1
|
Du M, Sun C, Deng L, Zhou M, Li J, Du Y, Ye Z, Huang S, Li T, Yu J, Li C, Li C. Molecular breeding of tomato: Advances and challenges. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:669-721. [PMID: 40098531 PMCID: PMC11951411 DOI: 10.1111/jipb.13879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 02/03/2025] [Indexed: 03/19/2025]
Abstract
The modern cultivated tomato (Solanum lycopersicum) was domesticated from Solanum pimpinellifolium native to the Andes Mountains of South America through a "two-step domestication" process. It was introduced to Europe in the 16th century and later widely cultivated worldwide. Since the late 19th century, breeders, guided by modern genetics, breeding science, and statistical theory, have improved tomatoes into an important fruit and vegetable crop that serves both fresh consumption and processing needs, satisfying diverse consumer demands. Over the past three decades, advancements in modern crop molecular breeding technologies, represented by molecular marker technology, genome sequencing, and genome editing, have significantly transformed tomato breeding paradigms. This article reviews the research progress in the field of tomato molecular breeding, encompassing genome sequencing of germplasm resources, the identification of functional genes for agronomic traits, and the development of key molecular breeding technologies. Based on these advancements, we also discuss the major challenges and perspectives in this field.
Collapse
Affiliation(s)
- Minmin Du
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of HorticultureChina Agricultural UniversityBeijing100193China
- Taishan Academy of Tomato InnovationShandong Agricultural UniversityTai'an271018China
- Sanya Institute of China Agricultural UniversitySanya572025China
| | - Chuanlong Sun
- Taishan Academy of Tomato InnovationShandong Agricultural UniversityTai'an271018China
- College of Horticulture Science and EngineeringShandong Agricultural UniversityTai'an271018China
| | - Lei Deng
- Taishan Academy of Tomato InnovationShandong Agricultural UniversityTai'an271018China
- College of Life SciencesShandong Agricultural UniversityTai'an271018China
| | - Ming Zhou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China)Ministry of Agriculture, Beijing Institute of Vegetable Science, Beijing Academy of Agriculture and Forestry SciencesBeijing100097China
| | - Junming Li
- State Key Laboratory of Vegetable BiobreedingInstitute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing100081China
| | - Yongchen Du
- State Key Laboratory of Vegetable BiobreedingInstitute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing100081China
| | - Zhibiao Ye
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhan430070China
| | - Sanwen Huang
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518120China
- State Key Laboratory of Tropical Crop BreedingChinese Academy of Tropical Agricultural SciencesHaikou571101China
| | - Tianlai Li
- College of HorticultureShenyang Agricultural UniversityShenyang110866China
| | - Jingquan Yu
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
| | - Chang‐Bao Li
- Taishan Academy of Tomato InnovationShandong Agricultural UniversityTai'an271018China
- College of Life SciencesShandong Agricultural UniversityTai'an271018China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China)Ministry of Agriculture, Beijing Institute of Vegetable Science, Beijing Academy of Agriculture and Forestry SciencesBeijing100097China
| | - Chuanyou Li
- Taishan Academy of Tomato InnovationShandong Agricultural UniversityTai'an271018China
- College of Horticulture Science and EngineeringShandong Agricultural UniversityTai'an271018China
- College of Life SciencesShandong Agricultural UniversityTai'an271018China
| |
Collapse
|
2
|
Huang X, Yang Y, Xu C. Biomolecular condensation programs floral transition to orchestrate flowering time and inflorescence architecture. THE NEW PHYTOLOGIST 2025; 245:88-94. [PMID: 39425452 DOI: 10.1111/nph.20204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/11/2024] [Indexed: 10/21/2024]
Abstract
Biomolecular condensation involves the concentration of biomolecules (DNA, RNA, proteins) into compartments to form membraneless organelles or condensates with unique properties and functions. This ubiquitous phenomenon has garnered considerable attention in recent years owing to its multifaceted roles in developmental processes and responses to environmental cues in living systems. Recent studies have revealed that biomolecular condensation plays essential roles in regulating the transition of plants from vegetative to reproductive growth, a programmed process known as floral transition that determines flowering time and inflorescence architecture in flowering plants. In this Tansley insight, we review advances in how biomolecular condensation integrates developmental and environmental signals to program and reprogram the floral transition thus diversifies flowering time and inflorescence architecture.
