1
|
Li Z, Kim M, da Silva Nascimento JR, Legeret B, Jorge GL, Bertrand M, Beisson F, Thelen JJ, Li‐Beisson Y. Knocking out the carboxyltransferase interactor 1 (CTI1) in Chlamydomonas boosted oil content by fivefold without affecting cell growth. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1230-1242. [PMID: 39887606 PMCID: PMC11933832 DOI: 10.1111/pbi.14581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/03/2024] [Accepted: 01/02/2025] [Indexed: 02/01/2025]
Abstract
The first step in chloroplast de novo fatty acid synthesis is catalysed by acetyl-CoA carboxylase (ACCase). As the rate-limiting step for this pathway, ACCase is subject to both positive and negative regulation. In this study, we identify a Chlamydomonas homologue of the plant carboxyltransferase interactor 1 (CrCTI1) and show that this protein interacts with the Chlamydomonas α-carboxyltransferase (Crα-CT) subunit of the ACCase by yeast two-hybrid protein-protein interaction assay. Three independent CRISPR-Cas9 mediated knockout mutants for CrCTI1 each produced an 'enhanced oil' phenotype, accumulating 25% more total fatty acids and storing up to fivefold more triacylglycerols (TAGs) in lipid droplets. The TAG phenotype of the crcti1 mutants was not influenced by light but was affected by trophic growth conditions. By growing cells under heterotrophic conditions, we observed a crucial function of CrCTI1 in balancing lipid accumulation and cell growth. Mutating a previously mapped in vivo phosphorylation site (CrCTI1 Ser108 to either Ala or to Asp), did not affect the interaction with Crα-CT. However, mutating all six predicted phosphorylation sites within Crα-CT to create a phosphomimetic mutant reduced this pairwise interaction significantly. Comparative proteomic analyses of the crcti1 mutants and WT suggested a role for CrCTI1 in regulating carbon flux by coordinating carbon metabolism, antioxidant and fatty acid β-oxidation pathways, to enable cells to adapt to carbon availability. Taken together, this study identifies CrCTI1 as a negative regulator of fatty acid synthesis in algae and provides a new molecular brick for the genetic engineering of microalgae for biotechnology purposes.
Collapse
Affiliation(s)
- Zhongze Li
- Aix‐Marseille Université, CEA, CNRS, Institute of Biosciences and Biotechnologies of Aix‐Marseille, UMR 7265CEA CadaracheSaint‐Paul‐lez DuranceFrance
| | - Minjae Kim
- Aix‐Marseille Université, CEA, CNRS, Institute of Biosciences and Biotechnologies of Aix‐Marseille, UMR 7265CEA CadaracheSaint‐Paul‐lez DuranceFrance
- Library of Marine SamplesKorea Institute of Ocean Science & TechnologyGeojeRepublic of Korea
| | - Jose Roberto da Silva Nascimento
- Department of Biochemistry and Interdisciplinary Plant GroupChristopher S. Bond Life Sciences Center, University of MissouriColumbiaMissouriUSA
| | - Bertrand Legeret
- Aix‐Marseille Université, CEA, CNRS, Institute of Biosciences and Biotechnologies of Aix‐Marseille, UMR 7265CEA CadaracheSaint‐Paul‐lez DuranceFrance
| | - Gabriel Lemes Jorge
- Department of Biochemistry and Interdisciplinary Plant GroupChristopher S. Bond Life Sciences Center, University of MissouriColumbiaMissouriUSA
| | - Marie Bertrand
- Aix‐Marseille Université, CEA, CNRS, Institute of Biosciences and Biotechnologies of Aix‐Marseille, UMR 7265CEA CadaracheSaint‐Paul‐lez DuranceFrance
| | - Fred Beisson
- Aix‐Marseille Université, CEA, CNRS, Institute of Biosciences and Biotechnologies of Aix‐Marseille, UMR 7265CEA CadaracheSaint‐Paul‐lez DuranceFrance
| | - Jay J. Thelen
- Department of Biochemistry and Interdisciplinary Plant GroupChristopher S. Bond Life Sciences Center, University of MissouriColumbiaMissouriUSA
| | - Yonghua Li‐Beisson
- Aix‐Marseille Université, CEA, CNRS, Institute of Biosciences and Biotechnologies of Aix‐Marseille, UMR 7265CEA CadaracheSaint‐Paul‐lez DuranceFrance
| |
Collapse
|
2
|
Li L, Zhang D, Zhang Z, Zhang B. CRISPR/Cas: a powerful tool for designing and improving oil crops. Trends Biotechnol 2025; 43:773-789. [PMID: 39362812 DOI: 10.1016/j.tibtech.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024]
Abstract
Improving oil yield and quality is a major goal for crop breeding, and CRISPR/Cas-mediated genome editing has opened a new era for designing oil crops with enhanced yield and quality. CRISPR/Cas technology can not only increase oil production but also enhance oil quality, including enhancing pharmaceutical and health components, improving oil nutrients, and removing allergic and toxic components. As new molecular targets for oil biosynthesis are discovered and the CRISPR/Cas system is further improved, CRISPR/Cas will become a better molecular tool for designing new oil crops with higher oil production, enhanced nutrients, and improved health components. 'CRISPRized' oil crops will have broad applications both in industry (e.g., as biofuels) and in daily human life.
Collapse
Affiliation(s)
- Lijie Li
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, and Xinxiang Key Laboratory of Crop Root Biology and Green Efficient Production, School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China; Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| | - Dangquan Zhang
- Henan Province Engineering Research Center for Forest Biomass Value-Added Products, College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China.
| | - Zhiyong Zhang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, and Xinxiang Key Laboratory of Crop Root Biology and Green Efficient Production, School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China.
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
3
|
Kimberlin AN, Mahmud S, Holtsclaw RE, Walker A, Conrad K, Morley SA, Welti R, Allen DK, Koo AJ. Inducible expression of DEFECTIVE IN ANTHER DEHISCENCE 1 enhances triacylglycerol accumulation and lipid droplet formation in vegetative tissues. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70088. [PMID: 40052427 PMCID: PMC11886949 DOI: 10.1111/tpj.70088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 03/10/2025]
Abstract
Bioengineering efforts to increase oil in non-storage vegetative tissues, which constitute the majority of plant biomass, are promising sustainable sources of renewable fuels and feedstocks. While plants typically do not accumulate significant amounts of triacylglycerol (TAG) in vegetative tissues, we report here that the expression of a plastid-localized phospholipase A1 protein, DEFECTIVE IN ANTHER DEHISCENCE1 (DAD1), led to a substantial increase in leaf TAG in Arabidopsis. Using an inducible system to control DAD1 expression circumvented growth penalties associated with overexpressing DAD1 and resulted in a rapid burst of TAG within several hours. The increase of TAG was accompanied by the formation of oil bodies in the leaves, petioles, and stems, but not in the roots. Lipid analysis indicated that the increase in TAG was negatively correlated with plastidial galactolipid concentration. The fatty acid (FA) composition of TAG predominantly consisted of 18:3. Expression of DAD1 in the fad3fad7fad8 mutant, devoid of 18:3, resulted in comparable TAG accumulation with 18:2 as the major FA constituent, reflecting the flexible in vivo substrate use of DAD1. The transient expression of either Arabidopsis DAD1 or Nicotiana benthamiana DAD1 (NbDAD1) in N. benthamiana leaves stimulated the accumulation of TAG. Similarly, transgenic soybeans expressing Arabidopsis DAD1 exhibited an accumulation of TAG in the leaves, showcasing the biotechnological potential of this technology. In summary, inducible expression of a plastidial lipase resulted in enhanced oil production in vegetative tissues, extending our understanding of lipid remodeling mediated by DAD1 and offering a valuable tool for metabolic engineering.
Collapse
Affiliation(s)
- Athen N. Kimberlin
- Department of BiochemistryUniversity of MissouriColumbiaMissouri65211USA
- Present address:
Aldevron LLCMadisonWisconsin53719USA
| | - Sakil Mahmud
- Department of BiochemistryUniversity of MissouriColumbiaMissouri65211USA
- Present address:
Department of Agriculture and Environmental SciencesLincoln UniversityJefferson CityMissouri65101USA
| | - Rebekah E. Holtsclaw
- Department of BiochemistryUniversity of MissouriColumbiaMissouri65211USA
- Present address:
Rubi LaboratoriesAlamedaCalifornia94502USA
| | - Alexie Walker
- Department of BiochemistryUniversity of MissouriColumbiaMissouri65211USA
| | - Kristyn Conrad
- Department of BiochemistryUniversity of MissouriColumbiaMissouri65211USA
| | | | - Ruth Welti
- Division of BiologyKansas State UniversityManhattanKansas66506USA
| | - Doug K. Allen
- Donald Danforth Plant Science CenterSt. LouisMissouri63132USA
- USDA‐ARSSt. LouisMissouri63132USA
| | - Abraham J. Koo
- Department of BiochemistryUniversity of MissouriColumbiaMissouri65211USA
| |
Collapse
|
4
|
Wei W, Wang LF, Tao JJ, Zhang WK, Chen SY, Song Q, Zhang JS. The comprehensive regulatory network in seed oil biosynthesis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:649-668. [PMID: 39821491 DOI: 10.1111/jipb.13834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/03/2024] [Indexed: 01/19/2025]
Abstract
Plant oils play a crucial role in human nutrition, industrial applications and biofuel production. While the enzymes involved in fatty acid (FA) biosynthesis are well-studied, the regulatory networks governing these processes remain largely unexplored. This review explores the intricate regulatory networks modulating seed oil biosynthesis, focusing on key pathways and factors. Seed oil content is determined by the efficiency of de novo FA synthesis as well as influenced by sugar transport, lipid metabolism, FA synthesis inhibitors and fine-tuning mechanisms. At the center of this regulatory network is WRINKLED1 (WRI1), which plays a conserved role in promoting seed oil content across various plant species. WRI1 interacts with multiple proteins, and its expression level is regulated by upstream regulators, including members of the LAFL network. Beyond the LAFL network, we also discuss a potential nuclear factor-Y (NF-Y) regulatory network in soybean with an emphasis on NF-YA and NF-YB and their associated proteins. This NF-Y network represents a promising avenue for future efforts aimed at enhancing oil accumulation and improving stress tolerance in soybean. Additionally, the application of omics-based approaches is of great significance. Advances in omics technologies have greatly facilitated the identification of gene resources, opening new opportunities for genetic improvement. Importantly, several transcription factors involved in oil biosynthesis also participate in stress responses, highlighting a potential link between the two processes. This comprehensive review elucidates the complex mechanisms underlying the regulation of oil biosynthesis, offering insights into potential biotechnological strategies for improving oil production and stress tolerance in oil crops.
Collapse
Affiliation(s)
- Wei Wei
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Long-Fei Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, China
| | - Jian-Jun Tao
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wan-Ke Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shou-Yi Chen
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qingxin Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, China
| | - Jin-Song Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Shivaiah K, Subedi G, Barb A, Nikolau B. Solution Structure and NMR Chemical Shift Perturbations of the Arabidopsis BCCP1 Identify Intersubunit Interactions Potentially Involved in the Assembly of the Heteromeric Acetyl-CoA Carboxylase. PLANT DIRECT 2025; 9:e70057. [PMID: 40124907 PMCID: PMC11926652 DOI: 10.1002/pld3.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 02/13/2025] [Accepted: 03/02/2025] [Indexed: 03/25/2025]
Abstract
Biotin carboxyl carrier protein (BCCP) is a subunit of the heteromeric acetyl-CoA carboxylase (htACCase), and it chemically links the two half-reactions that constitute the formation of malonyl-CoA from acetyl-CoA, a critical reaction in fatty acid biosynthesis. Because plants are a major source of edible fats and oils, it is important to understand the structural organization of the plant htACCase, relative to its potential to regulate fatty acid biosynthesis in plant plastids. Moreover, unique to the plant htACCase, noncatalytic subunits called biotin attachment domain-containing (BADC) proteins are important in the assembly of the holoenzyme, and they specifically interact with the bcCP and the biotin carboxylase (BC) subunits. We report herein NMR structural studies of the Arabidopsis BCCP isozymes (bcCP1 and BCCP2). We calculated the structure of C-terminal domain of BCCP1 (K200-P280) and explored structural changes in the BCCP1 protein upon its interactions with bc and BADC. The chemical shift perturbation experiments identified potential surface residues on the BCCP1 protein that may facilitate physical interactions between BC and BADC proteins. These studies indicate that the BADC protein interacts with a "thumb"-like protrusion, which is a common structural feature of the bacterial and plant bcCPs, and thereby acts as a potential "cap" to facilitate the assembly of a BC-BCCP-BADC complex.
