1
|
Xia S, Chen J, Arsala D, Emerson JJ, Long M. Functional innovation through new genes as a general evolutionary process. Nat Genet 2025; 57:295-309. [PMID: 39875578 DOI: 10.1038/s41588-024-02059-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/15/2024] [Indexed: 01/30/2025]
Abstract
In the past decade, our understanding of how new genes originate in diverse organisms has advanced substantially, and more than a dozen molecular mechanisms for generating initial gene structures were identified, in addition to gene duplication. These new genes have been found to integrate into and modify pre-existing gene networks primarily through mutation and selection, revealing new patterns and rules with stable origination rates across various organisms. This progress has challenged the prevailing belief that new proteins evolve from pre-existing genes, as new genes may arise de novo from noncoding DNA sequences in many organisms, with high rates observed in flowering plants. New genes have important roles in phenotypic and functional evolution across diverse biological processes and structures, with detectable fitness effects of sexual conflict genes that can shape species divergence. Such knowledge of new genes can be of translational value in agriculture and medicine.
Collapse
Affiliation(s)
- Shengqian Xia
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA
| | - Jianhai Chen
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA
| | - Deanna Arsala
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA
| | - J J Emerson
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
| | - Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Wan M, Zhao D, Lin S, Wang P, Liang B, Jin Q, Jiao Y, Song Y, Ge X, King GJ, Yang G, Wang J, Hong D. Allelic Variation of BnaFTA2 and BnaFTC6 Is Associated With Flowering Time and Seasonal Crop Type in Rapeseed (Brassica napus L.). PLANT, CELL & ENVIRONMENT 2024. [PMID: 39360620 DOI: 10.1111/pce.15165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 08/20/2024] [Accepted: 09/07/2024] [Indexed: 10/04/2024]
Abstract
Different ecological types of rapeseed (Brassica napus L.), including winter, spring, and semi-winter cultivars, exhibit varying flowering times and cannot be planted in the same cultivation areas. FLOWERING LOCUS T (FT) plays a key role in regulating flowering. In allotetraploid B. napus six copies of FT (BnaFT) have been reported. However, there is uncertainty about how the translated products of each paralog, as well as cis-allelic variations at each locus, contribute functionally to flowering time and define specific crop types. In this study, we confirm that BnaFT exhibit distinct expression patterns in different crop types of rapeseed. Using the CRISPR/Cas9 gene editing system, we provide functional evidence that the mutants between Bnaft paralogues affects the regulation of flowering time. Furthermore, we identify a new haplotype of BnaFT.A2 that is associated with early flowering time, although this appears necessary but not sufficient to confer a spring type phenotype. Three haplotypes of BnaFT.C6 were further identified and associated with both flowering time and crop types. We speculate that variations in both BnaFT.A2 and BnaFT.C6 may have undergone diversifying selection during the divergence of seasonal crop types in rapeseed.
Collapse
Affiliation(s)
- Ming Wan
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dawei Zhao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shengzhe Lin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Pengfei Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Baoling Liang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qingdong Jin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yushun Jiao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yixian Song
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Graham J King
- Southern Cross Plant Science, Southern Cross University, Lismore, New South Wales, Australia
| | - Guangsheng Yang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Jing Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dengfeng Hong
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
3
|
Wu Z, Yang Y, Li T, Shen Z, Zhou X, Zhang Y. Genetic characterization and fine mapping of a recessive genic male-sterile gene in flowering Chinese cabbage ( Brassica rapa var. parachinensis). 3 Biotech 2024; 14:160. [PMID: 38779526 PMCID: PMC11106044 DOI: 10.1007/s13205-024-04005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Brassica vegetables exhibit pronounced heterosis; nevertheless, investigations on fertility-related genes are scarce. The present study scrutinized a recessive genic male-sterile line, 7-3A, capable of generating a completely sterile population, holding significant promise for flowering Chinese cabbage breeding. By whole-genome resequencing of sterile and fertile plants, the male-sterile gene was confined to approximately 185 kb on chromosome A07, situated between markers C719 and NP10 in Brassica rapa var. Chiifu-401. Notably, substantial structural variation was identified within this region across diverse Brassica rapa reference genomes. Despite discernible expression level disparities of a homologous gene, Bnams4b, between male sterile and fertile plants, no sequence divergence was detected. Further elucidation is required to pinpoint a novel sterile gene within the candidate interval. This investigation contributes to the advancement of both the molecular-assisted breeding scheme for flowering Chinese cabbage and the comprehension of male sterility mechanisms. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04005-7.
Collapse
Affiliation(s)
- Zengxiang Wu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Yi Yang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Tingyao Li
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Zhuo Shen
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Xuan Zhou
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Yan Zhang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| |
Collapse
|
4
|
Ding Q, Guo N, Gao L, McKee M, Wu D, Yang J, Fan J, Weng JK, Lei X. The evolutionary origin of naturally occurring intermolecular Diels-Alderases from Morus alba. Nat Commun 2024; 15:2492. [PMID: 38509059 PMCID: PMC10954736 DOI: 10.1038/s41467-024-46845-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/12/2024] [Indexed: 03/22/2024] Open
Abstract
Biosynthetic enzymes evolutionarily gain novel functions, thereby expanding the structural diversity of natural products to the benefit of host organisms. Diels-Alderases (DAs), functionally unique enzymes catalysing [4 + 2] cycloaddition reactions, have received considerable research interest. However, their evolutionary mechanisms remain obscure. Here, we investigate the evolutionary origins of the intermolecular DAs in the biosynthesis of Moraceae plant-derived Diels-Alder-type secondary metabolites. Our findings suggest that these DAs have evolved from an ancestor functioning as a flavin adenine dinucleotide (FAD)-dependent oxidocyclase (OC), which catalyses the oxidative cyclisation reactions of isoprenoid-substituted phenolic compounds. Through crystal structure determination, computational calculations, and site-directed mutagenesis experiments, we identified several critical substitutions, including S348L, A357L, D389E and H418R that alter the substrate-binding mode and enable the OCs to gain intermolecular DA activity during evolution. This work provides mechanistic insights into the evolutionary rationale of DAs and paves the way for mining and engineering new DAs from other protein families.
Collapse
Affiliation(s)
- Qi Ding
- School of Life Science, Tsinghua University, Beijing, 100084, China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Nianxin Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Lei Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Michelle McKee
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | - Dongshan Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jun Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Junping Fan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jing-Ke Weng
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
- Institute for Plant-Human Interface, Northeastern University, Boston, MA, 02120, USA
- Department of Chemistry and Chemical Biology and Department of Bioengineering, Northeastern University, Boston, MA, 02120, USA
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
- Institute for Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China.
| |
Collapse
|
5
|
Tan Z, Han X, Dai C, Lu S, He H, Yao X, Chen P, Yang C, Zhao L, Yang QY, Zou J, Wen J, Hong D, Liu C, Ge X, Fan C, Yi B, Zhang C, Ma C, Liu K, Shen J, Tu J, Yang G, Fu T, Guo L, Zhao H. Functional genomics of Brassica napus: Progresses, challenges, and perspectives. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:484-509. [PMID: 38456625 DOI: 10.1111/jipb.13635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/19/2024] [Indexed: 03/09/2024]
Abstract
Brassica napus, commonly known as rapeseed or canola, is a major oil crop contributing over 13% to the stable supply of edible vegetable oil worldwide. Identification and understanding the gene functions in the B. napus genome is crucial for genomic breeding. A group of genes controlling agronomic traits have been successfully cloned through functional genomics studies in B. napus. In this review, we present an overview of the progress made in the functional genomics of B. napus, including the availability of germplasm resources, omics databases and cloned functional genes. Based on the current progress, we also highlight the main challenges and perspectives in this field. The advances in the functional genomics of B. napus contribute to a better understanding of the genetic basis underlying the complex agronomic traits in B. napus and will expedite the breeding of high quality, high resistance and high yield in B. napus varieties.
