PLANTS (BASEL, SWITZERLAND) 2023; 12:1729. [PMID: 37111951 PMCID: PMC10145415 DOI: 10.3390/plants12081729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 06/19/2023]
Abstract
The emergence of Arabidopsis thaliana as a model system has led to a rapid and wide improvement in molecular genetics techniques for studying gene function and regulation. However, there are still several drawbacks that cannot be easily solved with molecular genetic approaches, such as the study of unfriendly species, which are of increasing agronomic interest but are not easily transformed, thus are not prone to many molecular techniques. Chemical genetics represents a methodology able to fill this gap. Chemical genetics lies between chemistry and biology and relies on small molecules to phenocopy genetic mutations addressing specific targets. Advances in recent decades have greatly improved both target specificity and activity, expanding the application of this approach to any biological process. As for classical genetics, chemical genetics also proceeds with a forward or reverse approach depending on the nature of the study. In this review, we addressed this topic in the study of plant photomorphogenesis, stress responses and epigenetic processes. We have dealt with some cases of repurposing compounds whose activity has been previously proven in human cells and, conversely, studies where plants have been a tool for the characterization of small molecules. In addition, we delved into the chemical synthesis and improvement of some of the compounds described.
Collapse
Affiliation(s)
- A. Lepri
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.L.); (C.L.); (H.K.)
| | - C. Longo
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.L.); (C.L.); (H.K.)
| | - A. Messore
- Department of Chemistry and Technology of Drug, Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.M.); (V.N.M.); (R.D.S.); (R.C.)
| | - H. Kazmi
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.L.); (C.L.); (H.K.)
| | - V. N. Madia
- Department of Chemistry and Technology of Drug, Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.M.); (V.N.M.); (R.D.S.); (R.C.)
| | - R. Di Santo
- Department of Chemistry and Technology of Drug, Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.M.); (V.N.M.); (R.D.S.); (R.C.)
| | - R. Costi
- Department of Chemistry and Technology of Drug, Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.M.); (V.N.M.); (R.D.S.); (R.C.)
| | - P. Vittorioso
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.L.); (C.L.); (H.K.)
| |
Collapse
|
10
|
Larriba E, Nicolás-Albujer M, Sánchez-García AB, Pérez-Pérez JM. Identification of Transcriptional Networks Involved in De Novo Organ Formation in Tomato Hypocotyl Explants. Int J Mol Sci 2022; 23:16112. [PMID: 36555756 PMCID: PMC9788163 DOI: 10.3390/ijms232416112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Some of the hormone crosstalk and transcription factors (TFs) involved in wound-induced organ regeneration have been extensively studied in the model plant Arabidopsis thaliana. In previous work, we established Solanum lycopersicum "Micro-Tom" explants without the addition of exogenous hormones as a model to investigate wound-induced de novo organ formation. The current working model indicates that cell reprogramming and founder cell activation requires spatial and temporal regulation of auxin-to-cytokinin (CK) gradients in the apical and basal regions of the hypocotyl combined with extensive metabolic reprogramming of some cells in the apical region. In this work, we extended our transcriptomic analysis to identify some of the gene regulatory networks involved in wound-induced organ regeneration in tomato. Our results highlight a functional conservation of key TF modules whose function is conserved during de novo organ formation in plants, which will serve as a valuable resource for future studies.
Collapse
|
11
|
Genome-Wide Analysis of AP2/ERF Gene Superfamily in Ramie ( Boehmeria nivea L.) Revealed Their Synergistic Roles in Regulating Abiotic Stress Resistance and Ramet Development. Int J Mol Sci 2022; 23:ijms232315117. [PMID: 36499437 PMCID: PMC9736067 DOI: 10.3390/ijms232315117] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
AP2/ERF transcription factors (TFs) are one of the largest superfamilies in plants, and play vital roles in growth and response to biotic/abiotic stresses. Although the AP2/ERF family has been extensively characterized in many species, very little is known about this family in ramie (Boehmeria nivea L.). In this study, 138 AP2/ERF TFs were identified from the ramie genome and were grouped into five subfamilies, including the AP2 (19), RAV (5), Soloist (1), ERF (77), and DREB (36). Unique motifs were found in the DREB/ERF subfamily members, implying significance to the AP2/ERF TF functions in these evolutionary branches. Segmental duplication events were found to play predominant roles in the BnAP2/ERF TF family expansion. Light-, stress-, and phytohormone-responsive elements were identified in the promoter region of BnAP2/ERF genes, with abscisic acid response elements (ABRE), methyl jasmonate response elements, and the dehydration response element (DRE) being dominant. The integrated transcriptome and quantitative real-time PCR (qPCR) revealed 12 key BnAP2/ERF genes positively responding to waterlogging. Five of the genes are also involved in ramet development, with two (BnERF-30 and BnERF-32) further showing multifunctional roles. The protein interaction prediction analysis further verified their crosstalk mechanism in coordinating waterlogging resistance and ramet development. Our study provides new insights into the presence of AP2/ERF TFs in ramie, and provides candidate AP2/ERF TFs for further studies on breeding varieties with coupling between water stress tolerance and high yield.
Collapse
|
12
|
Ye R, Wang M, Du H, Chhajed S, Koh J, Liu KH, Shin J, Wu Y, Shi L, Xu L, Chen S, Zhang Y, Sheen J. Glucose-driven TOR-FIE-PRC2 signalling controls plant development. Nature 2022; 609:986-993. [PMID: 36104568 PMCID: PMC9530021 DOI: 10.1038/s41586-022-05171-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/01/2022] [Indexed: 01/24/2023]
Abstract
Nutrients and energy have emerged as central modulators of developmental programmes in plants and animals1-3. The evolutionarily conserved target of rapamycin (TOR) kinase is a master integrator of nutrient and energy signalling that controls growth. Despite its key regulatory roles in translation, proliferation, metabolism and autophagy2-5, little is known about how TOR shapes developmental transitions and differentiation. Here we show that glucose-activated TOR kinase controls genome-wide histone H3 trimethylation at K27 (H3K27me3) in Arabidopsis thaliana, which regulates cell fate and development6-10. We identify FERTILIZATION-INDEPENDENT ENDOSPERM (FIE), an indispensable component of Polycomb repressive complex 2 (PRC2), which catalyses H3K27me3 (refs. 6-8,10-12), as a TOR target. Direct phosphorylation by TOR promotes the dynamic translocation of FIE from the cytoplasm to the nucleus. Mutation of the phosphorylation site on FIE abrogates the global H3K27me3 landscape, reprogrammes the transcriptome and disrupts organogenesis in plants. Moreover, glucose-TOR-FIE-PRC2 signalling modulates vernalization-induced floral transition. We propose that this signalling axis serves as a nutritional checkpoint leading to epigenetic silencing of key transcription factor genes that specify stem cell destiny in shoot and root meristems and control leaf, flower and silique patterning, branching and vegetative-to-reproduction transition. Our findings reveal a fundamental mechanism of nutrient signalling in direct epigenome reprogramming, with broad relevance for the developmental control of multicellular organisms.
Collapse
Affiliation(s)
- Ruiqiang Ye
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | - Meiyue Wang
- National Key Laboratory of Plant Molecular Genetics, CAS, Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Hao Du
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Shweta Chhajed
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, USA
| | - Jin Koh
- Proteomics and Mass Spectrometry, Interdisciplinary Centre for Biotechnology Research, University of Florida, Gainesville, FL, USA
| | - Kun-Hsiang Liu
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, and Institute of Future Agriculture, Northwest Agriculture and Forestry University, Yangling, China
| | - Jinwoo Shin
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Yue Wu
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Lin Shi
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CAS, Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Sixue Chen
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, USA
- Proteomics and Mass Spectrometry, Interdisciplinary Centre for Biotechnology Research, University of Florida, Gainesville, FL, USA
| | - Yijing Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS, Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jen Sheen
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Pei L, Huang X, Liu Z, Tian X, You J, Li J, Fang DD, Lindsey K, Zhu L, Zhang X, Wang M. Dynamic 3D genome architecture of cotton fiber reveals subgenome-coordinated chromatin topology for 4-staged single-cell differentiation. Genome Biol 2022; 23:45. [PMID: 35115029 PMCID: PMC8812185 DOI: 10.1186/s13059-022-02616-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Despite remarkable advances in our knowledge of epigenetically mediated transcriptional programming of cell differentiation in plants, little is known about chromatin topology and its functional implications in this process. RESULTS To interrogate its significance, we establish the dynamic three-dimensional (3D) genome architecture of the allotetraploid cotton fiber, representing a typical single cell undergoing staged development in plants. We show that the subgenome-relayed switching of the chromatin compartment from active to inactive is coupled with the silencing of developmentally repressed genes, pinpointing subgenome-coordinated contribution to fiber development. We identify 10,571 topologically associating domain-like (TAD-like) structures, of which 25.6% are specifically organized in different stages and 75.23% are subject to partition or fusion between two subgenomes. Notably, dissolution of intricate TAD-like structure cliques showing long-range interactions represents a prominent characteristic at the later developmental stage. Dynamic chromatin loops are found to mediate the rewiring of gene regulatory networks that exhibit a significant difference between the two subgenomes, implicating expression bias of homologous genes. CONCLUSIONS This study sheds light on the spatial-temporal asymmetric chromatin structures of two subgenomes in the cotton fiber and offers a new insight into the regulatory orchestration of cell differentiation in plants.
Collapse
Affiliation(s)
- Liuling Pei
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xianhui Huang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhenping Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xuehan Tian
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Jiaqi You
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Jianying Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - David D Fang
- Cotton Fiber Bioscience Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, LA, 70124, USA
| | - Keith Lindsey
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
14
|
Mesejo C, Marzal A, Martínez-Fuentes A, Reig C, de Lucas M, Iglesias DJ, Primo-Millo E, Blázquez MA, Agustí M. Reversion of fruit-dependent inhibition of flowering in Citrus requires sprouting of buds with epigenetically silenced CcMADS19. THE NEW PHYTOLOGIST 2022; 233:526-533. [PMID: 34403516 DOI: 10.1111/nph.17681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/10/2021] [Indexed: 05/16/2023]
Abstract
In Citrus, the response to environmental floral inductive signals is inhibited by the presence of developing fruits. The mechanism involves epigenetic activation of the CcMADS19 locus (FLC orthologue), encoding a floral repressor. To understand how this epigenetic regulation is reverted to allow flowering in the following season, we have forced precocious sprouting of axillary buds in fruit-bearing shoots, and examined the competence to floral inductive signals of old and new leaves derived from them. We have found that CcMADS19 is enriched in repressive H3K27me3 marks in young, but not old leaves, revealing that axillary buds retain a silenced version of the floral repressor that is mitotically transmitted to the newly emerging leaves, which are able to induce flowering. Therefore, we propose that flowering in Citrus is necessarily preceded by vegetative sprouting, so that the competence to respond to floral inductive signals is reset in the new leaves.