Collapse
Affiliation(s)
- Kiran‐Kumar Shivaiah
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular BiologyIowa State UniversityAmesIowaUSA
- Center for Biorenewable ChemicalsIowa State UniversityAmesIowaUSA
- Center for Metabolic BiologyIowa State UniversityAmesIowaUSA
- Department of Biochemistry and Molecular Biology, DOE‐Plant Research LaboratoryMichigan State UniversityEast LansingMichiganUSA
| | - Ganesh P. Subedi
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular BiologyIowa State UniversityAmesIowaUSA
| | - Adam W. Barb
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular BiologyIowa State UniversityAmesIowaUSA
- Center for Biorenewable ChemicalsIowa State UniversityAmesIowaUSA
- Department of Biochemistry and Molecular BiologyUniversity of GeorgiaAthensGeorgiaUSA
| | - Basil J. Nikolau
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular BiologyIowa State UniversityAmesIowaUSA
- Center for Biorenewable ChemicalsIowa State UniversityAmesIowaUSA
- Center for Metabolic BiologyIowa State UniversityAmesIowaUSA
| |
Collapse
|
6
|
Zhou L, Du Y, Zhang M, Li J, Zhao Y, Hu X, He K, Cao F, Ye Y. REGULATOR OF FATTY ACID SYNTHESIS proteins regulate de novo fatty acid synthesis by modulating hetACCase distribution. THE PLANT CELL 2024; 37:koae295. [PMID: 39489480 DOI: 10.1093/plcell/koae295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 11/05/2024]
Abstract
In plants, heteromeric acetyl-CoA carboxylase (hetACCase) initiates de novo fatty acid synthesis (FAS) by generating malonyl-CoA in the first committed step of this process. hetACCase activity is precisely regulated to meet the cellular demand for acyl chains during the plant life cycle. In this study, we performed a systematic coexpression analysis of hetACCase and its regulators in Arabidopsis (Arabidopsis thaliana) to better understand the regulatory mechanism of hetACCase. Our analysis uncovered REGULATOR OF FATTY ACID SYNTHESIS 1 (RFS1), whose expression is positively correlated with that of other regulators of hetACCase. The RFS gene family encodes two plastid inner envelope membrane proteins with undiscovered roles. Further analysis revealed that RFS1 colocalizes and directly interacts with CARBOXYLTRANSFERASE INTERACTOR 1 (CTI1). CRISPR/Cas9-mediated knockouts of RFSs exhibit enhanced hetACCase activity, higher FAS rates, and increased fatty acid contents, with particularly marked accumulation of absolute triacylglycerol levels in leaves, similar to cti mutants. The mutations of rfs and cti alter the plastid membrane distribution pattern of α-CT, leading to reduced hetACCase activity on the membrane, which could potentially be the original mechanism through which RFSs restrain hetACCase activity. Thus, we reveal a unique regulatory module that regulates de novo FAS and a genetic locus that may contribute to breeding of improved oil crops.
Collapse
Affiliation(s)
- Lijuan Zhou
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing 210037, China
| | - Ying Du
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing 210037, China
| | - Manqi Zhang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing 210037, China
| | - Jincheng Li
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing 210037, China
| | - Yue Zhao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing 210037, China
| | - Xuechun Hu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing 210037, China
| | - Kunrong He
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing 210037, China
| | - Fuliang Cao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing 210037, China
| | - Yajin Ye
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
7
|
Conrado AC, Lemes Jorge G, Rao RSP, Xu C, Xu D, Li-Beisson Y, Thelen JJ. Evolution of the regulatory subunits for the heteromeric acetyl-CoA carboxylase. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230353. [PMID: 39343023 PMCID: PMC11449227 DOI: 10.1098/rstb.2023.0353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/22/2024] [Accepted: 09/02/2024] [Indexed: 10/01/2024] Open
Abstract
The committed step for de novo fatty acid (FA) synthesis is the ATP-dependent carboxylation of acetyl-coenzyme A catalysed by acetyl-CoA carboxylase (ACCase). In most plants, ACCase is a multi-subunit complex orthologous to prokaryotes. However, unlike prokaryotes, the plant and algal orthologues are comprised both catalytic and additional dedicated regulatory subunits. Novel regulatory subunits, biotin lipoyl attachment domain-containing proteins (BADC) and carboxyltransferase interactors (CTI) (both three-gene families in Arabidopsis) represent new effectors specific to plants and certain algal species. The evolutionary history of these genes in autotrophic eukaryotes remains elusive, making it an ongoing area of research. Analyses of potential protein-protein and co-occurrence interactions, informed by gene network patterns using the STRING database, in Arabidopsis thaliana and Chlamydomonas reinhardtii unveil intricate gene associations with ACCase, suggesting a complex interplay between FA synthesis and other cellular processes. Among both species, a higher number of co-expressed genes was identified in Arabidopsis, indicating a wider potential regulatory network of ACCase in plants. This review investigates the extent to which these genes arose in autotrophic eukaryotes and provides insights into their evolutionary trajectory. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Ana Caroline Conrado
- Division of Biochemistry and Interdisciplinary Plant Grou, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO65211, USA
| | - Gabriel Lemes Jorge
- Division of Biochemistry and Interdisciplinary Plant Grou, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO65211, USA
| | - R. S. P. Rao
- Center for Bioinformatics, NITTE University Centre, Mangaluru575018, India
| | - Chunhui Xu
- Institute for Data Science and Informatics, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO65211, USA
| | - Dong Xu
- Department of Electrical Engineering and Computer Science, Institute for Data Science and Informatics, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO65211, USA
| | - Yonghua Li-Beisson
- Aix Marseille Univ, CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix-Marseille,Aix Marseille Univ, CEA Cadarache, Saint Paul-Lez-Durance13108, France
| | - Jay J. Thelen
- Division of Biochemistry and Interdisciplinary Plant Grou, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO65211, USA
| |
Collapse
|
8
|
Bai X, Tang M, Hu X, Huang P, Wu Y, Chen T, He H, Xu ZF. Comparative transcriptome analysis of Cyperus esculentus and C. rotundus with contrasting oil contents in tubers defines genes and regulatory networks involved in oil accumulation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112230. [PMID: 39154894 DOI: 10.1016/j.plantsci.2024.112230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Plant vegetative organs present great potential for lipid storage, with tubers of Cyperus esculentus as a unique example. To investigate the genome and transcriptomic features of C. esculentus and related species, we sequenced and assembled the C. esculentus genome at the contig level. Through a comparative study of high-quality transcriptomes across 36 tissues from high-oil and intermediate-oil C. esculentus and low-oil Cyperus rotundus, we identified potential genes and regulatory networks related to tuber oil accumulation. First, we identified tuber-specific genes in two C. esculentus cultivars. Second, genes involved in fatty acid (FA) biosynthesis, triacylglycerol synthesis, and TAG packaging presented increased activity in the later stages of tuber development. Notably, tubers with high oil contents presented higher levels of these genes than those with intermediate oil contents did, whereas tubers with low oil contents presented minimal gene expression. Notably, a large fragment of the FA biosynthesis rate-limiting enzyme-encoding gene BCCP1 was missing from the C. rotundus transcript, which might be responsible for blocking FA biosynthesis in its tubers. WGCNA pinpointed a gene module linked to tuber oil accumulation, with a coexpression network involving the transcription factors WRI1, MYB4, and bHLH68. The ethylene-related genes in this module suggest a role for ethylene signaling in oil accumulation, which is supported by the finding that ethylene (ETH) treatment increases the oil content in C. esculentus tubers. This study identified potential genes and networks associated with tuber oil accumulation in C. esculentus, highlighting the role of specific genes, transcription factors, and ethylene signaling in this process.
Collapse
Affiliation(s)
- Xue Bai
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingyong Tang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla 666303, China.
| | - Xiaodi Hu
- Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Ping Huang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Wu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - Tao Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - Huiying He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla 666303, China
| | - Zeng-Fu Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
9
|
Weselake RJ, Fell DA, Wang X, Scofield S, Chen G, Harwood JL. Increasing oil content in Brassica oilseed species. Prog Lipid Res 2024; 96:101306. [PMID: 39566857 DOI: 10.1016/j.plipres.2024.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
Brassica oilseed species are the third most important in the world, providing approximately 15 % of the total vegetable oils. Three species (Brassica rapa, B. juncea, B. napus) dominate with B. napus being the most common in Canada, China and Europe. Originally, B. napus was a crop producing seed with high erucic acid content, which still persists today, to some extent, and is used for industrial purposes. In contrast, cultivars which produce seed used for food and feed are low erucic acid cultivars which also have reduced glucosinolate content. Because of the limit to agricultural land, recent efforts have been made to increase productivity of oil crops, including Brassica oilseed species. In this article, we have detailed research in this regard. We have covered modern genetic, genomic and metabolic control analysis approaches to identifying potential targets for the manipulation of seed oil content. Details of work on the use of quantitative trait loci, genome-wide association and comparative functional genomics to highlight factors influencing seed oil accumulation are given and functional proteins which can affect this process are discussed. In summary, a wide variety of inputs are proving useful for the improvement of Brassica oilseed species, as major sources of global vegetable oil.
Collapse
Affiliation(s)
- Randall J Weselake
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada
| | - David A Fell
- Department of Biological and Molecular Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Xiaoyu Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada
| | - Simon Scofield
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.
| |
Collapse
|
10
|
Fan J, Sah SK, Lemes Jorge G, Blanford J, Xie D, Yu L, Thelen J, Shanklin J, Xu C. Arabidopsis trigalactosyldiacylglycerol1 mutants reveal a critical role for phosphtidylcholine remodeling in lipid homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:788-798. [PMID: 39276345 DOI: 10.1111/tpj.17020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/08/2024] [Accepted: 08/27/2024] [Indexed: 09/17/2024]
Abstract
Lipid remodeling plays a critical role in plant response to abiotic stress and metabolic perturbations. Key steps in this process involve modifications of phosphatidylcholine (PC) acyl chains mediated by lysophosphatidylcholine: acyl-CoA acyltransferases (LPCATs) and phosphatidylcholine: diacylglycerol cholinephosphotransferase (ROD1). To assess their importance in lipid homeostasis, we took advantage of the trigalactosyldiacylglycerol1 (tgd1) mutant that exhibits marked increases in fatty acid synthesis and fatty acid flux through PC due to a block in inter-organelle lipid trafficking. Here, we showed that the increased fatty acid synthesis in tgd1 is due to posttranslational activation of the plastidic acetyl-coenzyme A carboxylase. Genetic analysis showed that knockout of LPCAT1 and 2 resulted in a lethal phenotype in tgd1. In addition, plants homozygous for lpcat2 and heterozygous for lpcat1 in the tgd1 background showed reduced levels of PC and triacylglycerols (TAG) and alterations in their fatty acid profiles. We further showed that disruption of ROD1 in tgd1 resulted in changes in fatty acid composition of PC and TAG, decreased leaf TAG content and reduced seedling growth. Together, our results reveal a critical role of LPCATs and ROD1 in maintaining cellular lipid homeostasis under conditions, in which fatty acid production largely exceeds the cellular demand for membrane lipid synthesis.
Collapse
Affiliation(s)
- Jilian Fan
- Biology Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - Saroj Kumar Sah
- Biology Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - Gabriel Lemes Jorge
- Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, 1201 E Rollins, Columbia, Missouri, 65211, USA
| | - Jantana Blanford
- Biology Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - Dongling Xie
- Biology Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - Linhui Yu
- Biology Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - Jay Thelen
- Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, 1201 E Rollins, Columbia, Missouri, 65211, USA
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
| |
Collapse
|
11
|
Wu X, Yang Z, Zhu Y, Zhan Y, Li Y, Teng W, Han Y, Zhao X. Bioinformatics Identification and Expression Analysis of Acetyl-CoA Carboxylase Reveal Its Role in Isoflavone Accumulation during Soybean Seed Development. Int J Mol Sci 2024; 25:10221. [PMID: 39337707 PMCID: PMC11432495 DOI: 10.3390/ijms251810221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/05/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Isoflavones belong to the class of flavonoid compounds, which are important secondary metabolites that play a crucial role in plant development and defense. Acetyl-CoA carboxylase (ACCase) is a biotin-dependent enzyme that catalyzes the conversion of Acetyl-CoA into Malonyl-CoA in plants. It is a key enzyme in fatty acid synthesis and also catalyzes the production of various secondary metabolites. However, information on the ACC gene family in the soybean (Glycine max L. Merr.) genome and the specific members involved in isoflavone biosynthesis is still lacking. In this study, we identified 20 ACC family genes (GmACCs) from the soybean genome and further characterized their evolutionary relationships and expression patterns. Phylogenetic analysis showed that the GmACCs could be divided into five groups, and the gene structures within the same groups were highly conserved, indicating that they had similar functions. The GmACCs were randomly distributed across 12 chromosomes, and collinearity analysis suggested that many GmACCs originated from tandem and segmental duplications, with these genes being under purifying selection. In addition, gene expression pattern analysis indicated that there was functional divergence among GmACCs in different tissues. The GmACCs reached their peak expression levels during the early or middle stages of seed development. Based on the transcriptome and isoflavone content data, a weighted gene co-expression network was constructed, and three candidate genes (Glyma.06G105900, Glyma.13G363500, and Glyma.13G057400) that may positively regulate isoflavone content were identified. These results provide valuable information for the further functional characterization and application of GmACCs in isoflavone biosynthesis in soybean.
