1
|
Qian D, Li T, Zheng C, Wang M, Chen S, Li C, An J, Yang Y, Niu Y, An L, Xiang Y. Heat-stable protein PGSL1 enhances pollen germination and tube growth at high temperature. Nat Commun 2025; 16:3642. [PMID: 40240780 PMCID: PMC12003775 DOI: 10.1038/s41467-025-58869-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Global warming intensifies extreme heat events, threatening crop reproduction by impairing pollen development, germination, and tube growth. However, the mechanisms underlying pollen heat responses remain elusive. The actin cytoskeleton and actin-binding proteins (ABPs) are crucial in these processes, yet their roles under heat stress are poorly understood. Here, we identify a mutant, pollen germination sensitive to LatB (pgsl1), via forward genetic screening. PGSL1 encodes a heat-stable, plant-specific ABP that binds and stabilizes actin filaments (F-actin), preventing heat-induced denaturation. High temperatures reduce F-actin content but promote bundling in pollen tubes. Notably, pgsl1 mutants exhibit decreased F-actin abundance and bundling under heat stress compared to wild-type plants. These findings highlight PGSL1 as a key regulator of actin dynamics, essential for pollen heat tolerance, offering potential strategies to enhance crop resilience in a warming climate.
Collapse
Affiliation(s)
- Dong Qian
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Tian Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Chen Zheng
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Muxuan Wang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Shuyuan Chen
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Chengying Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jiale An
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yang Yang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yue Niu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Lizhe An
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yun Xiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
2
|
Yu H, Maoliniyazi M, Han X, Yang H, Zhang Z, Guo Y, Tang X, Li H, Cao Q, Wang S, Wang X. YUCCA3 interacts with ADF4 to regulate Arabidopsis hypocotyl elongation by organizing actin arrays. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109877. [PMID: 40220667 DOI: 10.1016/j.plaphy.2025.109877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/15/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025]
Abstract
Hypocotyl elongation is critical for plants emerging from the soil, and serves as a model for investigating cell elongation mechanism. It has been reported that auxin biosynthesis enzyme YUCCAs (YUCs) and the cytoskeleton are involved in the regulation of hypocotyl elongation in Arabidopsis. However, whether and how the cytoskeleton is involved in YUCs-regulated hypocotyl elongation is not well understood. Here, we report that YUC3 directly interacted with Actin Depolymerizing Factor 4 (ADF4) to regulate hypocotyl elongation. The yuc3 mutant seedlings produced shorter hypocotyls, while YUC3-OEs seedlings showed longer hypocotyls. Pharmacological analysis showed that microfilament but not microtubule was involved in YUC3-regulated hypocotyl elongation. Consistent with this, defects in actin arrays were observed in the yuc3 seedlings. In addition, YUC3 interacted with ADF4 but not ADF1 in vitro and in vivo. Knock out of ADF4 partially rescued the defects of yuc3 mutant hypocotyl elongation and actin arrays. In summary, our results demonstrate that YUC3 mediates the organization of actin filaments possibly by interacting with ADF4 and affecting its actin depolymerizing/severing activity in the regulation of hypocotyl elongation.
Collapse
Affiliation(s)
- Haiyang Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Mairepaiti Maoliniyazi
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xueping Han
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Hui Yang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ziheng Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yongchao Guo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiwen Tang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Huiru Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Qijiang Cao
- College of Life Science and Bioengineering, Shenyang University, Shenyang, 110044, China
| | - Shucai Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi, 276000, China.
| | - Xianling Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
3
|
Xue Y, Chen J, Hao J, Bao X, Kuang L, Zhang D, Zong C. Identification of the BBX gene family in blueberry at different chromosome ploidy levels and fruit development and response under stress. BMC Genomics 2025; 26:100. [PMID: 39901109 PMCID: PMC11792412 DOI: 10.1186/s12864-025-11273-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 01/22/2025] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Blueberry (Vaccinium spp.) fruits are rich in flavonoids such as anthocyanins and have a high nutritional value. The zinc finger protein transcription factor B-box (BBX) plays important roles in plant growth and development, hormone response, abiotic stress, and anthocyanin accumulation. However, studies on the BBX family in blueberry are lacking. RESULTS In total, 83 VcBBX and 24 VdBBX genes were identified in tetraploid and diploid blueberry, respectively. A correlation was observed between the number of BBX genes in blueberry and chromosome ploidy. Gene loss and specific replication during blueberry evolution may lead to an imbalance of quantitative relationship between VcBBX and VdBBX genes. The analysis of transcriptome and quantitative reverse transcription-polymerase chain reaction data revealed that the expression pattern of BBX genes depended on the developmental stage of blueberry fruit. Gibberellin inhibited the expression of most VcBBX genes. Abscisic acid promoted the expression of some members of the BBX family. The expression levels of VcBBX15b4, VcBBX21a1, and VcBBX30a in blueberry leaves were significantly downregulated under blue light treatment, whereas that of VcBBX15c3 was significantly upregulated under red light treatment. CONCLUSION In total, 83 VcBBX and 24 VdBBX genes were identified in 2 types of blueberries. Fruit development and transcription profiles under different stresses were analyzed. These findings will support further investigation of how BBX genes are involved in regulating hormone treatment and light stress during the growth and development of blueberry.
Collapse
Affiliation(s)
- Yujian Xue
- Agriculture College of YanBian University, Yanji, 133002, China
| | - Jiazhuo Chen
- Medical College of Yanbian University, Yanji, 133002, China
| | - Jia Hao
- Agriculture College of YanBian University, Yanji, 133002, China
| | - Xiaoyu Bao
- Agriculture College of YanBian University, Yanji, 133002, China
| | - Luodan Kuang
- Agriculture College of YanBian University, Yanji, 133002, China
| | - Dong Zhang
- Agriculture College of YanBian University, Yanji, 133002, China
| | - Chengwen Zong
- Agriculture College of YanBian University, Yanji, 133002, China.
| |
Collapse
|
4
|
Shi M, Wang Y, Lv P, Gong Y, Sha Q, Zhao X, Zhou W, Meng L, Han Z, Zhang L, Sun Y. Genome-wide characterization and expression analysis of the ADF gene family in response to salt and drought stress in alfalfa ( Medicago sativa). FRONTIERS IN PLANT SCIENCE 2025; 15:1520267. [PMID: 39949635 PMCID: PMC11821967 DOI: 10.3389/fpls.2024.1520267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/26/2024] [Indexed: 02/16/2025]
Abstract
The microfilament cytoskeleton, formed by the process of actin polymerization, serves not only to support the morphology of the cell, but also to regulate a number of cellular activities. Actin-depolymerizing factors (ADFs) represent a significant class of actin-binding proteins that regulate the dynamic alterations in the microfilament framework, thereby playing a pivotal role in plant growth and development. Additionally, they are instrumental in modulating stress responses in plants. The ADF gene family has been explored in various plants, but there was a paucity of knowledge regarding the ADF gene family in alfalfa (Medicago sativa), which is one of the most significant leguminous forage crops globally. In this study, a total of nine ADF genes (designated MsADF1 through MsADF9) were identified in the alfalfa genome and mapped to five different chromosomes. A phylogenetic analysis indicated that the MsADF genes could be classified into four distinct groups, with members within the same group exhibiting comparable gene structures and conserved motifs. The analysis of the Ka/Ks ratios indicated that the MsADF genes underwent purity-based selection during its evolutionary expansion. The promoter region of these genes was found to contain multiple cis-acting elements related to hormone responses, defence, and stress, indicating that they may respond to a variety of developmental and environmental stimuli. Gene expression profiles analyzed by RT-qPCR experiments demonstrated that MsADF genes exhibited distinct expression patterns among different organs. Furthermore, the majority of MsADF genes were induced by salt and drought stress by more than two-fold, with MsADF1, 2/3, 6, and 9 being highly induced, suggesting their critical role in resistance to abiotic stress. These results provide comprehensive information on the MsADF gene family in alfalfa and lay a solid foundation for elucidating their biological function.
Collapse
Affiliation(s)
- Mengmeng Shi
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Yike Wang
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Peng Lv
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Yujie Gong
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Qi Sha
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Xinyan Zhao
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Wen Zhou
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Lingtao Meng
- Shandong Binnong Technology Co., Ltd., Binzhou, China
| | - Zegang Han
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Lingxiao Zhang
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yongwang Sun
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
- Shandong Binnong Technology Co., Ltd., Binzhou, China
| |
Collapse
|
5
|
Sun Z, Wang X, Peng C, Dai L, Wang T, Zhang Y. Regulation of cytoskeleton dynamics and its interplay with force in plant cells. BIOPHYSICS REVIEWS 2024; 5:041307. [PMID: 39606182 PMCID: PMC11596143 DOI: 10.1063/5.0201899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024]
Abstract
The plant cytoskeleton is an intricate network composed of actin filaments and microtubules. The cytoskeleton undergoes continuous dynamic changes that provide the basis for rapidly responding to intrinsic and extrinsic stimuli, including mechanical stress. Microtubules can respond to alterations of mechanical stress and reorient along the direction of maximal tensile stress in plant cells. The cytoskeleton can also generate driving force for cytoplasmic streaming, organelle movement, and vesicle transportation. In this review, we discuss the progress of how the plant cytoskeleton responds to mechanical stress. We also summarize the roles of the cytoskeleton in generating force that drive organelles and nuclear transportation in plant cells. Finally, some hypotheses concerning the link between the roles of the cytoskeleton in force response and organelle movement, as well as several key questions that remain to be addressed in the field, are highlighted.
Collapse
Affiliation(s)
- Zhenping Sun
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Xueqing Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Chaoyong Peng
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | | | - Ting Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yi Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
6
|
Qiu T, Su Y, Guo N, Zhang X, Jia P, Mao T, Wang X. MYB52 negatively regulates ADF9-meditated actin filament bundling in Arabidopsis pavement cell morphogenesis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2379-2394. [PMID: 39136601 PMCID: PMC11583842 DOI: 10.1111/jipb.13762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/30/2024] [Accepted: 07/21/2024] [Indexed: 11/24/2024]
Abstract
It has been proposed that cortical fine actin filaments are needed for the morphogenesis of pavement cells (PCs). However, the precise role and regulation mechanisms of actin filaments in PC morphogenesis are not well understood. Here, we found that Arabidopsis thaliana ACTIN DEPOLYMERIZING FACTOR9 (ADF9) is required for the morphogenesis of PC, which is negatively regulated by the R2R3 MYELOBLASTOSIS (MYB) transcription factor MYB52. In adf9 mutants, the lobe number of cotyledon PCs was significantly reduced, while the average lobe length did not differ significantly compared to that of wild type (Col-0), except for the variations in cell area and circularity, whereas the PC shapes in ADF9 overexpression seedlings showed different results. ADF9 decorated actin filaments, and colocalized with plasma membrane. The extent of filament bundling and actin filament bundling activity in adf9 mutant decreased. In addition, MYB52 directly targeted the promoter of ADF9 and negatively regulated its expression. The myb52-2 mutant showed increased lobe number and cell area, reduced cell circularity of PCs, and the PC phenotypes were suppressed when ADF9 was knocked out. Taken together, our data demonstrate that actin filaments play an important role in the morphogenesis of PC and reveal a transcriptional mechanism underlying MYB52 regulation of ADF9-mediated actin filament bundling in PC morphogenesis.
Collapse
Affiliation(s)
- Tianqi Qiu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yuanyuan Su
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Nannan Guo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xinyuan Zhang
- College of Biological Science, China Agricultural University, Beijing, 100091, China
| | - Pengfei Jia
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Tonglin Mao
- College of Biological Science, China Agricultural University, Beijing, 100091, China
| | - Xianling Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| |
Collapse
|
7
|
Kumar R, Iswanto ABB, Kumar D, Shuwei W, Oh K, Moon J, Son GH, Oh ES, Vu MH, Lee J, Lee KW, Oh MH, Kwon C, Chung WS, Kim JY, Kim SH. C-Type LECTIN receptor-like kinase 1 and ACTIN DEPOLYMERIZING FACTOR 3 are key components of plasmodesmata callose modulation. PLANT, CELL & ENVIRONMENT 2024; 47:3749-3765. [PMID: 38780063 DOI: 10.1111/pce.14957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 04/02/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Plasmodesmata (PDs) are intercellular organelles carrying multiple membranous nanochannels that allow the trafficking of cellular signalling molecules. The channel regulation of PDs occurs dynamically and is required in various developmental and physiological processes. It is well known that callose is a critical component in regulating PD permeability or symplasmic connectivity, but the understanding of the signalling pathways and mechanisms of its regulation is limited. Here, we used the reverse genetic approach to investigate the role of C-type lectin receptor-like kinase 1 (CLRLK1) in the aspect of PD callose-modulated symplasmic continuity. Here, we found that loss-of-function mutations in CLRLK1 resulted in excessive PD callose deposits and reduced symplasmic continuity, resulting in an accelerated gravitropic response. The protein interactome study also found that CLRLK1 interacted with actin depolymerizing factor 3 (ADF3) in vitro and in plants. Moreover, mutations in ADF3 result in elevated PD callose deposits and faster gravitropic response. Our results indicate that CLRLK1 and ADF3 negatively regulate PD callose accumulation, contributing to fine-tuning symplasmic opening apertures. Overall, our studies identified two key components involved in the deposits of PD callose and provided new insights into how symplasmic connectivity is maintained by the control of PD callose homoeostasis.