Collapse
Affiliation(s)
- Carlos Mesejo
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, València, 46022, Spain
| | - Andrés Marzal
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, València, 46022, Spain
| | - Amparo Martínez-Fuentes
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, València, 46022, Spain
| | - Carmina Reig
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, València, 46022, Spain
| | - Miguel de Lucas
- Department of Biosciences, Durham University, Stockton Rd, Durham, DH1 3LE, UK
| | - Domingo J Iglesias
- Centro de Citricultura y Producción Vegetal, IVIA-GV, Moncada, València, 46113, Spain
| | - Eduardo Primo-Millo
- Centro de Citricultura y Producción Vegetal, IVIA-GV, Moncada, València, 46113, Spain
| | - Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, València, 46022, Spain
| | - Manuel Agustí
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, València, 46022, Spain
| |
Collapse
|
15
|
Cantó-Pastor A, Mason GA, Brady SM, Provart NJ. Arabidopsis bioinformatics: tools and strategies. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1585-1596. [PMID: 34695270 DOI: 10.1111/tpj.15547] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/01/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
The sequencing of the Arabidopsis thaliana genome 21 years ago ushered in the genomics era for plant research. Since then, an incredible variety of bioinformatic tools permit easy access to large repositories of genomic, transcriptomic, proteomic, epigenomic and other '-omic' data. In this review, we cover some more recent tools (and highlight the 'classics') for exploring such data in order to help formulate quality, testable hypotheses, often without having to generate new experimental data. We cover tools for examining gene expression and co-expression patterns, undertaking promoter analyses and gene set enrichment analyses, and exploring protein-protein and protein-DNA interactions. We will touch on tools that integrate different data sets at the end of the article.
Collapse
Affiliation(s)
- Alex Cantó-Pastor
- Department of Plant Biology and Genome Center, University of California Davis, 1 Shields Avenue, Davis, CA, 95616, USA
| | - G Alex Mason
- Department of Plant Biology and Genome Center, University of California Davis, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California Davis, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Nicholas J Provart
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
16
|
Kim J, Bordiya Y, Kathare PK, Zhao B, Zong W, Huq E, Sung S. Phytochrome B triggers light-dependent chromatin remodelling through the PRC2-associated PHD finger protein VIL1. NATURE PLANTS 2021; 7:1213-1219. [PMID: 34354260 PMCID: PMC8448934 DOI: 10.1038/s41477-021-00986-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 07/12/2021] [Indexed: 05/16/2023]
Abstract
To compensate for a sessile nature, plants have developed sophisticated mechanisms to sense varying environmental conditions. Phytochromes (phys) are light and temperature sensors that regulate downstream genes to render plants responsive to environmental stimuli1-4. Here, we show that phyB directly triggers the formation of a repressive chromatin loop by physically interacting with VERNALIZATION INSENSITIVE 3-LIKE1/VERNALIZATION 5 (VIL1/VRN5), a component of Polycomb Repressive Complex 2 (PRC2)5,6, in a light-dependent manner. VIL1 and phyB cooperatively contribute to the repression of growth-promoting genes through the enrichment of Histone H3 Lys27 trimethylation (H3K27me3), a repressive histone modification. In addition, phyB and VIL1 mediate the formation of a chromatin loop to facilitate the repression of ATHB2. Our findings show that phyB directly utilizes chromatin remodelling to regulate the expression of target genes in a light-dependent manner.
Collapse
Affiliation(s)
- Junghyun Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Yogendra Bordiya
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Praveen Kumar Kathare
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Bo Zhao
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Wei Zong
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Enamul Huq
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Sibum Sung
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
17
|
Post-Embryonic Phase Transitions Mediated by Polycomb Repressive Complexes in Plants. Int J Mol Sci 2021; 22:ijms22147533. [PMID: 34299153 PMCID: PMC8305008 DOI: 10.3390/ijms22147533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 12/20/2022] Open
Abstract
Correct timing of developmental phase transitions is critical for the survival and fitness of plants. Developmental phase transitions in plants are partially promoted by controlling relevant genes into active or repressive status. Polycomb Repressive Complex1 (PRC1) and PRC2, originally identified in Drosophila, are essential in initiating and/or maintaining genes in repressive status to mediate developmental phase transitions. Our review summarizes mechanisms in which the embryo-to-seedling transition, the juvenile-to-adult transition, and vegetative-to-reproductive transition in plants are mediated by PRC1 and PRC2, and suggests that PRC1 could act either before or after PRC2, or that they could function independently of each other. Details of the exact components of PRC1 and PRC2 in each developmental phase transitions and how they are recruited or removed will need to be addressed in the future.
Collapse
|
18
|
Wang X, Wang D, Xu W, Kong L, Ye X, Zhuang Q, Fan D, Luo K. Histone methyltransferase ATX1 dynamically regulates fiber secondary cell wall biosynthesis in Arabidopsis inflorescence stem. Nucleic Acids Res 2021; 49:190-205. [PMID: 33332564 PMCID: PMC7797065 DOI: 10.1093/nar/gkaa1191] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/29/2020] [Accepted: 11/24/2020] [Indexed: 11/21/2022] Open
Abstract
Secondary wall thickening in the sclerenchyma cells is strictly controlled by a complex network of transcription factors in vascular plants. However, little is known about the epigenetic mechanism regulating secondary wall biosynthesis. In this study, we identified that ARABIDOPSIS HOMOLOG of TRITHORAX1 (ATX1), a H3K4-histone methyltransferase, mediates the regulation of fiber cell wall development in inflorescence stems of Arabidopsis thaliana. Genome-wide analysis revealed that the up-regulation of genes involved in secondary wall formation during stem development is largely coordinated by increasing level of H3K4 tri-methylation. Among all histone methyltransferases for H3K4me3 in Arabidopsis, ATX1 is markedly increased during the inflorescence stem development and loss-of-function mutant atx1 was impaired in secondary wall thickening in interfascicular fibers. Genetic analysis showed that ATX1 positively regulates secondary wall deposition through activating the expression of secondary wall NAC master switch genes, SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN1 (SND1) and NAC SECONDARY WALL THICKENING PROMOTING FACTOR1 (NST1). We further identified that ATX1 directly binds the loci of SND1 and NST1, and activates their expression by increasing H3K4me3 levels at these loci. Taken together, our results reveal that ATX1 plays a key role in the regulation of secondary wall biosynthesis in interfascicular fibers during inflorescence stem development of Arabidopsis.
Collapse
Affiliation(s)
- Xianqiang Wang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Denghui Wang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Wenjian Xu
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Genetics and Birth Defects Control Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Lingfei Kong
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xiao Ye
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Qianye Zhuang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Di Fan
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China.,Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China.,Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
19
|
Abstract
Bioinformatic tools are now an everyday part of a plant researcher's collection of protocols. They allow almost instantaneous access to large data sets encompassing genomes, transcriptomes, proteomes, epigenomes, and other "-omes," which are now being generated with increasing speed and decreasing cost. With the appropriate queries, such tools can generate quality hypotheses, sometimes without the need for new experimental data. In this chapter, we will investigate some of the tools used for examining gene expression and coexpression patterns, performing promoter analyses and functional classification enrichment for sets of genes, and exploring protein-protein and protein-DNA interactions in Arabidopsis. We will also cover additional tools that allow integration of data from several sources for improved hypothesis generation.
Collapse
Affiliation(s)
- G Alex Mason
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
| | - Alex Cantó-Pastor
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
| | - Nicholas J Provart
- Department of Cell & Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
20
|
Labandera A, Tedds HM, Bailey M, Sprigg C, Etherington RD, Akintewe O, Kalleechurn G, Holdsworth MJ, Gibbs DJ. The PRT6 N-degron pathway restricts VERNALIZATION 2 to endogenous hypoxic niches to modulate plant development. THE NEW PHYTOLOGIST 2021; 229:126-139. [PMID: 32043277 PMCID: PMC7754370 DOI: 10.1111/nph.16477] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/04/2020] [Indexed: 05/20/2023]
Abstract
VERNALIZATION2 (VRN2), an angiosperm-specific subunit of the polycomb repressive complex 2 (PRC2), is an oxygen (O2 )-regulated target of the PCO branch of the PRT6 N-degron pathway of ubiquitin-mediated proteolysis. How this post-translational regulation coordinates VRN2 activity remains to be fully established. Here we use Arabidopsis thaliana ecotypes, mutants and transgenic lines to determine how control of VRN2 stability contributes to its functions during plant development. VRN2 localizes to endogenous hypoxic regions in aerial and root tissues. In the shoot apex, VRN2 differentially modulates flowering time dependent on photoperiod, whilst its presence in lateral root primordia and the root apical meristem negatively regulates root system architecture. Ectopic accumulation of VRN2 does not enhance its effects on flowering, but does potentiate its repressive effects on root growth. In late-flowering vernalization-dependent ecotypes, VRN2 is only active outside meristems when its proteolysis is inhibited in response to cold exposure, as its function requires concomitant cold-triggered increases in other PRC2 subunits and cofactors. We conclude that the O2 -sensitive N-degron of VRN2 has a dual function, confining VRN2 to meristems and primordia, where it has specific developmental roles, whilst also permitting broad accumulation outside of meristems in response to environmental cues, leading to other functions.