Collapse
Affiliation(s)
- Zengdong Tan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Xu Han
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hanzi He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuan Yao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Peng Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chao Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lun Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qing-Yong Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dengfeng Hong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Chao Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bing Yi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunyu Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kede Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guangsheng Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Hu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
6
|
Ma H, Wang M, Zhang YE, Tan S. The power of "controllers": Transposon-mediated duplicated genes evolve towards neofunctionalization. J Genet Genomics 2023; 50:462-472. [PMID: 37068629 DOI: 10.1016/j.jgg.2023.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/19/2023]
Abstract
Since the discovery of the first transposon by Dr. Barbara McClintock, the prevalence and diversity of transposable elements (TEs) have been gradually recognized. As fundamental genetic components, TEs drive organismal evolution not only by contributing functional sequences (e.g., regulatory elements or "controllers" as phrased by Dr. McClintock) but also by shuffling genomic sequences. In the latter respect, TE-mediated gene duplications have contributed to the origination of new genes and attracted extensive interest. In response to the development of this field, we herein attempt to provide an overview of TE-mediated duplication by focusing on common rules emerging across duplications generated by different TE types. Specifically, despite the huge divergence of transposition machinery across TEs, we identify three common features of various TE-mediated duplication mechanisms, including end bypass, template switching, and recurrent transposition. These three features lead to one common functional outcome, namely, TE-mediated duplicates tend to be subjected to exon shuffling and neofunctionalization. Therefore, the intrinsic properties of the mutational mechanism constrain the evolutionary trajectories of these duplicates. We finally discuss the future of this field including an in-depth characterization of both the duplication mechanisms and functions of TE-mediated duplicates.
Collapse
Affiliation(s)
- Huijing Ma
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Mengxia Wang
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Chinese Institute for Brain Research, Beijing 102206, China.
| | - Shengjun Tan
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
7
|
Chen J, Šprem N, Wu Y, Xia S. Editorial: Application in evolutionary novelties and diversities: Medicine, agriculture, and conservation. Front Genet 2023; 13:1104836. [PMID: 36704349 PMCID: PMC9871380 DOI: 10.3389/fgene.2022.1104836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/07/2022] [Indexed: 01/12/2023] Open
Affiliation(s)
- Jianhai Chen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Jianhai Chen,
| | - Nikica Šprem
- Department of Fisheries, Apiculture, Wildlife Management and Special Zoology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Yongjie Wu
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Shengqian Xia
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
8
|
Wu T, Ma T, Xu T, Pan L, Zhang Y, Li Y, Ning D. The De Novo Genome Assembly of Olea europaea subsp. cuspidate, a Widely Distributed Olive Close Relative. Front Genet 2022; 13:868540. [PMID: 36092936 PMCID: PMC9454953 DOI: 10.3389/fgene.2022.868540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
The olive complex, comprising six subspecies, is a valuable plant for global trade, human health, and food safety. However, only one subspecies (Olea europaea subsp. europaea, OE) and its wild relative (Olea europaea subsp. europaea var. sylvestris, OS) have genomic references, hindering our understanding of the evolution of this species. Using a hybrid approach by incorporating Illumina, MGI, Nanopore, and Hi-C technologies, we obtained a 1.20-Gb genome assembly for the olive subspecies, Olea europaea subsp. cuspidate (OC), with contig and scaffold N50 values of 5.33 and 50.46 Mb, respectively. A total of 43,511 protein-coding genes were predicted from the genome. Interestingly, we observed a large region (37.5 Mb) of “gene-desert” also called “LTR-hotspot” on chromosome 17. The gene origination analyses revealed a substantial outburst (19.5%) of gene transposition events in the common ancestor of olive subspecies, suggesting the importance of olive speciation in shaping the new gene evolution of OC subspecies. The divergence time between OC and the last common ancestor of OE and OS was estimated to be 4.39 Mya (95% CI: 2.58–6.23 Mya). The pathways of positively selected genes of OC are related to the metabolism of cofactors and vitamins, indicating the potential medical and economic values of OC for further research and utilization. In summary, we constructed the de novo genome assembly and protein-coding gene pool for Olea europaea subsp. cuspidate (OC) in this study, which may facilitate breeding applications of improved olive varieties from this widely distributed olive close relative.
Collapse
Affiliation(s)
| | | | | | | | | | - Yongjie Li
- *Correspondence: Yongjie Li, ; Delu Ning,
| | - Delu Ning
- *Correspondence: Yongjie Li, ; Delu Ning,
| |
Collapse
|
9
|
Schuhmann P, Engstler C, Klöpfer K, Gügel IL, Abbadi A, Dreyer F, Leckband G, Bölter B, Hagn F, Soll J, Carrie C. Two wrongs make a right: heat stress reversion of a male-sterile Brassica napus line. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3531-3551. [PMID: 35226731 PMCID: PMC9162185 DOI: 10.1093/jxb/erac082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Male-sterile lines play important roles in plant breeding to obtain hybrid vigour. The male sterility Lembke (MSL) system is a thermosensitive genic male sterility system of Brassica napus and is one of the main systems used in European rapeseed breeding. Interestingly, the MSL system shows high similarity to the 9012AB breeding system from China, including the ability to revert to fertile in high temperature conditions. Here we demonstrate that the MSL system is regulated by the same restorer of fertility gene BnaC9-Tic40 as the 9012AB system, which is related to the translocon at the inner envelope membrane of chloroplasts 40 (TIC40) from Arabidopsis. The male sterility gene of the MSL system was also identified to encode a chloroplast-localized protein which we call BnChimera; this gene shows high sequence similarity to the sterility gene previously described for the 9012AB system. For the first time, a direct protein interaction between BnaC9-Tic40 and the BnChimera could be demonstrated. In addition, we identify the corresponding amino acids that mediate this interaction and suggest how BnaC9-Tic40 acts as the restorer of fertility. Using an RNA-seq approach, the effects of heat treatment on the male fertility restoration of the C545 MSL system line were investigated. These data demonstrate that many pollen developmental pathways are affected by higher temperatures. It is hypothesized that heat stress reverses the male sterility via a combination of slower production of cell wall precursors in plastids and a slower flower development, which ultimately results in fertile pollen. The potential breeding applications of these results are discussed regarding the use of the MSL system in producing thermotolerant fertile plants.