Collapse
Affiliation(s)
- Ritesh Kumar
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Arya B B Iswanto
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Dhinesh Kumar
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Wu Shuwei
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Kyujin Oh
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Jiyun Moon
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Geon H Son
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Eun-Seok Oh
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Minh H Vu
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Jinsu Lee
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Keun W Lee
- Division of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Man-Ho Oh
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Chian Kwon
- Department of Molecular Biology, Dankook University, Cheonan, Korea
| | - Woo S Chung
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
- Division of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
- Division of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Sang H Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
- Division of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
8
|
Lv Y, Liu S, Zhang J, Cheng J, Wang J, Wang L, Li M, Wang L, Bi S, Liu W, Zhang L, Liu S, Yan D, Diao C, Zhang S, He M, Gao Y, Wang C. Genome-wide identification of actin-depolymerizing factor family genes in melon ( Cucumis melo L.) and CmADF1 plays an important role in low temperature tolerance. FRONTIERS IN PLANT SCIENCE 2024; 15:1419719. [PMID: 39239192 PMCID: PMC11374638 DOI: 10.3389/fpls.2024.1419719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/02/2024] [Indexed: 09/07/2024]
Abstract
Actin depolymerizing factors (ADFs), as the important actin-binding proteins (ABPs) with depolymerizing/severing actin filaments, play a critical role in plant growth and development, and in response to biotic and abiotic stresses. However, the information and function of the ADF family in melon remains unclear. In this study, 9 melon ADF genes (CmADFs) were identified, distributed in 4 subfamilies, and located on 6 chromosomes respectively. Promoter analysis revealed that the CmADFs contained a large number of cis-acting elements related to hormones and stresses. The similarity of CmADFs with their Arabidopsis homologue AtADFs in sequence, structure, important sites and tissue expression confirmed that ADFs were conserved. Gene expression analysis showed that CmADFs responded to low and high temperature stresses, as well as ABA and SA signals. In particular, CmADF1 was significantly up-regulated under above all stress and hormone treatments, indicating that CmADF1 plays a key role in stress and hormone signaling responses, so CmADF1 was selected to further study the mechanism in plant tolerance low temperature. Under low temperature, virus-induced gene silencing (VIGS) of CmADF1 in oriental melon plants showed increased sensitivity to low temperature stress. Consistently, the stable genetic overexpression of CmADF1 in Arabidopsis improved their low temperature tolerance, possibly due to the role of CmADF1 in the depolymerization of actin filaments. Overall, our findings indicated that CmADF genes, especially CmADF1, function in response to abiotic stresses in melon.
Collapse
Affiliation(s)
- Yanling Lv
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Institute of Vegetable, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Shihang Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Jiawang Zhang
- Institute of Vegetable, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Jianing Cheng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Jinshu Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Lina Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Mingyang Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Lu Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Shuangtian Bi
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Wei Liu
- Institute of Vegetable, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Lili Zhang
- Institute of Vegetable, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Shilei Liu
- Institute of Vegetable, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Dabo Yan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Chengxuan Diao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Shaobin Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Ming He
- Institute of Vegetable, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Yue Gao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Che Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
9
|
Gao X, Liu X, Zhang H, Cheng L, Wang X, Zhen C, Du H, Chen Y, Yu H, Zhu B, Xiao J. Genome-Wide Identification, Expression, and Interaction Analysis of the Auxin Response Factor and AUX/ IAA Gene Families in Vaccinium bracteatum. Int J Mol Sci 2024; 25:8385. [PMID: 39125955 PMCID: PMC11312502 DOI: 10.3390/ijms25158385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Auxin, a plant hormone, plays diverse roles in the modulation of plant growth and development. The transport and signal transduction of auxin are regulated by various factors involved in shaping plant morphology and responding to external environmental conditions. The auxin signal transduction is primarily governed by the following two gene families: the auxin response factor (ARF) and auxin/indole-3-acetic acid (AUX/IAA). However, a comprehensive genomic analysis involving the expression profiles, structures, and functional features of the ARF and AUX/IAA gene families in Vaccinium bracteatum has not been carried out to date. RESULTS Through the acquisition of genomic and expression data, coupled with an analysis using online tools, two gene family members were identified. This groundwork provides a distinguishing characterization of the chosen gene families in terms of expression, interaction, and response in the growth and development of plant fruits. In our genome-wide search of the VaARF and VaIAA genes in Vaccinium bracteatum, we identified 26 VaARF and 17 VaIAA genes. We analyzed the sequence and structural characteristics of these VaARF and VaIAA genes. We found that 26 VaARF and 17 VaIAA genes were divided into six subfamilies. Based on protein interaction predictions, VaIAA1 and VaIAA20 were designated core members of VaIAA gene families. Moreover, an analysis of expression patterns showed that 14 ARF genes and 12 IAA genes exhibited significantly varied expressions during fruit development. CONCLUSION Two key genes, namely, VaIAA1 and VaIAA20, belonging to a gene family, play a potentially crucial role in fruit development through 26 VaARF-IAAs. This study provides a valuable reference for investigating the molecular mechanism of fruit development and lays the foundation for further research on Vaccinium bracteatum.
Collapse
Affiliation(s)
- Xuan Gao
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (X.G.); (X.L.); (L.C.); (C.Z.); (H.D.)
| | - Xiaohui Liu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (X.G.); (X.L.); (L.C.); (C.Z.); (H.D.)
| | - Hong Zhang
- Anhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (H.Z.); (X.W.); (Y.C.); (H.Y.)
| | - Li Cheng
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (X.G.); (X.L.); (L.C.); (C.Z.); (H.D.)
| | - Xingliang Wang
- Anhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (H.Z.); (X.W.); (Y.C.); (H.Y.)
| | - Cheng Zhen
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (X.G.); (X.L.); (L.C.); (C.Z.); (H.D.)
| | - Haijing Du
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (X.G.); (X.L.); (L.C.); (C.Z.); (H.D.)
| | - Yufei Chen
- Anhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (H.Z.); (X.W.); (Y.C.); (H.Y.)
| | - Hongmei Yu
- Anhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (H.Z.); (X.W.); (Y.C.); (H.Y.)
| | - Bo Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (X.G.); (X.L.); (L.C.); (C.Z.); (H.D.)
| | - Jiaxin Xiao
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (X.G.); (X.L.); (L.C.); (C.Z.); (H.D.)
| |
Collapse
|
10
|
Qian D, Li T, Chen S, Wan D, He Y, Zheng C, Li J, Sun Z, Li J, Sun J, Niu Y, Li H, Wang M, Niu Y, Yang Y, An L, Xiang Y. Evolution of the thermostability of actin-depolymerizing factors enhances the adaptation of pollen germination to high temperature. THE PLANT CELL 2024; 36:881-898. [PMID: 37941457 PMCID: PMC10980419 DOI: 10.1093/plcell/koad280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/14/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023]
Abstract
Double fertilization in many flowering plants (angiosperms) often occurs during the hot summer season, but the mechanisms that enable angiosperms to adapt specifically to high temperatures are largely unknown. The actin cytoskeleton is essential for pollen germination and the polarized growth of pollen tubes, yet how this process responds to high temperatures remains unclear. Here, we reveal that the high thermal stability of 11 Arabidopsis (Arabidopsis thaliana) actin-depolymerizing factors (ADFs) is significantly different: ADFs that specifically accumulate in tip-growing cells (pollen and root hairs) exhibit high thermal stability. Through ancestral protein reconstruction, we found that subclass II ADFs (expressed specifically in pollen) have undergone a dynamic wave-like evolution of the retention, loss, and regeneration of thermostable sites. Additionally, the sites of AtADF7 with high thermal stability are conserved in ADFs specific to angiosperm pollen. Moreover, the high thermal stability of ADFs is required to regulate actin dynamics and turnover at high temperatures to promote pollen germination. Collectively, these findings suggest strategies for the adaptation of sexual reproduction to high temperature in angiosperms at the cell biology level.
Collapse
Affiliation(s)
- Dong Qian
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tian Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shuyuan Chen
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Dongshi Wan
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Yongxing He
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chen Zheng
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jiajing Li
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Zhenping Sun
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Jiejie Li
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Junxia Sun
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yingzhi Niu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hongxia Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Muxuan Wang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yue Niu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yang Yang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lizhe An
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yun Xiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
11
|
Qian D, Li T, Zheng C, Niu Y, Niu Y, Li C, Wang M, Yang Y, An L, Xiang Y. Actin-depolymerizing factors 8 and 11 promote root hair elongation at high pH. PLANT COMMUNICATIONS 2024; 5:100787. [PMID: 38158655 PMCID: PMC10943588 DOI: 10.1016/j.xplc.2023.100787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/26/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
A root hair is a polarly elongated single-celled structure that derives from a root epidermal cell and functions in uptake of water and nutrients from the surrounding environment. Previous reports have demonstrated that short periods of high pH inhibit root hair extension; but the effects of long-term high-pH treatment on root hair growth are still unclear. Here, we report that the duration of root hair elongation is significantly prolonged with increasing external pH, which counteracts the effect of decreasing root hair elongation rate and ultimately produces longer root hairs, whereas loss of actin-depolymerizing factor 8 and 11 (ADF8/11) function causes shortening of root hair length at high pH (pH 7.4). Accumulation of ADF8/11 at the tips of root hairs is inhibited by high pH, and increasing environmental pH affects the actin filament (F-actin) meshwork at the root hair tip. At high pH, the tip-focused F-actin meshwork is absent in root hairs of the adf8/11 mutant, actin filaments are disordered at the adf8/11 root hair tips, and actin turnover is attenuated. Secretory and recycling vesicles do not aggregate in the apical region of adf8/11 root hairs at high pH. Together, our results suggest that, under long-term exposure to high extracellular pH, ADF8/11 may establish and maintain the tip-focused F-actin meshwork to regulate polar trafficking of secretory/recycling vesicles at the root hair tips, thereby promoting root hair elongation.
Collapse
Affiliation(s)
- Dong Qian
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tian Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chen Zheng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yue Niu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yingzhi Niu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chengying Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Muxuan Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yang Yang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lizhe An
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yun Xiang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
12
|
Liu B, Wang N, Yang R, Wang X, Luo P, Chen Y, Wang F, Li M, Weng J, Zhang D, Yong H, Han J, Zhou Z, Zhang X, Hao Z, Li X. ZmADF5, a Maize Actin-Depolymerizing Factor Conferring Enhanced Drought Tolerance in Maize. PLANTS (BASEL, SWITZERLAND) 2024; 13:619. [PMID: 38475468 DOI: 10.3390/plants13050619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 03/14/2024]
Abstract
Drought stress is seriously affecting the growth and production of crops, especially when agricultural irrigation still remains quantitatively restricted in some arid and semi-arid areas. The identification of drought-tolerant genes is important for improving the adaptability of maize under stress. Here, we found that a new member of the actin-depolymerizing factor (ADF) family; the ZmADF5 gene was tightly linked with a consensus drought-tolerant quantitative trait locus, and the significantly associated signals were detected through genome wide association analysis. ZmADF5 expression could be induced by osmotic stress and the application of exogenous abscisic acid. Its overexpression in Arabidopsis and maize helped plants to keep a higher survival rate after water-deficit stress, which reduced the stomatal aperture and the water-loss rate, as well as improved clearance of reactive oxygen species. Moreover, seventeen differentially expressed genes were identified as regulated by both drought stress and ZmADF5, four of which were involved in the ABA-dependent drought stress response. ZmADF5-overexpressing plants were also identified as sensitive to ABA during the seed germination and seedling stages. These results suggested that ZmADF5 played an important role in the response to drought stress.
Collapse
Affiliation(s)
- Bojuan Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Nan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding 071000, China
| | - Ruisi Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaonan Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ping Luo
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yong Chen
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fei Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mingshun Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianfeng Weng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Degui Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongjun Yong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jienan Han
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhiqiang Zhou
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuecai Zhang
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Texcoco 06600, Mexico
| | - Zhuanfang Hao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xinhai Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
13
|
Cao H, Yang Q, Wang T, Du T, Song Z, Dong B, Chen T, Wei Y, Xue J, Meng D, Fu Y. Melatonin-mediated CcARP1 alters F-actin dynamics by phosphorylation of CcADF9 to balance root growth and salt tolerance in pigeon pea. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:98-115. [PMID: 37688588 PMCID: PMC10754007 DOI: 10.1111/pbi.14170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 09/11/2023]
Abstract
As a multifunctional hormone-like molecule, melatonin exhibits a pleiotropic role in plant salt stress tolerance. While actin cytoskeleton is essential to plant tolerance to salt stress, it is unclear if and how actin cytoskeleton participates in the melatonin-mediated alleviation of plant salt stress. Here, we report that melatonin alleviates salt stress damage in pigeon pea by activating a kinase-like protein, which interacts with an actin-depolymerizing factor. Cajanus cajan Actin-Depolymerizing Factor 9 (CcADF9) has the function of severing actin filaments and is highly expressed under salt stress. The CcADF9 overexpression lines (CcADF9-OE) showed a reduction of transgenic root length and an increased sensitivity to salt stress. By using CcADF9 as a bait to screen an Y2H library, we identified actin depolymerizing factor-related phosphokinase 1 (ARP1), a novel protein kinase that interacts with CcADF9. CcARP1, induced by melatonin, promotes salt resistance of pigeon pea through phosphorylating CcADF9, inhibiting its severing activity. The CcARP1 overexpression lines (CcARP1-OE) displayed an increased transgenic root length and resistance to salt stress, whereas CcARP1 RNA interference lines (CcARP1-RNAi) presented the opposite phenotype. Altogether, our findings reveal that melatonin-induced CcARP1 maintains F-actin dynamics balance by phosphorylating CcADF9, thereby promoting root growth and enhancing salt tolerance.