Collapse
Affiliation(s)
| | - Hannah M. Tedds
- School of BiosciencesUniversity of BirminghamEdgbastonB15 2TTUK
| | - Mark Bailey
- School of BiosciencesUniversity of BirminghamEdgbastonB15 2TTUK
| | - Colleen Sprigg
- School of BiosciencesUniversity of BirminghamEdgbastonB15 2TTUK
| | | | | | | | | | - Daniel J. Gibbs
- School of BiosciencesUniversity of BirminghamEdgbastonB15 2TTUK
| |
Collapse
|
21
|
The complexity of PRC2 catalysts CLF and SWN in plants. Biochem Soc Trans 2020; 48:2779-2789. [PMID: 33170267 DOI: 10.1042/bst20200660] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/14/2020] [Accepted: 10/21/2020] [Indexed: 11/17/2022]
Abstract
Polycomb repressive complex 2 (PRC2) is an evolutionally conserved multisubunit complex essential for the development of eukaryotes. In Arabidopsis thaliana (Arabidopsis), CURLY LEAF (CLF) and SWINGER (SWN) are PRC2 catalytic subunits that repress gene expression through trimethylating histone H3 at lysine 27 (H3K27me3). CLF and SWN function to safeguard the appropriate expression of key developmental regulators throughout the plant life cycle. Recent researches have advanced our knowledge of the biological roles and the regulation of the activity of CLF and SWN. In this review, we summarize these recent findings and highlight the redundant and differential roles of CLF and SWN in plant development. Further, we discuss the molecular mechanisms underlying CLF and SWN recruitment to specific genomic loci, as well as their interplays with Trithorax-group (TrxG) proteins in plants.
Collapse
|
22
|
Park EY, Tsuyuki KM, Parsons EM, Jeong J. PRC2-mediated H3K27me3 modulates shoot iron homeostasis in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2020; 15:1784549. [PMID: 32594838 PMCID: PMC8550290 DOI: 10.1080/15592324.2020.1784549] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Plants use intricate mechanisms to adapt to changing iron conditions because iron is essential and also one of the most limiting nutrients for plant growth. Furthermore, iron is potentially toxic in excess and must be tightly regulated. Previously, we showed that chromatin remodeling via histone 3 lysine 27 trimethylation (H3K27me3) modulates the expression of FIT-dependent genes under iron deficiency in roots. This study builds on our previous findings, showing that H3K27me3 also modulates iron regulation in shoots. In the clf mutant, which lacks the predominant H3K27 tri-methyltransferase, we detected increased iron translocation to shoots under iron deficiency as compared to wild type. Transcriptomic analysis of shoots also revealed differential expression of genes consistent with higher iron levels in clf shoots than wild type shoots under iron-deficient conditions. In addition, we verify that YSL1 and IMA1, two genes involved in signaling iron status from shoots to roots, are direct targets of H3K27me3 and reveal iron-dependent deposition of H3K27me3 on these loci. This study contributes to a better understanding of the molecular mechanisms behind iron regulation in plants, as the effect of PRC2-mediated H3K27me3 on iron homeostasis genes expressed in the shoots has not been previously reported to our knowledge.
Collapse
Affiliation(s)
- Emily Y. Park
- Department of Biology, Amherst College, Amherst, MA, USA
| | | | | | - Jeeyon Jeong
- Department of Biology, Amherst College, Amherst, MA, USA
- CONTACT Jeeyon Jeong Department of Biology Amherst College, Amherst, MA, USA
| |
Collapse
|
23
|
Borg M, Jacob Y, Susaki D, LeBlanc C, Buendía D, Axelsson E, Kawashima T, Voigt P, Boavida L, Becker J, Higashiyama T, Martienssen R, Berger F. Targeted reprogramming of H3K27me3 resets epigenetic memory in plant paternal chromatin. Nat Cell Biol 2020; 22:621-629. [PMID: 32393884 PMCID: PMC7116658 DOI: 10.1038/s41556-020-0515-y] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/31/2020] [Indexed: 12/22/2022]
Abstract
Epigenetic marks are reprogrammed in the gametes to reset genomic potential in the next generation. In mammals, paternal chromatin is extensively reprogrammed through the global erasure of DNA methylation and the exchange of histones with protamines1,2. Precisely how the paternal epigenome is reprogrammed in flowering plants has remained unclear since DNA is not demethylated and histones are retained in sperm3,4. Here, we describe a multi-layered mechanism by which H3K27me3 is globally lost from histone-based sperm chromatin in Arabidopsis. This mechanism involves the silencing of H3K27me3 writers, activity of H3K27me3 erasers and deposition of a sperm-specific histone, H3.10 (ref. 5), which we show is immune to lysine 27 methylation. The loss of H3K27me3 facilitates the transcription of genes essential for spermatogenesis and pre-configures sperm with a chromatin state that forecasts gene expression in the next generation. Thus, plants have evolved a specific mechanism to simultaneously differentiate male gametes and reprogram the paternal epigenome.
Collapse
Affiliation(s)
- Michael Borg
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Yannick Jacob
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, New York, NY, USA
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT, USA
| | - Daichi Susaki
- Institute of Transformative Bio-Molecules (WPI-ITbM), Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Chantal LeBlanc
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT, USA
| | - Daniel Buendía
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Elin Axelsson
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Tomokazu Kawashima
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| | - Philipp Voigt
- Wellcome Trust Centre for Cell Biology, The University of Edinburgh, Edinburgh, UK
| | - Leonor Boavida
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Jörg Becker
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (WPI-ITbM), Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Robert Martienssen
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, New York, NY, USA
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria.
| |
Collapse
|
24
|
Wu J, Mohamed D, Dowhanik S, Petrella R, Gregis V, Li J, Wu L, Gazzarrini S. Spatiotemporal Restriction of FUSCA3 Expression by Class I BPCs Promotes Ovule Development and Coordinates Embryo and Endosperm Growth. THE PLANT CELL 2020; 32:1886-1904. [PMID: 32265266 PMCID: PMC7268797 DOI: 10.1105/tpc.19.00764] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/10/2020] [Accepted: 04/03/2020] [Indexed: 05/06/2023]
Abstract
Spatiotemporal regulation of gene expression is critical for proper developmental timing in plants and animals. The transcription factor FUSCA3 (FUS3) regulates developmental phase transitions by acting as a link between hormonal pathways in Arabidopsis (Arabidopsis thaliana). However, the mechanisms governing its spatiotemporal expression pattern are poorly understood. Here, we show that FUS3 is repressed in the ovule integuments and seed endosperm. FUS3 repression requires class I BASIC PENTACYSTEINE (BPC) proteins, which directly bind GA/CT cis-elements in FUS3 and restrict its expression pattern. During vegetative and reproductive development, FUS3 derepression in bpc1-1 bpc2 (bpc1/2) double mutant or misexpression in ProML1:FUS3 lines causes dwarf plants carrying defective flowers and aborted ovules. After fertilization, ectopic FUS3 expression in bpc1/2 endosperm or ProML1:FUS3 endosperm and endothelium increases endosperm nuclei proliferation and seed size, causing delayed or arrested embryo development. These phenotypes are rescued in bpc1/2 fus3-3 Finally, class I BPCs interact with FIS-PRC2 (FERTILIZATION-INDEPENDENT SEED-Polycomb Repressive Complex2), which represses FUS3 in the endosperm during early seed development. We propose that BPC1 and 2 promote the transition from reproductive to seed development by repressing FUS3 in ovule integuments. After fertilization, BPC1 and 2 and FIS-PRC2 repress FUS3 in the endosperm to coordinate early endosperm and embryo growth.
Collapse
Affiliation(s)
- Jian Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China
- Department of Biological Sciences, University of Toronto Scarborough, Ontario M1C 1A4, Canada
| | - Deka Mohamed
- Department of Biological Sciences, University of Toronto Scarborough, Ontario M1C 1A4, Canada
- Department of Cell and Systems Biology, University of Toronto, Ontario M5S 3G5, Canada
| | - Sebastian Dowhanik
- Department of Biological Sciences, University of Toronto Scarborough, Ontario M1C 1A4, Canada
| | - Rosanna Petrella
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Veronica Gregis
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Jingru Li
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China
| | - Lin Wu
- Department of Biological Sciences, University of Toronto Scarborough, Ontario M1C 1A4, Canada
- Chongqing Key Laboratory of Economic Plant Biotechnology, Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing 402160, China
| | - Sonia Gazzarrini
- Department of Biological Sciences, University of Toronto Scarborough, Ontario M1C 1A4, Canada
- Department of Cell and Systems Biology, University of Toronto, Ontario M5S 3G5, Canada
| |
Collapse
|
25
|
MacQueen AH, White JW, Lee R, Osorno JM, Schmutz J, Miklas PN, Myers J, McClean PE, Juenger TE. Genetic Associations in Four Decades of Multienvironment Trials Reveal Agronomic Trait Evolution in Common Bean. Genetics 2020; 215:267-284. [PMID: 32205398 PMCID: PMC7198278 DOI: 10.1534/genetics.120.303038] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 03/12/2020] [Indexed: 11/18/2022] Open
Abstract
Multienvironment trials (METs) are widely used to assess the performance of promising crop germplasm. Though seldom designed to elucidate genetic mechanisms, MET data sets are often much larger than could be duplicated for genetic research and, given proper interpretation, may offer valuable insights into the genetics of adaptation across time and space. The Cooperative Dry Bean Nursery (CDBN) is a MET for common bean (Phaseolus vulgaris) grown for > 70 years in the United States and Canada, consisting of 20-50 entries each year at 10-20 locations. The CDBN provides a rich source of phenotypic data across entries, years, and locations that is amenable to genetic analysis. To study stable genetic effects segregating in this MET, we conducted genome-wide association studies (GWAS) using best linear unbiased predictions derived across years and locations for 21 CDBN phenotypes and genotypic data (1.2 million SNPs) for 327 CDBN genotypes. The value of this approach was confirmed by the discovery of three candidate genes and genomic regions previously identified in balanced GWAS. Multivariate adaptive shrinkage (mash) analysis, which increased our power to detect significant correlated effects, found significant effects for all phenotypes. Mash found two large genomic regions with effects on multiple phenotypes, supporting a hypothesis of pleiotropic or linked effects that were likely selected on in pursuit of a crop ideotype. Overall, our results demonstrate that statistical genomics approaches can be used on MET phenotypic data to discover significant genetic effects and to define genomic regions associated with crop improvement.