Collapse
Affiliation(s)
- Petra Schuhmann
- Department Biologie I–Botanik, Ludwig-Maximilians-Universität München, Großhadernerstr. 2–4, D-82152 Planegg-Martinsried, Germany
| | - Carina Engstler
- Department Biologie I–Botanik, Ludwig-Maximilians-Universität München, Großhadernerstr. 2–4, D-82152 Planegg-Martinsried, Germany
| | - Kai Klöpfer
- Bavarian NMR Center (BNMRZ) at the Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, D-85748 Garching, Germany
| | - Irene L Gügel
- Department Biologie I–Botanik, Ludwig-Maximilians-Universität München, Großhadernerstr. 2–4, D-82152 Planegg-Martinsried, Germany
- Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, D-53175 Bonn, Germany
| | - Amine Abbadi
- NPZ Innovation GmbH, Hohenlieth-Hof, D-24363 Holtsee, Germany
| | - Felix Dreyer
- NPZ Innovation GmbH, Hohenlieth-Hof, D-24363 Holtsee, Germany
| | - Gunhild Leckband
- Norddeutsche Pflanzenzucht Hans-Georg Lembke KG, Hohenlieth-Hof 1, D-24363 Holtsee, Germany
| | - Bettina Bölter
- Department Biologie I–Botanik, Ludwig-Maximilians-Universität München, Großhadernerstr. 2–4, D-82152 Planegg-Martinsried, Germany
| | - Franz Hagn
- Bavarian NMR Center (BNMRZ) at the Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, D-85748 Garching, Germany
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Jürgen Soll
- Department Biologie I–Botanik, Ludwig-Maximilians-Universität München, Großhadernerstr. 2–4, D-82152 Planegg-Martinsried, Germany
- Munich Centre for Integrated Protein Science, CIPSM, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | | |
Collapse
|
10
|
Huang Y, Chen J, Dong C, Sosa D, Xia S, Ouyang Y, Fan C, Li D, Mortola E, Long M, Bergelson J. Species-specific partial gene duplication in Arabidopsis thaliana evolved novel phenotypic effects on morphological traits under strong positive selection. THE PLANT CELL 2022; 34:802-817. [PMID: 34875081 PMCID: PMC8824575 DOI: 10.1093/plcell/koab291] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/25/2021] [Indexed: 05/04/2023]
Abstract
Gene duplication is increasingly recognized as an important mechanism for the origination of new genes, as revealed by comparative genomic analysis. However, how new duplicate genes contribute to phenotypic evolution remains largely unknown, especially in plants. Here, we identified the new gene EXOV, derived from a partial gene duplication of its parental gene EXOVL in Arabidopsis thaliana. EXOV is a species-specific gene that originated within the last 3.5 million years and shows strong signals of positive selection. Unexpectedly, RNA-sequencing analyses revealed that, despite its young age, EXOV has acquired many novel direct and indirect interactions in which the parental gene does not engage. This observation is consistent with the high, selection-driven substitution rate of its encoded protein, in contrast to the slowly evolving EXOVL, suggesting an important role for EXOV in phenotypic evolution. We observed significant differentiation of morphological changes for all phenotypes assessed in genome-edited and T-DNA insertional single mutants and in double T-DNA insertion mutants in EXOV and EXOVL. We discovered a substantial divergence of phenotypic effects by principal component analyses, suggesting neofunctionalization of the new gene. These results reveal a young gene that plays critical roles in biological processes that underlie morphological evolution in A. thaliana.
Collapse
Affiliation(s)
- Yuan Huang
- School of Life Sciences, Yunnan Normal University, Kunming, Yunnan, China
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, USA
| | - Jiahui Chen
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, USA
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Chuan Dong
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, USA
| | - Dylan Sosa
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, USA
| | - Shengqian Xia
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, USA
| | - Yidan Ouyang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Chuanzhu Fan
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Dezhu Li
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Emily Mortola
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, USA
| | - Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, USA
| | - Joy Bergelson
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
11
|
Xu K, Song J, Wu Y, Zhuo C, Wen J, Yi B, Ma C, Shen J, Fu T, Tu J. Brassica evolution of essential BnaFtsH1 genes involved in the PSII repair cycle and loss of FtsH5. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 315:111128. [PMID: 35067298 DOI: 10.1016/j.plantsci.2021.111128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/23/2021] [Accepted: 11/20/2021] [Indexed: 06/14/2023]
Abstract
The PSII repair cycle is an important part of photosynthesis and is essential for high photosynthetic efficiency. The study of essential genes in Brassica napus provides significant potential for the improvement of gene editing technology and molecular breeding design. Previously, we identified a B. napus lethal mutant (7-521Y), which was controlled by two recessive genes (cyd1 and cyd2). BnaC06.FtsH1 was identified as a CYD1 target gene through functional verification. In the present study, we employed fine-mapping, genetic complementation, and CRISPR/Cas9 experiments to identify BnaA07.FtsH1 as the target gene of CYD2, functioning similarly to BnaC06.FtsH1. By analyzing CRISPR/Cas9 T1 generation plants of the Westar variety, we found that the copy number of FtsH1 was positively correlated with its biomass accumulation. Transcriptome analysis of cotyledons revealed differences in the expression of photosynthesis antenna and structural proteins between the mutant and complementary seedlings. Phylogenetic and chromosome linear analyses, based on 15 sequenced cruciferous species, revealed that Brassica alone had lost FtsH5 during evolution. This may be related to the fact that FtsH5 was located at the end of chromosome ABK8 in the ancestor species. Cloning and identification of BnaFtsH1s provide a deeper understanding of PSII repair cycle mechanisms and offer new insights for the improvement of photosynthetic efficiency and molecular breeding design in B. napus.
Collapse
Affiliation(s)
- Kai Xu
- National Key Laboratory of Crop Genetic Improvement, Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jurong Song
- National Key Laboratory of Crop Genetic Improvement, Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yujin Wu
- National Key Laboratory of Crop Genetic Improvement, Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Chenjian Zhuo
- National Key Laboratory of Crop Genetic Improvement, Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
12
|
Hu D, Jing J, Snowdon RJ, Mason AS, Shen J, Meng J, Zou J. Exploring the gene pool of Brassica napus by genomics-based approaches. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1693-1712. [PMID: 34031989 PMCID: PMC8428838 DOI: 10.1111/pbi.13636] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 05/08/2023]
Abstract
De novo allopolyploidization in Brassica provides a very successful model for reconstructing polyploid genomes using progenitor species and relatives to broaden crop gene pools and understand genome evolution after polyploidy, interspecific hybridization and exotic introgression. B. napus (AACC), the major cultivated rapeseed species and the third largest oilseed crop in the world, is a young Brassica species with a limited genetic base resulting from its short history of domestication, cultivation, and intensive selection during breeding for target economic traits. However, the gene pool of B. napus has been significantly enriched in recent decades that has been benefit from worldwide effects by the successful introduction of abundant subgenomic variation and novel genomic variation via intraspecific, interspecific and intergeneric crosses. An important question in this respect is how to utilize such variation to breed crops adapted to the changing global climate. Here, we review the genetic diversity, genome structure, and population-level differentiation of the B. napus gene pool in relation to known exotic introgressions from various species of the Brassicaceae, especially those elucidated by recent genome-sequencing projects. We also summarize progress in gene cloning, trait-marker associations, gene editing, molecular marker-assisted selection and genome-wide prediction, and describe the challenges and opportunities of these techniques as molecular platforms to exploit novel genomic variation and their value in the rapeseed gene pool. Future progress will accelerate the creation and manipulation of genetic diversity with genomic-based improvement, as well as provide novel insights into the neo-domestication of polyploid crops with novel genetic diversity from reconstructed genomes.