Collapse
Affiliation(s)
- Xu Wu
- Key Laboratory of Soybean Biology in Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China
| | - Zhenhong Yang
- Key Laboratory of Soybean Biology in Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China
| | - Yina Zhu
- Key Laboratory of Soybean Biology in Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China
| | - Yuhang Zhan
- Key Laboratory of Soybean Biology in Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China
| | - Yongguang Li
- Key Laboratory of Soybean Biology in Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China
| | - Weili Teng
- Key Laboratory of Soybean Biology in Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China
| | - Yingpeng Han
- Key Laboratory of Soybean Biology in Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China
| | - Xue Zhao
- Key Laboratory of Soybean Biology in Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
12
|
Vijayan J, Alvarez S, Naldrett MJ, Morse W, Maliva A, Wase N, Riekhof WR. Nitrogen starvation leads to TOR kinase-mediated downregulation of fatty acid synthesis in the algae Chlorella sorokiniana and Chlamydomonas reinhardtii. BMC PLANT BIOLOGY 2024; 24:753. [PMID: 39107711 PMCID: PMC11302099 DOI: 10.1186/s12870-024-05408-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 07/11/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND When subject to stress conditions such as nutrient limitation microalgae accumulate triacylglycerol (TAG). Fatty acid, a substrate for TAG synthesis is derived from de novo synthesis or by membrane remodeling. The model industrial alga Chlorellasorokiniana accumulates TAG and other storage compounds under nitrogen (N)-limited growth. Molecular mechanisms underlying these processes are still to be elucidated. RESULT Previously we used transcriptomics to explore the regulation of TAG synthesis in C. sorokiniana. Surprisingly, our analysis showed that the expression of several key genes encoding enzymes involved in plastidic fatty acid synthesis are significantly repressed. Metabolic labeling with radiolabeled acetate showed that de novo fatty acid synthesis is indeed downregulated under N-limitation. Likewise, inhibition of the Target of Rapamycin kinase (TOR), a key regulator of metabolism and growth, decreased fatty acid synthesis. We compared the changes in proteins and phosphoprotein abundance using a proteomics and phosphoproteomics approach in C. sorokiniana cells under N-limitation or TOR inhibition and found extensive overlap between the N-limited and TOR-inhibited conditions. We also identified changes in the phosphorylation status of TOR complex proteins, TOR-kinase, and RAPTOR, under N-limitation. This indicates that TOR signaling is altered in a nitrogen-dependent manner. We find that TOR-mediated metabolic remodeling of fatty acid synthesis under N-limitation is conserved in the chlorophyte algae Chlorella sorokiniana and Chlamydomonas reinhardtii. CONCLUSION Our results indicate that under N-limitation there is significant metabolic remodeling, including fatty acid synthesis, mediated by TOR signaling. This process is conserved across chlorophyte algae. Using proteomic and phosphoproteomic analysis, we show that N-limitation affects TOR signaling and this in-turn affects the metabolic status of the cells. This study presents a link between N-limitation, TOR signaling and fatty acid synthesis in green-lineage.
Collapse
Affiliation(s)
- Jithesh Vijayan
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA.
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA.
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA.
| | - Sophie Alvarez
- Proteomics and Metabolomics Facility, Nebraska Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Michael J Naldrett
- Proteomics and Metabolomics Facility, Nebraska Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Wyatt Morse
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Amanda Maliva
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Wayne R Riekhof
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
13
|
Clews AC, Ulch BA, Jesionowska M, Hong J, Mullen RT, Xu Y. Variety of Plant Oils: Species-Specific Lipid Biosynthesis. PLANT & CELL PHYSIOLOGY 2024; 65:845-862. [PMID: 37971406 DOI: 10.1093/pcp/pcad147] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/03/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
Plant oils represent a large group of neutral lipids with important applications in food, feed and oleochemical industries. Most plants accumulate oils in the form of triacylglycerol within seeds and their surrounding tissues, which comprises three fatty acids attached to a glycerol backbone. Different plant species accumulate unique fatty acids in their oils, serving a range of applications in pharmaceuticals and oleochemicals. To enable the production of these distinctive oils, select plant species have adapted specialized oil metabolism pathways, involving differential gene co-expression networks and structurally divergent enzymes/proteins. Here, we summarize some of the recent advances in our understanding of oil biosynthesis in plants. We compare expression patterns of oil metabolism genes from representative species, including Arabidopsis thaliana, Ricinus communis (castor bean), Linum usitatissimum L. (flax) and Elaeis guineensis (oil palm) to showcase the co-expression networks of relevant genes for acyl metabolism. We also review several divergent enzymes/proteins associated with key catalytic steps of unique oil accumulation, including fatty acid desaturases, diacylglycerol acyltransferases and oleosins, highlighting their structural features and preference toward unique lipid substrates. Lastly, we briefly discuss protein interactomes and substrate channeling for oil biosynthesis and the complex regulation of these processes.
Collapse
Affiliation(s)
- Alyssa C Clews
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Brandon A Ulch
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Monika Jesionowska
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Jun Hong
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Yang Xu
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
14
|
Li H, Che R, Zhu J, Yang X, Li J, Fernie AR, Yan J. Multi-omics-driven advances in the understanding of triacylglycerol biosynthesis in oil seeds. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:999-1017. [PMID: 38009661 DOI: 10.1111/tpj.16545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 11/01/2023] [Indexed: 11/29/2023]
Abstract
Vegetable oils are rich sources of polyunsaturated fatty acids and energy as well as valuable sources of human food, animal feed, and bioenergy. Triacylglycerols, which are comprised of three fatty acids attached to a glycerol backbone, are the main component of vegetable oils. Here, we review the development and application of multiple-level omics in major oilseeds and emphasize the progress in the analysis of the biological roles of key genes underlying seed oil content and quality in major oilseeds. Finally, we discuss future research directions in functional genomics research based on current omics and oil metabolic engineering strategies that aim to enhance seed oil content and quality, and specific fatty acids components according to either human health needs or industrial requirements.
Collapse
Affiliation(s)
- Hui Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Ronghui Che
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Jiantang Zhu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Xiaohong Yang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Jiansheng Li
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
15
|
Kim SC, Edgeworth KN, Nusinow DA, Wang X. Circadian clock factors regulate the first condensation reaction of fatty acid synthesis in Arabidopsis. Cell Rep 2023; 42:113483. [PMID: 37995186 PMCID: PMC10842715 DOI: 10.1016/j.celrep.2023.113483] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/16/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
The circadian clock regulates temporal metabolic activities, but how it affects lipid metabolism is poorly understood. Here, we show that the central clock regulators LATE ELONGATED HYPOCOTYL (LHY) and CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) regulate the initial step of fatty acid (FA) biosynthesis in Arabidopsis. Triacylglycerol (TAG) accumulation in seeds was increased in LHY-overexpressing (LHY-OE) and decreased in lhycca1 plants. Metabolic tracking of lipids in developing seeds indicated that LHY enhanced FA synthesis. Transcript analysis revealed that the expression of genes involved in FA synthesis, including the one encoding β-ketoacyl-ACP synthase III (KASIII), was oppositely changed in developing seeds of LHY/CCA1-OEs and lhycca1. Chromatin immunoprecipitation, electrophoretic mobility shift, and transactivation assays indicated that LHY bound and activated the promoter of KASIII. Furthermore, phosphatidic acid, a metabolic precursor to TAG, inhibited LHY binding to KASIII promoter elements. Our data show a regulatory mechanism for plant lipid biosynthesis by the molecular clock.
Collapse
Affiliation(s)
- Sang-Chul Kim
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Kristen N Edgeworth
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; Department of Biological and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | - Xuemin Wang
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA.
| |
Collapse
|
16
|
Xu Y, Singer SD, Chen G. Protein interactomes for plant lipid biosynthesis and their biotechnological applications. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1734-1744. [PMID: 36762506 PMCID: PMC10440990 DOI: 10.1111/pbi.14027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/18/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Plant lipids have essential biological roles in plant development and stress responses through their functions in cell membrane formation, energy storage and signalling. Vegetable oil, which is composed mainly of the storage lipid triacylglycerol, also has important applications in food, biofuel and oleochemical industries. Lipid biosynthesis occurs in multiple subcellular compartments and involves the coordinated action of various pathways. Although biochemical and molecular biology research over the last few decades has identified many proteins associated with lipid metabolism, our current understanding of the dynamic protein interactomes involved in lipid biosynthesis, modification and channelling is limited. This review examines advances in the identification and characterization of protein interactomes involved in plant lipid biosynthesis, with a focus on protein complexes consisting of different subunits for sequential reactions such as those in fatty acid biosynthesis and modification, as well as transient or dynamic interactomes formed from enzymes in cooperative pathways such as assemblies of membrane-bound enzymes for triacylglycerol biosynthesis. We also showcase a selection of representative protein interactome structures predicted using AlphaFold2, and discuss current and prospective strategies involving the use of interactome knowledge in plant lipid biotechnology. Finally, unresolved questions in this research area and possible approaches to address them are also discussed.
Collapse
Affiliation(s)
- Yang Xu
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphOntarioCanada
| | - Stacy D. Singer
- Agriculture and Agri‐Food Canada, Lethbridge Research and Development CentreLethbridgeAlbertaCanada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional ScienceUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
17
|
Song Q, Gong W, Yu X, Ji K, Jiang Y, Chang Y, Yuan D. Transcriptome and Anatomical Comparisons Reveal the Effects of Methyl Jasmonate on the Seed Development of Camellia oleifera. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6747-6762. [PMID: 37026572 DOI: 10.1021/acs.jafc.3c00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Seed is a major storage organ that determines the yield and quality of Camellia oleifera (C. oleifera). Methyl jasmonate (MeJA) is a signaling molecule involved in plant growth and development. However, the role of MeJA in the development of C. oleifera seeds remains a mystery. This study demonstrated that the larger seeds induced by MeJA resulted from more cell numbers and a larger cell area in the outer seed coat and embryo at the cellular level. At the molecular level, MeJA could regulate the expression of factors in the known signaling pathways of seed size control as well as cell proliferation and expansion, resulting in larger seeds. Furthermore, the accumulation of oil and unsaturated fatty acids due to MeJA-inducement was attributed to the increased expression of fatty acid biosynthesis-related genes but reduced expression of fatty acid degradation-related genes. CoMYC2, a key regulator in jasmonate signaling, was considered a potential hub regulator which directly interacted with three hub genes (CoCDKB2-3, CoCYCB2-3, and CoXTH9) related to the seed size and two hub genes (CoACC1 and CoFAD2-3) related to oil accumulation and fatty acid biosynthesis by binding to their promoters. These findings provide an excellent target for the improvement of the yield and quality in C. oleifera.
Collapse
Affiliation(s)
- Qiling Song
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Wenfang Gong
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xinran Yu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Ke Ji
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yi Jiang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yihong Chang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Deyi Yuan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| |
Collapse
|
18
|
Marone D, Mastrangelo AM, Borrelli GM. From Transgenesis to Genome Editing in Crop Improvement: Applications, Marketing, and Legal Issues. Int J Mol Sci 2023; 24:ijms24087122. [PMID: 37108285 PMCID: PMC10138802 DOI: 10.3390/ijms24087122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The biotechnological approaches of transgenesis and the more recent eco-friendly new breeding techniques (NBTs), in particular, genome editing, offer useful strategies for genetic improvement of crops, and therefore, recently, they have been receiving increasingly more attention. The number of traits improved through transgenesis and genome editing technologies is growing, ranging from resistance to herbicides and insects to traits capable of coping with human population growth and climate change, such as nutritional quality or resistance to climatic stress and diseases. Research on both technologies has reached an advanced stage of development and, for many biotech crops, phenotypic evaluations in the open field are already underway. In addition, many approvals regarding main crops have been granted. Over time, there has been an increase in the areas cultivated with crops that have been improved through both approaches, but their use in various countries has been limited by legislative restrictions according to the different regulations applied which affect their cultivation, marketing, and use in human and animal nutrition. In the absence of specific legislation, there is an on-going public debate with favorable and unfavorable positions. This review offers an updated and in-depth discussion on these issues.