Collapse
Affiliation(s)
- Xiaozhen Huang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yongfang Yang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Cao Xu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
3
|
Berentsen R, Benlloch R, Visser P, Madueño F, Balanzà V. A reduced vernalization requirement is a key component of the early-bolting trait in globe artichoke ( Cynara cardunculus var. scolymus). iScience 2024; 27:110829. [PMID: 39297164 PMCID: PMC11409005 DOI: 10.1016/j.isci.2024.110829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/10/2024] [Accepted: 08/23/2024] [Indexed: 09/21/2024] Open
Abstract
Early bolting is a major breeding objective for globe artichoke (Cynara cardunculus var. scolymus L.). It has been suggested that globe artichoke bolting time is linked to a vernalization requirement, although environmental conditions under which vernalized plants and controls have been grown may not always allow for proper comparison. Here, we defined morphological markers to monitor the vegetative-to-reproductive phase transition at the shoot apex and linked these to expression changes of homologs of key Arabidopsis flowering regulators SOC1, FUL, and AP1. Importantly, we developed an experimental setup where control and vernalized plants grow under comparable conditions. These tools together allowed for comparison of the vegetative-to-reproductive phase transition between early- and late-bolting genotypes and how they respond to vernalization. Our results show that vernalization requirement is significantly lower in early-bolting genotypes, supporting the hypothesis that the early-bolting trait is at least partly underlain by alterations in the network controlling vernalization response.
Collapse
Affiliation(s)
- Rick Berentsen
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas - Universitat Politècnica de València, Valencia, Spain
- Nunhems Spain SAU, BASF|Nunhems, La Palma (Cartagena), Spain
| | - Reyes Benlloch
- Departamento de Biología Vegetal, Facultad de Farmacia, Universitat de València, Burjassot, Valencia, Spain
| | - Peter Visser
- Nunhems Spain SAU, BASF|Nunhems, La Palma (Cartagena), Spain
| | - Francisco Madueño
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas - Universitat Politècnica de València, Valencia, Spain
| | - Vicente Balanzà
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas - Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
4
|
Fletcher JC. CLAVATA3 Signaling Buffers Arabidopsis Shoot Apical Meristem Activity in Response to Photoperiod. Int J Mol Sci 2024; 25:9357. [PMID: 39273306 PMCID: PMC11394970 DOI: 10.3390/ijms25179357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Land plants grow throughout their life cycle via the continuous activity of stem cell reservoirs contained within their apical meristems. The shoot apical meristem (SAM) of Arabidopsis and other land plants responds to a variety of environmental cues, yet little is known about the response of meristems to seasonal changes in day length, or photoperiod. Here, the vegetative and reproductive growth of Arabidopsis wild-type and clavata3 (clv3) plants in different photoperiod conditions was analyzed. It was found that SAM size in wild-type Arabidopsis plants grown in long-day (LD) conditions gradually increased from embryonic to reproductive development. clv3 plants produced significantly more leaves as well as larger inflorescence meristems and more floral buds than wild-type plants in LD and short-day (SD) conditions, demonstrating that CLV3 signaling limits vegetative and inflorescence meristem activity in both photoperiods. The clv3 phenotypes were more severe in SDs, indicating a greater requirement for CLV3 restriction of SAM function when the days are short. In contrast, clv3 floral meristem size and carpel number were unchanged between LD and SD conditions, which shows that the photoperiod does not affect the regulation of floral meristem activity through the CLV3 pathway. This study reveals that CLV3 signaling specifically restricts vegetative and inflorescence meristem activity in both LD and SD photoperiods but plays a more prominent role during short days.