Collapse
Affiliation(s)
- Alice H MacQueen
- Integrative Biology, The University of Texas at Austin, Texas 78712
| | - Jeffrey W White
- U.S. Arid Land Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Maricopa, Arizona 85239
| | - Rian Lee
- Genomics and Bioinformatics Program, North Dakota State University, Fargo, North Dakota 58102
| | - Juan M Osorno
- Genomics and Bioinformatics Program, North Dakota State University, Fargo, North Dakota 58102
| | - Jeremy Schmutz
- Hudson-Alpha Institute for Biotechnology, Huntsville, Alabama 35806
| | - Phillip N Miklas
- Grain Legume Genetics and Physiology Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Prosser, Washington 99350
| | - Jim Myers
- Department of Horticulture, Oregon State University, Corvallis, Oregon 97331
| | - Phillip E McClean
- Genomics and Bioinformatics Program, North Dakota State University, Fargo, North Dakota 58102
| | - Thomas E Juenger
- Integrative Biology, The University of Texas at Austin, Texas 78712
| |
Collapse
|
26
|
Zhou H, Liu Y, Liang Y, Zhou D, Li S, Lin S, Dong H, Huang L. The function of histone lysine methylation related SET domain group proteins in plants. Protein Sci 2020; 29:1120-1137. [PMID: 32134523 DOI: 10.1002/pro.3849] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/30/2020] [Accepted: 03/03/2020] [Indexed: 11/08/2022]
Abstract
Histone methylation, which is mediated by the histone lysine (K) methyltransferases (HKMTases), is a mechanism associated with many pathways in eukaryotes. Most HKMTases have a conserved SET (Su(var) 3-9,E(z),Trithorax) domain, while the HKMTases with SET domains are called the SET domain group (SDG) proteins. In plants, only SDG proteins can work as HKMTases. In this review, we introduced the classification of SDG family proteins in plants and the structural characteristics of each subfamily, surmise the functions of SDG family members in plant growth and development processes, including pollen and female gametophyte development, flowering, plant morphology and the responses to stresses. This review will help researchers better understand the SDG proteins and histone methylation in plants and lay a basic foundation for further studies on SDG proteins.
Collapse
Affiliation(s)
- Huiyan Zhou
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Yanhong Liu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Yuwei Liang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Dong Zhou
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Shuifeng Li
- Hangzhou Xiaoshan District Agricultural Technology Extension Center, Hangzhou, China
| | - Sue Lin
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Heng Dong
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, School of Medicine, Holistic Integrative Pharmacy Institutes (HIPI), Hangzhou Normal University, Hangzhou, China
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
27
|
Schwarz B, Bauer P. FIT, a regulatory hub for iron deficiency and stress signaling in roots, and FIT-dependent and -independent gene signatures. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1694-1705. [PMID: 31922570 PMCID: PMC7067300 DOI: 10.1093/jxb/eraa012] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/08/2020] [Indexed: 05/05/2023]
Abstract
Iron (Fe) is vital for plant growth. Plants balance the beneficial and toxic effects of this micronutrient, and tightly control Fe uptake and allocation. Here, we review the role of the basic helix-loop-helix (bHLH) transcription factor FIT (FER-LIKE FE DEFICIENCY-INDUCED TRANSCRIPTION FACTOR) in Fe acquisition. FIT is not only essential, it is also a central regulatory hub in root cells to steer and adjust the rate of Fe uptake by the root in a changing environment. FIT regulates a subset of root Fe deficiency (-Fe) response genes. Based on a combination of co-expression network and FIT-dependent transcriptome analyses, we defined a set of FIT-dependent and FIT-independent gene expression signatures and co-expression clusters that encode specific functions in Fe regulation and Fe homeostasis. These gene signatures serve as markers to integrate novel regulatory factors and signals into the -Fe response cascade. FIT forms a complex with bHLH subgroup Ib transcription factors. Furthermore, it interacts with key regulators from different signaling pathways that either activate or inhibit FIT function to adjust Fe acquisition to growth and environmental constraints. Co-expression clusters and FIT protein interactions suggest a connection of -Fe with ABA responses and root cell elongation processes that can be explored in future studies.
Collapse
Affiliation(s)
- Birte Schwarz
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, Düsseldorf, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, Düsseldorf, Germany
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf, Germany
- Correspondence:
| |
Collapse
|
28
|
Li B, Tang M, Caseys C, Nelson A, Zhou M, Zhou X, Brady SM, Kliebenstein DJ. Epistatic Transcription Factor Networks Differentially Modulate Arabidopsis Growth and Defense. Genetics 2020; 214:529-541. [PMID: 31852726 PMCID: PMC7017016 DOI: 10.1534/genetics.119.302996] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/17/2019] [Indexed: 11/18/2022] Open
Abstract
Plants integrate internal and external signals to finely coordinate growth and defense for maximal fitness within a complex environment. A common model suggests that growth and defense show a trade-offs relationship driven by energy costs. However, recent studies suggest that the coordination of growth and defense likely involves more conditional and intricate connections than implied by the trade-off model. To explore how a transcription factor (TF) network may coordinate growth and defense, we used a high-throughput phenotyping approach to measure growth and flowering in a set of single and pairwise mutants previously linked to the aliphatic glucosinolate (GLS) defense pathway. Supporting a link between growth and defense, 17 of the 20 tested defense-associated TFs significantly influenced plant growth and/or flowering time. The TFs' effects were conditional upon the environment and age of the plant, and more critically varied across the growth and defense phenotypes for a given genotype. In support of the coordination model of growth and defense, the TF mutant's effects on short-chain aliphatic GLS and growth did not display a simple correlation. We propose that large TF networks integrate internal and external signals and separately modulate growth and the accumulation of the defensive aliphatic GLS.
Collapse
Affiliation(s)
- Baohua Li
- Department of Plant Sciences, University of California, Davis, California 95616
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Michelle Tang
- Department of Plant Sciences, University of California, Davis, California 95616
- Department of Plant Biology and Genome Center, University of California, Davis, California 95616
| | - Céline Caseys
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Ayla Nelson
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Marium Zhou
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Xue Zhou
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California, Davis, California 95616
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California, Davis, California 95616
- DynaMo Center of Excellence, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| |
Collapse
|
29
|
Jing T, Ardiansyah R, Xu Q, Xing Q, Müller-Xing R. Reprogramming of Cell Fate During Root Regeneration by Transcriptional and Epigenetic Networks. FRONTIERS IN PLANT SCIENCE 2020; 11:317. [PMID: 32269581 PMCID: PMC7112134 DOI: 10.3389/fpls.2020.00317] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/04/2020] [Indexed: 05/18/2023]
Abstract
Many plant species are able to regenerate adventitious roots either directly from aerial organs such as leaves or stems, in particularly after detachment (cutting), or indirectly, from over-proliferating tissue termed callus. In agriculture, this capacity of de novo root formation from cuttings can be used to clonally propagate several important crop plants including cassava, potato, sugar cane, banana and various fruit or timber trees. Direct and indirect de novo root regeneration (DNRR) originates from pluripotent cells of the pericycle tissue, from other root-competent cells or from non-root-competent cells that first dedifferentiate. Independently of their origin, the cells convert into root founder cells, which go through proliferation and differentiation subsequently forming functional root meristems, root primordia and the complete root. Recent studies in the model plants Arabidopsis thaliana and rice have identified several key regulators building in response to the phytohormone auxin transcriptional networks that are involved in both callus formation and DNRR. In both cases, epigenetic regulation seems essential for the dynamic reprogramming of cell fate, which is correlated with local and global changes of the chromatin states that might ensure the correct spatiotemporal expression pattern of the key regulators. Future approaches might investigate in greater detail whether and how the transcriptional key regulators and the writers, erasers, and readers of epigenetic modifications interact to control DNRR.
Collapse
Affiliation(s)
- Tingting Jing
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- Institute of Development, College of Life Science, Northeast Forestry University, Harbin, China
| | - Rhomi Ardiansyah
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- Institute of Genetics, College of Life Science, Northeast Forestry University, Harbin, China
| | - Qijiang Xu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- Institute of Development, College of Life Science, Northeast Forestry University, Harbin, China
| | - Qian Xing
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- Institute of Development, College of Life Science, Northeast Forestry University, Harbin, China
- *Correspondence: Qian Xing,
| | - Ralf Müller-Xing
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- Institute of Genetics, College of Life Science, Northeast Forestry University, Harbin, China
- Ralf Müller-Xing, ;
| |
Collapse
|
30
|
Chen D, Wang Q, Feng J, Ruan Y, Shen WH. Arabidopsis ZUOTIN RELATED FACTOR1 Proteins Are Required for Proper Embryonic and Post-Embryonic Root Development. FRONTIERS IN PLANT SCIENCE 2019; 10:1498. [PMID: 31824531 PMCID: PMC6882920 DOI: 10.3389/fpls.2019.01498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
The H2A/UBIQUITIN-binding proteins AtZRF1a/b have been reported as key regulators involved in multiple processes of Arabidopsis plant growth and development. Yet, the cellular and molecular mechanisms underlying the mutant phenotype remain largely elusive. Here we show that loss-of-function of AtZRF1a/b causes defective root elongation and deformed root apical meristem organization in seedlings. The premature termination of the primary root in the atzrf1a;atzrf1b double mutant is associated with an advanced onset of endoreduplication and subsequent consumption of reservoir stem cells. Cytological analyses using cell type-specific markers and florescent dyes indicate that AtZRF1a/b are involved in maintenance of proper cell layer organization, determinacy of cell identity, and establishment of auxin gradient and maximum at the root tip. During embryogenesis AtZRF1a/b act dominantly in regulating the maintenance of ground tissue initial cells and production of lateral root cap. Lastly, quantitative real-time polymerase chain reaction analysis shows mis-expression of some key genes involved in regulating cell patterning, cell proliferation and/or hormone pathways. Our results provide important insight into AtZRF1a/b function in cell fate determinacy and in establishment and maintenance of proper stem cell reservoir during embryonic and post-embryonic root development.