Collapse
Affiliation(s)
- Daniela Marone
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, 71122 Foggia, Italy
| | - Anna Maria Mastrangelo
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, 71122 Foggia, Italy
| | - Grazia Maria Borrelli
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, 71122 Foggia, Italy
| |
Collapse
|
19
|
Cai Y, Yu XH, Shanklin J. A toolkit for plant lipid engineering: Surveying the efficacies of lipogenic factors for accumulating specialty lipids. FRONTIERS IN PLANT SCIENCE 2022; 13:1064176. [PMID: 36589075 PMCID: PMC9795026 DOI: 10.3389/fpls.2022.1064176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Plants produce energy-dense lipids from carbohydrates using energy acquired via photosynthesis, making plant oils an economically and sustainably attractive feedstock for conversion to biofuels and value-added bioproducts. A growing number of strategies have been developed and optimized in model plants, oilseed crops and high-biomass crops to enhance the accumulation of storage lipids (mostly triacylglycerols, TAGs) for bioenergy applications and to produce specialty lipids with increased uses and value for chemical feedstock and nutritional applications. Most successful metabolic engineering strategies involve heterologous expression of lipogenic factors that outperform those from other sources or exhibit specialized functionality. In this review, we summarize recent progress in engineering the accumulation of triacylglycerols containing - specialized fatty acids in various plant species and tissues. We also provide an inventory of specific lipogenic factors (including accession numbers) derived from a wide variety of organisms, along with their reported efficacy in supporting the accumulation of desired lipids. A review of previously obtained results serves as a foundation to guide future efforts to optimize combinations of factors to achieve further enhancements to the production and accumulation of desired lipids in a variety of plant tissues and species.
Collapse
Affiliation(s)
- Yingqi Cai
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
| | - Xiao-Hong Yu
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
| |
Collapse
|
20
|
Kimberlin AN, Holtsclaw RE, Zhang T, Mulaudzi T, Koo AJ. On the initiation of jasmonate biosynthesis in wounded leaves. PLANT PHYSIOLOGY 2022; 189:1925-1942. [PMID: 35404431 PMCID: PMC9342990 DOI: 10.1093/plphys/kiac163] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/14/2022] [Indexed: 06/01/2023]
Abstract
The basal level of the plant defense hormone jasmonate (JA) in unstressed leaves is low, but wounding causes its near instantaneous increase. How JA biosynthesis is initiated is uncertain, but the lipolysis step that generates fatty acid precursors is generally considered to be the first step. Here, we used a series of physiological, pharmacological, genetic, and kinetic analyses of gene expression and hormone profiling to demonstrate that the early spiking of JA upon wounding does not depend on the expression of JA biosynthetic genes in Arabidopsis (Arabidopsis thaliana). Using a transgenic system, we showed how decoupling the responses to wounding and JA prevents the perpetual synthesis of JA in wounded leaves. We then used DEFECTIVE IN ANTHER DEHISCENCE1 (DAD1) as a model wound-responsive lipase to demonstrate that although its transient expression in leaves can elicit JA biosynthesis to a low level, an additional level of activation is triggered by wounding, which causes massive accumulation of JA. This wound-triggered boosting effect of DAD1-mediated JA synthesis can happen directly in damaged leaves or indirectly in undamaged remote leaves by the systemically transmitted wound signal. Finally, protein stability of DAD1 was influenced by wounding, α-linolenic acid, and mutation in its catalytic site. Together, the data support mechanisms that are independent of gene transcription and translation to initiate the rapid JA burst in wounded leaves and demonstrate how transient expression of the lipase can be used to reveal changes occurring at the level of activity and stability of the key lipolytic step.
Collapse
Affiliation(s)
- Athen N Kimberlin
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | - Takalani Mulaudzi
- Biotechnology Department, University of Western Cape, Cape Town, 7535, South Africa
| | | |
Collapse
|
21
|
Arias CL, Quach T, Huynh T, Nguyen H, Moretti A, Shi Y, Guo M, Rasoul A, Van K, McHale L, Clemente TE, Alonso AP, Zhang C. Expression of AtWRI1 and AtDGAT1 during soybean embryo development influences oil and carbohydrate metabolism. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1327-1345. [PMID: 35306726 PMCID: PMC9241380 DOI: 10.1111/pbi.13810] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/11/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Soybean oil is one of the most consumed vegetable oils worldwide. Genetic improvement of its concentration in seeds has been historically pursued due to its direct association with its market value. Engineering attempts aiming to increase soybean seed oil presented different degrees of success that varied with the genetic design and the specific variety considered. Understanding the embryo's responses to the genetic modifications introduced, is a critical step to successful approaches. In this work, the metabolic and transcriptional responses to AtWRI1 and AtDGAT1 expression in soybean seeds were evaluated. AtWRI1 is a master regulator of fatty acid (FA) biosynthesis, and AtDGAT1 encodes an enzyme catalysing the final and rate-limiting step of triacylglycerides biosynthesis. The events expressing these genes in the embryo did not show an increase in total FA content, but they responded with changes in the oil and carbohydrate composition. Transcriptomic studies revealed a down-regulation of genes putatively encoding for oil body packaging proteins, and a strong induction of genes annotated as lipases and FA biosynthesis inhibitors. Novel putative AtWRI1 targets, presenting an AW-box in the upstream region of the genes, were identified by comparison with an event that harbours only AtWRI1. Lastly, targeted metabolomics analysis showed that carbon from sugar phosphates could be used for FA competing pathways, such as starch and cell wall polysaccharides, contributing to the restriction in oil accumulation. These results allowed the identification of key cellular processes that need to be considered to break the embryo's natural restriction to uncontrolled seed lipid increase.
Collapse
Affiliation(s)
- Cintia Lucía Arias
- Department of Biological Sciences & BioDiscovery InstituteUniversity of North TexasDentonTXUSA
| | - Truyen Quach
- Center for Plant Science InnovationUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Tu Huynh
- Department of Horticulture and Crop ScienceThe Ohio State UniversityColumbusOHUSA
| | - Hanh Nguyen
- Center for Plant Science InnovationUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Ademar Moretti
- Department of Biological Sciences & BioDiscovery InstituteUniversity of North TexasDentonTXUSA
| | - Yu Shi
- Center for BiotechnologyUniversity of NebraskaLincolnNEUSA
| | - Ming Guo
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Amira Rasoul
- Department of Biological Sciences & BioDiscovery InstituteUniversity of North TexasDentonTXUSA
| | - Kyujung Van
- Department of Horticulture and Crop ScienceThe Ohio State UniversityColumbusOHUSA
| | - Leah McHale
- Department of Horticulture and Crop ScienceThe Ohio State UniversityColumbusOHUSA
- Soybean Research CenterColumbusOHUSA
| | - Tom Elmo Clemente
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Ana Paula Alonso
- Department of Biological Sciences & BioDiscovery InstituteUniversity of North TexasDentonTXUSA
| | - Chi Zhang
- Center for Plant Science InnovationUniversity of Nebraska‐LincolnLincolnNEUSA
- School of Biological SciencesUniversity of Nebraska‐LincolnLincolnNEUSA
| |
Collapse
|
22
|
Yu L, Diao S, Zhang G, Yu J, Zhang T, Luo H, Duan A, Wang J, He C, Zhang J. Genome sequence and population genomics provide insights into chromosomal evolution and phytochemical innovation of Hippophae rhamnoides. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1257-1273. [PMID: 35244328 PMCID: PMC9241383 DOI: 10.1111/pbi.13802] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/09/2022] [Accepted: 02/19/2022] [Indexed: 06/01/2023]
Abstract
Plants of the Elaeagnaceae family are widely used to treat various health disorders owing to their natural phytochemicals. Seabuckthorn (Hippophae rhamnoides L.) is an economically and ecologically important species within the family with richness of biologically and pharmacologically active substances. Here, we present a chromosome-level genome assembly of seabuckthorn (http://hipp.shengxin.ren/), the first genome sequence of Elaeagnaceae, which has a total length of 849.04 Mb with scaffold N50 of 69.52 Mb and 30 864 annotated genes. Two sequential tetraploidizations with one occurring ~36-41 million years ago (Mya) and the last ~24-27 Mya were inferred, resulting in expansion of genes related to ascorbate and aldarate metabolism, lipid biosynthesis, and fatty acid elongation. Comparative genomic analysis reconstructed the evolutionary trajectories of the seabuckthorn genome with the predicted ancestral genome of 14 proto-chromosomes. Comparative transcriptomic and metabonomic analyses identified some key genes contributing to high content of polyunsaturated fatty acids and ascorbic acid (AsA). Additionally, we generated and analysed 55 whole-genome sequences of diverse accessions, and identified 9.80 million genetic variants in the seabuckthorn germplasms. Intriguingly, genes in selective sweep regions identified through population genomic analysis appeared to contribute to the richness of AsA and fatty acid in seabuckthorn fruits, among which GalLDH, GMPase and ACC, TER were the potentially major-effect causative genes controlling AsA and fatty acid content of the fruit, respectively. Our research offers novel insights into the molecular basis underlying phytochemical innovation of seabuckthorn, and provides valuable resources for exploring the evolution of the Elaeagnaceae family and molecular breeding.
Collapse
Affiliation(s)
- Liyang Yu
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and CultivationNational Forestry and Grassland AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
- Collaborative Innovation Center of Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
| | - Songfeng Diao
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and CultivationNational Forestry and Grassland AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
- Research Institute of Non‐Timber ForestryChinese Academy of Forestry/Key Laboratory of Non‐timber Forest Germplasm Enhancement & Utilization of National and Grassland AdministrationZhengzhouChina
| | - Guoyun Zhang
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and CultivationNational Forestry and Grassland AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Jigao Yu
- School of Life SciencesNorth China University of Science and TechnologyTangshanChina
| | - Tong Zhang
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and CultivationNational Forestry and Grassland AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Hongmei Luo
- Experimental Center of Desert ForestryChinese Academy of ForestryDengkouChina
| | - Aiguo Duan
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and CultivationNational Forestry and Grassland AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Jinpeng Wang
- School of Life SciencesNorth China University of Science and TechnologyTangshanChina
| | - Caiyun He
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and CultivationNational Forestry and Grassland AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Jianguo Zhang
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and CultivationNational Forestry and Grassland AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
- Collaborative Innovation Center of Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
| |
Collapse
|
23
|
Wallis JG, Bengtsson JD, Browse J. Molecular Approaches Reduce Saturates and Eliminate trans Fats in Food Oils. FRONTIERS IN PLANT SCIENCE 2022; 13:908608. [PMID: 35720592 PMCID: PMC9205222 DOI: 10.3389/fpls.2022.908608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/02/2022] [Indexed: 05/29/2023]
Abstract
Vegetable oils composed of triacylglycerols (TAG) are a major source of calories in human diets. However, the fatty acid compositions of these oils are not ideal for human nutrition and the needs of the food industry. Saturated fatty acids contribute to health problems, while polyunsaturated fatty acids (PUFA) can become rancid upon storage or processing. In this review, we first summarize the pathways of fatty acid metabolism and TAG synthesis and detail the problems with the oil compositions of major crops. Then we describe how transgenic expression of desaturases and downregulation of the plastid FatB thioesterase have provided the means to lower oil saturates. The traditional solution to PUFA rancidity uses industrial chemistry to reduce PUFA content by partial hydrogenation, but this results in the production of trans fats that are even more unhealthy than saturated fats. We detail the discoveries in the biochemistry and molecular genetics of oil synthesis that provided the knowledge and tools to lower oil PUFA content by blocking their synthesis during seed development. Finally, we describe the successes in breeding and biotechnology that are giving us new, high-oleic, low PUFA varieties of soybean, canola and other oilseed crops.
Collapse
Affiliation(s)
| | | | - John Browse
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| |
Collapse
|
24
|
Kouhen M, García-Caparrós P, Twyman RM, Abdelly C, Mahmoudi H, Schillberg S, Debez A. Improving environmental stress resilience in crops by genome editing: insights from extremophile plants. Crit Rev Biotechnol 2022; 43:559-574. [PMID: 35606905 DOI: 10.1080/07388551.2022.2042481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In basic and applied sciences, genome editing has become an indispensable tool, especially the versatile and adaptable CRISPR/Cas9 system. Using CRISPR/Cas9 in plants has enabled modifications of many valuable traits, including environmental stress tolerance, an essential aspect when it comes to ensuring food security under climate change pressure. The CRISPR toolbox enables faster and more precise plant breeding by facilitating: multiplex gene editing, gene pyramiding, and de novo domestication. In this paper, we discuss the most recent advances in CRISPR/Cas9 and alternative CRISPR-based systems, along with the technical challenges that remain to be overcome. A revision of the latest proof-of-concept and functional characterization studies has indeed provided more insight into the quantitative traits affecting crop yield and stress tolerance. Additionally, we focus on the applications of CRISPR/Cas9 technology in regard to extremophile plants, due to their significance on: industrial, ecological and economic levels. These still unexplored genetic resources could provide the means to harden our crops against the threat of climate change, thus ensuring food security over the next century.