Collapse
Affiliation(s)
- Jennifer C Fletcher
- Plant Gene Expression Center, United States Department of Agriculture-Agricultural Research Service, Albany, CA 94710, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
5
|
Bertran Garcia de Olalla E, Cerise M, Rodríguez-Maroto G, Casanova-Ferrer P, Vayssières A, Severing E, López Sampere Y, Wang K, Schäfer S, Formosa-Jordan P, Coupland G. Coordination of shoot apical meristem shape and identity by APETALA2 during floral transition in Arabidopsis. Nat Commun 2024; 15:6930. [PMID: 39138172 PMCID: PMC11322546 DOI: 10.1038/s41467-024-51341-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
Plants flower in response to environmental signals. These signals change the shape and developmental identity of the shoot apical meristem (SAM), causing it to form flowers and inflorescences. We show that the increases in SAM width and height during floral transition correlate with changes in size of the central zone (CZ), defined by CLAVATA3 expression, and involve a transient increase in the height of the organizing center (OC), defined by WUSCHEL expression. The APETALA2 (AP2) transcription factor is required for the rapid increases in SAM height and width, by maintaining the width of the OC and increasing the height and width of the CZ. AP2 expression is repressed in the SAM at the end of floral transition, and extending the duration of its expression increases SAM width. Transcriptional repression by SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) represents one of the mechanisms reducing AP2 expression during floral transition. Moreover, AP2 represses SOC1 transcription, and we find that reciprocal repression of SOC1 and AP2 contributes to synchronizing precise changes in meristem shape with floral transition.
Collapse
Affiliation(s)
- Enric Bertran Garcia de Olalla
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRAE, INRIA, Lyon, France
| | - Martina Cerise
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Gabriel Rodríguez-Maroto
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Pau Casanova-Ferrer
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Alice Vayssières
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Edouard Severing
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Department of Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 4, PB, Wageningen, The Netherlands
| | - Yaiza López Sampere
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Kang Wang
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Sabine Schäfer
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Pau Formosa-Jordan
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - George Coupland
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
| |
Collapse
|
6
|
Tsuji H, Sato M. The Function of Florigen in the Vegetative-to-Reproductive Phase Transition in and around the Shoot Apical Meristem. PLANT & CELL PHYSIOLOGY 2024; 65:322-337. [PMID: 38179836 PMCID: PMC11020210 DOI: 10.1093/pcp/pcae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/30/2023] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
Plants undergo a series of developmental phases throughout their life-cycle, each characterized by specific processes. Three critical features distinguish these phases: the arrangement of primordia (phyllotaxis), the timing of their differentiation (plastochron) and the characteristics of the lateral organs and axillary meristems. Identifying the unique molecular features of each phase, determining the molecular triggers that cause transitions and understanding the molecular mechanisms underlying these transitions are keys to gleaning a complete understanding of plant development. During the vegetative phase, the shoot apical meristem (SAM) facilitates continuous leaf and stem formation, with leaf development as the hallmark. The transition to the reproductive phase induces significant changes in these processes, driven mainly by the protein FT (FLOWERING LOCUS T) in Arabidopsis and proteins encoded by FT orthologs, which are specified as 'florigen'. These proteins are synthesized in leaves and transported to the SAM, and act as the primary flowering signal, although its impact varies among species. Within the SAM, florigen integrates with other signals, culminating in developmental changes. This review explores the central question of how florigen induces developmental phase transition in the SAM. Future research may combine phase transition studies, potentially revealing the florigen-induced developmental phase transition in the SAM.