Collapse
Affiliation(s)
- Hongyan Cao
- State Key Laboratory of Efficient Production of Forest ResourcesBeijing Forestry UniversityBeijingChina
- The Key Laboratory for Silviculture and Conservation of Ministry of EducationBeijing Forestry UniversityBeijingChina
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland AdministrationBeijing Forestry UniversityBeijingChina
| | - Qing Yang
- State Key Laboratory of Efficient Production of Forest ResourcesBeijing Forestry UniversityBeijingChina
- The Key Laboratory for Silviculture and Conservation of Ministry of EducationBeijing Forestry UniversityBeijingChina
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland AdministrationBeijing Forestry UniversityBeijingChina
| | - Tianyi Wang
- State Key Laboratory of Efficient Production of Forest ResourcesBeijing Forestry UniversityBeijingChina
- The Key Laboratory for Silviculture and Conservation of Ministry of EducationBeijing Forestry UniversityBeijingChina
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland AdministrationBeijing Forestry UniversityBeijingChina
| | - Tingting Du
- State Key Laboratory of Efficient Production of Forest ResourcesBeijing Forestry UniversityBeijingChina
- The Key Laboratory for Silviculture and Conservation of Ministry of EducationBeijing Forestry UniversityBeijingChina
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland AdministrationBeijing Forestry UniversityBeijingChina
| | - Zhihua Song
- State Key Laboratory of Efficient Production of Forest ResourcesBeijing Forestry UniversityBeijingChina
- The Key Laboratory for Silviculture and Conservation of Ministry of EducationBeijing Forestry UniversityBeijingChina
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland AdministrationBeijing Forestry UniversityBeijingChina
| | - Biying Dong
- State Key Laboratory of Efficient Production of Forest ResourcesBeijing Forestry UniversityBeijingChina
- The Key Laboratory for Silviculture and Conservation of Ministry of EducationBeijing Forestry UniversityBeijingChina
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland AdministrationBeijing Forestry UniversityBeijingChina
| | - Ting Chen
- State Key Laboratory of Efficient Production of Forest ResourcesBeijing Forestry UniversityBeijingChina
- The Key Laboratory for Silviculture and Conservation of Ministry of EducationBeijing Forestry UniversityBeijingChina
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland AdministrationBeijing Forestry UniversityBeijingChina
| | - Yifan Wei
- State Key Laboratory of Efficient Production of Forest ResourcesBeijing Forestry UniversityBeijingChina
- The Key Laboratory for Silviculture and Conservation of Ministry of EducationBeijing Forestry UniversityBeijingChina
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland AdministrationBeijing Forestry UniversityBeijingChina
| | - Jingyi Xue
- State Key Laboratory of Efficient Production of Forest ResourcesBeijing Forestry UniversityBeijingChina
- The Key Laboratory for Silviculture and Conservation of Ministry of EducationBeijing Forestry UniversityBeijingChina
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland AdministrationBeijing Forestry UniversityBeijingChina
| | - Dong Meng
- State Key Laboratory of Efficient Production of Forest ResourcesBeijing Forestry UniversityBeijingChina
- The Key Laboratory for Silviculture and Conservation of Ministry of EducationBeijing Forestry UniversityBeijingChina
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland AdministrationBeijing Forestry UniversityBeijingChina
| | - Yujie Fu
- State Key Laboratory of Efficient Production of Forest ResourcesBeijing Forestry UniversityBeijingChina
- The Key Laboratory for Silviculture and Conservation of Ministry of EducationBeijing Forestry UniversityBeijingChina
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland AdministrationBeijing Forestry UniversityBeijingChina
| |
Collapse
|
14
|
Sun Y, Shi M, Wang D, Gong Y, Sha Q, Lv P, Yang J, Chu P, Guo S. Research progress on the roles of actin-depolymerizing factor in plant stress responses. FRONTIERS IN PLANT SCIENCE 2023; 14:1278311. [PMID: 38034575 PMCID: PMC10687421 DOI: 10.3389/fpls.2023.1278311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023]
Abstract
Actin-depolymerizing factors (ADFs) are highly conserved small-molecule actin-binding proteins found throughout eukaryotic cells. In land plants, ADFs form a small gene family that displays functional redundancy despite variations among its individual members. ADF can bind to actin monomers or polymerized microfilaments and regulate dynamic changes in the cytoskeletal framework through specialized biochemical activities, such as severing, depolymerizing, and bundling. The involvement of ADFs in modulating the microfilaments' dynamic changes has significant implications for various physiological processes, including plant growth, development, and stress response. The current body of research has greatly advanced our comprehension of the involvement of ADFs in the regulation of plant responses to both biotic and abiotic stresses, particularly with respect to the molecular regulatory mechanisms that govern ADF activity during the transmission of stress signals. Stress has the capacity to directly modify the transcription levels of ADF genes, as well as indirectly regulate their expression through transcription factors such as MYB, C-repeat binding factors, ABF, and 14-3-3 proteins. Furthermore, apart from their role in regulating actin dynamics, ADFs possess the ability to modulate the stress response by influencing downstream genes associated with pathogen resistance and abiotic stress response. This paper provides a comprehensive overview of the current advancements in plant ADF gene research and suggests that the identification of plant ADF family genes across a broader spectrum, thorough analysis of ADF gene regulation in stress resistance of plants, and manipulation of ADF genes through genome-editing techniques to enhance plant stress resistance are crucial avenues for future investigation in this field.
Collapse
|
15
|
Yuan G, Gao H, Yang T. Exploring the Role of the Plant Actin Cytoskeleton: From Signaling to Cellular Functions. Int J Mol Sci 2023; 24:15480. [PMID: 37895158 PMCID: PMC10607326 DOI: 10.3390/ijms242015480] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/06/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
The plant actin cytoskeleton is characterized by the basic properties of dynamic array, which plays a central role in numerous conserved processes that are required for diverse cellular functions. Here, we focus on how actins and actin-related proteins (ARPs), which represent two classical branches of a greatly diverse superfamily of ATPases, are involved in fundamental functions underlying signal regulation of plant growth and development. Moreover, we review the structure, assembly dynamics, and biological functions of filamentous actin (F-actin) from a molecular perspective. The various accessory proteins known as actin-binding proteins (ABPs) partner with F-actin to finely tune actin dynamics, often in response to various cell signaling pathways. Our understanding of the significance of the actin cytoskeleton in vital cellular activities has been furthered by comparison of conserved functions of actin filaments across different species combined with advanced microscopic techniques and experimental methods. We discuss the current model of the plant actin cytoskeleton, followed by examples of the signaling mechanisms under the supervision of F-actin related to cell morphogenesis, polar growth, and cytoplasmic streaming. Determination of the theoretical basis of how the cytoskeleton works is important in itself and is beneficial to future applications aimed at improving crop biomass and production efficiency.
Collapse
Affiliation(s)
| | | | - Tao Yang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (G.Y.); (H.G.)
| |
Collapse
|
16
|
Zhang R, Xu Y, Yi R, Shen J, Huang S. Actin cytoskeleton in the control of vesicle transport, cytoplasmic organization, and pollen tube tip growth. PLANT PHYSIOLOGY 2023; 193:9-25. [PMID: 37002825 DOI: 10.1093/plphys/kiad203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/08/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Pollen tubes extend rapidly via tip growth. This process depends on a dynamic actin cytoskeleton, which has been implicated in controlling organelle movements, cytoplasmic streaming, vesicle trafficking, and cytoplasm organization in pollen tubes. In this update review, we describe the progress in understanding the organization and regulation of the actin cytoskeleton and the function of the actin cytoskeleton in controlling vesicle traffic and cytoplasmic organization in pollen tubes. We also discuss the interplay between ion gradients and the actin cytoskeleton that regulates the spatial arrangement and dynamics of actin filaments and the organization of the cytoplasm in pollen tubes. Finally, we describe several signaling components that regulate actin dynamics in pollen tubes.
Collapse
Affiliation(s)
- Ruihui Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanan Xu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ran Yi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiangfeng Shen
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
17
|
Wang H, Zhai L, Wang S, Zheng B, Hu H, Li X, Bian S. Identification of R2R3-MYB family in blueberry and its potential involvement of anthocyanin biosynthesis in fruits. BMC Genomics 2023; 24:505. [PMID: 37648968 PMCID: PMC10466896 DOI: 10.1186/s12864-023-09605-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/19/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Blueberries (Vaccinium corymbosum) are regarded as "superfoods" attributed to large amounts of anthocyanins, a group of flavonoid metabolites, which provide pigmentation in plant and beneficial effects for human health. MYB transcription factor is one of vital components in the regulation of plant secondary metabolism, which occupies a dominant position in the regulatory network of anthocyanin biosynthesis. However, the role of MYB family in blueberry responding to anthocyanin biosynthesis remains elusive. RESULTS In this study, we conducted a comprehensive analysis of VcMYBs in blueberry based on the genome data, including phylogenetic relationship, conserved motifs, identification of differentially expressed MYB genes during fruit development and their expression profiling, etc. A total of 437 unique MYB sequences with two SANT domains were identified in blueberry, which were divided into 3 phylogenetic trees. Noticeably, there are many trigenic and tetragenic VcMYBs pairs with more than 95% identity to each other. Meanwhile, the transcript accumulations of VcMYBs were surveyed underlying blueberry fruit development, and they showed diverse expression patterns, suggesting various functional roles in fruit ripening. More importantly, distinct transcript profiles between skin and pulp of ripe fruit were observed for several VcMYBs, such as VcMYB437, implying the potential roles in anthocyanin biosynthesis. CONCLUSIONS Totally, 437 VcMYBs were identified and characterized. Subsequently, their transcriptional patterns were explored during fruit development and fruit tissues (skin and pulp) closely related to anthocyanin biosynthesis. These genome-wide data and findings will contribute to demonstrating the functional roles of VcMYBs and their regulatory mechanisms for anthocyanins production and accumulation in blueberry in the future study.
Collapse
Affiliation(s)
- Haiyang Wang
- College of Plant Science, Jilin University, Changchun, China
| | - Lulu Zhai
- College of Plant Science, Jilin University, Changchun, China
| | - Shouwen Wang
- College of Plant Science, Jilin University, Changchun, China
| | - Botian Zheng
- College of Plant Science, Jilin University, Changchun, China
| | - Honglu Hu
- College of Plant Science, Jilin University, Changchun, China
| | - Xuyan Li
- College of Plant Science, Jilin University, Changchun, China.
| | - Shaomin Bian
- College of Plant Science, Jilin University, Changchun, China.
| |
Collapse
|
18
|
Sun Y, Wang D, Shi M, Gong Y, Yin S, Jiao Y, Guo S. Genome-wide identification of actin-depolymerizing factor gene family and their expression patterns under various abiotic stresses in soybean ( Glycine max). FRONTIERS IN PLANT SCIENCE 2023; 14:1236175. [PMID: 37575943 PMCID: PMC10413265 DOI: 10.3389/fpls.2023.1236175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023]
Abstract
The actin-depolymerizing factor (ADF) encoded by a family of genes is highly conserved among eukaryotes and plays critical roles in the various processes of plant growth, development, and stress responses via the remodeling of the architecture of the actin cytoskeleton. However, the ADF family and the encoded proteins in soybean (Glycine max) have not yet been systematically investigated. In this study, 18 GmADF genes (GmADF1 - GmADF18) were identified in the soybean genome and were mapped to 14 different chromosomes. Phylogenetic analysis classified them into four groups, which was confirmed by their structure and the distribution of conserved motifs in the encoded proteins. Additionally, 29 paralogous gene pairs were identified in the GmADF family, and analysis of their Ka/Ks ratios indicated their purity-based selection during the evolutionary expansion of the soybean genome. The analysis of the expression profiles based on the RNA-seq and qRT-PCR data indicated that GmADFs were diversely expressed in different organs and tissues, with most of them responding actively to drought- and salt-induced stresses, suggesting the critical roles played by them in various biological processes. Overall, our study shows that GmADF genes may play a crucial role in response to various abiotic stresses in soybean, and the highly inducible candidate genes could be used for further functional studies and molecular breeding in soybean.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shangjing Guo
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng, China
| |
Collapse
|
19
|
Wang Q, Xu Y, Zhao S, Jiang Y, Yi R, Guo Y, Huang S. Activation of actin-depolymerizing factor by CDPK16-mediated phosphorylation promotes actin turnover in Arabidopsis pollen tubes. PLoS Biol 2023; 21:e3002073. [PMID: 37011088 PMCID: PMC10101649 DOI: 10.1371/journal.pbio.3002073] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/13/2023] [Accepted: 03/11/2023] [Indexed: 04/05/2023] Open
Abstract
As the stimulus-responsive mediator of actin dynamics, actin-depolymerizing factor (ADF)/cofilin is subject to tight regulation. It is well known that kinase-mediated phosphorylation inactivates ADF/cofilin. Here, however, we found that the activity of Arabidopsis ADF7 is enhanced by CDPK16-mediated phosphorylation. We found that CDPK16 interacts with ADF7 both in vitro and in vivo, and it enhances ADF7-mediated actin depolymerization and severing in vitro in a calcium-dependent manner. Accordingly, the rate of actin turnover is reduced in cdpk16 pollen and the amount of actin filaments increases significantly at the tip of cdpk16 pollen tubes. CDPK16 phosphorylates ADF7 at Serine128 both in vitro and in vivo, and the phospho-mimetic mutant ADF7S128D has enhanced actin-depolymerizing activity compared to ADF7. Strikingly, we found that failure in the phosphorylation of ADF7 at Ser128 impairs its function in promoting actin turnover in vivo, which suggests that this phospho-regulation mechanism is biologically significant. Thus, we reveal that CDPK16-mediated phosphorylation up-regulates ADF7 to promote actin turnover in pollen.