Collapse
Affiliation(s)
- Dandan Hu
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jinjie Jing
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Rod J. Snowdon
- Department of Plant BreedingIFZ Research Centre for Biosystems, Land Use and NutritionJustus Liebig UniversityGiessenGermany
| | - Annaliese S. Mason
- Department of Plant BreedingIFZ Research Centre for Biosystems, Land Use and NutritionJustus Liebig UniversityGiessenGermany
- Plant Breeding DepartmentINRESThe University of BonnBonnGermany
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jinling Meng
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jun Zou
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
13
|
Xu K, Wu Y, Song J, Hu K, Wu Z, Wen J, Yi B, Ma C, Shen J, Fu T, Tu J. Fine Mapping and Identification of BnaC06.FtsH1, a Lethal Gene That Regulates the PSII Repair Cycle in Brassica napus. Int J Mol Sci 2021; 22:ijms22042087. [PMID: 33669866 PMCID: PMC7923215 DOI: 10.3390/ijms22042087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 12/26/2022] Open
Abstract
Photosystem II (PSII) is an important component of the chloroplast. The PSII repair cycle is crucial for the relief of photoinhibition and may be advantageous when improving stress resistance and photosynthetic efficiency. Lethal genes are widely used in the efficiency detection and method improvement of gene editing. In the present study, we identified the naturally occurring lethal mutant 7-521Y with etiolated cotyledons in Brassica napus, controlled by double-recessive genes (named cyd1 and cyd2). By combining whole-genome resequencing and map-based cloning, CYD1 was fine-mapped to a 29 kb genomic region using 15,167 etiolated individuals. Through cosegregation analysis and functional verification of the transgene, BnaC06.FtsH1 was determined to be the target gene; it encodes an filamentation temperature sensitive protein H 1 (FtsH1) hydrolase that degrades damaged PSII D1 in Arabidopsis thaliana. The expression of BnaC06.FtsH1 was high in the cotyledons, leaves, and flowers of B. napus, and localized in the chloroplasts. In addition, the expression of EngA (upstream regulation gene of FtsH) increased and D1 decreased in 7-521Y. Double mutants of FtsH1 and FtsH5 were lethal in A. thaliana. Through phylogenetic analysis, the loss of FtsH5 was identified in Brassica, and the remaining FtsH1 was required for PSII repair cycle. CYD2 may be a homologous gene of FtsH1 on chromosome A07 of B. napus. Our study provides new insights into lethal mutants, the findings may help improve the efficiency of the PSII repair cycle and biomass accumulation in oilseed rape.
Collapse
|
14
|
Sun C, Zhang C, Wang X, Zhao X, Chen F, Zhang W, Hu M, Fu S, Yi B, Zhang J. Genome-Wide Identification and Characterization of the IGT Gene Family in Allotetraploid Rapeseed ( Brassica napus L.). DNA Cell Biol 2021; 40:441-456. [PMID: 33600242 DOI: 10.1089/dna.2020.6227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
IGT family genes function critically to regulate lateral organ orientation in plants. However, little information is available about this family of genes in Brassica napus. In this study, 27 BnIGT genes were identified on 16 chromosomes and divided into seven clades, namely LAZY1∼LAZY6 and TAC1 (Tiller Angle Control 1), based on their phylogenetic relationships. Duplication analysis revealed that 91.1% of the gene pairs were derived from whole-genome duplication. Most BnIGT genes had a similar structural pattern with one or two very short exons followed by a long and a shorter exon. Common and specific motifs were identified among the seven clades, and motif 1, containing the family-specific GφL(A/T)IGT sequence, was observed in all clades except LAZY5. Three types of cis-elements pertinent to transcription factor binding, light responses, and hormone signaling were detected in the BnIGT promoters. Intriguingly, more than half of the BnIGT genes exhibited no or very low expression in various tissues, and the LAZY1 and TAC1 clade members showed distinct tissue expression preferences. Coexpression analysis revealed that the LAZY1 members had strong associations with cell wall biosynthesis genes. This analysis provides a deeper understanding of the BnIGT gene family and will facilitate further deduction of their role in regulating plant architecture in B. napus.
Collapse
Affiliation(s)
- Chengming Sun
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs/Provincial Key Laboratory of Agrobiology/Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,National Key Laboratory of Crop Genetic Improvement/College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chun Zhang
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs/Provincial Key Laboratory of Agrobiology/Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,National Key Laboratory of Crop Genetics and Germplasm Innovation, Nanjing Agricultural University/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
| | - Xiadong Wang
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs/Provincial Key Laboratory of Agrobiology/Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiaozhen Zhao
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs/Provincial Key Laboratory of Agrobiology/Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,National Key Laboratory of Crop Genetics and Germplasm Innovation, Nanjing Agricultural University/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
| | - Feng Chen
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs/Provincial Key Laboratory of Agrobiology/Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Wei Zhang
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs/Provincial Key Laboratory of Agrobiology/Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Maolong Hu
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs/Provincial Key Laboratory of Agrobiology/Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Sanxiong Fu
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs/Provincial Key Laboratory of Agrobiology/Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement/College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiefu Zhang
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs/Provincial Key Laboratory of Agrobiology/Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,National Key Laboratory of Crop Genetics and Germplasm Innovation, Nanjing Agricultural University/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
| |
Collapse
|
15
|
The new chimeric chiron genes evolved essential roles in zebrafish embryonic development by regulating NAD + levels. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1929-1948. [PMID: 33521859 DOI: 10.1007/s11427-020-1851-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/16/2020] [Indexed: 10/22/2022]
Abstract
The origination of new genes is important for generating genetic novelties for adaptive evolution and biological diversity. However, their potential roles in embryonic development, evolutionary processes into ancient networks, and contributions to adaptive evolution remain poorly investigated. Here, we identified a novel chimeric gene family, the chiron family, and explored its genetic basis and functional evolution underlying the adaptive evolution of Danioninae fishes. The ancestral chiron gene originated through retroposition of nampt in Danioninae 48-54 million years ago (Mya) and expanded into five duplicates (chiron1-5) in zebrafish 1-4 Mya. The chiron genes (chirons) likely originated in embryonic development and gradually extended their expression in the testis. Functional experiments showed that chirons were essential for zebrafish embryo development. By integrating into the NAD+ synthesis pathway, chirons could directly catalyze the NAD+ rate-limiting reaction and probably impact two energy metabolism genes (nmnat1 and naprt) to be under positive selection in Danioninae fishes. Together, these results mainly demonstrated that the origin of new chimeric chiron genes may be involved in adaptive evolution by integrating and impacting the NAD+ biosynthetic pathway. This coevolution may contribute to the physiological adaptation of Danioninae fishes to widespread and varied biomes in Southeast Asian.