Collapse
Affiliation(s)
- Donghong Chen
- Institut de Biologie Moléculaire des Plantes (IBMP), UPR2357 CNRS, Université de Strasbourg, Strasbourg, France
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- College of Bioscience and Biotechnology, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Hunan Agricultural University, Changsha, China
| | - Qiannan Wang
- Institut de Biologie Moléculaire des Plantes (IBMP), UPR2357 CNRS, Université de Strasbourg, Strasbourg, France
| | - Jing Feng
- Institut de Biologie Moléculaire des Plantes (IBMP), UPR2357 CNRS, Université de Strasbourg, Strasbourg, France
| | - Ying Ruan
- College of Bioscience and Biotechnology, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Hunan Agricultural University, Changsha, China
| | - Wen-Hui Shen
- Institut de Biologie Moléculaire des Plantes (IBMP), UPR2357 CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
31
|
Lee LR, Wengier DL, Bergmann DC. Cell-type-specific transcriptome and histone modification dynamics during cellular reprogramming in the Arabidopsis stomatal lineage. Proc Natl Acad Sci U S A 2019; 116:21914-21924. [PMID: 31594845 PMCID: PMC6815143 DOI: 10.1073/pnas.1911400116] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Plant cells maintain remarkable developmental plasticity, allowing them to clonally reproduce and to repair tissues following wounding; yet plant cells normally stably maintain consistent identities. Although this capacity was recognized long ago, our mechanistic understanding of the establishment, maintenance, and erasure of cellular identities in plants remains limited. Here, we develop a cell-type-specific reprogramming system that can be probed at the genome-wide scale for alterations in gene expression and histone modifications. We show that relationships among H3K27me3, H3K4me3, and gene expression in single cell types mirror trends from complex tissue, and that H3K27me3 dynamics regulate guard cell identity. Further, upon initiation of reprogramming, guard cells induce H3K27me3-mediated repression of a regulator of wound-induced callus formation, suggesting that cells in intact tissues may have mechanisms to sense and resist inappropriate dedifferentiation. The matched ChIP-sequencing (seq) and RNA-seq datasets created for this analysis also serve as a resource enabling inquiries into the dynamic and global-scale distribution of histone modifications in single cell types in plants.
Collapse
Affiliation(s)
- Laura R Lee
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Diego L Wengier
- Department of Biology, Stanford University, Stanford, CA 94305
- HHMI, Stanford University, Stanford, CA 94305
| | - Dominique C Bergmann
- Department of Biology, Stanford University, Stanford, CA 94305;
- HHMI, Stanford University, Stanford, CA 94305
| |
Collapse
|
32
|
Ruta V, Longo C, Boccaccini A, Madia VN, Saccoliti F, Tudino V, Di Santo R, Lorrai R, Dello Ioio R, Sabatini S, Costi R, Costantino P, Vittorioso P. Inhibition of Polycomb Repressive Complex 2 activity reduces trimethylation of H3K27 and affects development in Arabidopsis seedlings. BMC PLANT BIOLOGY 2019; 19:429. [PMID: 31619182 PMCID: PMC6796367 DOI: 10.1186/s12870-019-2057-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 09/26/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Polycomb repressive complex 2 (PRC2) is an epigenetic transcriptional repression system, whose catalytic subunit (ENHANCER OF ZESTE HOMOLOG 2, EZH2 in animals) is responsible for trimethylating histone H3 at lysine 27 (H3K27me3). In mammals, gain-of-function mutations as well as overexpression of EZH2 have been associated with several tumors, therefore making this subunit a suitable target for the development of selective inhibitors. Indeed, highly specific small-molecule inhibitors of EZH2 have been reported. In plants, mutations in some PRC2 components lead to embryonic lethality, but no trial with any inhibitor has ever been reported. RESULTS We show here that the 1,5-bis (3-bromo-4-methoxyphenyl)penta-1,4-dien-3-one compound (RDS 3434), previously reported as an EZH2 inhibitor in human leukemia cells, is active on the Arabidopsis catalytic subunit of PRC2, since treatment with the drug reduces the total amount of H3K27me3 in a dose-dependent fashion. Consistently, we show that the expression level of two PRC2 targets is significantly increased following treatment with the RDS 3434 compound. Finally, we show that impairment of H3K27 trimethylation in Arabidopsis seeds and seedlings affects both seed germination and root growth. CONCLUSIONS Our results provide a useful tool for the plant community in investigating how PRC2 affects transcriptional control in plant development.
Collapse
Affiliation(s)
- Veronica Ruta
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Chiara Longo
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Alessandra Boccaccini
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Valentina Noemi Madia
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Dipartimento di Chimica e Tecnologie del Farmaco, Dipartimento di Eccellenza 2018-2022, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Francesco Saccoliti
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Dipartimento di Chimica e Tecnologie del Farmaco, Dipartimento di Eccellenza 2018-2022, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Valeria Tudino
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Dipartimento di Chimica e Tecnologie del Farmaco, Dipartimento di Eccellenza 2018-2022, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Roberto Di Santo
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Dipartimento di Chimica e Tecnologie del Farmaco, Dipartimento di Eccellenza 2018-2022, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Riccardo Lorrai
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Raffaele Dello Ioio
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Sabrina Sabatini
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Roberta Costi
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Dipartimento di Chimica e Tecnologie del Farmaco, Dipartimento di Eccellenza 2018-2022, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Paolo Costantino
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Paola Vittorioso
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
33
|
Burgess SJ, Reyna-Llorens I, Stevenson SR, Singh P, Jaeger K, Hibberd JM. Genome-Wide Transcription Factor Binding in Leaves from C 3 and C 4 Grasses. THE PLANT CELL 2019; 31:2297-2314. [PMID: 31427470 PMCID: PMC6790085 DOI: 10.1105/tpc.19.00078] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/06/2019] [Accepted: 08/14/2019] [Indexed: 05/19/2023]
Abstract
The majority of plants use C3 photosynthesis, but over 60 independent lineages of angiosperms have evolved the C4 pathway. In most C4 species, photosynthesis gene expression is compartmented between mesophyll and bundle-sheath cells. We performed DNaseI sequencing to identify genome-wide profiles of transcription factor binding in leaves of the C4 grasses Zea mays, Sorghum bicolor, and Setaria italica as well as C3 Brachypodium distachyon In C4 species, while bundle-sheath strands and whole leaves shared similarity in the broad regions of DNA accessible to transcription factors, the short sequences bound varied. Transcription factor binding was prevalent in gene bodies as well as promoters, and many of these sites could represent duons that influence gene regulation in addition to amino acid sequence. Although globally there was little correlation between any individual DNaseI footprint and cell-specific gene expression, within individual species transcription factor binding to the same motifs in multiple genes provided evidence for shared mechanisms governing C4 photosynthesis gene expression. Furthermore, interspecific comparisons identified a small number of highly conserved transcription factor binding sites associated with leaves from species that diverged around 60 million years ago. These data therefore provide insight into the architecture associated with C4 photosynthesis gene expression in particular and characteristics of transcription factor binding in cereal crops in general.
Collapse
Affiliation(s)
- Steven J Burgess
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Ivan Reyna-Llorens
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Sean R Stevenson
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Pallavi Singh
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Katja Jaeger
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|
34
|
Kulkarni SR, Vaneechoutte D, Van de Velde J, Vandepoele K. TF2Network: predicting transcription factor regulators and gene regulatory networks in Arabidopsis using publicly available binding site information. Nucleic Acids Res 2019; 46:e31. [PMID: 29272447 PMCID: PMC5888541 DOI: 10.1093/nar/gkx1279] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 12/18/2017] [Indexed: 12/16/2022] Open
Abstract
A gene regulatory network (GRN) is a collection of regulatory interactions between transcription factors (TFs) and their target genes. GRNs control different biological processes and have been instrumental to understand the organization and complexity of gene regulation. Although various experimental methods have been used to map GRNs in Arabidopsis thaliana, their limited throughput combined with the large number of TFs makes that for many genes our knowledge about regulating TFs is incomplete. We introduce TF2Network, a tool that exploits the vast amount of TF binding site information and enables the delineation of GRNs by detecting potential regulators for a set of co-expressed or functionally related genes. Validation using two experimental benchmarks reveals that TF2Network predicts the correct regulator in 75–92% of the test sets. Furthermore, our tool is robust to noise in the input gene sets, has a low false discovery rate, and shows a better performance to recover correct regulators compared to other plant tools. TF2Network is accessible through a web interface where GRNs are interactively visualized and annotated with various types of experimental functional information. TF2Network was used to perform systematic functional and regulatory gene annotations, identifying new TFs involved in circadian rhythm and stress response.
Collapse
Affiliation(s)
- Shubhada R Kulkarni
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 927, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052 Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
| | - Dries Vaneechoutte
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 927, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052 Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
| | - Jan Van de Velde
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 927, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052 Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
| | - Klaas Vandepoele
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 927, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052 Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
- To whom correspondence should be addressed. Tel: +32 9 3313822; Fax: +32 9 3313809;
| |
Collapse
|
35
|
Wang P, Nolan TM, Yin Y, Bassham DC. Identification of transcription factors that regulate ATG8 expression and autophagy in Arabidopsis. Autophagy 2019; 16:123-139. [PMID: 30909785 DOI: 10.1080/15548627.2019.1598753] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Autophagy is a conserved catabolic process in eukaryotes that contributes to cell survival in response to multiple stresses and is important for organism fitness. In Arabidopsis thaliana, the core machinery of autophagy is well defined, but its transcriptional regulation is largely unknown. The ATG8 (autophagy-related 8) protein plays central roles in decorating autophagosomes and binding to specific cargo receptors to recruit cargo to autophagosomes. We propose that the transcriptional control of ATG8 genes is important during the formation of autophagosomes and therefore contributes to survival during stress. Here, we describe a yeast one-hybrid (Y1H) screen for transcription factors (TFs) that regulate ATG8 gene expression in Arabidopsis, using the promoters of 4 ATG8 genes. We identified a total of 225 TFs from 35 families that bind these promoters. The TF-ATG8 promoter interactions revealed a wide array of diverse TF families for different promoters, as well as enrichment for families of TFs that bound to specific fragments. These TFs are not only involved in plant developmental processes but also in the response to environmental stresses. TGA9 (TGACG (TGA) motif-binding protein 9)/AT1G08320 was confirmed as a positive regulator of autophagy. TGA9 overexpression activated autophagy under both control and stress conditions and transcriptionally up-regulated expression of ATG8B, ATG8E and additional ATG genes via binding to their promoters. Our results provide a comprehensive resource of TFs that regulate ATG8 gene expression and lay a foundation for understanding the transcriptional regulation of plant autophagy.Abbreviations: ABRC: Arabidopsis biological resource center; AP2-EREBP: APETALA2/Ethylene-responsive element binding protein; ARF: auxin response factor; ATF4: activating transcription factor 4; ATG: autophagy-related; ChIP: chromatin immunoprecipitation; DAP-seq: DNA affinity purification sequencing; FOXO: forkhead box O; GFP: green fluorescent protein; GO: gene ontologies; HB: homeobox; LD: long-day; LUC: firefly luciferase; MAP1LC3: microtubule associated protein 1 light chain 3; MDC: monodansylcadaverine; 3-MA: 3-methyladenine; OE: overexpressing; PCD: programmed cell death; qPCR: quantitative polymerase chain reaction; REN: renilla luciferase; RT: room temperature; SD: standard deviation; TF: transcription factor; TFEB: transcription factor EB; TGA: TGACG motif; TOR: target of rapamycin; TSS: transcription start site; WT: wild-type; Y1H: yeast one-hybrid.