Collapse
Affiliation(s)
- Qiannan Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yanan Xu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shuangshuang Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Plant Stress, Life Science College, Shandong Normal University, Jinan, China
| | - Yuxiang Jiang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ran Yi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
20
|
Wang L, Cheng J, Bi S, Wang J, Cheng X, Liu S, Gao Y, Lan Q, Shi X, Wang Y, Zhao X, Qi X, Xu S, Wang C. Actin Depolymerization Factor ADF1 Regulated by MYB30 Plays an Important Role in Plant Thermal Adaptation. Int J Mol Sci 2023; 24:ijms24065675. [PMID: 36982748 PMCID: PMC10051699 DOI: 10.3390/ijms24065675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 03/18/2023] Open
Abstract
Actin filaments are essential for plant adaptation to high temperatures. However, the molecular mechanisms of actin filaments in plant thermal adaptation remain unclear. Here, we found that the expression of Arabidopsis actin depolymerization factor 1 (AtADF1) was repressed by high temperatures. Compared with wild-type seedlings (WT), the mutation of AtADF1 and the overexpression of AtADF1 led to promoted and inhibited plant growth under high temperature conditions, respectively. Further, high temperatures induced the stability of actin filaments in plants. Compared with WT, Atadf1-1 mutant seedlings showed more stability of actin filaments under normal and high temperature conditions, while the AtADF1 overexpression seedlings showed the opposite results. Additionally, AtMYB30 directly bound to the promoter of AtADF1 at a known AtMYB30 binding site, AACAAAC, and promoted the transcription of AtADF1 under high temperature treatments. Genetic analysis further indicated that AtMYB30 regulated AtADF1 under high temperature treatments. Chinese cabbage ADF1 (BrADF1) was highly homologous with AtADF1. The expression of BrADF1 was inhibited by high temperatures. BrADF1 overexpression inhibited plant growth and reduced the percentage of actin cable and the average length of actin filaments in Arabidopsis, which were similar to those of AtADF1 overexpression seedlings. AtADF1 and BrADF1 also affected the expression of some key heat response genes. In conclusion, our results indicate that ADF1 plays an important role in plant thermal adaptation by blocking the high-temperature-induced stability of actin filaments and is directly regulated by MYB30.
Collapse
Affiliation(s)
- Lu Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (L.W.); (J.C.); (S.B.); (J.W.); (X.C.); (S.L.); (Y.G.)
- Institute of Germplasm Resource and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China; (Q.L.); (X.S.); (Y.W.); (X.Z.); (X.Q.); (S.X.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300392, China
| | - Jianing Cheng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (L.W.); (J.C.); (S.B.); (J.W.); (X.C.); (S.L.); (Y.G.)
| | - Shuangtian Bi
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (L.W.); (J.C.); (S.B.); (J.W.); (X.C.); (S.L.); (Y.G.)
| | - Jinshu Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (L.W.); (J.C.); (S.B.); (J.W.); (X.C.); (S.L.); (Y.G.)
| | - Xin Cheng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (L.W.); (J.C.); (S.B.); (J.W.); (X.C.); (S.L.); (Y.G.)
| | - Shihang Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (L.W.); (J.C.); (S.B.); (J.W.); (X.C.); (S.L.); (Y.G.)
| | - Yue Gao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (L.W.); (J.C.); (S.B.); (J.W.); (X.C.); (S.L.); (Y.G.)
| | - Qingkuo Lan
- Institute of Germplasm Resource and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China; (Q.L.); (X.S.); (Y.W.); (X.Z.); (X.Q.); (S.X.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300392, China
| | - Xiaowei Shi
- Institute of Germplasm Resource and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China; (Q.L.); (X.S.); (Y.W.); (X.Z.); (X.Q.); (S.X.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300392, China
| | - Yong Wang
- Institute of Germplasm Resource and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China; (Q.L.); (X.S.); (Y.W.); (X.Z.); (X.Q.); (S.X.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300392, China
| | - Xin Zhao
- Institute of Germplasm Resource and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China; (Q.L.); (X.S.); (Y.W.); (X.Z.); (X.Q.); (S.X.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300392, China
| | - Xin Qi
- Institute of Germplasm Resource and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China; (Q.L.); (X.S.); (Y.W.); (X.Z.); (X.Q.); (S.X.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300392, China
| | - Shiyong Xu
- Institute of Germplasm Resource and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China; (Q.L.); (X.S.); (Y.W.); (X.Z.); (X.Q.); (S.X.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300392, China
| | - Che Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (L.W.); (J.C.); (S.B.); (J.W.); (X.C.); (S.L.); (Y.G.)
- Correspondence:
| |
Collapse
|
21
|
Ramos Aguila LC, Sánchez Moreano JP, Akutse KS, Bamisile BS, Liu J, Haider FU, Ashraf HJ, Wang L. Comprehensive genome-wide identification and expression profiling of ADF gene family in Citrus sinensis, induced by endophytic colonization of Beauveria bassiana. Int J Biol Macromol 2023; 225:886-898. [PMID: 36403770 DOI: 10.1016/j.ijbiomac.2022.11.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/19/2022]
Abstract
Endophytic entomopathogenic species are known to systematically colonize host plants and form symbiotic associations that benefit the plants they live with. The actin-depolymerizing factors (ADFs) are a group of gene family that regulate growth, development, and defense-related functions in plants. Systematic studies of ADF family at the genome-wide level and their expression in response to endophytic colonization are essential to understand its functions but are currently lacking in this field. 14ADF genes were identified and characterized in the Citrus sinensis genome. The ADF genes of C. sinensis were classified into five groups according to the phylogenetic analysis of plant ADFs. Additionally, the cis-acting analysis revealed that these genes play essential role in plant growth/development, phytohormone, and biotic and abiotic responses; and the expression analysis showed that the symbiotic interactions generate a significant expression regulation level of ADF genes in leaves, stems and roots, compared to controls; thus enhancing seedlings' growth. Additionally, the 3D structures of the ADF domain were highly conserved during evolution. These results will be helpful for further functional validation of ADFs candidate genes and provide important insights into the vegetative growth, development and stress tolerance of C. sinensis in responses to endophytic colonization by B. bassiana.
Collapse
Affiliation(s)
- Luis Carlos Ramos Aguila
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Biochemistry, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Jessica Paola Sánchez Moreano
- Carrera de Agroecología, Facultad de Ciencias Socio-Ambientales, Universidad Regional Amazónica Ikiam, Tena 150102, Ecuador
| | - Komivi Senyo Akutse
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, P.O. Box 30772-00100, Kenya
| | - Bamisope Steve Bamisile
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Juxiu Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Hafiza Javaira Ashraf
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Biochemistry, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liande Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Biochemistry, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
22
|
Aphelenchoides besseyi Ab-FAR-1 Interacts with Arabidopsis thaliana AtADF3 to Interfere with Actin Cytoskeleton, and Promotes Nematode Parasitism and Pathogenicity. Int J Mol Sci 2022; 23:ijms232012280. [PMID: 36293146 PMCID: PMC9603084 DOI: 10.3390/ijms232012280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 01/24/2023] Open
Abstract
Fatty acid and retinol binding proteins (FAR) are unique proteins found in nematodes and are considered potential targets for controlling these parasites. However, their functions in nematode parasitism and pathogenicity and interaction with hosts are still unclear. In this study, we investigated the specific roles of rice white tip nematodes (RWTNs), Aphelenchoides besseyi, and a protein, Ab-FAR-1, to elucidate the parasitic and pathogenic processes of nematodes. The results showed that the expression level of Ab-far-1 was significantly up-regulated after A. besseyi infection of the plant. The immunofluorescence and subcellular localisation showed that Ab-FAR-1 was secreted into plant tissues mainly through the body wall of nematodes and might act in the nucleus and cytoplasm of plant cells. The pathogenicity of RWTNs was enhanced in Arabidopsis thaliana overexpressing Ab-FAR-1 and inhibited in Ab-far-1 RNAi A. thaliana. Yeast two-hybrid, Co-IP, BiFC, and nematode inoculation experiments showed that Ab-FAR-1 could interact with the A. thaliana actin-depolymerizing factor protein AtADF3, and the A. thaliana adf3 mutant was more susceptible to nematodes. An in vitro actin filament depolymerisation assay demonstrated that Ab-FAR-1 could inhibit AtADF3-mediated depolymerisation of actin filaments, and the turnover process of cellular actin filaments was also affected in A. thaliana overexpressing Ab-FAR-1. In addition, flg22-mediated host defence responses were suppressed in A. thaliana overexpressing Ab-FAR-1 and adf3 mutants. Therefore, this study confirmed that RWTNs can affect the turnover of actin filament remodelling mediated by AtADF3 through Ab-FAR-1 secretion and thus inhibit plant PAMP-triggered immunity (PTI), promoting the parasitism and pathogenicity of nematodes.
Collapse
|
23
|
Actin depolymerizing factor ADF7 inhibits actin bundling protein VILLIN1 to regulate root hair formation in response to osmotic stress in Arabidopsis. PLoS Genet 2022; 18:e1010338. [PMID: 36095000 PMCID: PMC9499291 DOI: 10.1371/journal.pgen.1010338] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 09/22/2022] [Accepted: 07/12/2022] [Indexed: 11/25/2022] Open
Abstract
Actin cytoskeleton is essential for root hair formation. However, the underlying molecular mechanisms of actin dynamics in root hair formation in response to abiotic stress are largely undiscovered. Here, genetic analysis showed that actin-depolymerizing protein ADF7 and actin-bundling protein VILLIN1 (VLN1) were positively and negatively involved in root hair formation of Arabidopsis respectively. Moreover, RT-qPCR, GUS staining, western blotting, and genetic analysis revealed that ADF7 played an important role in inhibiting the expression and function of VLN1 during root hair formation. Filament actin (F-actin) dynamics observation and actin pharmacological experiments indicated that ADF7-inhibited-VLN1 pathway led to the decline of F-actin bundling and thick bundle formation, as well as the increase of F-actin depolymerization and turnover to promote root hair formation. Furthermore, the F-actin dynamics mediated by ADF7-inhibited-VLN1 pathway was associated with the reactive oxygen species (ROS) accumulation in root hair formation. Finally, ADF7-inhibited-VLN1 pathway was critical for osmotic stress-induced root hair formation. Our work demonstrates that ADF7 inhibits VLN1 to regulate F-actin dynamics in root hair formation in response to osmotic stress, providing the novel evidence on the F-actin dynamics and their molecular mechanisms in root hair formation and in abiotic stress. Root hairs are required for plants to absorb nutrients and water. The dynamics of cytoskeleton such as actin filaments (F-actin) are necessary for the formation of root hairs, which is regulated by different kinds of cytoskeleton-binding proteins. At the same time, the dynamics of cytoskeleton are also involved in plant abiotic stress tolerance. However, there are few studies on the underlying molecular mechanisms of F-actin dynamics in root hair formation in response to abiotic stress. Actin depolymerization factor 7 (ADF7) and actin bunding protein Villin 1 (VLN1) are important actin-binding proteins in Arabidopsis. Here, we describe a pathway that ADF7 inhibits VLN1 to regulate F-actin dynamics in root hair formation in response to osmotic stress, providing a new evidence for the studies on the molecular mechanisms of F-actin dynamics in root hair formation and in plant abiotic stress tolerance.
Collapse
|
24
|
Ergon Å, Milvang ØW, Skøt L, Ruttink T. Identification of loci controlling timing of stem elongation in red clover using genotyping by sequencing of pooled phenotypic extremes. Mol Genet Genomics 2022; 297:1587-1600. [PMID: 36001174 DOI: 10.1007/s00438-022-01942-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/07/2022] [Indexed: 10/15/2022]
Abstract
MAIN CONCLUSION Through selective genotyping of pooled phenotypic extremes, we identified a number of loci and candidate genes putatively controlling timing of stem elongation in red clover. We have identified candidate genes controlling the timing of stem elongation prior to flowering in red clover (Trifolium pratense L.). This trait is of ecological and agronomic significance, as it affects fitness, competitivity, climate adaptation, forage and seed yield, and forage quality. We genotyped replicate pools of phenotypically extreme individuals (early and late-elongating) within cultivar Lea using genotyping-by-sequencing in pools (pool-GBS). After calling and filtering SNPs and GBS locus haplotype polymorphisms, we estimated allele frequencies and searched for markers with significantly different allele frequencies in the two phenotypic groups using BayeScan, an FST-based test utilizing replicate pools, and a test based on error variance of replicate pools. Of the three methods, BayeScan was the least stringent, and the error variance-based test the most stringent. Fifteen significant markers were identified in common by all three tests. The candidate genes flanking the markers include genes with potential roles in the vernalization, autonomous, and photoperiod regulation of floral transition, hormonal regulation of stem elongation, and cell growth. These results provide a first insight into the potential genes and mechanisms controlling transition to stem elongation in a perennial legume, which lays a foundation for further functional studies of the genetic determinants regulating this important trait.