Collapse
Affiliation(s)
- Hiroyuki Tsuji
- Bioscience and Biotechnology Center, Nagoya University, Furocho, Chikusa, Nagoya, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Moeko Sato
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| |
Collapse
|
7
|
McGarry RC, Kaur H, Lin YT, Puc GL, Eshed Williams L, van der Knaap E, Ayre BG. Altered expression of SELF-PRUNING disrupts homeostasis and facilitates signal delivery to meristems. PLANT PHYSIOLOGY 2023; 192:1517-1531. [PMID: 36852887 PMCID: PMC10231363 DOI: 10.1093/plphys/kiad126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 06/01/2023]
Abstract
Meristem maintenance, achieved through the highly conserved CLAVATA-WUSCHEL (CLV-WUS) regulatory circuit, is fundamental in balancing stem cell proliferation with cellular differentiation. Disruptions to meristem homeostasis can alter meristem size, leading to enlarged organs. Cotton (Gossypium spp.), the world's most important fiber crop, shows inherent variation in fruit size, presenting opportunities to explore the networks regulating meristem homeostasis and to impact fruit size and crop value. We identified and characterized the cotton orthologs of genes functioning in the CLV-WUS circuit. Using virus-based gene manipulation in cotton, we altered the expression of each gene to perturb meristem regulation and increase fruit size. Targeted alteration of individual components of the CLV-WUS circuit modestly fasciated flowers and fruits. Unexpectedly, controlled expression of meristem regulator SELF-PRUNING (SP) increased the impacts of altered CLV-WUS expression on flower and fruit fasciation. Meristem transcriptomics showed SP and genes of the CLV-WUS circuit are expressed independently from each other, suggesting these gene products are not acting in the same path. Virus-induced silencing of GhSP facilitated the delivery of other signals to the meristem to alter organ specification. SP has a role in cotton meristem homeostasis, and changes in GhSP expression increased access of virus-derived signals to the meristem.
Collapse
Affiliation(s)
- Róisín C McGarry
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX 76203-5017, USA
| | - Harmanpreet Kaur
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX 76203-5017, USA
| | - Yen-Tung Lin
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX 76203-5017, USA
| | - Guadalupe Lopez Puc
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Biotecnología Vegetal, subsede Sureste, 97302 Mérida, México
| | - Leor Eshed Williams
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Esther van der Knaap
- Center for Applied Genetic Technologies, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Brian G Ayre
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX 76203-5017, USA
| |
Collapse
|
8
|
Périlleux C, Huerga-Fernández S. Reflections on the Triptych of Meristems That Build Flowering Branches in Tomato. FRONTIERS IN PLANT SCIENCE 2022; 13:798502. [PMID: 35211138 PMCID: PMC8861353 DOI: 10.3389/fpls.2022.798502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Branching is an important component determining crop yield. In tomato, the sympodial pattern of shoot and inflorescence branching is initiated at floral transition and involves the precise regulation of three very close meristems: (i) the shoot apical meristem (SAM) that undergoes the first transition to flower meristem (FM) fate, (ii) the inflorescence sympodial meristem (SIM) that emerges on its flank and remains transiently indeterminate to continue flower initiation, and (iii) the shoot sympodial meristem (SYM), which is initiated at the axil of the youngest leaf primordium and takes over shoot growth before forming itself the next inflorescence. The proper fate of each type of meristems involves the spatiotemporal regulation of FM genes, since they all eventually terminate in a flower, but also the transient repression of other fates since conversions are observed in different mutants. In this paper, we summarize the current knowledge about the genetic determinants of meristem fate in tomato and share the reflections that led us to identify sepal and flower abscission zone initiation as a critical stage of FM development that affects the branching of the inflorescence.
Collapse
Affiliation(s)
- Claire Périlleux
- Laboratory of Plant Physiology, Research Unit InBioS—PhytoSYSTEMS, Institute of Botany B22 Sart Tilman, University of Liège, Liège, Belgium
| | | |
Collapse
|
9
|
Gaarslev N, Swinnen G, Soyk S. Meristem transitions and plant architecture-learning from domestication for crop breeding. PLANT PHYSIOLOGY 2021; 187:1045-1056. [PMID: 34734278 PMCID: PMC8566237 DOI: 10.1093/plphys/kiab388] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/19/2021] [Indexed: 05/20/2023]
Abstract
Genetic networks that regulate meristem transitions were recurrent targets of selection during crop domestication and allow fine-tuning of plant architecture for improved crop productivity.