Collapse
Affiliation(s)
- Ping Wang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA.,State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Trevor M Nolan
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Yanhai Yin
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
36
|
Dong S, Lau V, Song R, Ierullo M, Esteban E, Wu Y, Sivieng T, Nahal H, Gaudinier A, Pasha A, Oughtred R, Dolinski K, Tyers M, Brady SM, Grene R, Usadel B, Provart NJ. Proteome-wide, Structure-Based Prediction of Protein-Protein Interactions/New Molecular Interactions Viewer. PLANT PHYSIOLOGY 2019; 179:1893-1907. [PMID: 30679268 PMCID: PMC6446796 DOI: 10.1104/pp.18.01216] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/15/2019] [Indexed: 05/04/2023]
Abstract
Determining the complete Arabidopsis (Arabidopsis thaliana) protein-protein interaction network is essential for understanding the functional organization of the proteome. Numerous small-scale studies and a couple of large-scale ones have elucidated a fraction of the estimated 300,000 binary protein-protein interactions in Arabidopsis. In this study, we provide evidence that a docking algorithm has the ability to identify real interactions using both experimentally determined and predicted protein structures. We ranked 0.91 million interactions generated by all possible pairwise combinations of 1,346 predicted structure models from an Arabidopsis predicted "structure-ome" and found a significant enrichment of real interactions for the top-ranking predicted interactions, as shown by cosubcellular enrichment analysis and yeast two-hybrid validation. Our success rate for computationally predicted, structure-based interactions was 63% of the success rate for published interactions naively tested using the yeast two-hybrid system and 2.7 times better than for randomly picked pairs of proteins. This study provides another perspective in interactome exploration and biological network reconstruction using protein structural information. We have made these interactions freely accessible through an improved Arabidopsis Interactions Viewer and have created community tools for accessing these and ∼2.8 million other protein-protein and protein-DNA interactions for hypothesis generation by researchers worldwide. The Arabidopsis Interactions Viewer is freely available at http://bar.utoronto.ca/interactions2/.
Collapse
Affiliation(s)
- Shaowei Dong
- Department of Cell & Systems Biology/Centre for the Analysis of Genome Evolution and Function, 25 Willcocks St., University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Vincent Lau
- Department of Cell & Systems Biology/Centre for the Analysis of Genome Evolution and Function, 25 Willcocks St., University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Richard Song
- Department of Cell & Systems Biology/Centre for the Analysis of Genome Evolution and Function, 25 Willcocks St., University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Matthew Ierullo
- Department of Cell & Systems Biology/Centre for the Analysis of Genome Evolution and Function, 25 Willcocks St., University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Eddi Esteban
- Department of Cell & Systems Biology/Centre for the Analysis of Genome Evolution and Function, 25 Willcocks St., University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Yingzhou Wu
- Department of Cell & Systems Biology/Centre for the Analysis of Genome Evolution and Function, 25 Willcocks St., University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Teeratham Sivieng
- Department of Cell & Systems Biology/Centre for the Analysis of Genome Evolution and Function, 25 Willcocks St., University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Hardeep Nahal
- Department of Cell & Systems Biology/Centre for the Analysis of Genome Evolution and Function, 25 Willcocks St., University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Allison Gaudinier
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, California 95616
| | - Asher Pasha
- Department of Cell & Systems Biology/Centre for the Analysis of Genome Evolution and Function, 25 Willcocks St., University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Rose Oughtred
- Institute for Biology I/Sammelbau Biologie II, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany
- IBG-2: Plant Sciences, Leo-Brandt-Strasse, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Washington Road, Princeton, New Jersey 08544
| | - Kara Dolinski
- Institute for Biology I/Sammelbau Biologie II, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany
- IBG-2: Plant Sciences, Leo-Brandt-Strasse, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Washington Road, Princeton, New Jersey 08544
| | - Mike Tyers
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, California 95616
| | - Ruth Grene
- Department of Plant Pathology, Physiology, and Weed Science, 101H Price Hall, Mail Code: 0331, 170 Drillfield Drive, Blacksburg, Virginia 24061
| | - Björn Usadel
- Institute for Biology I/Sammelbau Biologie II, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany
| | - Nicholas J Provart
- Department of Cell & Systems Biology/Centre for the Analysis of Genome Evolution and Function, 25 Willcocks St., University of Toronto, Toronto, Ontario M5S 3B2, Canada
| |
Collapse
|
37
|
You Y, Sawikowska A, Lee JE, Benstein RM, Neumann M, Krajewski P, Schmid M. Phloem Companion Cell-Specific Transcriptomic and Epigenomic Analyses Identify MRF1, a Regulator of Flowering. THE PLANT CELL 2019; 31:325-345. [PMID: 30670485 PMCID: PMC6447005 DOI: 10.1105/tpc.17.00714] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 01/14/2019] [Indexed: 05/20/2023]
Abstract
The phloem plays essential roles in the source-to-sink relationship and in long-distance communication, and thereby coordinates growth and development throughout the plant. Here we employed isolation of nuclei tagged in specific cell types coupled with low-input, high-throughput sequencing approaches to analyze the changes of the chromatin modifications H3K4me3 and H3K27me3 and their correlation with gene expression in the phloem companion cells (PCCs) of Arabidopsis(Arabidopsis thaliana) shoots in response to changes in photoperiod. We observed a positive correlation between changes in expression and H3K4me3 levels of genes that are involved in essential PCC functions, including regulation of metabolism, circadian rhythm, development, and epigenetic modifications. By contrast, changes in H3K27me3 signal appeared to contribute little to gene expression changes. These genomic data illustrate the complex gene-regulatory networks that integrate plant developmental and physiological processes in the PCCs. Emphasizing the importance of cell-specific analyses, we identified a previously uncharacterized MORN-motif repeat protein, MORN-MOTIF REPEAT PROTEIN REGULATING FLOWERING1 (MRF1), that was strongly up-regulated in the PCCs in response to inductive photoperiod. The mrf1 mutation delayed flowering, whereas MRF1 overexpression had the opposite effect, indicating that MRF1 acts as a floral promoter.
Collapse
Affiliation(s)
- Yuan You
- Max Planck Institute for Developmental Biology, Department of Molecular Biology, 72076 Tübingen, Germany
- Center for Plant Molecular Biology (ZMBP), Department of General Genetics, University Tübingen, 72076 Tübingen, Germany
| | - Aneta Sawikowska
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, 60-637 Poznań, Poland
| | - Joanne E Lee
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Ruben M Benstein
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Manuela Neumann
- Max Planck Institute for Developmental Biology, Department of Molecular Biology, 72076 Tübingen, Germany
| | - Paweł Krajewski
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland
| | - Markus Schmid
- Max Planck Institute for Developmental Biology, Department of Molecular Biology, 72076 Tübingen, Germany
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, People's Republic of China
| |
Collapse
|
38
|
Park EY, Tsuyuki KM, Hu F, Lee J, Jeong J. PRC2-Mediated H3K27me3 Contributes to Transcriptional Regulation of FIT-Dependent Iron Deficiency Response. FRONTIERS IN PLANT SCIENCE 2019; 10:627. [PMID: 31156682 PMCID: PMC6532572 DOI: 10.3389/fpls.2019.00627] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/26/2019] [Indexed: 05/21/2023]
Abstract
Iron is an essential micronutrient for nearly all organisms, but excessive iron can lead to the formation of cytotoxic reactive oxygen species. Therefore, iron acquisition and homeostasis must be tightly regulated. Plants have evolved complex mechanisms to optimize their use of iron, which is one of the most limiting nutrients in the soil. In particular, transcriptional regulation is vital for regulating iron in plants, and much work has revealed the role of transcription factors on this front. Our study adds novel insights to the transcriptional regulation of iron homeostasis in plants by showing that chromatin remodeling via histone 3 lysine 27 trimethylation (H3K27me3) modulates the expression of FIT-dependent genes under iron deficiency. We provide evidence that FIT-dependent iron acquisition genes, IRT1 and FRO2, as well as FIT itself are direct targets of PRC2-mediated H3K27me3. In the clf mutant, which lacks the predominant H3K27 tri-methyltransferase, induction of FIT, FRO2, IRT1, and other FIT-regulated genes in roots is significantly higher under iron deficient conditions than in wild type. Furthermore, we observe that clf mutants are more tolerant to iron deficiency than wild type, indicating that gene expression levels appear to be limiting the plants ability to access iron. We propose that H3K27me3 attenuates the induction of FIT-target genes under iron deficiency and hypothesize that this may serve as a mechanism to restrict the maximum level of induction of iron acquisition genes to prevent iron overload.