Collapse
Affiliation(s)
- Åshild Ergon
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway.
| | - Øystein W Milvang
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway
| | - Leif Skøt
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Tom Ruttink
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Caritasstraat 39, B-9090 Melle, Belgium
| |
Collapse
|
25
|
Overexpression of AcEXPA23 Promotes Lateral Root Development in Kiwifruit. Int J Mol Sci 2022; 23:ijms23148026. [PMID: 35887372 PMCID: PMC9317778 DOI: 10.3390/ijms23148026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 12/12/2022] Open
Abstract
Kiwifruit is loved by consumers for its unique taste and rich vitamin C content. Kiwifruit are very sensitive to adverse soil environments owing to fleshy and shallow roots, which limits the uptake of water and nutrients into the root system, resulting in low yield and poor fruit quality. Lateral roots are the key organs for plants to absorb water and nutrients. Improving water and fertilizer use efficiency by promoting lateral root development is a feasible method to improve yield and quality. Expansin proteins plays a major role in lateral root growth; hence, it is important to identify expansin protein family members, screen key genes, and explore gene function in root development. In this study, 41 expansin genes were identified based on the genome of kiwifruit (‘Hongyang’, Actinidia chinensis). By clustering with the Arabidopsis thaliana expansin protein family, the 41 AcExpansin proteins were divided into four subfamilies. The AcExpansin protein family was further analysed by bioinformatics methods and was shown to be evolutionarily diverse and conserved at the DNA and protein levels. Based on previous transcriptome data and quantitative real-time PCR assays, we screened the candidate gene AcEXPA23. Overexpression of AcEXPA23 in kiwifruit increased the number of kiwifruit lateral roots.
Collapse
|
26
|
Li X, Xie Y, Zhang Q, Hua X, Peng L, Li K, Yu Q, Chen Y, Yao H, He J, Huang Y, Wang R, Wang T, Wang J, Li X, Yang Y. Monomerization of abscisic acid receptors through CARKs-mediated phosphorylation. THE NEW PHYTOLOGIST 2022; 235:533-549. [PMID: 35388459 DOI: 10.1111/nph.18149] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Cytosolic ABA Receptor Kinases (CARKs) play a pivotal role in abscisic acid (ABA)-dependent pathway in response to dehydration, but their regulatory mechanism in ABA signaling remains unexplored. In this study, we showed that CARK4/5 of CARK family physically interacted with ABA receptors (RCARs/PYR1/PYLs), including RCAR3, RCAR11-RCAR14, while CARK2/7/11 only interacted with RCAR11-RCAR14, but not RCAR3. It indicates that the members in CARK family function redundantly and differentially in ABA signaling. RCAR12 can form heterodimer with RCAR3 in vitro and in vivo. Moreover, the members of CARK family can form homodimer or heterodimer in a kinase activity dependent manner. ITC (isothermal titration calorimetry) analysis demonstrated that the phosphorylation of RCAR12 by CARK1 enhanced the ABA binding affinity. The phosphor-mimic RCAR12T105D significantly displayed ABA-induced inhibition of the phosphatase ABI1 (ABA insensitive 1) activity, leading to upregulation of ABA-responsive genes RD29A and RD29B in cark157:RCAR12T105D transgenic plants, which exhibited ABA hypersensitive phenotype. The transcription factor ABI5 (ABA insensitive 5) activates the transcriptions of CARK1 and CARK3 by binding to ABA-response elements (ABREs) of their promoters. Collectively, our data imply that the dimeric CARKs phosphorylate homodimer or heterodimer ABA receptors, leading to monomerization for triggering ABA responses in Arabidopsis.
Collapse
Affiliation(s)
- Xiaoyi Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Yiting Xie
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Qian Zhang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Xinyue Hua
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Lu Peng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Kexuan Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Qin Yu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Yihong Chen
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Huan Yao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Juan He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Yaling Huang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Ruolin Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Tao Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Jianmei Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Xufeng Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Yi Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
27
|
Yao H, Li X, Peng L, Hua X, Zhang Q, Li K, Huang Y, Ji H, Wu X, Chen Y, Yang Y, Wang J. Binding of 14-3-3κ to ADF4 is involved in the regulation of hypocotyl growth and response to osmotic stress in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 320:111261. [PMID: 35643603 DOI: 10.1016/j.plantsci.2022.111261] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/12/2022] [Accepted: 03/19/2022] [Indexed: 06/15/2023]
Abstract
14-3-3 proteins, a family of conserved molecules in eukaryotes, target a number of protein clients through their ability to recognize well-defined phosphorylated motifs. ADF4, as one of Actin-Depolymerizing Factor (ADF) family of proteins, is involved in plant development, and response to biotic and abiotic stresses. Here, we show that 14-3-3κ specially interacted with ADF4 in vitro and in vivo. The 14-3-3κ×adf4 double mutant displayed less F-actin bundle and shorter hypocotyl compared with adf4 mutant, indicating that 14-3-3κ acts upstream of ADF4 to mediate the hypocotyl growth in the dark-grown seedlings. Under the osmotic stress, 14-3-3κ mutants displayed less survival rate than wild-type plants. The adf4 mutants exhibited markedly enhanced survival rate under osmotic treatment, while ADF4-overexpressing plants displayed the opposite results, indicating that ADF4 plays a negative role in response to osmotic stress in Arabidopsis. The interaction between ADF4 and 14-3-3κ inhibited the association of ADF4 with actin filament. Moreover, the in vitro phosphorylation assay demonstrates that the phosphorylation of ADF4 by CASEIN KINASE1-LIKE PROTEIN2 (CKL2) was enhanced by binding 14-3-3κ. Collectively, our data infer a fundamental role for the interaction between 14-3-3κ and ADF4 in regulating hypocotyl growth and osmotic tolerance of plants.
Collapse
Affiliation(s)
- Huan Yao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xiaoyi Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Lu Peng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xinyue Hua
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Qian Zhang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Kexuan Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yaling Huang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Hao Ji
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xiaobo Wu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yihong Chen
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yi Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jianmei Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
28
|
Jiang Y, Lu Q, Huang S. Functional non-equivalence of pollen ADF isovariants in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1068-1081. [PMID: 35233873 DOI: 10.1111/tpj.15723] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
ADF/cofilin is a central regulator of actin dynamics. We previously demonstrated that two closely related Arabidopsis class IIa ADF isovariants, ADF7 and ADF10, are involved in the enhancement of actin turnover in pollen, but whether they have distinct functions remains unknown. Here, we further demonstrate that they exhibit distinct functions in regulating actin turnover both in vitro and in vivo. We found that ADF7 binds to ADP-G-actin with lower affinity, and severs and depolymerizes actin filaments less efficiently in vitro than ADF10. Accordingly, in pollen grains, ADF7 more extensively decorates actin filaments and is less freely distributed in the cytoplasm compared to ADF10. We further demonstrate that ADF7 and ADF10 show distinct intracellular localizations during pollen germination, and they have non-equivalent functions in promoting actin turnover in pollen. We thus propose that cooperation and labor division of ADF7 and ADF10 enable pollen cells to achieve exquisite control of the turnover of different actin structures to meet different cellular needs.
Collapse
Affiliation(s)
- Yuxiang Jiang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qiaonan Lu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
29
|
Li X, Zhang X, Shi T, Chen M, Jia C, Wang J, Hou Z, Han J, Bian S. Identification of ARF family in blueberry and its potential involvement of fruit development and pH stress response. BMC Genomics 2022; 23:329. [PMID: 35477362 PMCID: PMC9047364 DOI: 10.1186/s12864-022-08556-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/12/2022] [Indexed: 12/13/2022] Open
Abstract
Background Auxin responsive factor (ARF) family is one of core components in auxin signalling pathway, which governs diverse developmental processes and stress responses. Blueberry is an economically important berry-bearing crop and prefers to acidic soil. However, the understandings of ARF family has not yet been reported in blueberry. Results In the present study, 60 ARF genes (VcARF) were identified in blueberry, and they showed diverse gene structures and motif compositions among the groups and similar within each group in the phylogenetic tree. Noticeably, 9 digenic, 5 trigenic and 6 tetragenic VcARF pairs exhibited more than 95% identity to each other. Computational analysis indicated that 23 VcARFs harbored the miRNA responsive element (MRE) of miR160 or miR167 like other plant ARF genes. Interestingly, the MRE of miR156d/h-3p was observed in the 5’UTR of 3 VcARFs, suggesting a potentially novel post-transcriptional control. Furthermore, the transcript accumulations of VcARFs were investigated during fruit development, and three categories of transcript profiles were observed, implying different functional roles. Meanwhile, the expressions of VcARFs to different pH conditions (pH4.5 and pH6.5) were surveyed in pH-sensitive and tolerant blueberry species, and a number of VcARFs showed different transcript accumulations. More importantly, distinct transcriptional response to pH stress (pH6.5) were observed for several VcARFs (such as VcARF6s and VcARF19-3/19–4) between pH-sensitive and tolerant species, suggesting their potential roles in adaption to pH stress. Conclusions Sixty VcARF genes were identified and characterized, and their transcript profiles were surveyed during fruit development and in response to pH stress. These findings will contribute to future research for eliciting the functional roles of VcARFs and regulatory mechanisms, especially fruit development and adaption to pH stress. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08556-y.
Collapse
Affiliation(s)
- Xuyan Li
- College of Plant Science, Jilin University, Changchun, China
| | - Xiaoyi Zhang
- College of Plant Science, Jilin University, Changchun, China
| | - Tianran Shi
- College of Plant Science, Jilin University, Changchun, China
| | - Min Chen
- College of Plant Science, Jilin University, Changchun, China
| | - Chengguo Jia
- College of Plant Science, Jilin University, Changchun, China
| | - Jingying Wang
- College of Plant Science, Jilin University, Changchun, China
| | - Zhixia Hou
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Research & Development Center of Blueberry, Beijing, 100083, China
| | - Junyou Han
- College of Plant Science, Jilin University, Changchun, China.
| | - Shaomin Bian
- College of Plant Science, Jilin University, Changchun, China.
| |
Collapse
|
30
|
Li Y, Zhang X, Zhang Y, Ren H. Controlling the Gate: The Functions of the Cytoskeleton in Stomatal Movement. FRONTIERS IN PLANT SCIENCE 2022; 13:849729. [PMID: 35283892 PMCID: PMC8905143 DOI: 10.3389/fpls.2022.849729] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/26/2022] [Indexed: 05/03/2023]
Abstract
Stomata are specialized epidermal structures composed of two guard cells and are involved in gas and water exchange between plants and the environment and pathogen entry into the plant interior. Stomatal movement is a response to many internal and external stimuli to increase adaptability to environmental change. The cytoskeleton, including actin filaments and microtubules, is highly dynamic in guard cells during stomatal movement, and the destruction of the cytoskeleton interferes with stomatal movement. In this review, we discuss recent progress on the organization and dynamics of actin filaments and microtubule network in guard cells, and we pay special attention to cytoskeletal-associated protein-mediated cytoskeletal rearrangements during stomatal movement. We also discuss the potential mechanisms of stomatal movement in relation to the cytoskeleton and attempt to provide a foundation for further research in this field.
Collapse
Affiliation(s)
- Yihao Li
- Center for Biological Science and Technology, Guangdong Zhuhai-Macao Joint Biotech Laboratory, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, China
| | - Xin Zhang
- Center for Biological Science and Technology, Guangdong Zhuhai-Macao Joint Biotech Laboratory, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, China
| | - Yi Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
- *Correspondence: Yi Zhang,
| | - Haiyun Ren
- Center for Biological Science and Technology, Guangdong Zhuhai-Macao Joint Biotech Laboratory, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, China
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
- Haiyun Ren,
| |
Collapse
|
31
|
Xu R, Li Y, Liu C, Shen N, Zhang Q, Cao T, Qin M, Han L, Tang D. Twinfilin regulates actin assembly and Hexagonal peroxisome 1 (Hex1) localization in the pathogenesis of rice blast fungus Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2021; 22:1641-1655. [PMID: 34519407 PMCID: PMC8578832 DOI: 10.1111/mpp.13136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 08/06/2021] [Accepted: 08/18/2021] [Indexed: 05/06/2023]
Abstract
Actin assembly at the hyphal tip is key for polar growth and pathogenesis of the rice blast fungus Magnaporthe oryzae. The mechanism of its precise assemblies and biological functions is not understood. Here, we characterized the role of M. oryzae Twinfilin (MoTwf) in M. oryzae infection through organizing the actin cables that connect to Spitzenkörper (Spk) at the hyphal tip. MoTwf could bind and bundle the actin filaments. It formed a complex with Myosin2 (MoMyo2) and the Woronin body protein Hexagonal peroxisome 1 (MoHex1). Enrichment of MoMyo2 and MoHex1 in the hyphal apical region was disrupted in a ΔMotwf loss-of-function mutant, which also showed a decrease in the number and width of actin cables. These findings indicate that MoTwf participates in the virulence of M. oryzae by organizing Spk-connected actin filaments and regulating MoHex1 distribution at the hyphal tip.