Collapse
Affiliation(s)
- Natalia Gaarslev
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Gwen Swinnen
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Sebastian Soyk
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
10
|
Freytes SN, Canelo M, Cerdán PD. Regulation of Flowering Time: When and Where? CURRENT OPINION IN PLANT BIOLOGY 2021; 63:102049. [PMID: 33975153 DOI: 10.1016/j.pbi.2021.102049] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/09/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
In seasonal flowering, plants need to monitor environmental variables. A combination of photoreceptors and the circadian clock initiate signals that regulate a network of genes in the leaf vascular system which communicates through mobile FLOWERING LOCUS T (FT) proteins, with the shoot apical meristem (SAM). At the SAM, a second network of genes is turned on specifically in certain cell domains, established by a second mobile protein, TERMINAL FLOWER 1 (TFL1), to ensure that flowering signals are translated into floral meristems at the flanks of the SAM but without compromising the nature of the SAM itself. Here, we provide an update on recent findings about the integration of light signals upstream of FT and tissue-specific events that occur in the SAM to balance flower production with SAM endurance.
Collapse
Affiliation(s)
- Santiago Nicolás Freytes
- Fundación Instituto Leloir, IIBBA-CONICET, Avenida Patricias Argentinas 435, Buenos Aires, 1405, Argentina
| | - Micaela Canelo
- Fundación Instituto Leloir, IIBBA-CONICET, Avenida Patricias Argentinas 435, Buenos Aires, 1405, Argentina
| | - Pablo D Cerdán
- Fundación Instituto Leloir, IIBBA-CONICET, Avenida Patricias Argentinas 435, Buenos Aires, 1405, Argentina.
| |
Collapse
|
11
|
Meir Z, Aviezer I, Chongloi GL, Ben-Kiki O, Bronstein R, Mukamel Z, Keren-Shaul H, Jaitin D, Tal L, Shalev-Schlosser G, Harel TH, Tanay A, Eshed Y. Dissection of floral transition by single-meristem transcriptomes at high temporal resolution. NATURE PLANTS 2021; 7:800-813. [PMID: 34135484 DOI: 10.1038/s41477-021-00936-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/30/2021] [Indexed: 05/21/2023]
Abstract
The vegetative-to-floral transition is a dramatic developmental change of the shoot apical meristem, promoted by the systemic florigen signal. However, poor molecular temporal resolution of this dynamic process has precluded characterization of how meristems respond to florigen induction. Here, we develop a technology that allows sensitive transcriptional profiling of individual shoot apical meristems. Computational ordering of hundreds of tomato samples reconstructed the floral transition process at fine temporal resolution and uncovered novel short-lived gene expression programs that are activated before flowering. These programs are annulled only when both florigen and a parallel signalling pathway are eliminated. Functional screening identified genes acting at the onset of pre-flowering programs that are involved in the regulation of meristem morphogenetic changes but dispensable for the timing of floral transition. Induced expression of these short-lived transition-state genes allowed us to determine their genetic hierarchies and to bypass the need for the main flowering pathways. Our findings illuminate how systemic and autonomous pathways are integrated to control a critical developmental switch.
Collapse
Affiliation(s)
- Zohar Meir
- Faculty of Mathematics and Computer Science and Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Iris Aviezer
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | - Oren Ben-Kiki
- Faculty of Mathematics and Computer Science and Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Revital Bronstein
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Zohar Mukamel
- Faculty of Mathematics and Computer Science and Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Hadas Keren-Shaul
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Diego Jaitin
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Lior Tal
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Gili Shalev-Schlosser
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Tom Hai Harel
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Amos Tanay
- Faculty of Mathematics and Computer Science and Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| | - Yuval Eshed
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
12
|
Calderwood A, Hepworth J, Woodhouse S, Bilham L, Jones DM, Tudor E, Ali M, Dean C, Wells R, Irwin JA, Morris RJ. Comparative transcriptomics reveals desynchronisation of gene expression during the floral transition between Arabidopsis and Brassica rapa cultivars. QUANTITATIVE PLANT BIOLOGY 2021; 2:e4. [PMID: 37077206 PMCID: PMC10095958 DOI: 10.1017/qpb.2021.6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 05/03/2023]
Abstract
Comparative transcriptomics can be used to translate an understanding of gene regulatory networks from model systems to less studied species. Here, we use RNA-Seq to determine and compare gene expression dynamics through the floral transition in the model species Arabidopsis thaliana and the closely related crop Brassica rapa. We find that different curve registration functions are required for different genes, indicating that there is no single common 'developmental time' between Arabidopsis and B. rapa. A detailed comparison between Arabidopsis and B. rapa and between two B. rapa accessions reveals different modes of regulation of the key floral integrator SOC1, and that the floral transition in the B. rapa accessions is triggered by different pathways. Our study adds to the mechanistic understanding of the regulatory network of flowering time in rapid cycling B. rapa and highlights the importance of registration methods for the comparison of developmental gene expression data.