Collapse
Affiliation(s)
- Emily Y. Park
- Program in Biochemistry and Biophysics, Amherst College, Amherst, MA, United States
| | - Kaitlyn M. Tsuyuki
- Program in Biochemistry and Biophysics, Amherst College, Amherst, MA, United States
- Department of Biology, Amherst College, Amherst, MA, United States
| | - Fengling Hu
- Department of Biology, Amherst College, Amherst, MA, United States
| | - Joohyun Lee
- Program in Biochemistry and Biophysics, Amherst College, Amherst, MA, United States
- Department of Biology, Amherst College, Amherst, MA, United States
| | - Jeeyon Jeong
- Program in Biochemistry and Biophysics, Amherst College, Amherst, MA, United States
- Department of Biology, Amherst College, Amherst, MA, United States
- *Correspondence: Jeeyon Jeong,
| |
Collapse
|
39
|
Gibbs DJ, Tedds HM, Labandera AM, Bailey M, White MD, Hartman S, Sprigg C, Mogg SL, Osborne R, Dambire C, Boeckx T, Paling Z, Voesenek LACJ, Flashman E, Holdsworth MJ. Oxygen-dependent proteolysis regulates the stability of angiosperm polycomb repressive complex 2 subunit VERNALIZATION 2. Nat Commun 2018; 9:5438. [PMID: 30575749 PMCID: PMC6303374 DOI: 10.1038/s41467-018-07875-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 12/04/2018] [Indexed: 12/21/2022] Open
Abstract
The polycomb repressive complex 2 (PRC2) regulates epigenetic gene repression in eukaryotes. Mechanisms controlling its developmental specificity and signal-responsiveness are poorly understood. Here, we identify an oxygen-sensitive N-terminal (N-) degron in the plant PRC2 subunit VERNALIZATION(VRN) 2, a homolog of animal Su(z)12, that promotes its degradation via the N-end rule pathway. We provide evidence that this N-degron arose early during angiosperm evolution via gene duplication and N-terminal truncation, facilitating expansion of PRC2 function in flowering plants. We show that proteolysis via the N-end rule pathway prevents ectopic VRN2 accumulation, and that hypoxia and long-term cold exposure lead to increased VRN2 abundance, which we propose may be due to inhibition of VRN2 turnover via its N-degron. Furthermore, we identify an overlap in the transcriptional responses to hypoxia and prolonged cold, and show that VRN2 promotes tolerance to hypoxia. Our work reveals a mechanism for post-translational regulation of VRN2 stability that could potentially link environmental inputs to the epigenetic control of plant development.
Collapse
Affiliation(s)
- Daniel J Gibbs
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK.
| | - Hannah M Tedds
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | | | - Mark Bailey
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Mark D White
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Sjon Hartman
- Plant Ecophysiology, Institute of Environmental Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Colleen Sprigg
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Sophie L Mogg
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Rory Osborne
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Charlene Dambire
- School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Tinne Boeckx
- School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Zachary Paling
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Laurentius A C J Voesenek
- Plant Ecophysiology, Institute of Environmental Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Emily Flashman
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | | |
Collapse
|
40
|
Perez-Garcia P, Moreno-Risueno MA. Stem cells and plant regeneration. Dev Biol 2018; 442:3-12. [PMID: 29981693 DOI: 10.1016/j.ydbio.2018.06.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/24/2018] [Accepted: 06/29/2018] [Indexed: 01/09/2023]
Abstract
Multicellular organisms show the ability to replace damage cells, tissues and even whole organs through regeneration mechanisms. Plants show a remarkable regenerative potential. While the basic principles of plant regeneration have been known for a number of decades, the molecular and cellular mechanisms underlying such principles are currently starting to emerge. Some of these mechanisms point to the existence of highly reprogrammable cells. Developmental plasticity is a hallmark for stem cells, and stem cells are responsible for the generation of distinctive cell types forming plants. In the last years, a number of players and molecular mechanism regulating stem cell maintenance have been described, and some of them have also been involved in regenerative processes. These discoveries in plant stem cell regulation and regeneration invite us to rethink several of the classical concepts in plant biology such as cell fate specification and even the actual meaning of what we consider stem cells in plants. In this review we will cover some of these discoveries, focusing on the role of the plant stem cell function and regulation during cell and organ regeneration.
Collapse
Affiliation(s)
- Pablo Perez-Garcia
- Departamento de Biotecnología y Biología Vegetal, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Miguel A Moreno-Risueno
- Departamento de Biotecnología y Biología Vegetal, Universidad Politécnica de Madrid (UPM), Madrid, Spain.
| |
Collapse
|
41
|
Carter B, Bishop B, Ho KK, Huang R, Jia W, Zhang H, Pascuzzi PE, Deal RB, Ogas J. The Chromatin Remodelers PKL and PIE1 Act in an Epigenetic Pathway That Determines H3K27me3 Homeostasis in Arabidopsis. THE PLANT CELL 2018; 30:1337-1352. [PMID: 29802212 PMCID: PMC6048792 DOI: 10.1105/tpc.17.00867] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 05/07/2018] [Accepted: 05/24/2018] [Indexed: 05/20/2023]
Abstract
Selective, tissue-specific gene expression is facilitated by the epigenetic modification H3K27me3 (trimethylation of lysine 27 on histone H3) in plants and animals. Much remains to be learned about how H3K27me3-enriched chromatin states are constructed and maintained. Here, we identify a genetic interaction in Arabidopsis thaliana between the chromodomain helicase DNA binding chromatin remodeler PICKLE (PKL), which promotes H3K27me3 enrichment, and the SWR1-family remodeler PHOTOPERIOD INDEPENDENT EARLY FLOWERING1 (PIE1), which incorporates the histone variant H2A.Z. Chromatin immunoprecipitation-sequencing and RNA-sequencing reveal that PKL, PIE1, and the H3K27 methyltransferase CURLY LEAF act in a common gene expression pathway and are required for H3K27me3 levels genome-wide. Additionally, H3K27me3-enriched genes are largely a subset of H2A.Z-enriched genes, further supporting the functional linkage between these marks. We also found that recombinant PKL acts as a prenucleosome maturation factor, indicating that it promotes retention of H3K27me3. These data support the existence of an epigenetic pathway in which PIE1 promotes H2A.Z, which in turn promotes H3K27me3 deposition. After deposition, PKL promotes retention of H3K27me3 after DNA replication and/or transcription. Our analyses thus reveal roles for H2A.Z and ATP-dependent remodelers in construction and maintenance of H3K27me3-enriched chromatin in plants.
Collapse
Affiliation(s)
- Benjamin Carter
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Brett Bishop
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Kwok Ki Ho
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Ru Huang
- Shanghai Center for Plant Stress Biology, Songjiang District, Shanghai 201602, China
| | - Wei Jia
- Shanghai Center for Plant Stress Biology, Songjiang District, Shanghai 201602, China
| | - Heng Zhang
- Shanghai Center for Plant Stress Biology, Songjiang District, Shanghai 201602, China
| | - Pete E Pascuzzi
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
- Purdue University Libraries, Purdue University, West Lafayette, Indiana 47907
| | - Roger B Deal
- Department of Biology, Emory University, Atlanta, Georgia 30322
| | - Joe Ogas
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
42
|
Bellegarde F, Herbert L, Séré D, Caillieux E, Boucherez J, Fizames C, Roudier F, Gojon A, Martin A. Polycomb Repressive Complex 2 attenuates the very high expression of the Arabidopsis gene NRT2.1. Sci Rep 2018; 8:7905. [PMID: 29784958 PMCID: PMC5962593 DOI: 10.1038/s41598-018-26349-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/10/2018] [Indexed: 11/09/2022] Open
Abstract
PRC2 is a major regulator of gene expression in eukaryotes. It catalyzes the repressive chromatin mark H3K27me3, which leads to very low expression of target genes. NRT2.1, which encodes a key root nitrate transporter in Arabidopsis, is targeted by H3K27me3, but the function of PRC2 on NRT2.1 remains unclear. Here, we demonstrate that PRC2 directly targets and down-regulates NRT2.1, but in a context of very high transcription, in nutritional conditions where this gene is one of the most highly expressed genes in the transcriptome. Indeed, the mutation of CLF, which encodes a PRC2 subunit, leads to a loss of H3K27me3 at NRT2.1 and results, exclusively under permissive conditions for NRT2.1, in a further increase in NRT2.1 expression, and specifically in tissues where NRT2.1 is normally expressed. Therefore, our data indicates that PRC2 tempers the hyperactivity of NRT2.1 in a context of very strong transcription. This reveals an original function of PRC2 in the control of the expression of a highly expressed gene in Arabidopsis.
Collapse
Affiliation(s)
- Fanny Bellegarde
- BPMP, CNRS, INRA, SupAgro, Univ. Montpellier, Montpellier, France
| | - Léo Herbert
- BPMP, CNRS, INRA, SupAgro, Univ. Montpellier, Montpellier, France
| | - David Séré
- BPMP, CNRS, INRA, SupAgro, Univ. Montpellier, Montpellier, France
| | - Erwann Caillieux
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, ENS, 46 rue d'Ulm, 75005, Paris, France
| | - Jossia Boucherez
- BPMP, CNRS, INRA, SupAgro, Univ. Montpellier, Montpellier, France
| | - Cécile Fizames
- BPMP, CNRS, INRA, SupAgro, Univ. Montpellier, Montpellier, France
| | - François Roudier
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, ENS, 46 rue d'Ulm, 75005, Paris, France.,Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Alain Gojon
- BPMP, CNRS, INRA, SupAgro, Univ. Montpellier, Montpellier, France
| | - Antoine Martin
- BPMP, CNRS, INRA, SupAgro, Univ. Montpellier, Montpellier, France.
| |
Collapse
|
43
|
Vaughan-Hirsch J, Goodall B, Bishopp A. North, East, South, West: mapping vascular tissues onto the Arabidopsis root. CURRENT OPINION IN PLANT BIOLOGY 2018; 41:16-22. [PMID: 28837854 DOI: 10.1016/j.pbi.2017.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/24/2017] [Accepted: 07/29/2017] [Indexed: 05/27/2023]
Abstract
The Arabidopsis root has provided an excellent model for understanding patterning processes and cell fate specification. Vascular patterning represents an especially interesting process, as new positional information must be generated to transform an approximately radially symmetric root pole into a bisymmetric structure with a single xylem axis. This process requires both growth of the embryonic tissue alongside the subsequent patterning. Recently researchers have identified a series of transcription factors that modulate cell divisions to control vascular tissues growth. Spatial regulation in the signalling of two hormones, auxin and cytokinin, combine with other transcription factors to pattern the xylem axis. We are now witnessing the discovery of increasingly complex interactions between these hormones that can be interpreted through the use of mathematical models.