Collapse
Affiliation(s)
- Mohamed Kouhen
- Centre of Biotechnology of Borj-Cedria (CBBC), Laboratory of Extremophile Plants (LPE), Hammam-Lif, Tunisia.,Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Pedro García-Caparrós
- Agronomy Department of Superior School Engineering, University of Almeria, CIAIMBITAL, Almería, Spain
| | | | - Chedly Abdelly
- Centre of Biotechnology of Borj-Cedria (CBBC), Laboratory of Extremophile Plants (LPE), Hammam-Lif, Tunisia
| | - Henda Mahmoudi
- International Center for Biosaline Agriculture, Academic City, Near Zayed University, Dubai, United Arab Emirates
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Ahmed Debez
- Centre of Biotechnology of Borj-Cedria (CBBC), Laboratory of Extremophile Plants (LPE), Hammam-Lif, Tunisia
| |
Collapse
|
25
|
Lunn D, Wallis JG, Browse J. A multigene approach secures hydroxy fatty acid production in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2875-2888. [PMID: 35560203 DOI: 10.1093/jxb/erab533] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/02/2021] [Indexed: 06/15/2023]
Abstract
A central goal of green chemistry is to produce industrially useful fatty acids in oilseed crops. Although genes encoding suitable fatty acid-modifying enzymes are available from more than a dozen wild species, progress has been limited because expression of these enzymes in transgenic plants produces only low yields of the desired products. For example, fatty acid hydroxylase 12 (FAH12) from castor (Ricinus communis) produces only 17% hydroxy fatty acids (HFAs) when expressed in Arabidopsis (Arabidopsis thaliana), compared with 90% HFAs in castor seeds. The transgenic plants also have reduced oil content and seed vigor. Here, we review experiments that have provided for steady increased HFA accumulation and oil content. This research has led to exciting new discoveries of enzymes and regulatory processes in the pathways of both seed oil synthesis and lipid metabolism in other parts of the plant. Recent investigations have revealed that HFA-accumulating seeds are unable to rapidly mobilize HFA-containing triacylglycerol (TAG) storage lipid after germination to provide carbon and energy for seedling development, resulting in reduced seedling establishment. These findings present a new opportunity to investigate a different, key area of lipid metabolism-the pathways of TAG lipolysis and β-oxidation in germinating seedlings.
Collapse
Affiliation(s)
- Daniel Lunn
- Institute of Biology Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | - James G Wallis
- Institute of Biology Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | - John Browse
- Institute of Biology Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| |
Collapse
|
26
|
Wang M, Garneau MG, Poudel AN, Lamm D, Koo AJ, Bates PD, Thelen JJ. Overexpression of pea α-carboxyltransferase in Arabidopsis and camelina increases fatty acid synthesis leading to improved seed oil content. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1035-1046. [PMID: 35220631 DOI: 10.1111/tpj.15721] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/11/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
SUMMARYHeteromeric acetyl‐CoA carboxylase (htACCase) catalyzes the committed step of de novo fatty acid biosynthesis in most plant plastids. Plant htACCase is comprised of four subunits: α‐ and β‐carboxyltransferase (α‐ and β‐CT), biotin carboxylase, and biotin carboxyl carrier protein. Based on in vivo absolute quantification of htACCase subunits, α‐CT is 3‐ to 10‐fold less abundant than its partner subunit β‐CT in developing Arabidopsis seeds [Wilson and Thelen, J. Proteome Res., 2018, 17 (5)]. To test the hypothesis that low expression of α‐CT limits htACCase activity and flux through fatty acid synthesis in planta, we overexpressed Pisum sativum α‐CT, either with or without its C‐terminal non‐catalytic domain, in both Arabidopsis thaliana and Camelina sativa. First‐generation Arabidopsis seed of 35S::Ps α‐CT (n = 25) and 35S::Ps α‐CTΔ406‐875 (n = 47) were on average 14% higher in oil content (% dry weight) than wild type co‐cultivated in a growth chamber. First‐generation camelina seed showed an average 8% increase compared to co‐cultivated wild type. Biochemical analyses confirmed the accumulation of Ps α‐CT and Ps α‐CTΔ406‐875 protein and higher htACCase activity in overexpression lines during early seed development. Overexpressed Ps α‐CT co‐migrated with native At β‐CT during anion exchange chromatography, indicating co‐association. By successfully increasing seed oil content upon heterologous overexpression of α‐CT, we demonstrate how absolute quantitation of in vivo protein complex stoichiometry can be used to guide rational metabolic engineering.
Collapse
Affiliation(s)
- Minmin Wang
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65211, USA
| | - Matthew G Garneau
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, DC, 99164, USA
| | - Arati N Poudel
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211, USA
| | - Daniel Lamm
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211, USA
| | - Abraham J Koo
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211, USA
| | - Philip D Bates
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, DC, 99164, USA
| | - Jay J Thelen
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65211, USA
| |
Collapse
|
27
|
Li B, Zheng L, Wang R, Xue C, Shen R, Lan P. A proteomic analysis of Arabidopsis ribosomal phosphoprotein P1A mutant. J Proteomics 2022; 262:104594. [PMID: 35483651 DOI: 10.1016/j.jprot.2022.104594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 11/25/2022]
Abstract
Ribosomal proteins are involved in the regulation of plant growth and development. However, the regulatory processes of most ribosomal proteins remain unclear. In this study, Arabidopsis plants with the mutation in ribosomal phosphoprotein P1A (RPP1A) produce larger and heavier seeds than wild-type plants. A comparative quantitative label-free proteomic analysis revealed that a total of 215 proteins were differentially accumulated between the young siliques of the wild type and rpp1a mutant. Knockout of RPP1A significantly reduced the abundance of proteins involved in carboxylic acid metabolism and lipid biosynthesis. Consistent with this, a metabolic analysis showed that the organic acids in the tricarboxylic acid cycle and the carbohydrates in the pentose phosphate pathway were severely reduced in the mature rpp1a mutant seeds. In contrast, the abundance of proteins related to seed maturation, especially seed storage proteins, was markedly increased during seed development. Indeed, seed storage proteins were accumulated in the mature rpp1a mutant seeds, and the seed nitrogen and sulfur contents were also increased. These results indicate that more carbon intermediates probably enter the nitrogen flow for the enhanced synthesis of seed storage proteins, which might subsequently contribute to the enlarged seed size in the rpp1a mutant. SIGNIFICANCE: Ribosomes are responsible for protein synthesis and are generally perceived as the housekeeping components in the cells. In this study, the knockout of RPP1A leads to an increased seed size through repressing carbon metabolism and lipid biosynthesis, and increasing the synthesis of seed storage proteins. Meanwhile, the abundance of seed storage proteins and the nitrogen and sulfur concentrations were increased in the mature rpp1a mutant seeds. The results provide a novel insight into the genetic regulatory networks for the control of seed size and seed storage protein accumulation, and this knowledge may facilitate the improvement of crop seed size.
Collapse
Affiliation(s)
- Bingjuan Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lu Zheng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Ruonan Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Caiwen Xue
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Renfang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ping Lan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
28
|
Arya GC, Dong Y, Heinig U, Shahaf N, Kazachkova Y, Aviv-Sharon E, Nomberg G, Marinov O, Manasherova E, Aharoni A, Cohen H. The metabolic and proteomic repertoires of periderm tissue in skin of the reticulated Sikkim cucumber fruit. HORTICULTURE RESEARCH 2022; 9:uhac092. [PMID: 35669701 PMCID: PMC9160728 DOI: 10.1093/hr/uhac092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/05/2022] [Indexed: 05/14/2023]
Abstract
Suberized and/or lignified (i.e. lignosuberized) periderm tissue appears often on surface of fleshy fruit skin by mechanical damage caused following environmental cues or developmental programs. The mechanisms underlying lignosuberization remain largely unknown to date. Here, we combined an assortment of microscopical techniques with an integrative multi-omics approach comprising proteomics, metabolomics and lipidomics to identify novel molecular components involved in fruit skin lignosuberization. We chose to investigate the corky Sikkim cucumber (Cucumis sativus var. sikkimensis) fruit. During development, the skin of this unique species undergoes massive cracking and is coated with a thick corky layer, making it an excellent model system for revealing fundamental cellular machineries involved in fruit skin lignosuberization. The large-scale data generated provides a significant source for the field of skin periderm tissue formation in fleshy fruit and suberin metabolism.
Collapse
Affiliation(s)
- Gulab Chand Arya
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon Lezion 7505101, Israel
| | - Yonghui Dong
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Uwe Heinig
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nir Shahaf
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yana Kazachkova
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Elinor Aviv-Sharon
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Gal Nomberg
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon Lezion 7505101, Israel
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Ofir Marinov
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon Lezion 7505101, Israel
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Ekaterina Manasherova
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon Lezion 7505101, Israel
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Hagai Cohen
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon Lezion 7505101, Israel
- Corresponding author. E-mail:
| |
Collapse
|
29
|
Yu XH, Cai Y, Keereetaweep J, Wei K, Chai J, Deng E, Liu H, Shanklin J. Biotin attachment domain-containing proteins mediate hydroxy fatty acid-dependent inhibition of acetyl CoA carboxylase. PLANT PHYSIOLOGY 2021; 185:892-901. [PMID: 33793910 PMCID: PMC8133645 DOI: 10.1093/plphys/kiaa109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 05/02/2023]
Abstract
Hundreds of naturally occurring specialized fatty acids (FAs) have potential as desirable chemical feedstocks if they could be produced at large scale by crop plants; however, transgenic expression of their biosynthetic genes has generally been accompanied by dramatic reductions in oil yield. For example, expression of castor (Ricinus communis) FA hydroxylase (FAH) in the Arabidopsis thaliana FA elongation mutant fae1 resulted in a 50% reduction of FA synthesis rate that was attributed to inhibition of acetyl-CoA carboxylase (ACCase) by an undefined mechanism. Here, we tested the hypothesis that the ricinoleic acid-dependent decrease in ACCase activity is mediated by biotin attachment domain-containing (BADC) proteins. BADCs are inactive homologs of biotin carboxy carrier protein that lack a biotin cofactor and can inhibit ACCase. Arabidopsis contains three BADC genes. To reduce expression levels of BADC1 and BADC3 in fae1/FAH plants, a homozygous badc1,3/fae1/FAH line was created. The rate of FA synthesis in badc1,3/fae1/FAH seeds doubled relative to fae1/FAH, restoring it to fae1 levels, increasing both native FA and HFA accumulation. Total FA per seed, seed oil content, and seed yield per plant all increased in badc1,3/fae1/FAH, to 5.8 µg, 37%, and 162 mg, respectively, relative to 4.9 µg, 33%, and 126 mg, respectively, for fae1/FAH. Transcript levels of FA synthesis-related genes, including those encoding ACCase subunits, did not significantly differ between badc1,3/fae1/FAH and fae1/FAH. These results demonstrate that BADC1 and BADC3 mediate ricinoleic acid-dependent inhibition of FA synthesis. We propose that BADC-mediated FAS inhibition as a general mechanism that limits FA accumulation in specialized FA-accumulating seeds.
Collapse
Affiliation(s)
- Xiao-Hong Yu
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Yuanheng Cai
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | | | - Kenneth Wei
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Jin Chai
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Elen Deng
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Hui Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
30
|
Huang H, Liang J, Tan Q, Ou L, Li X, Zhong C, Huang H, Møller IM, Wu X, Song S. Insights into triterpene synthesis and unsaturated fatty-acid accumulation provided by chromosomal-level genome analysis of Akebia trifoliata subsp. australis. HORTICULTURE RESEARCH 2021; 8:33. [PMID: 33518712 PMCID: PMC7848005 DOI: 10.1038/s41438-020-00458-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 05/10/2023]
Abstract
Akebia trifoliata subsp. australis is a well-known medicinal and potential woody oil plant in China. The limited genetic information available for A. trifoliata subsp. australis has hindered its exploitation. Here, a high-quality chromosome-level genome sequence of A. trifoliata subsp. australis is reported. The de novo genome assembly of 682.14 Mb was generated with a scaffold N50 of 43.11 Mb. The genome includes 25,598 protein-coding genes, and 71.18% (485.55 Mb) of the assembled sequences were identified as repetitive sequences. An ongoing massive burst of long terminal repeat (LTR) insertions, which occurred ~1.0 million years ago, has contributed a large proportion of LTRs in the genome of A. trifoliata subsp. australis. Phylogenetic analysis shows that A. trifoliata subsp. australis is closely related to Aquilegia coerulea and forms a clade with Papaver somniferum and Nelumbo nucifera, which supports the well-established hypothesis of a close relationship between basal eudicot species. The expansion of UDP-glucoronosyl and UDP-glucosyl transferase gene families and β-amyrin synthase-like genes and the exclusive contraction of terpene synthase gene families may be responsible for the abundant oleanane-type triterpenoids in A. trifoliata subsp. australis. Furthermore, the acyl-ACP desaturase gene family, including 12 stearoyl-acyl-carrier protein desaturase (SAD) genes, has expanded exclusively. A combined transcriptome and fatty-acid analysis of seeds at five developmental stages revealed that homologs of SADs, acyl-lipid desaturase omega fatty acid desaturases (FADs), and oleosins were highly expressed, consistent with the rapid increase in the content of fatty acids, especially unsaturated fatty acids. The genomic sequences of A. trifoliata subsp. australis will be a valuable resource for comparative genomic analyses and molecular breeding.