Collapse
Affiliation(s)
- Rui Xu
- State Key Laboratory of Ecological Control of Fujian‐Taiwan Crop PestsKey Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsPlant Immunity CenterFujian Agriculture and Forestry UniversityFuzhouChina
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yuan‐Bao Li
- State Key Laboratory of Ecological Control of Fujian‐Taiwan Crop PestsKey Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsPlant Immunity CenterFujian Agriculture and Forestry UniversityFuzhouChina
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Chengyu Liu
- State Key Laboratory of Ecological Control of Fujian‐Taiwan Crop PestsKey Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsPlant Immunity CenterFujian Agriculture and Forestry UniversityFuzhouChina
- College of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Ningning Shen
- State Key Laboratory of Ecological Control of Fujian‐Taiwan Crop PestsKey Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsPlant Immunity CenterFujian Agriculture and Forestry UniversityFuzhouChina
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Qian Zhang
- State Key Laboratory of Ecological Control of Fujian‐Taiwan Crop PestsKey Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsPlant Immunity CenterFujian Agriculture and Forestry UniversityFuzhouChina
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Tingyan Cao
- State Key Laboratory of Ecological Control of Fujian‐Taiwan Crop PestsKey Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsPlant Immunity CenterFujian Agriculture and Forestry UniversityFuzhouChina
- College of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Minghui Qin
- State Key Laboratory of Ecological Control of Fujian‐Taiwan Crop PestsKey Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsPlant Immunity CenterFujian Agriculture and Forestry UniversityFuzhouChina
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Li‐Bo Han
- State Key Laboratory of Ecological Control of Fujian‐Taiwan Crop PestsKey Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsPlant Immunity CenterFujian Agriculture and Forestry UniversityFuzhouChina
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian‐Taiwan Crop PestsKey Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsPlant Immunity CenterFujian Agriculture and Forestry UniversityFuzhouChina
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
32
|
Wang L, Qiu T, Yue J, Guo N, He Y, Han X, Wang Q, Jia P, Wang H, Li M, Wang C, Wang X. Arabidopsis ADF1 is Regulated by MYB73 and is Involved in Response to Salt Stress Affecting Actin Filament Organization. PLANT & CELL PHYSIOLOGY 2021; 62:1387-1395. [PMID: 34086948 DOI: 10.1093/pcp/pcab081] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/26/2021] [Accepted: 06/03/2021] [Indexed: 06/12/2023]
Abstract
Actin cytoskeleton and transcription factors play key roles in plant response to salt stress; however, little is known about the link between the two regulators in response to salt stress. Actin-depolymerizing factors (ADFs) are conserved actin-binding proteins in eukaryotes. Here, we revealed that the expression level of ADF1 was induced by salt stress. The adf1 mutants showed significantly reduced survival rate, increased percentage of actin cable and reduced density of actin filaments, while ADF1 overexpression seedlings displayed the opposite results when compared with WT under the same condition. Furthermore, biochemical assays revealed that MYB73, a R2R3 MYB transcription factor, binds to the promoter of ADF1 and represses its expression via the MYB-binding site core motif ACCTAC. Taken together, our results indicate that ADF1 participates in salt stress by regulating actin organization and may also serve as a potential downstream target of MYB73, which is a negative regulator of salt stress.
Collapse
Affiliation(s)
- Lu Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
- College of Horticulture, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| | - Tianqi Qiu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| | - Jianru Yue
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| | - Nannan Guo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| | - Yunjian He
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| | - Xueping Han
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| | - Qiuyang Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| | - Pengfei Jia
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| | - Hongdan Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| | - Muzi Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| | - Che Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| | - Xianling Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| |
Collapse
|
33
|
Augustine SM, Cherian AV, Seiling K, Di Fiore S, Raven N, Commandeur U, Schillberg S. Targeted mutagenesis in Nicotiana tabacum ADF gene using shockwave-mediated ribonucleoprotein delivery increases osmotic stress tolerance. PHYSIOLOGIA PLANTARUM 2021; 173:993-1007. [PMID: 34265107 DOI: 10.1111/ppl.13499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
DNA-free genome editing involves the direct introduction of ribonucleoprotein (RNP) complexes into cells, but this strategy has rarely been successful in plants. In the present study, we describe a new technique for the introduction of RNPs into plant cells involving the generation of cavitation bubbles using a pulsed laser. The resulting shockwave achieves the efficient transfection of walled cells in tissue explants by creating transient membrane pores. RNP-containing cells were rapidly identified by fluorescence microscopy, followed by regeneration and the screening of mutant plants by high-resolution melt analysis. We used this technique in Nicotiana tabacum to target the endogenous phytoene desaturase (PDS) and actin depolymerizing factor (ADF) genes. Genome-edited plants were produced with an efficiency of 35.2% for PDS and 16.5% for ADF. Further we evaluated the physiological, cellular and molecular effects of ADF mutations in T2 mutant plants under drought and salinity stress. The results suggest that ADF acts as a key regulator of osmotic stress tolerance in plants.
Collapse
Affiliation(s)
- Sruthy Maria Augustine
- Institute of Molecular Biotechnology, RWTH Aachen University, Worringer Weg 1, Aachen, Germany
- Department of Plant breeding, IFZ Research Center for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26, Giessen, Germany
| | - Anoop Vadakan Cherian
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, Aachen, Germany
- Center for Infection and Genomics of the Lung (CIGL), Justus-Liebig-Universität Gießen - Institut für Klinische Immunologie und Transfusionsmedizin, Aulweg 132, Giessen, Germany
| | - Kerstin Seiling
- Institute of Molecular Biotechnology, RWTH Aachen University, Worringer Weg 1, Aachen, Germany
- Institute for Anatomy and Molecular neurobiology, Universitätsklinikum Münster, Vesaliusweg 2-4, Münster, Germany
| | - Stefano Di Fiore
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, Aachen, Germany
| | - Nicole Raven
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, Aachen, Germany
| | - Ulrich Commandeur
- Institute of Molecular Biotechnology, RWTH Aachen University, Worringer Weg 1, Aachen, Germany
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, Aachen, Germany
| |
Collapse
|
34
|
Byun MY, Cui LH, Lee A, Oh HG, Yoo YH, Lee J, Kim WT, Lee H. Abiotic Stress-Induced Actin-Depolymerizing Factor 3 From Deschampsia antarctica Enhanced Cold Tolerance When Constitutively Expressed in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:734500. [PMID: 34650582 PMCID: PMC8506025 DOI: 10.3389/fpls.2021.734500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
The Antarctic flowering plant Deschampsia antarctica is highly sensitive to climate change and has shown rapid population increases during regional warming of the Antarctic Peninsula. Several studies have examined the physiological and biochemical changes related to environmental stress tolerance that allow D. antarctica to colonize harsh Antarctic environments; however, the molecular mechanisms of its responses to environmental changes remain poorly understood. To elucidate the survival strategies of D. antarctica in Antarctic environments, we investigated the functions of actin depolymerizing factor (ADF) in this species. We identified eight ADF genes in the transcriptome that were clustered into five subgroups by phylogenetic analysis. DaADF3, which belongs to a monocot-specific clade together with cold-responsive ADF in wheat, showed significant transcriptional induction in response to dehydration and cold, as well as under Antarctic field conditions. Multiple drought and low-temperature responsive elements were identified as possible binding sites of C-repeat-binding factors in the promoter region of DaADF3, indicating a close relationship between DaADF3 transcription control and abiotic stress responses. To investigate the functions of DaADF3 related to abiotic stresses in vivo, we generated transgenic rice plants overexpressing DaADF3. These transgenic plants showed greater tolerance to low-temperature stress than the wild-type in terms of survival rate, leaf chlorophyll content, and electrolyte leakage, accompanied by changes in actin filament organization in the root tips. Together, our results imply that DaADF3 played an important role in the enhancement of cold tolerance in transgenic rice plants and in the adaptation of D. antarctica to its extreme environment.
Collapse
Affiliation(s)
- Mi Young Byun
- Division of Life Sciences, Korea Polar Research Institute, Incheon, South Korea
| | - Li Hua Cui
- Division of Life Science, Department of Systems Biology, Yonsei University, Seoul, South Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Andosung Lee
- Division of Life Science, Department of Systems Biology, Yonsei University, Seoul, South Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Hyung Geun Oh
- Division of Life Science, Department of Systems Biology, Yonsei University, Seoul, South Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Yo-Han Yoo
- Division of Life Sciences, Korea Polar Research Institute, Incheon, South Korea
| | - Jungeun Lee
- Division of Life Sciences, Korea Polar Research Institute, Incheon, South Korea
| | - Woo Taek Kim
- Division of Life Science, Department of Systems Biology, Yonsei University, Seoul, South Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Hyoungseok Lee
- Division of Life Sciences, Korea Polar Research Institute, Incheon, South Korea
- Polar Science, University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
35
|
Sun H, Zhu X, Li C, Ma Z, Han X, Luo Y, Yang L, Yu J, Miao Y. Xanthomonas effector XopR hijacks host actin cytoskeleton via complex coacervation. Nat Commun 2021; 12:4064. [PMID: 34210966 PMCID: PMC8249405 DOI: 10.1038/s41467-021-24375-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 06/11/2021] [Indexed: 01/09/2023] Open
Abstract
The intrinsically disordered region (IDR) is a preserved signature of phytobacterial type III effectors (T3Es). The T3E IDR is thought to mediate unfolding during translocation into the host cell and to avoid host defense by sequence diversification. Here, we demonstrate a mechanism of host subversion via the T3E IDR. We report that the Xanthomonas campestris T3E XopR undergoes liquid-liquid phase separation (LLPS) via multivalent IDR-mediated interactions that hijack the Arabidopsis actin cytoskeleton. XopR is gradually translocated into host cells during infection and forms a macromolecular complex with actin-binding proteins at the cell cortex. By tuning the physical-chemical properties of XopR-complex coacervates, XopR progressively manipulates multiple steps of actin assembly, including formin-mediated nucleation, crosslinking of F-actin, and actin depolymerization, which occurs through competition for actin-depolymerizing factor and depends on constituent stoichiometry. Our findings unravel a sophisticated strategy in which bacterial T3E subverts the host actin cytoskeleton via protein complex coacervation.
Collapse
Affiliation(s)
- He Sun
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Xinlu Zhu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Chuanxi Li
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Zhiming Ma
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Xiao Han
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yuanyuan Luo
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Liang Yang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Jing Yu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
36
|
Sun W, Yu H, Liu M, Ma Z, Chen H. Evolutionary research on the expansin protein family during the plant transition to land provides new insights into the development of Tartary buckwheat fruit. BMC Genomics 2021; 22:252. [PMID: 33836656 PMCID: PMC8034093 DOI: 10.1186/s12864-021-07562-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/26/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Plant transitions to land require robust cell walls for regulatory adaptations and to resist changing environments. Cell walls provide essential plasticity for plant cell division and defense, which are often conferred by the expansin superfamily with cell wall-loosening functions. However, the evolutionary mechanisms of expansin during plant terrestrialization are unclear. RESULTS Here, we identified 323 expansin proteins in 12 genomes from algae to angiosperms. Phylogenetic evolutionary, structural, motif gain and loss and Ka/Ks analyses indicated that highly conserved expansin proteins were already present in algae and expanded and purified after plant terrestrialization. We found that the expansion of the FtEXPA subfamily was caused by duplication events and that the functions of certain duplicated genes may have differentiated. More importantly, we generated space-time expression profiles and finally identified five differentially expressed FtEXPs in both large and small fruit Tartary buckwheat that may regulate fruit size by responding to indoleacetic acid. CONCLUSIONS A total of 323 expansin proteins from 12 representative plants were identified in our study during terrestrialization, and the expansin family that originated from algae expanded rapidly after the plants landed. The EXPA subfamily has more members and conservative evolution in angiosperms. FtEXPA1, FtEXPA11, FtEXPA12, FtEXPA19 and FtEXPA24 can respond to indole-3-acetic acid (IAA) signals and regulate fruit development. Our study provides a blueprint for improving the agronomic traits of Tartary buckwheat and a reference for defining the evolutionary history of the expansin family during plant transitions to land.