Collapse
|
16
|
Karunarathna NL, Wang H, Harloff H, Jiang L, Jung C. Elevating seed oil content in a polyploid crop by induced mutations in SEED FATTY ACID REDUCER genes. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2251-2266. [PMID: 32216029 PMCID: PMC7589255 DOI: 10.1111/pbi.13381] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/25/2020] [Accepted: 03/16/2020] [Indexed: 05/08/2023]
Abstract
Plant-based oils are valuable agricultural products, and seed oil content (SOC) is the major yield component in oil crops. Increasing SOC has been successfully targeted through the selection and genetic modification of oil biosynthesis. The SOC in rapeseed declined during the seed maturation and eventually caused the final accumulated seed oil quantity. However, genes involved in oil degradation during seed maturity are not deeply studied so far. We performed a candidate gene association study using a worldwide collection of rapeseed germplasm. We identified SEED FATTY ACID REDUCER (SFAR) genes, which had a significant effect on SOC and fatty acid (FA) composition. SFAR genes belong to the GDSL lipases, and GDSL lipases have a broad range of functions in plants. After quantification of gene expression using RNA-seq and quantitative PCR, we used targeted (CRISPR-Cas mediated) and random (chemical) mutagenesis to modify turnover rates of seed oil in winter rapeseed. For the first time, we demonstrate significant increase of SOC in a crop after knocking out members of the BnSFAR4 and BnSFAR5 gene families without pleiotropic effects on seed germination, vigour and oil mobilization. Our results offer new perspectives for improving oil yield by targeted mutagenesis.
Collapse
Affiliation(s)
| | - Haoyi Wang
- Institute of Crop ScienceZhejiang UniversityHangzhouChina
| | | | - Lixi Jiang
- Plant Breeding InstituteChristian‐Albrechts‐University of KielKielGermany
| | - Christian Jung
- Plant Breeding InstituteChristian‐Albrechts‐University of KielKielGermany
| |
Collapse
|
17
|
Yu CY, Lian JL, Gong Q, Ren LS, Huang Z, Xu AX, Dong JG. Sublethal application of various sulfonylurea and imidazolinone herbicides favors outcrossing and hybrid seed production in oilseed rape. BMC PLANT BIOLOGY 2020; 20:69. [PMID: 32046649 PMCID: PMC7014721 DOI: 10.1186/s12870-020-2278-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Acetolactate synthase (ALS)-inhibiting herbicides from the chemical families of sulfonylureas and imidazolinones are used worldwide. However, drift or sprayer contamination from some sulfonylurea herbicides causes a high level of male sterility in cruciferous species, especially oilseed rape (OSR). In this paper, we evaluated the gametocidal effects of 27 ALS-inhibiting herbicides that were sprayed on OSR plants at the bolting stage. RESULTS OSR anther development was very sensitive to sublethal exposure to most ALS-inhibiting herbicides. The application of 18 out of the 20 tested sulfonylureas (except ethametsulfuron and ethoxysulfuron), two imidazolinones (imazethapyr and imazamox), and one sulfonylamino-carbonyltriazolinone (flucarbazone-sodium) at suitable rates could induce male sterility. Eight of the herbicides, including chlorsulfuron (at application rates of 60-120 mg/ha), halosulfuron-methyl (300-600 mg/ha), sulfosulfuron (400-600 mg/ha), triflusulfuron-methyl (500-750 mg/ha), pyrazosulfuron-ethyl (150-225 mg/ha), nicosulfuron (200-300 mg/ha), imazethapyr (750-1125 mg/ha), and imazamox (400-800 mg/ha), could induce over 90% male sterility and over 60% relative outcrossed seed set in six cultivars with different origins. These eight chemicals could be used as new gametocides for hybrid seed production. This study also examined the possibility of external application of these gametocides on several unstable Polima cytoplasmic male sterile and thermosensitive genic male sterile lines. Although the outcrossed seed set of the treated lines was slightly reduced, the gametocide application significantly increased the seed purity of the resulting hybrid. CONCLUSION The finding of the gametocidal effects of most sulfonylureas and imidazolinones are of great importance for developing new functions for ALS-inhibiting herbicides. The application of gametocides will also greatly promote the safe utilization of environment-sensitive male sterility in hybrid seed production. Unexpectedly, the application of three triazolopyrimidines (florasulam, flumetsulam, and penoxsulam) and one pyrimidinylthiobenzoate (bispyribac-sodium) did not cause male sterility, although these herbicides obviously inhibited the activity of ALS and plant growth. This result suggests that inhibition of ALS activity does not always lead to male sterility in plants, and these gametocides may also inhibit other biological functions vital for microspore development.
Collapse
Affiliation(s)
- Cheng-Yu Yu
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Jing-long Lian
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Qiong Gong
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Li-Suo Ren
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Zhen Huang
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Ai-Xia Xu
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Jun-Gang Dong
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
18
|
Zhang Z, Fan Y, Xiong J, Guo X, Hu K, Wang Z, Gao J, Wen J, Yi B, Shen J, Ma C, Fu T, Xia S, Tu J. Two young genes reshape a novel interaction network in Brassica napus. THE NEW PHYTOLOGIST 2020; 225:530-545. [PMID: 31407340 DOI: 10.1111/nph.16113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
New genes often drive the evolution of gene interaction networks. In Brassica napus, the widely used genic male sterile breeding system 7365ABC is controlled by two young genes, Bnams4b and BnaMs3. However, the interaction mechanism of these two young genes remains unclear. Here, we confirmed that Bnams4b interacts with the nuclear localised E3 ligase BRUTUS (BTS). Ectopic expression of AtBRUTUS (AtBTS) and comparison between Bnams4b -transgenic Arabidopsis and bts mutants suggested that Bnams4b may drive translocation of BTS to cause various toxic defects. BnaMs3 gained an exclusive interaction with the plastid outer-membrane translocon Toc33 compared with Bnams3 and AtTic40, and specifically compensated for the toxic effects of Bnams4b . Heat shock treatment also rescued the sterile phenotype, and high temperature suppressed the interaction between Bnams4b and BTS in yeast. Furthermore, the ubiquitin system and TOC (translocon at the outer envelope membrane of chloroplasts) component accumulation were affected in Bnams4b -transgenic Arabidopsis plants. Taken together, these results indicate that new chimeric Bnams4b carries BTS from nucleus to chloroplast, which may disrupt the normal ubiquitin-proteasome system to cause toxic effects, and these defects can be compensated by BnaMs3-Toc33 interaction or environmental heat shock. It reveals a scenario in which two population-specific coevolved young genes reshape a novel interaction network in plants.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu Fan
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Xiong
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiang Guo
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kaining Hu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhixin Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Gao
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shengqian Xia
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
19
|
Song JM, Guan Z, Hu J, Guo C, Yang Z, Wang S, Liu D, Wang B, Lu S, Zhou R, Xie WZ, Cheng Y, Zhang Y, Liu K, Yang QY, Chen LL, Guo L. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. NATURE PLANTS 2020; 6:34-45. [PMID: 31932676 PMCID: PMC6965005 DOI: 10.1038/s41477-019-0577-7] [Citation(s) in RCA: 413] [Impact Index Per Article: 82.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/29/2019] [Indexed: 05/18/2023]
Abstract
Rapeseed (Brassica napus) is the second most important oilseed crop in the world but the genetic diversity underlying its massive phenotypic variations remains largely unexplored. Here, we report the sequencing, de novo assembly and annotation of eight B. napus accessions. Using pan-genome comparative analysis, millions of small variations and 77.2-149.6 megabase presence and absence variations (PAVs) were identified. More than 9.4% of the genes contained large-effect mutations or structural variations. PAV-based genome-wide association study (PAV-GWAS) directly identified causal structural variations for silique length, seed weight and flowering time in a nested association mapping population with ZS11 (reference line) as the donor, which were not detected by single-nucleotide polymorphisms-based GWAS (SNP-GWAS), demonstrating that PAV-GWAS was complementary to SNP-GWAS in identifying associations to traits. Further analysis showed that PAVs in three FLOWERING LOCUS C genes were closely related to flowering time and ecotype differentiation. This study provides resources to support a better understanding of the genome architecture and acceleration of the genetic improvement of B. napus.