Collapse
Affiliation(s)
- Hui Huang
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua, 418000, China
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Juan Liang
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua, 418000, China
| | - Qi Tan
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua, 418000, China
| | - Linfeng Ou
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua, 418000, China
| | - Xiaolin Li
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China
| | - Caihong Zhong
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua, 418000, China
| | - Huilin Huang
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua, 418000, China
| | - Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Flakkebjerg, DK-4200, Slagelse, Denmark
| | - Xianjin Wu
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua, 418000, China
| | - Songquan Song
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua, 418000, China.
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
31
|
Docking of acetyl-CoA carboxylase to the plastid envelope membrane attenuates fatty acid production in plants. Nat Commun 2020; 11:6191. [PMID: 33273474 PMCID: PMC7712654 DOI: 10.1038/s41467-020-20014-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 11/09/2020] [Indexed: 11/12/2022] Open
Abstract
In plants, light-dependent activation of de novo fatty acid synthesis (FAS) is partially mediated by acetyl-CoA carboxylase (ACCase), the first committed step for this pathway. However, it is not fully understood how plants control light-dependent FAS regulation to meet the cellular demand for acyl chains. We report here the identification of a gene family encoding for three small plastidial proteins of the envelope membrane that interact with the α-carboxyltransferase (α-CT) subunit of ACCase and participate in an original mechanism restraining FAS in the light. Light enhances the interaction between carboxyltransferase interactors (CTIs) and α-CT, which in turn attenuates carbon flux into FAS. Knockouts for CTI exhibit higher rates of FAS and marked increase in absolute triacylglycerol levels in leaves, more than 4-fold higher than in wild-type plants. Furthermore, WRINKLED1, a master transcriptional regulator of FAS, positively regulates CTI1 expression by direct binding to its promoter. This study reveals that in addition to light-dependent activation, “envelope docking” of ACCase permits fine-tuning of fatty acid supply during the plant life cycle. In plants, light-dependent activation fatty acid synthesis (FAS) is mediated in part by acetyl-CoA carboxylase (ACCase). Here the authors identify a family of genes encoding carboxyltransferase interactors that attenuate FAS in the light by docking acetyl-CoA carboxylase to the plastid envelope.
Collapse
|
32
|
Subedi U, Jayawardhane KN, Pan X, Ozga J, Chen G, Foroud NA, Singer SD. The Potential of Genome Editing for Improving Seed Oil Content and Fatty Acid Composition in Oilseed Crops. Lipids 2020; 55:495-512. [PMID: 32856292 DOI: 10.1002/lipd.12249] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/16/2020] [Accepted: 03/23/2020] [Indexed: 12/16/2022]
Abstract
A continuous rise in demand for vegetable oils, which comprise mainly the storage lipid triacylglycerol, is fueling a surge in research efforts to increase seed oil content and improve fatty acid composition in oilseed crops. Progress in this area has been achieved using both conventional breeding and transgenic approaches to date. However, further advancements using traditional breeding methods will be complicated by the polyploid nature of many oilseed crops and associated time constraints, while public perception and the prohibitive cost of regulatory processes hinders the commercialization of transgenic oilseed crops. As such, genome editing using CRISPR/Cas is emerging as a breakthrough breeding tool that could provide a platform to keep pace with escalating demand while potentially minimizing regulatory burden. In this review, we discuss the technology itself and progress that has been made thus far with respect to its use in oilseed crops to improve seed oil content and quality. Furthermore, we examine a number of genes that may provide ideal targets for genome editing in this context, as well as new CRISPR-related tools that have the potential to be applied to oilseed plants and may allow additional gains to be made in the future.
Collapse
Affiliation(s)
- Udaya Subedi
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, T1J 4B1, AB, Canada.,Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, T6G 2P5, AB, Canada
| | - Kethmi N Jayawardhane
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, T6G 2P5, AB, Canada
| | - Xue Pan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, T6G 2P5, AB, Canada
| | - Jocelyn Ozga
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, T6G 2P5, AB, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, T6G 2P5, AB, Canada
| | - Nora A Foroud
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, T1J 4B1, AB, Canada
| | - Stacy D Singer
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, T1J 4B1, AB, Canada
| |
Collapse
|
33
|
Ye Y, Fulcher YG, Sliman DJ, Day MT, Schroeder MJ, Koppisetti RK, Bates PD, Thelen JJ, Van Doren SR. The BADC and BCCP subunits of chloroplast acetyl-CoA carboxylase sense the pH changes of the light-dark cycle. J Biol Chem 2020; 295:9901-9916. [PMID: 32467229 PMCID: PMC7380191 DOI: 10.1074/jbc.ra120.012877] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/26/2020] [Indexed: 01/20/2023] Open
Abstract
Acetyl-CoA carboxylase (ACCase) catalyzes the first committed step in the de novo synthesis of fatty acids. The multisubunit ACCase in the chloroplast is activated by a shift to pH 8 upon light adaptation and is inhibited by a shift to pH 7 upon dark adaptation. Here, titrations with the purified ACCase biotin attachment domain-containing (BADC) and biotin carboxyl carrier protein (BCCP) subunits from Arabidopsis indicated that they can competently and independently bind biotin carboxylase (BC) but differ in responses to pH changes representing those in the plastid stroma during light or dark conditions. At pH 7 in phosphate buffer, BADC1 and BADC2 gain an advantage over BCCP1 and BCCP2 in affinity for BC. At pH 8 in KCl solution, however, BCCP1 and BCCP2 had more than 10-fold higher affinity for BC than did BADC1. The pH-modulated shifts in BC preferences for BCCP and BADC partners suggest they contribute to light-dependent regulation of heteromeric ACCase. Using NMR spectroscopy, we found evidence for increased intrinsic disorder of the BADC and BCCP subunits at pH 7. We propose that this intrinsic disorder potentially promotes fast association with BC through a "fly-casting mechanism." We hypothesize that the pH effects on the BADC and BCCP subunits attenuate ACCase activity by night and enhance it by day. Consistent with this hypothesis, Arabidopsis badc1 badc3 mutant lines grown in a light-dark cycle synthesized more fatty acids in their seeds. In summary, our findings provide evidence that the BADC and BCCP subunits function as pH sensors required for light-dependent switching of heteromeric ACCase activity.
Collapse
Affiliation(s)
- Yajin Ye
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Yan G Fulcher
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | - David J Sliman
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Mizani T Day
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Mark J Schroeder
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Rama K Koppisetti
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | - Philip D Bates
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Jay J Thelen
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Steven R Van Doren
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
34
|
To A, Joubès J, Thueux J, Kazaz S, Lepiniec L, Baud S. AtMYB92 enhances fatty acid synthesis and suberin deposition in leaves of Nicotiana benthamiana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:660-676. [PMID: 32246506 DOI: 10.1111/tpj.14759] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/02/2020] [Accepted: 03/18/2020] [Indexed: 05/11/2023]
Abstract
Acyl lipids are important constituents of the plant cell. Depending on the cell type, requirements in acyl lipids vary greatly, implying a tight regulation of fatty acid and lipid metabolism. The discovery of the WRINKLED1 (WRI1) transcription factors, members of the AP2-EREBP (APETALA2-ethylene-responsive element binding protein) family, has emphasized the importance of transcriptional regulation for adapting the rate of acyl chain production to cell requirements. Here, we describe the identification of another activator of the fatty acid biosynthetic pathway, the Arabidopsis MYB92 transcription factor. This MYB and all the members of the subgroups S10 and S24 of MYB transcription factors can directly activate the promoter of BCCP2 that encodes a component of the fatty acid biosynthetic pathway. Two adjacent MYB cis-regulatory elements are essential for the binding and activation of the BCCP2 promoter by MYB92. Overexpression of MYB92 or WRI1 in Nicotiana benthamiana induces the expression of fatty acid biosynthetic genes but results in the accumulation of different types of acyl lipids. In the presence of WRI1, triacylglycerol biosynthetic enzymes coded by constitutively expressed genes efficiently channel the excess fatty acids toward reserve lipid accumulation. By contrast, MYB92 activates both fatty acid and suberin biosynthetic genes; hence, the remarkable increase in suberin monomers measured in leaves expressing MYB92. These results provide additional insight into the molecular mechanisms that control the biosynthesis of an important cell wall-associated acylglycerol polymer playing critical roles in plants.
Collapse
Affiliation(s)
- Alexandra To
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Jérôme Joubès
- Laboratoire de Biogenèse Membranaire, UMR 5200, Université de Bordeaux, 33882, Villenave d'Ornon, France
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS, 33882, Villenave d'Ornon, France
| | - Jean Thueux
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Sami Kazaz
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
- Université Paris-Sud, Université Paris-Saclay, 91400, Orsay, France
| | - Loïc Lepiniec
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Sébastien Baud
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| |
Collapse
|
35
|
Fei W, Yang S, Hu J, Yang F, Qu G, Peng D, Zhou B. Research advances of WRINKLED1 (WRI1) in plants. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:185-194. [PMID: 31968206 DOI: 10.1071/fp19225] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
WRINKLED 1 (WRI1), a member of the AP2/EREBP class of transcription factors, regulates carbon allocation between the glycolytic and fatty acid biosynthetic pathways and plays important roles in other biological events. Previous studies have suggested that post-translational modifications and interacting partners modulate the activity of WRI1. We systematically summarised the structure of WRI1 as well as its molecular interactions during transcription and translation in plants. This work elucidates the genetic evolution and regulatory functions of WRI1 at the molecular level and describes a new pathway involving WRI1 that can be used to produce triacylglycerols (TAGs) in plants.
Collapse
Affiliation(s)
- Wenjie Fei
- Faculty of Life Science and Technology, Central South University of Forestry & Technology, Changsha,Hunan, China, 410004
| | - Shiqian Yang
- Faculty of Life Science and Technology, Central South University of Forestry & Technology, Changsha,Hunan, China, 410004
| | - Jing Hu
- Faculty of Life Science and Technology, Central South University of Forestry & Technology, Changsha,Hunan, China, 410004
| | - Feng Yang
- Faculty of Life Science and Technology, Central South University of Forestry & Technology, Changsha,Hunan, China, 410004
| | - Gaoyi Qu
- Faculty of Life Science and Technology, Central South University of Forestry & Technology, Changsha,Hunan, China, 410004
| | - Dan Peng
- Faculty of Life Science and Technology, Central South University of Forestry & Technology, Changsha,Hunan, China, 410004; and Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education,Central South University of Forestry and Technology, 410018, Changsha, China; and Forestry Biotechnology Hunan Key Laboratories, Hunan Changsha, 410004; and National Engineering Laboratory of Applied Technology for Forestry and Ecology in Southern China,Changsha 410004, Hunan, China; and Huitong National Field Station for Scientific Observation and Research of Chinese Fir PlantationEcosystem in Hunan Province, Huitong 438107
| | - Bo Zhou
- Faculty of Life Science and Technology, Central South University of Forestry & Technology, Changsha,Hunan, China, 410004; and Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education,Central South University of Forestry and Technology, 410018, Changsha, China; and Forestry Biotechnology Hunan Key Laboratories, Hunan Changsha, 410004; and National Engineering Laboratory of Applied Technology for Forestry and Ecology in Southern China,Changsha 410004, Hunan, China; and Huitong National Field Station for Scientific Observation and Research of Chinese Fir PlantationEcosystem in Hunan Province, Huitong 438107; and Corresponding author.
| |
Collapse
|
36
|
Shivaiah KK, Ding G, Upton B, Nikolau BJ. Non-Catalytic Subunits Facilitate Quaternary Organization of Plastidic Acetyl-CoA Carboxylase. PLANT PHYSIOLOGY 2020; 182:756-775. [PMID: 31792149 PMCID: PMC6997691 DOI: 10.1104/pp.19.01246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/19/2019] [Indexed: 05/18/2023]
Abstract
Arabidopsis (Arabidopsis thaliana), like most dicotyledonous plants, expresses a multicomponent, heteromeric acetyl-CoA carboxylase (htACCase), which catalyzes the generation of the malonyl-CoA precursor of de novo fatty acid biosynthesis. This enzyme consists of four catalytic subunits: biotin carboxylase (BC), carboxyltransferase (CT)-α, CT-β, and biotin carboxyl carrier protein (BCCP1 or BCCP2). By coexpressing combinations of components in a bacterial expression system, we demonstrate noncatalytic BADCs facilitate the assembly and activation of BCCP-BADC-BC subcomplexes catalyzing the bicarbonate-dependent hydrolysis of ATP, which is the first half-reaction catalyzed by the htACCase enzyme. Although BADC proteins do not directly impact formation of the CT-αβ subcomplex, the BADC-facilitated BCCP-BADC-BC subcomplex can more readily interact with the CT-αβ subcomplex to facilitate the generation of malonyl-CoA. The Arabidopsis genome encodes three BADC isoforms (BADC1, BADC2, and BADC3), and BADC2 and BADC3 (rather than BADC1), in combination with BCCP1, best support this quaternary-structural organization and catalytic activation of the htACCase enzyme. Physiological genetic studies validate these attributes as Arabidopsis double mutants singularly expressing BADC2, BADC3, or BADC1 present increasingly greater deleterious impacts on morphological and biochemical phenotypes. Specifically, plants expressing only BADC2 develop normally, plants only expressing BADC3 suffer a stunted root-growth phenotype, and plants expressing only BADC1 are embryo-lethal. The latter phenotype may also be associated with the distinct suborganelle localization of BADC1 in plastids as compared to the localization of the other two BADC homologs. These finding can inspire novel strategies to improve the biological sources of fats and oils for dietary and industrial applications.