Collapse
Affiliation(s)
- Alexander Calderwood
- Department of Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
| | - Jo Hepworth
- Department of Crop Genetics, John Innes Centre, Norwich, United Kingdom
| | - Shannon Woodhouse
- Department of Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
| | - Lorelei Bilham
- Department of Crop Genetics, John Innes Centre, Norwich, United Kingdom
| | - D. Marc Jones
- Department of Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
- VIB-UGent Centre for Plant Systems Biology, Gent, Belgium
| | - Eleri Tudor
- Department of Crop Genetics, John Innes Centre, Norwich, United Kingdom
| | - Mubarak Ali
- Bangladesh Agricultural Research Institute, Gazipur, Bangladesh
| | - Caroline Dean
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Rachel Wells
- Department of Crop Genetics, John Innes Centre, Norwich, United Kingdom
| | - Judith A. Irwin
- Department of Crop Genetics, John Innes Centre, Norwich, United Kingdom
| | - Richard J. Morris
- Department of Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
| |
Collapse
|
13
|
Kinoshita A, Vayssières A, Richter R, Sang Q, Roggen A, van Driel AD, Smith RS, Coupland G. Regulation of shoot meristem shape by photoperiodic signaling and phytohormones during floral induction of Arabidopsis. eLife 2020; 9:60661. [PMID: 33315012 PMCID: PMC7771970 DOI: 10.7554/elife.60661] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/12/2020] [Indexed: 11/23/2022] Open
Abstract
Floral transition, the onset of plant reproduction, involves changes in shape and identity of the shoot apical meristem (SAM). The change in shape, termed doming, occurs early during floral transition when it is induced by environmental cues such as changes in day-length, but how it is regulated at the cellular level is unknown. We defined the morphological and cellular features of the SAM during floral transition of Arabidopsis thaliana. Both cell number and size increased during doming, and these changes were partially controlled by the gene regulatory network (GRN) that triggers flowering. Furthermore, dynamic modulation of expression of gibberellin (GA) biosynthesis and catabolism enzymes at the SAM contributed to doming. Expression of these enzymes was regulated by two MADS-domain transcription factors implicated in flowering. We provide a temporal and spatial framework for integrating the flowering GRN with cellular changes at the SAM and highlight the role of local regulation of GA.