Collapse
Affiliation(s)
- Jia-Ming Song
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Zhilin Guan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Jianlin Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Chaocheng Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Zhiquan Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Shuo Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Dongxu Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Bo Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Run Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Wen-Zhao Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yuanfang Cheng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yuting Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Kede Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, People's Republic of China.
| | - Qing-Yong Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, People's Republic of China.
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, People's Republic of China.
| | - Ling-Ling Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, People's Republic of China.
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, People's Republic of China.
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, People's Republic of China.
| |
Collapse
|
20
|
Zhang T, Zhou G, Goring DR, Liang X, Macgregor S, Dai C, Wen J, Yi B, Shen J, Tu J, Fu T, Ma C. Generation of Transgenic Self-Incompatible Arabidopsis thaliana Shows a Genus-Specific Preference for Self-Incompatibility Genes. PLANTS 2019; 8:plants8120570. [PMID: 31817214 PMCID: PMC6963867 DOI: 10.3390/plants8120570] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/30/2019] [Accepted: 12/03/2019] [Indexed: 12/20/2022]
Abstract
Brassicaceae species employ both self-compatibility and self-incompatibility systems to regulate post-pollination events. Arabidopsis halleri is strictly self-incompatible, while the closely related Arabidopsis thaliana has transitioned to self-compatibility with the loss of functional S-locus genes during evolution. The downstream signaling protein, ARC1, is also required for the self-incompatibility response in some Arabidopsis and Brassica species, and its gene is deleted in the A. thaliana genome. In this study, we attempted to reconstitute the SCR-SRK-ARC1 signaling pathway to restore self-incompatibility in A. thaliana using genes from A. halleri and B. napus, respectively. Several of the transgenic A. thaliana lines expressing the A. halleriSCR13-SRK13-ARC1 transgenes displayed self-incompatibility, while all the transgenic A. thaliana lines expressing the B. napusSCR1-SRK1-ARC1 transgenes failed to show any self-pollen rejection. Furthermore, our results showed that the intensity of the self-incompatibility response in transgenic A. thaliana plants was not associated with the expression levels of the transgenes. Thus, this suggests that there are differences between the Arabidopsis and Brassica self-incompatibility signaling pathways, which perhaps points to the existence of other factors downstream of B. napusSRK that are absent in Arabidopsis species.
Collapse
Affiliation(s)
- Tong Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Guilong Zhou
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Daphne R. Goring
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
- Centre for Genome Analysis & Function, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Xiaomei Liang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Stuart Macgregor
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: ; Tel.: +86-27-8728-18-07
| |
Collapse
|
21
|
Wei C, Wang H, Heng S, Wen J, Yi B, Ma C, Tu J, Shen J, Fu T. Construction of restorer lines and molecular mapping for restorer gene of hau cytoplasmic male sterility in Brassica napus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2525-2539. [PMID: 31165223 DOI: 10.1007/s00122-019-03368-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 05/27/2019] [Indexed: 06/09/2023]
Abstract
Successfully constructing restorer lines for the hau CMS line and molecular mapping of Rfh to a 94 kb candidate region on chromosome A03 in Brassica napus. Cytoplasmic male sterility is a general phenomenon in almost 200 species, and the interaction between chimeric genes in mitochondria and restorer genes in nucleus may be responsible for restoration of male fertility. Orf288 has been identified as a CMS-associated gene in the hau CMS line of Brassica napus and Brassica juncea; however, the restorer lines/genes have not been found yet. We therefore have successfully constructed two restorer lines in B. napus by extensive testcrossing and have mapped a major restorer gene Rfh to a physical distance of 94 kb on chromosome A03 by whole-genome resequencing and molecular markers. We found that the restorer line is indeed restored to male fertility at histological level. Comparative genomics and collinearity analysis between close relatives revealed that rearrangements and recombination may have happened and thus caused the production of Rfh or components of the restoration of fertility complex. Meanwhile, nuclear backgrounds with multiple loci and temperature were related to the variation and instability of restoration of fertility in three different populations. Our study provides new sights into the coevolution between restorer genes and CMS-associated genes as well as the cultivation of superior hybrids via molecular breeding.
Collapse
Affiliation(s)
- Chao Wei
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan City, 430070, People's Republic of China
- College of Life Science, Zhaoqing University, Zhaoqing, 526061, People's Republic of China
| | - Huadong Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan City, 430070, People's Republic of China
| | - Shuangping Heng
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan City, 430070, People's Republic of China
- College of Life Science, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, People's Republic of China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan City, 430070, People's Republic of China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan City, 430070, People's Republic of China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan City, 430070, People's Republic of China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan City, 430070, People's Republic of China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan City, 430070, People's Republic of China.