Collapse
Affiliation(s)
- Wenjun Sun
- College of Life Science, Sichuan Agricultural University, Ya’an, 625014 China
| | - Haomiao Yu
- College of Life Science, Sichuan Agricultural University, Ya’an, 625014 China
| | - Moyang Liu
- College of Life Science, Sichuan Agricultural University, Ya’an, 625014 China
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Zhaotang Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Major Crop Diseases and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Hui Chen
- College of Life Science, Sichuan Agricultural University, Ya’an, 625014 China
| |
Collapse
|
37
|
Zhang P, Qian D, Luo C, Niu Y, Li T, Li C, Xiang Y, Wang X, Niu Y. Arabidopsis ADF5 Acts as a Downstream Target Gene of CBFs in Response to Low-Temperature Stress. Front Cell Dev Biol 2021; 9:635533. [PMID: 33585491 PMCID: PMC7876393 DOI: 10.3389/fcell.2021.635533] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Low temperature is a major adverse environment that affects normal plant growth. Previous reports showed that the actin cytoskeleton plays an important role in the plant response to low-temperature stress, but the regulatory mechanism of the actin cytoskeleton in this process is not clear. C-repeat binding factors (CBFs) are the key molecular switches for plants to adapt to cold stress. However, whether CBFs are involved in the regulation of the actin cytoskeleton has not been reported. We found that Arabidopsis actin depolymerizing factor 5 (ADF5), an ADF that evolved F-actin bundling function, was up-regulated at low temperatures. We also demonstrated that CBFs bound to the ADF5 promoter directly in vivo and in vitro. The cold-induced expression of ADF5 was significantly inhibited in the cbfs triple mutant. The freezing resistance of the adf5 knockout mutant was weaker than that of wild type (WT) with or without cold acclimation. After low-temperature treatment, the actin cytoskeleton of WT was relatively stable, but the actin cytoskeletons of adf5, cbfs, and adf5 cbfs were disturbed to varying degrees. Compared to WT, the endocytosis rate of the amphiphilic styryl dye FM4-64 in adf5, cbfs, and adf5 cbfs at low temperature was significantly reduced. In conclusion, CBFs directly combine with the CRT/DRE DNA regulatory element of the ADF5 promoter after low-temperature stress to transcriptionally activate the expression of ADF5; ADF5 further regulates the actin cytoskeleton dynamics to participate in the regulation of plant adaptation to a low-temperature environment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yue Niu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
38
|
Cao H, Amin R, Niu L, Song Z, Dong B, Li H, Wang L, Meng D, Yang Q, Fu Y. Multidimensional analysis of actin depolymerising factor family in pigeon pea under different environmental stress revealed specific response genes in each subgroup. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:180-194. [PMID: 32970987 DOI: 10.1071/fp20190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
Actin depolymerising factor (ADF) is an actin binding protein that is ubiquitous in animal and plant cells. It plays an important role in plant growth and development, as well as resistance to biotic and abiotic stress. The research of plant ADF family has been restricted to Arabidopsis thaliana (L.) Heynh. and some herb crops, but no woody cash crops have been reported to date. All members of the Cajanus cajan (L.) Millsp. ADF (CcADF) family were identified from the pigeon pea genome, and distributed among the four subfamilies by phylogenetic analysis. CcADFs were relatively conservative in gene structure evolution, protein structure and functional expression, and different CcADFs showed specific expression patterns under different treatments. The expression characteristics of several key CcADFs were revealed by analysing the stress response pattern of CcADFs and the time series RNA-seq of aluminium stress. Among them, CcADF9 in the first subgroup specifically responded to aluminium stress in the roots; CcADF3 in the second subgroup intensively responded to fungal infection in the leaves; and CcADF2 in the fourth subgroup positively responded to various stress treatments in different tissues. This study extended the relationship between plant ADF family and aluminium tolerance, as well as adding to the understanding of CcADF family in woody crops.
Collapse
Affiliation(s)
- Hongyan Cao
- State Forestry and Grassland Administration Key Laboratory of Forest Resources and Environmental Management, Beijing Forestry University, Beijing 100083, PR China
| | - Rohul Amin
- State Forestry and Grassland Administration Key Laboratory of Forest Resources and Environmental Management, Beijing Forestry University, Beijing 100083, PR China
| | - Lili Niu
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design, Beijing 100083, PR China
| | - Zhihua Song
- State Forestry and Grassland Administration Key Laboratory of Forest Resources and Environmental Management, Beijing Forestry University, Beijing 100083, PR China
| | - Biying Dong
- State Forestry and Grassland Administration Key Laboratory of Forest Resources and Environmental Management, Beijing Forestry University, Beijing 100083, PR China
| | - Hanghang Li
- State Forestry and Grassland Administration Key Laboratory of Forest Resources and Environmental Management, Beijing Forestry University, Beijing 100083, PR China
| | - Litao Wang
- State Forestry and Grassland Administration Key Laboratory of Forest Resources and Environmental Management, Beijing Forestry University, Beijing 100083, PR China
| | - Dong Meng
- State Forestry and Grassland Administration Key Laboratory of Forest Resources and Environmental Management, Beijing Forestry University, Beijing 100083, PR China; and Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design, Beijing 100083, PR China
| | - Qing Yang
- State Forestry and Grassland Administration Key Laboratory of Forest Resources and Environmental Management, Beijing Forestry University, Beijing 100083, PR China; and Corresponding authors. ;
| | - Yujie Fu
- State Forestry and Grassland Administration Key Laboratory of Forest Resources and Environmental Management, Beijing Forestry University, Beijing 100083, PR China; and Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design, Beijing 100083, PR China; and Key Laboratory of Forestry Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; and Corresponding authors. ;
| |
Collapse
|
39
|
García-González J, van Gelderen K. Bundling up the Role of the Actin Cytoskeleton in Primary Root Growth. FRONTIERS IN PLANT SCIENCE 2021; 12:777119. [PMID: 34975959 PMCID: PMC8716943 DOI: 10.3389/fpls.2021.777119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/11/2021] [Indexed: 05/19/2023]
Abstract
Primary root growth is required by the plant to anchor in the soil and reach out for nutrients and water, while dealing with obstacles. Efficient root elongation and bending depends upon the coordinated action of environmental sensing, signal transduction, and growth responses. The actin cytoskeleton is a highly plastic network that constitutes a point of integration for environmental stimuli and hormonal pathways. In this review, we present a detailed compilation highlighting the importance of the actin cytoskeleton during primary root growth and we describe how actin-binding proteins, plant hormones, and actin-disrupting drugs affect root growth and root actin. We also discuss the feedback loop between actin and root responses to light and gravity. Actin affects cell division and elongation through the control of its own organization. We remark upon the importance of longitudinally oriented actin bundles as a hallmark of cell elongation as well as the role of the actin cytoskeleton in protein trafficking and vacuolar reshaping during this process. The actin network is shaped by a plethora of actin-binding proteins; however, there is still a large gap in connecting the molecular function of these proteins with their developmental effects. Here, we summarize their function and known effects on primary root growth with a focus on their high level of specialization. Light and gravity are key factors that help us understand root growth directionality. The response of the root to gravity relies on hormonal, particularly auxin, homeostasis, and the actin cytoskeleton. Actin is necessary for the perception of the gravity stimulus via the repositioning of sedimenting statoliths, but it is also involved in mediating the growth response via the trafficking of auxin transporters and cell elongation. Furthermore, auxin and auxin analogs can affect the composition of the actin network, indicating a potential feedback loop. Light, in its turn, affects actin organization and hence, root growth, although its precise role remains largely unknown. Recently, fundamental studies with the latest techniques have given us more in-depth knowledge of the role and organization of actin in the coordination of root growth; however, there remains a lot to discover, especially in how actin organization helps cell shaping, and therefore root growth.
Collapse
Affiliation(s)
- Judith García-González
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
- *Correspondence: Judith García-González,
| | - Kasper van Gelderen
- Plant Ecophysiology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Kasper van Gelderen,
| |
Collapse
|
40
|
Ma Z, Miao Y. Review: F-Actin remodelling during plant signal transduction via biomolecular assembly. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 301:110663. [PMID: 33218630 DOI: 10.1016/j.plantsci.2020.110663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
During signal transduction, multivalent interactions establish dynamic molecular connectivities that propagate molecular cascades throughout the entire signaling pathway. Such multivalent interactions include the initial activation, cascade signal transduction, and the amplification and assembly of structural machinery. For example, plants rapidly remodel the actin cytoskeleton during signal transduction by perceiving a wide range of mechanical and chemical cues from developmental and defense pathways. Actin treadmilling is stepwise-regulated by interactions between actin and actin-binding proteins (ABPs). Emerging evidence shows that intrinsically disordered regions (IDRs) enable flexible and promiscuous interactions that serve as the functional hub for generating cellular interactomes underlying various signaling events. Though IDRs are present in a majority of ABPs, few of the functional roles of IDR in the interaction and functions of ABPs have been defined. The distinct features of IDRs create diverse and dynamic molecular interactions that introduce a new paradigm to our understanding of the structure-function relationships for actin assembly. In this review, we will create a snapshot of recent advances in IDR-mediated plant actin remodeling and discuss future research directions in studying the complexity of actin assembly via multifaceted biomolecular assembly during signal transduction.
Collapse
Affiliation(s)
- Zhiming Ma
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
| |
Collapse
|
41
|
Genome-Wide Identification and Characterization of Actin-Depolymerizing Factor ( ADF) Family Genes and Expression Analysis of Responses to Various Stresses in Zea Mays L. Int J Mol Sci 2020; 21:ijms21051751. [PMID: 32143437 PMCID: PMC7084653 DOI: 10.3390/ijms21051751] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022] Open
Abstract
Actin-depolymerizing factor (ADF) is a small class of actin-binding proteins that regulates the dynamics of actin in cells. Moreover, it is well known that the plant ADF family plays key roles in growth, development and defense-related functions. Results: Thirteen maize (Zea mays L., ZmADFs) ADF genes were identified using Hidden Markov Model. Phylogenetic analysis indicated that the 36 identified ADF genes in Physcomitrella patens, Arabidopsis thaliana, Oryza sativa japonica, and Zea mays were clustered into five groups. Four pairs of segmental genes were found in the maize ADF gene family. The tissue-specific expression of ZmADFs and OsADFs was analyzed using microarray data obtained from the Maize and Rice eFP Browsers. Five ZmADFs (ZmADF1/2/7/12/13) from group V exhibited specifically high expression in tassel, pollen, and anther. The expression patterns of 13 ZmADFs in seedlings under five abiotic stresses were analyzed using qRT-PCR, and we found that the ADFs mainly responded to heat, salt, drought, and ABA. Conclusions: In our study, we identified ADF genes in maize and analyzed the gene structure and phylogenetic relationships. The results of expression analysis demonstrated that the expression level of ADF genes was diverse in various tissues and different stimuli, including abiotic and phytohormone stresses, indicating their different roles in plant growth, development, and response to external stimulus. This report extends our knowledge to understand the function of ADF genes in maize.
Collapse
|
42
|
Bai X, Xu J, Shao X, Luo W, Niu Z, Gao C, Wan D. A Novel Gene Coding γ-Aminobutyric Acid Transporter May Improve the Tolerance of Populus euphratica to Adverse Environments. FRONTIERS IN PLANT SCIENCE 2019; 10:1083. [PMID: 31572409 PMCID: PMC6749060 DOI: 10.3389/fpls.2019.01083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/08/2019] [Indexed: 05/28/2023]
Abstract
Novel genes provide important genetic resource for organism innovation. However, the evidence from genetic experiment is limited. In plants, γ-aminobutyric acid (GABA) transporters (GATs) primarily transport GABA and further involve in plant growth, development, and response to various stresses. In this study, we have identified the GATs family in Populus species and characterized their functional evolution and divergence in a desert poplar species (Populus euphratica). We found that the GATs underwent genus-specific expansion via multiple whole-genome duplications in Populus species. The purifying selection were identified across those GATs evolution and divergence in poplar diversity, except two paralogous PeuGAT2 and PeuGAT3 from P. euphratica. The both genes arose from a tandem duplication event about 49 million years ago and have experienced strong positive selection, suggesting that the divergence in PeuGAT3 protein function/structure might define gene function better than in expression pattern. Both PeuGAT genes were functionally characterized in Arabidopsis and poplar, respectively. The overexpression of PeuGAT3 increased the thickness of xylem cells walls in both Arabidopsis and poplar and enhanced the lignin content of xylem tissues and the proline accumulation in poplar leaves, all of which may improve tolerance of salt/drought stress in desert poplars. Our findings help clarify the genetic mechanisms underpinning high tolerance in desert poplars and suggest that PeuGAT3 could be an attractive candidate gene for engineering trees with improved brown-rot resistance.
Collapse
|
43
|
Qian D, Xiang Y. Actin Cytoskeleton as Actor in Upstream and Downstream of Calcium Signaling in Plant Cells. Int J Mol Sci 2019; 20:ijms20061403. [PMID: 30897737 PMCID: PMC6471457 DOI: 10.3390/ijms20061403] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 01/04/2023] Open
Abstract
In plant cells, calcium (Ca2+) serves as a versatile intracellular messenger, participating in several fundamental and important biological processes. Recent studies have shown that the actin cytoskeleton is not only an upstream regulator of Ca2+ signaling, but also a downstream regulator. Ca2+ has been shown to regulates actin dynamics and rearrangements via different mechanisms in plants, and on this basis, the upstream signaling encoded within the Ca2+ transient can be decoded. Moreover, actin dynamics have also been proposed to act as an upstream of Ca2+, adjust Ca2+ oscillations, and establish cytosolic Ca2+ ([Ca2+]cyt) gradients in plant cells. In the current review, we focus on the advances in uncovering the relationship between the actin cytoskeleton and calcium in plant cells and summarize our current understanding of this relationship.