Collapse
Affiliation(s)
- Kiran-Kumar Shivaiah
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011
- Center for Biorenewable Chemicals, Iowa State University, Ames, Iowa 50011
- Center for Metabolic Biology, Iowa State University, Ames, Iowa 50011
| | - Geng Ding
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011
- Center for Biorenewable Chemicals, Iowa State University, Ames, Iowa 50011
- Center for Metabolic Biology, Iowa State University, Ames, Iowa 50011
| | - Bryon Upton
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011
- Center for Biorenewable Chemicals, Iowa State University, Ames, Iowa 50011
- Center for Metabolic Biology, Iowa State University, Ames, Iowa 50011
| | - Basil J Nikolau
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011
- Center for Biorenewable Chemicals, Iowa State University, Ames, Iowa 50011
- Center for Metabolic Biology, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
37
|
He M, Qin CX, Wang X, Ding NZ. Plant Unsaturated Fatty Acids: Biosynthesis and Regulation. FRONTIERS IN PLANT SCIENCE 2020; 11:390. [PMID: 32425958 PMCID: PMC7212373 DOI: 10.3389/fpls.2020.00390] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/18/2020] [Indexed: 05/11/2023]
Abstract
In most plants, major unsaturated fatty acids (UFAs) are three C18 species, namely, oleic (18:1), linoleic (18:2), and α-linolenic (18:3) acids. These simple compounds play multiple crucial roles in planta and are also important economic traits of oil crops. The enzymatic steps of C18 UFA biosynthesis have been well established. However, the associated FA/lipid trafficking between the plastid and the endoplasmic reticulum remains largely unclear, as does the regulation of the expression and activities of the involved enzymes. In this review, we will revisit the biosynthesis of C18 UFAs with an emphasis on the trafficking, and present an overview of the key enzymes and their regulation. Of particular interest is the emerging regulatory network composed of transcriptional factors and upstream signaling pathways. The review thereby provides the promise of using physical, biochemical and/or genetic means to manipulate FA composition and increase oil yield in crop improvement.
Collapse
|
38
|
Liu H, Zhai Z, Kuczynski K, Keereetaweep J, Schwender J, Shanklin J. WRINKLED1 Regulates BIOTIN ATTACHMENT DOMAIN-CONTAINING Proteins that Inhibit Fatty Acid Synthesis. PLANT PHYSIOLOGY 2019; 181:55-62. [PMID: 31209126 PMCID: PMC6716254 DOI: 10.1104/pp.19.00587] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/07/2019] [Indexed: 05/18/2023]
Abstract
WRINKLED1 (WRI1) is a transcriptional activator that binds to a conserved sequence (designated as AW box) boxes in the promoters of many genes from central metabolism and fatty acid (FA) synthesis, resulting in their transcription. BIOTIN ATTACHMENT DOMAIN-CONTAINING (BADC) proteins lack a biotin-attachment domain and are therefore inactive, but in the presence of excess FA, BADC1 and BADC3 are primarily responsible for the observed long-term irreversible inhibition of ACETYL-COA CARBOXYLASE, and consequently FA synthesis. Here, we tested the interaction of WRI1 with BADC genes in Arabidopsis (Arabidopsis thaliana) and found purified WRI1 bound with high affinity to canonical AW boxes from the promoters of all three BADC genes. Consistent with this observation, both expression of BADC1, BADC2, and BADC3 genes and BADC1 protein levels were reduced in wri1-1 relative to the wild type, and elevated upon WRI1 overexpression. The double mutant badc1 badc2 phenocopied wri1-1 with respect to both reduction in root length and elevation of indole-3-acetic acid-Asp levels relative to the wild type. Overexpression of BADC1 in wri1-1 decreased indole-3-acetic acid-Asp content and partially rescued its short-root phenotype, demonstrating a role for BADCs in seedling establishment. That WRI1 positively regulates genes encoding both FA synthesis and BADC proteins (i.e. conditional inhibitors of FA synthesis), represents a coordinated mechanism to achieve lipid homeostasis in which plants couple the transcription of their FA synthetic capacity with their capacity to biochemically downregulate it.
Collapse
Affiliation(s)
- Hui Liu
- Department of Biology, Brookhaven National Laboratory 463, Upton, New York 11973
| | - Zhiyang Zhai
- Department of Biology, Brookhaven National Laboratory 463, Upton, New York 11973
| | - Kate Kuczynski
- Department of Biology, Brookhaven National Laboratory 463, Upton, New York 11973
| | - Jantana Keereetaweep
- Department of Biology, Brookhaven National Laboratory 463, Upton, New York 11973
| | - Jorg Schwender
- Department of Biology, Brookhaven National Laboratory 463, Upton, New York 11973
| | - John Shanklin
- Department of Biology, Brookhaven National Laboratory 463, Upton, New York 11973
| |
Collapse
|
39
|
Yeats TH. Buffering Lipid Synthesis by Conditional Inhibition. PLANT PHYSIOLOGY 2019; 181:8. [PMID: 31467139 PMCID: PMC6716243 DOI: 10.1104/pp.19.00865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Trevor H Yeats
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14850
| |
Collapse
|
40
|
Lavell AA, Benning C. Cellular Organization and Regulation of Plant Glycerolipid Metabolism. PLANT & CELL PHYSIOLOGY 2019; 60:1176-1183. [PMID: 30690552 PMCID: PMC6553661 DOI: 10.1093/pcp/pcz016] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 01/14/2019] [Indexed: 05/07/2023]
Abstract
Great strides have been made in understanding how membranes and lipid droplets are formed and maintained in land plants, yet much more is to be learned given the complexity of plant lipid metabolism. A complicating factor is the multi-organellar presence of biosynthetic enzymes and unique compositional requirements of different membrane systems. This necessitates a rich network of transporters and transport mechanisms that supply fatty acids, membrane lipids and storage lipids to their final cellular destination. Though we know a large number of the biosynthetic enzymes involved in lipid biosynthesis and a few transport proteins, the regulatory mechanisms, in particular, coordinating expression and/or activity of the majority remain yet to be described. Plants undergoing stress alter their membranes' compositions, and lipids such as phosphatidic acid have been implicated in stress signaling. Additionally, lipid metabolism in chloroplasts supplies precursors for jasmonic acid (JA) biosynthesis, and perturbations in lipid homeostasis has consequences on JA signaling. In this review, several aspects of plant lipid metabolism are discussed that are currently under investigation: cellular transport of lipids, regulation of lipid biosynthesis, roles of lipids in stress signaling, and lastly the structural and oligomeric states of lipid enzymes.
Collapse
Affiliation(s)
- A A Lavell
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - C Benning
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Corresponding author: E-mail, ; Fax, 517-353-9168
| |
Collapse
|
41
|
Islam N, Bates PD, Maria John KM, Krishnan HB, J Zhang Z, Luthria DL, Natarajan SS. Quantitative Proteomic Analysis of Low Linolenic Acid Transgenic Soybean Reveals Perturbations of Fatty Acid Metabolic Pathways. Proteomics 2019; 19:e1800379. [PMID: 30784187 DOI: 10.1002/pmic.201800379] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/06/2019] [Indexed: 12/15/2022]
Abstract
To understand the effect of fatty acid desaturase gene (GmFAD3) silencing on perturbation of fatty acid (FA) metabolic pathways, the changes are compared in protein profiling in control and low linolenic acid transgenic soybeans using tandem mass tag based mass spectrometry. Protein profiling of the transgenic line unveiled changes in several key enzymes of FA metabolism. This includes enzymes of lower abundance; fabH, fabF, and thioestrase associated with FA initiation, elongation, and desaturation processes and LOX1_5, ACOX, ACAA1, MFP2 associated with β-oxidation of α-linolenic acids pathways. In addition, the GmFAD3 silencing results in a significant reduction in one of the major allergens, Gly m 4 (C6T3L5). These results are important for exploring how plants adjust in their biological processes when certain changes are induced in the genetic makeup. A complete understanding of these processes will aid researchers to alter genes for developing value-added soybeans.
Collapse
Affiliation(s)
- Nazrul Islam
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, 20705, USA
| | - Philip D Bates
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - K M Maria John
- Food Composition and Methods Development Laboratory, BHNRC, USDA-ARS, Beltsville, MD, 20705, USA
| | - Hari B Krishnan
- Plant Genetics Research Unit, USDA-ARS, University of Missouri, Columbia, MO, 65211, USA
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Zhanyuan J Zhang
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Devanand L Luthria
- Food Composition and Methods Development Laboratory, BHNRC, USDA-ARS, Beltsville, MD, 20705, USA
| | | |
Collapse
|
42
|
Li-Beisson Y, Thelen JJ, Fedosejevs E, Harwood JL. The lipid biochemistry of eukaryotic algae. Prog Lipid Res 2019; 74:31-68. [PMID: 30703388 DOI: 10.1016/j.plipres.2019.01.003] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 02/06/2023]
Abstract
Algal lipid metabolism fascinates both scientists and entrepreneurs due to the large diversity of fatty acyl structures that algae produce. Algae have therefore long been studied as sources of genes for novel fatty acids; and, due to their superior biomass productivity, algae are also considered a potential feedstock for biofuels. However, a major issue in a commercially viable "algal oil-to-biofuel" industry is the high production cost, because most algal species only produce large amounts of oils after being exposed to stress conditions. Recent studies have therefore focused on the identification of factors involved in TAG metabolism, on the subcellular organization of lipid pathways, and on interactions between organelles. This has been accompanied by the development of genetic/genomic and synthetic biological tools not only for the reference green alga Chlamydomonas reinhardtii but also for Nannochloropsis spp. and Phaeodactylum tricornutum. Advances in our understanding of enzymes and regulatory proteins of acyl lipid biosynthesis and turnover are described herein with a focus on carbon and energetic aspects. We also summarize how changes in environmental factors can impact lipid metabolism and describe present and potential industrial uses of algal lipids.
Collapse
Affiliation(s)
- Yonghua Li-Beisson
- Aix-Marseille Univ, CEA, CNRS, BIAM, UMR7265, CEA Cadarache, Saint-Paul-lez Durance F-13108, France.
| | - Jay J Thelen
- Department of Biochemistry, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, MO 65211, United States.
| | - Eric Fedosejevs
- Department of Biochemistry, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, MO 65211, United States.