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan City, 430070, People's Republic of China
| |
Collapse
|
22
|
Lian JL, Ren LS, Zhang C, Yu CY, Huang Z, Xu AX, Dong JG. How exposure to ALS-inhibiting gametocide tribenuron-methyl induces male sterility in rapeseed. BMC PLANT BIOLOGY 2019; 19:124. [PMID: 30940071 PMCID: PMC6444545 DOI: 10.1186/s12870-019-1722-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 03/17/2019] [Indexed: 06/08/2023]
Abstract
BACKGROUND Acetolactate synthase (ALS)-inhibiting herbicide tribenuron-methyl (TBM) is an efficient gametocide that can cause rapeseed (Brassica napus L.) to become male sterile and outcrossing. To find the reason the TBM treatment leads to male sterility, an integrated study using cytological, physiological, and transcriptomic methods was conducted. RESULTS Some temporary symptoms, including the discoloration of young leaves and a short halt of raceme elongation, were observed in the rapeseed plants exposed to TBM at an application rate of 1 μg per plant. Both chloroplasts in young leaves and plastids in anthers were deformed. TBM also reduced the leaf photosynthetic rate and the contents of chlorophyll, soluble sugar and pyruvate. Both the tapetal cells and uni-nucleate microspores in the treated plants showed large autophagic vacuoles, and the tissue degenerated quickly. A transcriptomic comparison with the control identified 200 upregulated and 163 downregulated differential expression genes in the small flower buds of the TBM treatment. The genes encoding functionally important proteins, including glucan endo-1,3-beta-glucosidase A6, QUARTET3 (QRT3), ARABIDOPSIS ANTHER 7 (ATA7), non-specific lipid-transfer protein LTP11 and LTP12, histone-lysine N-methyltransferase ATXR6, spermidine coumaroyl-CoA acyltransferase (SCT), and photosystem II reaction centre protein psbB, were downregulated by TBM exposure. Some important genes encoding autophagy-related protein ATG8a and metabolic detoxification related proteins, including DTX1, DTX6, DTX35, cytosolic sulfotransferase SOT12, and six members of glutathione S-transferase, were upregulated. In addition, several genes related to hormone stimulus, such as 1-aminocyclopropane-1-carboxylate synthase 8 (ACS8), ethylene-responsive factor ERF1A, ERF1, ERF71, CRF6, and RAP2-3, were also upregulated. The transcriptional regulation is in accordance with the functional abnormalities of pollen wall formation, lipid metabolism, chloroplast structure, ethylene generation, cell cycle, and tissue autophagy. CONCLUSION The results suggested that except for ALS, the metabolic pathways related to lipid metabolism, pollen exine formation, photosynthesis and hormone response are associated with male sterility induced by TBM. The results provide new insight into the molecular mechanisms of inducing male sterility by sulfonylurea.
Collapse
Affiliation(s)
- Jing-long Lian
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Li-Suo Ren
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Cong Zhang
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Cheng-Yu Yu
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Zhen Huang
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Ai-Xia Xu
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Jun-Gang Dong
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
23
|
Genome-Wide DNA Methylation Comparison between Brassica napus Genic Male Sterile Line and Restorer Line. Int J Mol Sci 2018; 19:ijms19092689. [PMID: 30201884 PMCID: PMC6165103 DOI: 10.3390/ijms19092689] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/30/2018] [Accepted: 09/04/2018] [Indexed: 12/29/2022] Open
Abstract
DNA methylation is an essential epigenetic modification that dynamically regulates gene expression during plant development. However, few studies have determined the DNA methylation profiles of male-sterile rapeseed. Here, we conducted a global comparison of DNA methylation patterns between the rapeseed genic male sterile line 7365A and its near-isogenic fertile line 7365B by whole-genome bisulfite sequencing (WGBS). Profiling of the genome-wide DNA methylation showed that the methylation level in floral buds was lower than that in leaves and roots. Besides, a total of 410 differentially methylated region-associated genes (DMGs) were identified in 7365A relative to 7365B. Traditional bisulfite sequencing polymerase chain reaction (PCR) was performed to validate the WGBS data. Eleven DMGs were found to be involved in anther and pollen development, which were analyzed by quantitative PCR. In particular, Bnams4 was hypo-methylated in 7365A, and its expression was up-regulated, which might affect other DMGs and thus control the male sterility. This study provided genome-wide DNA methylation profiles of floral buds and important clues for revealing the molecular mechanism of genic male sterility in rapeseed.
Collapse
|
24
|
Xiao L, Li X, Liu F, Zhao Z, Xu L, Chen C, Wang Y, Shang G, Du D. Mutations in the CDS and promoter of BjuA07.CLV1 cause a multilocular trait in Brassica juncea. Sci Rep 2018; 8:5339. [PMID: 29593311 PMCID: PMC5871799 DOI: 10.1038/s41598-018-23636-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/15/2018] [Indexed: 11/13/2022] Open
Abstract
Multilocular trait has recently attracted considerable attention for its potential to increase yield. Our previous studies indicated that two genes (Bjln1 and Bjln2) are responsible for multilocular siliques in Brassica juncea and the Bjln1 gene has been delimited to a 208-kb region. In present study, the Bjln1 gene was successfully isolated using the map-based cloning method. Complementation test indicated that the BjuA07.CLV1 (equivalent to BjLn1) could rescue the multilocular phenotype and generate bilocular siliques. Two amino acids changes at positions 28 and 63 in BjuA07.clv1 as well as a 702-bp deletion in its promoter have been proved to affect the carpel numbers. Microscopic analyses suggested that BjuA07.CLV1 is involved in the maintenance of shoot and floral meristem size. The expression level of BjuA07.clv1 was significantly reduced in the SAM. Furthermore, WUS, CLV2, CLV3, RPK2 and POL, key genes in the CLV/WUS signal pathway, showed lower expression level in the multilocular plants. These data suggest that the mutations in the CDS and promoter of BjuA07.clv1 reduced its function and expression level, which disturbed CLV/WUS signal pathway, thereby leading to the enlargement of the shoot and floral meristem and resulting in the multilocular siliques.
Collapse
Affiliation(s)
- Lu Xiao
- State Key Laboratory of Plateau Ecology and Agriculture of Qinghai University, Key Laboratory of Qinghai Province for Spring Rapeseed Genetic Improvement, The Qinghai Research Branch of the National Rapeseed Genetic Improvement Center, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, China
| | - Xin Li
- State Key Laboratory of Plateau Ecology and Agriculture of Qinghai University, Key Laboratory of Qinghai Province for Spring Rapeseed Genetic Improvement, The Qinghai Research Branch of the National Rapeseed Genetic Improvement Center, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, China
| | - Fei Liu
- National Key Lab of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Zhi Zhao
- State Key Laboratory of Plateau Ecology and Agriculture of Qinghai University, Key Laboratory of Qinghai Province for Spring Rapeseed Genetic Improvement, The Qinghai Research Branch of the National Rapeseed Genetic Improvement Center, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, China
| | - Liang Xu
- State Key Laboratory of Plateau Ecology and Agriculture of Qinghai University, Key Laboratory of Qinghai Province for Spring Rapeseed Genetic Improvement, The Qinghai Research Branch of the National Rapeseed Genetic Improvement Center, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, China
| | - Cuiping Chen
- State Key Laboratory of Plateau Ecology and Agriculture of Qinghai University, Key Laboratory of Qinghai Province for Spring Rapeseed Genetic Improvement, The Qinghai Research Branch of the National Rapeseed Genetic Improvement Center, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, China
| | - Yanhua Wang
- State Key Laboratory of Plateau Ecology and Agriculture of Qinghai University, Key Laboratory of Qinghai Province for Spring Rapeseed Genetic Improvement, The Qinghai Research Branch of the National Rapeseed Genetic Improvement Center, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, China
| | - Guoxia Shang
- State Key Laboratory of Plateau Ecology and Agriculture of Qinghai University, Key Laboratory of Qinghai Province for Spring Rapeseed Genetic Improvement, The Qinghai Research Branch of the National Rapeseed Genetic Improvement Center, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, China
| | - Dezhi Du
- State Key Laboratory of Plateau Ecology and Agriculture of Qinghai University, Key Laboratory of Qinghai Province for Spring Rapeseed Genetic Improvement, The Qinghai Research Branch of the National Rapeseed Genetic Improvement Center, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, China.