Collapse
Affiliation(s)
- John Vaughan-Hirsch
- Centre for Plant Integrative Biology and School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Benjamin Goodall
- Centre for Plant Integrative Biology and School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Anthony Bishopp
- Centre for Plant Integrative Biology and School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK.
| |
Collapse
|
44
|
Chen DH, Huang Y, Jiang C, Si JP. Chromatin-Based Regulation of Plant Root Development. FRONTIERS IN PLANT SCIENCE 2018; 9:1509. [PMID: 30386363 PMCID: PMC6198463 DOI: 10.3389/fpls.2018.01509] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/26/2018] [Indexed: 05/10/2023]
Abstract
Plant is endowed with sessile habit and nutrient acquisition mainly through the root organ, which also provides an excellent model to study stem cell fate and asymmetric division due to well-organized cell layers and relatively simple cell types in root meristem. Besides genetic material DNA wrapped around histone octamer, chromatin structure determined by chromatin modification including DNA methylation, histone modification and chromatin remodeling also contributes greatly to the regulation of gene expression. In this review, we summarize the current progresses on the molecular mechanisms of chromatin modification in regulating root development.
Collapse
Affiliation(s)
- Dong-Hong Chen
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium Catenatum, Zhejiang A&F University, Hangzhou, China
- *Correspondence: Dong-Hong Chen
| | - Yong Huang
- Key Laboratory of Education Department of Hunan Province on Plant Genetics and Molecular Biology, Hunan Agricultural University, Changsha, China
| | | | - Jin-Ping Si
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium Catenatum, Zhejiang A&F University, Hangzhou, China
- Jin-Ping Si
| |
Collapse
|
45
|
She W, Baroux C, Grossniklaus U. Cell-Type Specific Chromatin Analysis in Whole-Mount Plant Tissues by Immunostaining. Methods Mol Biol 2018; 1675:443-454. [PMID: 29052206 DOI: 10.1007/978-1-4939-7318-7_25] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Chromatin organization in eukaryotes is highly dynamic, playing fundamental roles in regulating diverse nuclear processes including DNA replication, transcription, and repair. Thus, the analysis of chromatin organization is of great importance for the elucidation of chromatin-mediated biological processes. Immunostaining coupled with imaging is one of the most powerful tools for chromatin analysis at the cellular level. However, in plants, it is sometimes technically challenging to apply this method due to the inaccessibility of certain cell types and/or poor penetration of the reagents into plant tissues and cells. To circumvent these limitations, we developed a highly efficient protocol enabling the analysis of chromatin modifications and nuclear organization at the single-cell level with high resolution in whole-mount plant tissues. The main procedure consists of five steps: (1) tissue fixation; (2) dissection and embedding; (3) tissue processing; (4) antibody incubation; and (5) imaging. This protocol has been simplified for the processing of multiple samples without the need for laborious tissue sectioning. Additionally, it preserves cellular morphology and chromatin organization, allowing comparative analyses of chromatin organization between different cell types or developmental stages. This protocol was successfully used for various tissues of different plant species, including Arabidopsis thaliana, Oryza sativa (rice), and Zea mays (maize). Importantly, this method is very useful to analyze poorly accessible tissues, such as female meiocytes, gametophytes, and embryos.
Collapse
Affiliation(s)
- Wenjing She
- Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zollikerstrasse 107, 8008, Zürich, Switzerland.
| | - Célia Baroux
- Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zollikerstrasse 107, 8008, Zürich, Switzerland
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zollikerstrasse 107, 8008, Zürich, Switzerland
| |
Collapse
|
46
|
Affiliation(s)
- Raili Ruonala
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland
- The Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom;, ,
| | - Donghwi Ko
- The Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom;, ,
| | - Ykä Helariutta
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland
- The Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom;, ,
| |
Collapse
|
47
|
Buzas DM. Capturing Environmental Plant Memories in DNA, with a Little Help from Chromatin. PLANT & CELL PHYSIOLOGY 2017; 58:1302-1312. [PMID: 28961992 DOI: 10.1093/pcp/pcx092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/28/2017] [Indexed: 05/11/2023]
Abstract
Plants are eukaryotes living mostly immotile in harsh environments. On occasion, it is beneficial for their survival to maintain a transcriptional response to an environmental stress longer than the stress lasts (transcriptional memory) and even to reiterate such a response more quickly or more strongly when the same stress is re-encountered (priming memory). In eukaryotes, transcription takes place in the context of chromatin, the packaging material of DNA. Chromatin regulation is often invoked when it comes to environmental transcriptional and priming memory in plants, but rarely chromatin-based regulation can be accurately assigned to a given aspect of transcription in vivo. The conserved eukaryotic chromatin-modifying system Polycomb/Trithorax can support both long-term stability and flexibility of gene expression in Drosophila. The main principles of Polycomb/Trithorax regulation will be outlined and illustrated with the best-studied case of environmental memory from Arabidopsis. Despite being complex, the Polycomb/Trithorax system relies on experimentally tractable elements in the form of DNA, termed Polycomb/Trithorax Responsive Elements. PREs/TREs are essentially memory DNA elements. Here, relevant information to identify PRE/TRE-like elements in plants is highlighted. Examples of priming memory in plants are discussed in relation to the first two reported putative memory DNA elements. Arguably, similar cases from plants can be conducive in dissecting the contribution of DNA-based from chromatin-based regulation of transcription, when two types of DNA elements are defined: those representing binding sites for the transcription factors determining the environmental response and those controlling memory by regulating chromatin modification dynamics, ultimately maintaining the corresponding transcriptional state.
Collapse
Affiliation(s)
- Diana Mihaela Buzas
- Life and Environmental Sciences and Gene Research Centre, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
48
|
Integrated analysis and transcript abundance modelling of H3K4me3 and H3K27me3 in developing secondary xylem. Sci Rep 2017; 7:3370. [PMID: 28611454 PMCID: PMC5469831 DOI: 10.1038/s41598-017-03665-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/02/2017] [Indexed: 01/10/2023] Open
Abstract
Despite the considerable contribution of xylem development (xylogenesis) to plant biomass accumulation, its epigenetic regulation is poorly understood. Furthermore, the relative contributions of histone modifications to transcriptional regulation is not well studied in plants. We investigated the biological relevance of H3K4me3 and H3K27me3 in secondary xylem development using ChIP-seq and their association with transcript levels among other histone modifications in woody and herbaceous models. In developing secondary xylem of the woody model Eucalyptus grandis, H3K4me3 and H3K27me3 genomic spans were distinctly associated with xylogenesis-related processes, with (late) lignification pathways enriched for putative bivalent domains, but not early secondary cell wall polysaccharide deposition. H3K27me3-occupied genes, of which 753 (~31%) are novel targets, were enriched for transcriptional regulation and flower development and had significant preferential expression in roots. Linear regression models of the ChIP-seq profiles predicted ~50% of transcript abundance measured with strand-specific RNA-seq, confirmed in a parallel analysis in Arabidopsis where integration of seven additional histone modifications each contributed smaller proportions of unique information to the predictive models. This study uncovers the biological importance of histone modification antagonism and genomic span in xylogenesis and quantifies for the first time the relative correlations of histone modifications with transcript abundance in plants.
Collapse
|
49
|
Xiao J, Jin R, Wagner D. Developmental transitions: integrating environmental cues with hormonal signaling in the chromatin landscape in plants. Genome Biol 2017; 18:88. [PMID: 28490341 PMCID: PMC5425979 DOI: 10.1186/s13059-017-1228-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Plant development is predominantly postembryonic and tuned in to respond to environmental cues. All living plant cells can be triggered to de-differentiate, assume different cell identities, or form a new organism. This developmental plasticity is thought to be an adaptation to the sessile lifestyle of plants. Recent discoveries have advanced our understanding of the orchestration of plant developmental switches by transcriptional master regulators, chromatin state changes, and hormone response pathways. Here, we review these recent advances with emphasis on the earliest stages of plant development and on the switch from pluripotency to differentiation in different plant organ systems.
Collapse
Affiliation(s)
- Jun Xiao
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Run Jin
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
50
|
Sparks EE, Drapek C, Gaudinier A, Li S, Ansariola M, Shen N, Hennacy JH, Zhang J, Turco G, Petricka JJ, Foret J, Hartemink AJ, Gordân R, Megraw M, Brady SM, Benfey PN. Establishment of Expression in the SHORTROOT-SCARECROW Transcriptional Cascade through Opposing Activities of Both Activators and Repressors. Dev Cell 2016; 39:585-596. [PMID: 27923776 DOI: 10.1016/j.devcel.2016.09.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 05/27/2016] [Accepted: 09/29/2016] [Indexed: 12/28/2022]
Abstract
Tissue-specific gene expression is often thought to arise from spatially restricted transcriptional cascades. However, it is unclear how expression is established at the top of these cascades in the absence of pre-existing specificity. We generated a transcriptional network to explore how transcription factor expression is established in the Arabidopsis thaliana root ground tissue. Regulators of the SHORTROOT-SCARECROW transcriptional cascade were validated in planta. At the top of this cascade, we identified both activators and repressors of SHORTROOT. The aggregate spatial expression of these regulators is not sufficient to predict transcriptional specificity. Instead, modeling, transcriptional reporters, and synthetic promoters support a mechanism whereby expression at the top of the SHORTROOT-SCARECROW cascade is established through opposing activities of activators and repressors.
Collapse
Affiliation(s)
- Erin E Sparks
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Colleen Drapek
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Allison Gaudinier
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA 95616, USA
| | - Song Li
- Department of Crop and Soil Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Mitra Ansariola
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Ning Shen
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA; Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| | | | - Jingyuan Zhang
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Gina Turco
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA 95616, USA
| | | | - Jessica Foret
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA 95616, USA
| | - Alexander J Hartemink
- Department of Biology, Duke University, Durham, NC 27708, USA; Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA; Department of Computer Science, Duke University, Durham, NC 27708, USA
| | - Raluca Gordân
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA; Department of Computer Science, Duke University, Durham, NC 27708, USA; Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27710, USA
| | - Molly Megraw
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA 95616, USA
| | - Philip N Benfey
- Department of Biology, Duke University, Durham, NC 27708, USA; Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA.
| |
Collapse
|