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.
| |
Collapse
|
43
|
Szczepaniak A, Książkiewicz M, Podkowiński J, Czyż KB, Figlerowicz M, Naganowska B. Legume Cytosolic and Plastid Acetyl-Coenzyme-A Carboxylase Genes Differ by Evolutionary Patterns and Selection Pressure Schemes Acting before and after Whole-Genome Duplications. Genes (Basel) 2018; 9:genes9110563. [PMID: 30469317 PMCID: PMC6265850 DOI: 10.3390/genes9110563] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/09/2018] [Accepted: 11/15/2018] [Indexed: 01/01/2023] Open
Abstract
Acetyl-coenzyme A carboxylase (ACCase, E.C.6.4.1.2) catalyzes acetyl-coenzyme A carboxylation to malonyl coenzyme A. Plants possess two distinct ACCases differing by cellular compartment and function. Plastid ACCase contributes to de novo fatty acid synthesis, whereas cytosolic enzyme to the synthesis of very long chain fatty acids, phytoalexins, flavonoids, and anthocyanins. The narrow leafed lupin (Lupinus angustifolius L.) represents legumes, a plant family which evolved by whole-genome duplications (WGDs). The study aimed on the contribution of these WGDs to the multiplication of ACCase genes and their further evolutionary patterns. The molecular approach involved bacterial artificial chromosome (BAC) library screening, fluorescent in situ hybridization, linkage mapping, and BAC sequencing. In silico analysis encompassed sequence annotation, comparative mapping, selection pressure calculation, phylogenetic inference, and gene expression profiling. Among sequenced legumes, the highest number of ACCase genes was identified in lupin and soybean. The most abundant plastid ACCase subunit genes were accB. ACCase genes in legumes evolved by WGDs, evidenced by shared synteny and Bayesian phylogenetic inference. Transcriptional activity of almost all copies was confirmed. Gene duplicates were conserved by strong purifying selection, however, positive selection occurred in Arachis (accB2) and Lupinus (accC) lineages, putatively predating the WGD event(s). Early duplicated accA and accB genes underwent transcriptional sub-functionalization.
Collapse
Affiliation(s)
- Anna Szczepaniak
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland.
| | - Michał Książkiewicz
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland.
| | - Jan Podkowiński
- Department of Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznań, Poland.
| | - Katarzyna B Czyż
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland.
| | - Marek Figlerowicz
- Department of Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznań, Poland.
| | - Barbara Naganowska
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland.
| |
Collapse
|
44
|
Cui P, Lin Q, Fang D, Zhang L, Li R, Cheng J, Gao F, Shockey J, Hu S, Lü S. Tung Tree (Vernicia fordii, Hemsl.) Genome and Transcriptome Sequencing Reveals Co-Ordinate Up-Regulation of Fatty Acid β-Oxidation and Triacylglycerol Biosynthesis Pathways During Eleostearic Acid Accumulation in Seeds. PLANT & CELL PHYSIOLOGY 2018; 59:1990-2003. [PMID: 30137600 DOI: 10.1093/pcp/pcy117] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/10/2018] [Indexed: 05/21/2023]
Abstract
The tung tree (Vernicia fordii) is one of only a few plant species that produces high oil-yielding seeds rich in α-eleostearic acid (α-ESA, 18:3Δ9cis, 11trans, 13trans), a conjugated trienoic fatty acid with valuable industrial and medical properties. Previous attempts have been made to engineer tung oil biosynthesis in transgenic oilseed crops, but these efforts have met with limited success. Here we present a high-quality genome assembly and developing seed transcriptomic data set for this species. Whole-genome shotgun sequencing generated 176 Gb of genome sequence data used to create a final assembled sequence 1,176,320 kb in size, with a scaffold N50 size of >474 kb, and containing approximately 47,000 protein-coding genes. Genomic and transcriptomic data revealed full-length candidate genes for most of the known and suspected reactions that are necessary for fatty acid desaturation/conjugation, acyl editing and triacylglycerol biosynthesis. Seed transcriptomic analyses also revealed features unique to tung tree, including unusual transcriptional profiles of fatty acid biosynthetic genes, and co-ordinated (and seemingly paradoxical) simultaneous up-regulation of both fatty acid β-oxidation and triacylglycerol biosynthesis in mid-development seeds. The precise temporal control of the expression patterns for these two pathways may account for α-ESA enrichment in tung seeds, while controlling the levels of potentially toxic by-products. Deeper understanding of these processes may open doors to the design of engineered oilseeds containing high levels of α-ESA.
Collapse
Affiliation(s)
- Peng Cui
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Qiang Lin
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Dongming Fang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Lingling Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Rongjun Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | | | - Fei Gao
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Jay Shockey
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, USA
| | - Songnian Hu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shiyou Lü
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
45
|
Keereetaweep J, Liu H, Zhai Z, Shanklin J. Biotin Attachment Domain-Containing Proteins Irreversibly Inhibit Acetyl CoA Carboxylase. PLANT PHYSIOLOGY 2018; 177:208-215. [PMID: 29626162 PMCID: PMC5933113 DOI: 10.1104/pp.18.00216] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 03/26/2018] [Indexed: 05/18/2023]
Abstract
The first committed step in fatty acid synthesis is mediated by acetyl-CoA carboxylase (ACCase), a biotin-dependent enzyme that carboxylates acetyl-CoA to produce malonyl-CoA. ACCase can be feedback regulated by short-term or long-term exposure to fatty acids in the form of Tween 80 (predominantly containing oleic acid), which results in reversible or irreversible ACCase inhibition, respectively. Biotin attachment domain-containing (BADC) proteins are inactive analogs of biotin carboxyl transfer proteins that lack biotin, and their incorporation into ACCase down-regulates its activity by displacing active (biotin-containing) biotin carboxyltransferase protein subunits. Arabidopsis (Arabidopsis thaliana) lines containing T-DNA insertions in BADC1, BADC2, and BADC3 were used to generate badc1 badc2 and badc1 badc3 double mutants. The badc1 badc3 mutant exhibited normal growth and development; however, ACCase activity was 26% higher in badc1 badc3 and its seeds contained 30.1% more fatty acids and 32.6% more triacylgycerol relative to wild-type plants. To assess whether BADC contributes to the irreversible phase of ACCase inhibition, cell suspension cultures were generated from the leaves of badc1 badc3 and wild-type plants and treated with 10 mm Tween 80. Reversible ACCase inhibition was similar in badc1 badc3 and wild-type cultures after 2 d of Tween 80 treatment, but irreversible inhibition was reduced by 50% in badc1 badc3 relative to wild-type plants following 4 d of Tween 80 treatment. In this study, we present evidence for two important homeostatic roles for BADC proteins in down-regulating ACCase activity: by acting during normal growth and development and by contributing to its long-term irreversible feedback inhibition resulting from the oversupply of fatty acids.
Collapse
Affiliation(s)
| | - Hui Liu
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Zhiyang Zhai
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| |
Collapse
|
46
|
Wilson RS, Thelen JJ. In Vivo Quantitative Monitoring of Subunit Stoichiometry for Metabolic Complexes. J Proteome Res 2018; 17:1773-1783. [PMID: 29582652 DOI: 10.1021/acs.jproteome.7b00756] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Metabolic pathways often employ assemblies of individual enzymes to facilitate substrate channeling to improve thermodynamic efficiency and confer pathway directionality. It is often assumed that subunits to multienzyme complexes are coregulated and accumulate at fixed levels in vivo, reflecting complex stoichiometry. Such assumptions can be experimentally tested using modern tandem mass spectrometry, and herein we describe such an approach applied toward an important metabolic complex. The committed step of de novo fatty acid synthesis in the plastids of most plants is catalyzed by the multienzyme, heteromeric acetyl-CoA carboxylase (hetACCase). This complex is composed of four catalytic subunits and a recently discovered regulatory subunit resembling the biotin carboxyl carrier protein but lacking the biotinylation motif necessary for activity. To better understand this novel form of regulation, a targeted tandem mass-spectrometry-based assay was developed to absolutely quantify all subunits to the Arabidopsis thaliana hetACCase. After validation against pure, recombinant protein, this multiplexed assay was used to quantify hetACCase subunits in siliques in various stages of development. Quantitation provided a developmental profile of hetACCase and BADC protein expression that supports a recently proposed regulatory mechanism for hetACCase and demonstrates a promising application of targeted mass spectrometry for in vivo analysis of protein complexes.
Collapse
Affiliation(s)
- Rashaun S Wilson
- Department of Biochemistry , University of Missouri, Christopher S. Bond Life Sciences Center , Columbia , Missouri 65211 , United States
| | - Jay J Thelen
- Department of Biochemistry , University of Missouri, Christopher S. Bond Life Sciences Center , Columbia , Missouri 65211 , United States
| |
Collapse
|
47
|
Cao X, Fan G, Dong Y, Zhao Z, Deng M, Wang Z, Liu W. Proteome Profiling of Paulownia Seedlings Infected with Phytoplasma. FRONTIERS IN PLANT SCIENCE 2017; 8:342. [PMID: 28344590 PMCID: PMC5344924 DOI: 10.3389/fpls.2017.00342] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 02/27/2017] [Indexed: 05/29/2023]
Abstract
Phytoplasma is an insect-transmitted pathogen that causes witches' broom disease in many plants. Paulownia witches' broom is one of the most destructive diseases threatening Paulownia production. The molecular mechanisms associated with this disease have been investigated by transcriptome sequencing, but changes in protein abundance have not been investigated with isobaric tags for relative and absolute quantitation. Previous results have shown that methyl methane sulfonate (MMS) can help Paulownia seedlings recover from the symptoms of witches' broom and reinstate a healthy morphology. In this study, a transcriptomic-assisted proteomic technique was used to analyze the protein changes in phytoplasma-infected Paulownia tomentosa seedlings, phytoplasma-infected seedlings treated with 20 and 60 mg·L-1 MMS, and healthy seedlings. A total of 2,051 proteins were obtained, 879 of which were found to be differentially abundant in pairwise comparisons between the sample groups. Among the differentially abundant proteins, 43 were related to Paulownia witches' broom disease and many of them were annotated to be involved in photosynthesis, expression of dwarf symptom, energy production, and cell signal pathways.
Collapse
Affiliation(s)
- Xibing Cao
- Institute of Paulownia, Henan Agricultural UniversityZhengzhou, China
- College of Forestry, Henan Agricultural UniversityZhengzhou, China
| | - Guoqiang Fan
- Institute of Paulownia, Henan Agricultural UniversityZhengzhou, China
- College of Forestry, Henan Agricultural UniversityZhengzhou, China
| | - Yanpeng Dong
- Institute of Paulownia, Henan Agricultural UniversityZhengzhou, China
- College of Forestry, Henan Agricultural UniversityZhengzhou, China
| | - Zhenli Zhao
- Institute of Paulownia, Henan Agricultural UniversityZhengzhou, China
- College of Forestry, Henan Agricultural UniversityZhengzhou, China
| | - Minjie Deng
- Institute of Paulownia, Henan Agricultural UniversityZhengzhou, China
- College of Forestry, Henan Agricultural UniversityZhengzhou, China
| | - Zhe Wang
- Institute of Paulownia, Henan Agricultural UniversityZhengzhou, China
| | - Wenshan Liu
- Institute of Paulownia, Henan Agricultural UniversityZhengzhou, China
- College of Forestry, Henan Agricultural UniversityZhengzhou, China
| |
Collapse
|
48
|
Duan S, Jin C, Li D, Gao C, Qi S, Liu K, Hai J, Ma H, Chen M. MYB76 Inhibits Seed Fatty Acid Accumulation in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:226. [PMID: 28270825 PMCID: PMC5318433 DOI: 10.3389/fpls.2017.00226] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 02/06/2017] [Indexed: 05/06/2023]
Abstract
The MYB family of transcription factors is important in regulatory networks controlling development, metabolism and responses to biotic and abiotic stresses in Arabidopsis. However, their role in regulating fatty acid accumulation in seeds is still largely unclear. Here, we found that MYB76, localized in the nucleus, was predominantly expressed in developing seeds during maturation. The myb76 mutation caused a significant increase in the amounts of total fatty acids and several major fatty acid compositions in mature seeds, suggesting that MYB76 functioned as an important repressor during seed oil biosynthesis. RNA sequencing and quantitative real-time PCR analysis revealed remarkable alteration of numerous genes involved in photosynthesis, fatty acid biosynthesis, modification, and degradation, and oil body formation in myb76 seeds at 12 days after pollination. These results help us to understand the novel function of MYB76 and provide new insights into the regulatory network of MYB transcriptional factors controlling seed oil accumulation in Arabidopsis.
Collapse
|
49
|
Li H, Ying H, Hu A, Hu Y, Li D. Therapeutic Effect of Gypenosides on Nonalcoholic Steatohepatitis via Regulating Hepatic Lipogenesis and Fatty Acid Oxidation. Biol Pharm Bull 2017; 40:650-657. [DOI: 10.1248/bpb.b16-00942] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hongshan Li
- Department of Liver Disease, Ningbo No. 2 Hospital
- Medical School of Ningbo University
| | - Hao Ying
- Department of Liver Disease, Ningbo No. 2 Hospital
| | - Airong Hu
- Department of Liver Disease, Ningbo No. 2 Hospital
| | - Yaoren Hu
- Department of Liver Disease, Ningbo No. 2 Hospital
| | - Dezhou Li
- Department of Liver Disease, Ningbo No. 2 Hospital
| |
Collapse
|
50
|
Lockhart J. Sibling Rivalry: How Two Proteins from a Common Ancestor Play Opposing Roles in Fatty Acid Biosynthesis. THE PLANT CELL 2016; 28:1997. [PMID: 27573213 PMCID: PMC5059813 DOI: 10.1105/tpc.16.00676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
|