| |
Collapse
|
25
|
Fu W, Chen D, Pan Q, Li F, Zhao Z, Ge X, Li Z. Production of red-flowered oilseed rape via the ectopic expression of Orychophragmus violaceus OvPAP2. PLANT BIOTECHNOLOGY JOURNAL 2018; 16. [PMID: 28640973 PMCID: PMC5787836 DOI: 10.1111/pbi.12777] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Oilseed rape (Brassica napus L.), which has yellow flowers, is both an important oil crop and a traditional tourism resource in China, whereas the Orychophragmus violaceus, which has purple flowers, likely possesses a candidate gene or genes to alter the flower colour of oilseed rape. A previously established B. napus line has a particular pair of O. violaceus chromosomes (M4) and exhibits slightly red petals. In this study, the transcriptomic analysis of M4, B. napus (H3), and O. violaceus with purple petals (OvP) and with white petals (OvW) revealed that most anthocyanin biosynthesis genes were up-regulated in both M4 and OvP. Read assembly and sequence alignment identified a homolog of AtPAP2 in M4, which produced the O. violaceus transcript (OvPAP2). The overexpression of OvPAP2 via the CaMV35S promoter in Arabidopsis thaliana led to different levels of anthocyanin accumulation in most organs, including the petals. However, the B. napus overexpression plants showed anthocyanin accumulation primarily in the anthers, but not the petals. However, when OvPAP2 was driven by the petal-specific promoter XY355, the transgenic B. napus plants produced red anthers and red petals. The results of metabolomic experiments showed that specific anthocyanins accumulated to high levels in the red petals. This study illustrates the feasibility of producing red-flowered oilseed rape, thereby enhancing its ornamental value, via the ectopic expression of the OvPAP2 gene. Moreover, the practical application of this study for insect pest management in the crop is discussed.
Collapse
Affiliation(s)
- Wenqin Fu
- National Key Laboratory of Crop Genetic ImprovementNational Center of Oil Crop Improvement (Wuhan)College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Daozong Chen
- National Key Laboratory of Crop Genetic ImprovementNational Center of Oil Crop Improvement (Wuhan)College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Qi Pan
- National Key Laboratory of Crop Genetic ImprovementNational Center of Oil Crop Improvement (Wuhan)College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Fengfeng Li
- National Key Laboratory of Crop Genetic ImprovementNational Center of Oil Crop Improvement (Wuhan)College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Zhigang Zhao
- Qinghai Academy of Agricultural and Forestry SciencesQinghai UniversityXiningChina
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic ImprovementNational Center of Oil Crop Improvement (Wuhan)College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Zaiyun Li
- National Key Laboratory of Crop Genetic ImprovementNational Center of Oil Crop Improvement (Wuhan)College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
26
|
Wang X, Li X, Li M, Wen J, Yi B, Shen J, Ma C, Fu T, Tu J. BnaA.bZIP1 Negatively Regulates a Novel Small Peptide Gene, BnaC.SP6, Involved in Pollen Activity. FRONTIERS IN PLANT SCIENCE 2017; 8:2117. [PMID: 29312383 PMCID: PMC5732959 DOI: 10.3389/fpls.2017.02117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/28/2017] [Indexed: 06/07/2023]
Abstract
Small peptides secreted to the extracellular matrix control many aspects of the plant's physiological activities which were identified in Arabidopsis thaliana, called ATSPs. Here, we isolated and characterized the small peptide gene Bna.SP6 from Brassica napus. The BnaC.SP6 promoter was cloned and identified. Promoter deletion analysis suggested that the -447 to -375 and -210 to -135 regions are crucial for the silique septum and pollen expression of BnaC.SP6, respectively. Furthermore, the minimal promoter region of p158 (-210 to -52) was sufficient for driving gene expression specifically in pollen and highly conserved in Brassica species. In addition, BnaA.bZIP1 was predominantly expressed in anthers where BnaC.SP6 was also expressed, and was localized to the nuclei. BnaA.bZIP1 possessed transcriptional activation activity in yeast and protoplast system. It could specifically bind to the C-box in p158 in vitro, and negatively regulate p158 activity in vivo. BnaA.bZIP1 functions as a transcriptional repressor of BnaC.SP6 in pollen activity. These results provide novel insight into the transcriptional regulation of BnaC.SP6 in pollen activity and the pollen/anther-specific promoter regions of BnaC.SP6 may have their potential agricultural application for new male sterility line generation.
Collapse
|
27
|
Liu XQ, Yu CY, Dong JG, Hu SW, Xu AX. Acetolactate Synthase-Inhibiting Gametocide Amidosulfuron Causes Chloroplast Destruction, Tissue Autophagy, and Elevation of Ethylene Release in Rapeseed. FRONTIERS IN PLANT SCIENCE 2017; 8:1625. [PMID: 28983304 PMCID: PMC5613135 DOI: 10.3389/fpls.2017.01625] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/05/2017] [Indexed: 05/08/2023]
Abstract
Background: Acetolactate synthase (ALS)-inhibiting herbicides amidosulfuron (Hoestar) is an efficient gametocide that can induce male sterility in rapeseed (Brassica napus L.). We conducted an integrated study of cytological, transcriptomic, and physiological analysis to decipher the gametocidal effect of amidosulfuron. Results: In the first several days after exposure to amidosulfuron at a gametocidal dose of ca. 1 μg per plant, the plants showed the earliest symptoms including short retard of raceme elongation, slight chlorosis on leaf, and decrease of photosynthesis rate. Chloroplasts in leaf and anther epidermis, and tapetal plastids were deformed. Both tapetal cell and uni-nucleate microspore showed autophagic vacuoles and degenerated quickly. The amidosulfuron treatment caused reduction of photosynthetic rate and the contents of leaf chlorophyll, soluble sugar and pyruvate, as well as content alteration of several free amino acids in the treated plants. A comparison of transcriptomic profiling data of the young flower buds of the treated plants with the control identified 142 up-regulated and 201 down-regulated differential expression transcripts with functional annotations. Down-regulation of several interesting genes encoding PAIR1, SDS, PPD2, HFM1, CSTF77, A6, ALA6, UGE1, FLA20, A9, bHLH91, and putative cell wall protein LOC106368794, and up-regulation of autophagy-related protein ATG8A indicated functional abnormalities about cell cycle, cell wall formation, chloroplast structure, and tissue autophagy. Ethylene-responsive transcription factor RAP2-11-like was up-regulated in the flower buds and ethylene release rate was also elevated. The transcriptional regulation in the amidosulfuron-treated plants was in line with the cytological and physiological changes. Conclusions: The results suggested that metabolic decrease related to photosynthesis and energy supply are associated with male sterility induced by amidosulfuron. The results provide insights into the molecular mechanisms of gametocide-induced male sterility and expand the knowledge on the transcriptomic complexity of the plants exposure to sulfonylurea herbicide.
Collapse
|