Collapse
Affiliation(s)
- Dong Qian
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Yun Xiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
44
|
Qian D, Zhang Z, He J, Zhang P, Ou X, Li T, Niu L, Nan Q, Niu Y, He W, An L, Jiang K, Xiang Y. Arabidopsis ADF5 promotes stomatal closure by regulating actin cytoskeleton remodeling in response to ABA and drought stress. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:435-446. [PMID: 30476276 PMCID: PMC6322581 DOI: 10.1093/jxb/ery385] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 10/01/2018] [Indexed: 05/20/2023]
Abstract
Stomatal movement plays an essential role in plant responses to drought stress, and the actin cytoskeleton and abscisic acid (ABA) are two important components of this process. Little is known about the mechanism underlying actin cytoskeleton remodeling and the dynamic changes occurring during stomatal movement in response to drought stress/ABA signaling. Actin-depolymerizing factors (ADFs) are conserved actin severing/depolymerizing proteins in eukaryotes, and in angiosperms ADFs have evolved actin-bundling activity. Here, we reveal that the transcriptional expression of neofunctionalized Arabidopsis ADF5 was induced by drought stress and ABA treatment. Furthermore, we demonstrated that ADF5 loss-of-function mutations increased water loss from detached leaves, reduced plant survival rates after drought stress, and delayed stomatal closure by regulating actin cytoskeleton remodeling via its F-actin-bundling activity. Biochemical assays revealed that an ABF/AREB transcription factor, DPBF3, could bind to the ADF5 promoter and activate its transcription via the ABA-responsive element core motif ACGT/C. Taken together, our findings indicate that ADF5 participates in drought stress by regulating stomatal closure, and may also serve as a potential downstream target of the drought stress/ABA signaling pathway via members of the ABF/AREB transcription factors family.
Collapse
Affiliation(s)
- Dong Qian
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zhe Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Juanxia He
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Pan Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xiaobin Ou
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Tian Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lipan Niu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Qiong Nan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yue Niu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Wenliang He
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lizhe An
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Kun Jiang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yun Xiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Correspondence:
| |
Collapse
|
45
|
Li P, Day B. Battlefield Cytoskeleton: Turning the Tide on Plant Immunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:25-34. [PMID: 30355064 PMCID: PMC6326859 DOI: 10.1094/mpmi-07-18-0195-fi] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The plant immune system comprises a complex network of signaling processes, regulated not only by classically defined immune components (e.g., resistance genes) but also by a suite of developmental, environmental, abiotic, and biotic-associated factors. In total, it is the sum of these interactions-the connectivity to a seemingly endless array of environments-that ensures proper activation, and control, of a system that is responsible for cell surveillance and response to threats presented by invading pests and pathogens. Over the past decade, the field of plant pathology has witnessed the discovery of numerous points of convergence between immunity, growth, and development, as well as overlap with seemingly disparate processes such as those that underpin plant response to changes in the environment. Toward defining how immune signaling is regulated, recent studies have focused on dissecting the mechanisms that underpin receptor-ligand interactions, phospho-regulation of signaling cascades, and the modulation of host gene expression during infection. As one of the major regulators of these immune signaling cascades, the plant cytoskeleton is the stage from which immune-associated processes are mobilized and oriented and, in this role, it controls the movement of the organelles, proteins, and chemical signals that support plant defense signaling. In short, the cytoskeleton is the battlefield from which pathogens and plants volley virulence and resistance, transforming resistance to susceptibility. Herein, we discuss the role of the eukaryotic cytoskeleton as a platform for the function of the plant immune system.
Collapse
Affiliation(s)
- Pai Li
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Brad Day
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
- Michigan State University Plant Resilience Institute, East Lansing, MI 48824, USA
| |
Collapse
|
46
|
Sengupta S, Mangu V, Sanchez L, Bedre R, Joshi R, Rajasekaran K, Baisakh N. An actin-depolymerizing factor from the halophyte smooth cordgrass, Spartina alterniflora (SaADF2), is superior to its rice homolog (OsADF2) in conferring drought and salt tolerance when constitutively overexpressed in rice. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:188-205. [PMID: 29851294 PMCID: PMC6330539 DOI: 10.1111/pbi.12957] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 05/18/2018] [Accepted: 05/25/2018] [Indexed: 05/20/2023]
Abstract
Actin-depolymerizing factors (ADFs) maintain the cellular actin network dynamics by regulating severing and disassembly of actin filaments in response to environmental cues. An ADF isolated from a monocot halophyte, Spartina alterniflora (SaADF2), imparted significantly higher level of drought and salinity tolerance when expressed in rice than its rice homologue OsADF2. SaADF2 differs from OsADF2 by a few amino acid residues, including a substitution in the regulatory phosphorylation site serine-6, which accounted for its weak interaction with OsCDPK6 (calcium-dependent protein kinase), thus resulting in an increased efficacy of SaADF2 and enhanced cellular actin dynamics. SaADF2 overexpression preserved the actin filament organization better in rice protoplasts under desiccation stress. The predicted tertiary structure of SaADF2 showed a longer F-loop than OsADF2 that could have contributed to higher actin-binding affinity and rapid F-actin depolymerization in vitro by SaADF2. Rice transgenics constitutively overexpressing SaADF2 (SaADF2-OE) showed better growth, relative water content, and photosynthetic and agronomic yield under drought conditions than wild-type (WT) and OsADF2 overexpressers (OsADF2-OE). SaADF2-OE preserved intact grana structure after prolonged drought stress, whereas WT and OsADF2-OE presented highly damaged and disorganized grana stacking. The possible role of ADF2 in transactivation was hypothesized from the comparative transcriptome analyses, which showed significant differential expression of stress-related genes including interacting partners of ADF2 in overexpressers. Identification of a complex, differential interactome decorating or regulating stress-modulated cytoskeleton driven by ADF isoforms will lead us to key pathways that could be potential target for genome engineering to improve abiotic stress tolerance in agricultural crops.
Collapse
Affiliation(s)
- Sonali Sengupta
- School of PlantEnvironmental and Soil SciencesLouisiana State University Agricultural CenterBaton RougeLAUSA
| | - Venkata Mangu
- School of PlantEnvironmental and Soil SciencesLouisiana State University Agricultural CenterBaton RougeLAUSA
- Present address:
Department of BiochemistrySchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Luis Sanchez
- School of PlantEnvironmental and Soil SciencesLouisiana State University Agricultural CenterBaton RougeLAUSA
- Present address:
Escuela Superior Politécnica del LitoralCentro de Investigaciones Biotecnológicas del EcuadorGuayaquilEcuador
| | - Renesh Bedre
- School of PlantEnvironmental and Soil SciencesLouisiana State University Agricultural CenterBaton RougeLAUSA
- Present address:
Texas A&M AgriLife Research and Extension CenterWeslacoTXUSA
| | - Rohit Joshi
- School of PlantEnvironmental and Soil SciencesLouisiana State University Agricultural CenterBaton RougeLAUSA
- Present address:
School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia
| | | | - Niranjan Baisakh
- School of PlantEnvironmental and Soil SciencesLouisiana State University Agricultural CenterBaton RougeLAUSA
| |
Collapse
|
47
|
Zhang S, Wang C, Xie M, Liu J, Kong Z, Su H. Actin Bundles in The Pollen Tube. Int J Mol Sci 2018; 19:ijms19123710. [PMID: 30469514 PMCID: PMC6321563 DOI: 10.3390/ijms19123710] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 12/31/2022] Open
Abstract
The angiosperm pollen tube delivers two sperm cells into the embryo sac through a unique growth strategy, named tip growth, to accomplish fertilization. A great deal of experiments have demonstrated that actin bundles play a pivotal role in pollen tube tip growth. There are two distinct actin bundle populations in pollen tubes: the long, rather thick actin bundles in the shank and the short, highly dynamic bundles near the apex. With the development of imaging techniques over the last decade, great breakthroughs have been made in understanding the function of actin bundles in pollen tubes, especially short subapical actin bundles. Here, we tried to draw an overall picture of the architecture, functions and underlying regulation mechanism of actin bundles in plant pollen tubes.
Collapse
Affiliation(s)
- Shujuan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education College of Life Science, Northwest University, Xi'an 710069, China.
| | - Chunbo Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education College of Life Science, Northwest University, Xi'an 710069, China.
| | - Min Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education College of Life Science, Northwest University, Xi'an 710069, China.
| | - Jinyu Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education College of Life Science, Northwest University, Xi'an 710069, China.
| | - Zhe Kong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education College of Life Science, Northwest University, Xi'an 710069, China.
| | - Hui Su
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education College of Life Science, Northwest University, Xi'an 710069, China.
| |
Collapse
|
48
|
Sengupta S, Rajasekaran K, Baisakh N. Natural and targeted isovariants of the rice actin depolymerizing factor 2 can alter its functional and regulatory binding properties. Biochem Biophys Res Commun 2018; 503:1516-1523. [PMID: 30031604 DOI: 10.1016/j.bbrc.2018.07.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 10/28/2022]
Abstract
Actin depolymerizing factors (ADFs) are ubiquitous actin-binding proteins that play essential roles in maintaining cellular actin dynamics by depolymerizing/severing F-actin. Plant ADF isoforms show functional divergence via differential biochemical and cellular properties. We have shown previously that ADF2 of rice (OsADF2) and smooth cordgrass (SaADF2) displayed contrasting biochemical properties and stress response in planta. As a proof-of-concept that amino acid variances contribute to such functional difference, single amino acid mutants of OsADF2 were generated based on its sequence differences with SaADF2. Biochemical studies showed that the single-site amino acid mutations altered actin binding, depolymerizing, and severing properties of OsADF2. Phosphosensitive mutations, such as serine-6>threonine, changed the regulatory phosphorylation efficiency of ADF2 variants. The N-terminal mutations had greater effect on the phosphorylation pattern of OsADF2, whereas C-terminal mutations affected actin binding and severing. The presence of introduced mutations in isovariants of monocot ADF suggests that these residues are significant control points regulating their functional divergence, including abiotic stress response.
Collapse
Affiliation(s)
- Sonali Sengupta
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
| | | | - Niranjan Baisakh
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
49
|
Mondal HA, Louis J, Archer L, Patel M, Nalam VJ, Sarowar S, Sivapalan V, Root DD, Shah J. Arabidopsis ACTIN-DEPOLYMERIZING FACTOR3 Is Required for Controlling Aphid Feeding from the Phloem. PLANT PHYSIOLOGY 2018; 176:879-890. [PMID: 29133373 PMCID: PMC5761796 DOI: 10.1104/pp.17.01438] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/09/2017] [Indexed: 05/09/2023]
Abstract
The actin cytoskeleton network has an important role in plant cell growth, division, and stress response. Actin-depolymerizing factors (ADFs) are a group of actin-binding proteins that contribute to reorganization of the actin network. Here, we show that the Arabidopsis (Arabidopsis thaliana) ADF3 is required in the phloem for controlling infestation by Myzus persicae Sülzer, commonly known as the green peach aphid (GPA), which is an important phloem sap-consuming pest of more than fifty plant families. In agreement with a role for the actin-depolymerizing function of ADF3 in defense against the GPA, we show that resistance in adf3 was restored by overexpression of the related ADF4 and the actin cytoskeleton destabilizers, cytochalasin D and latrunculin B. Electrical monitoring of the GPA feeding behavior indicates that the GPA stylets found sieve elements faster when feeding on the adf3 mutant compared to the wild-type plant. In addition, once they found the sieve elements, the GPA fed for a more prolonged period from sieve elements of adf3 compared to the wild-type plant. The longer feeding period correlated with an increase in fecundity and population size of the GPA and a parallel reduction in callose deposition in the adf3 mutant. The adf3-conferred susceptibility to GPA was overcome by expression of the ADF3 coding sequence from the phloem-specific SUC2 promoter, thus confirming the importance of ADF3 function in the phloem. We further demonstrate that the ADF3-dependent defense mechanism is linked to the transcriptional up-regulation of PHYTOALEXIN-DEFICIENT4, which is an important regulator of defenses against the GPA.
Collapse
Affiliation(s)
- Hossain A Mondal
- Department of Biological Sciences, University of North Texas, Denton, Texas 76203
- Uttar Banga Krishi Viswavidyalaya, Pundibari, Cooch Behar 736165, India
| | - Joe Louis
- Department of Biological Sciences, University of North Texas, Denton, Texas 76203
- Department of Entomology and Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68583
| | - Lani Archer
- Department of Biological Sciences, University of North Texas, Denton, Texas 76203
- BioDiscovery Institute, University of North Texas, Denton, Texas 76203
| | - Monika Patel
- Department of Biological Sciences, University of North Texas, Denton, Texas 76203
- BioDiscovery Institute, University of North Texas, Denton, Texas 76203
| | - Vamsi J Nalam
- Department of Biological Sciences, University of North Texas, Denton, Texas 76203
- Department of Biology, Indiana University-Purdue University, Fort Wayne, Indiana 46805
| | - Sujon Sarowar
- Department of Biological Sciences, University of North Texas, Denton, Texas 76203
| | - Vishala Sivapalan
- Department of Biological Sciences, University of North Texas, Denton, Texas 76203
| | - Douglas D Root
- Department of Biological Sciences, University of North Texas, Denton, Texas 76203
| | - Jyoti Shah
- Department of Biological Sciences, University of North Texas, Denton, Texas 76203
- BioDiscovery Institute, University of North Texas, Denton, Texas 76203
| |
Collapse
|
50
|
Paez-Garcia A, Sparks JA, de Bang L, Blancaflor EB. Plant Actin Cytoskeleton: New Functions from Old Scaffold. PLANT CELL MONOGRAPHS 2018. [DOI: 10.1007/978-3-319-69944-8_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|