Collapse
Affiliation(s)
- Atsuko Kinoshita
- Max Planck Institute for Plant Breeding Research, Cologne, Germany.,Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Alice Vayssières
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - René Richter
- Max Planck Institute for Plant Breeding Research, Cologne, Germany.,School of Agriculture and Food, University of Melbourne, Melbourne, Australia
| | - Qing Sang
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Adrian Roggen
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Richard S Smith
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - George Coupland
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
14
|
Jin W. Temperature effects on meristem differentiation and flowering date in tuberose (Agave amica L.). ACCIDENT; ANALYSIS AND PREVENTION 2020; 145:105671. [PMID: 32768604 DOI: 10.1016/j.aap.2020.105671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/06/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
Tuberose is an ornamental plant of economic importance produced worldwide due to the elegant shape and fragrant flowers. Despite its commercial importance, one of the limitations of tuberose production is control of flowering time, which has not been determined at present. In our research, the flowering time has been evaluated in corms of Agave amica cv. Double, during two production cycles (2017 and 2018) using different times of storage of the corms (4, 5, 6 and 7 weeks) at variable temperatures (4 °C, 12 °C, 27 °C, RT). Also, we studied the development of the corms to determine which changes occur in the meristem during floral transition and how the flower quality is affected. The results showed that meristematic differentiation occurred 30-45 days after establishment (DAE) in both culture cycles, although there was no temperature treatment that clearly affected the meristem growth. However, some floral characters were affected, the earliest sprouting occurred in the treatment of six and seven weeks of storage at 27 °C at 20 DAE in 2017 and 10 DAE in 2018, respectively. In addition, the shortest time to flowering occurred in the treatment of seven weeks of storage at 27 °C at 79 days in 2017 and at 100.6 days in 2018, a value that is 30 days earlier than that obtained with the treatments of six weeks of storage at 12 °C, which delayed meristem transition, sprouting and flowering time. In contrast, treatments at 4 °C and GA3 were not statically different from the control in both years.
Collapse
|
15
|
Yang T, Sun Y, Wang Y, Zhou L, Chen M, Bian Z, Lian Y, Xuan L, Yuan G, Wang X, Wang C. AtHSPR is involved in GA- and light intensity-mediated control of flowering time and seed set in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3543-3559. [PMID: 32157303 PMCID: PMC7475253 DOI: 10.1093/jxb/eraa128] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 03/05/2020] [Indexed: 05/15/2023]
Abstract
Flowering is a dynamic and synchronized process, the timing of which is finely tuned by various environmental signals. A T-DNA insertion mutant in Arabidopsis HEAT SHOCK PROTEIN-RELATED (AtHSPR) exhibited late-flowering phenotypes under both long-day (LD) and short-day (SD) conditions compared to the wild-type, while over-expression of AtHSPR promoted flowering. Exogenous application of gibberellin (GA) partially rescued the late-flowering mutant phenotype under both LD and SD conditions, suggesting that AtHSPR is involved in GA biosynthesis and/or the GA signaling that promotes flowering. Under SD or low-light conditions, the Athspr mutant exhibited late flowering together with reduced pollen viability and seed set, defective phenotypes that were partially rescued by GA treatment. qRT-PCR assays confirmed that GA biosynthetic genes were down-regulated, that GA catabolic genes were up-regulated, and that the levels of bioactive GA and its intermediates were decreased in Athspr under both SD and low-light/LD, further suggesting that AtHSPR could be involved in the GA pathway under SD and low-light conditions. Furthermore, AtHSPR interacted in vitro with OFP1 and KNAT5, which are transcriptional repressors of GA20ox1 in GA biosynthesis. Taken together, our findings demonstrate that AtHSPR plays a positive role in GA- and light intensity-mediated regulation of flowering and seed set.
Collapse
Affiliation(s)
- Tao Yang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yan Sun
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yongli Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lina Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Mengya Chen
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zhiyuan Bian
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yuke Lian
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lijuan Xuan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Guoqiang Yuan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xinyu Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | | |
Collapse
|
16
|
Xu Q, Li R, Weng L, Sun Y, Li M, Xiao H. Domain-specific expression of meristematic genes is defined by the LITTLE ZIPPER protein DTM in tomato. Commun Biol 2019; 2:134. [PMID: 31044159 PMCID: PMC6478692 DOI: 10.1038/s42003-019-0368-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 03/05/2019] [Indexed: 11/18/2022] Open
Abstract
Shoot meristems, which harbor a small population of stem cells, are responsible for generating new above-ground organs in plants. The proliferation and differentiation of these stem cells is regulated by a genetic pathway involving two key meristematic genes: CLAVATA3 (CLV3) and WUSCHEL (WUS). However, it is not well understood how CLV3 and WUS expression domains in the shoot meristems are specified and maintained during post-embryogenic development. Here, we show that a tomato mutant with fasciated stems, flowers and fruits, due to impaired stem cell activity, is defective in a LITTLE ZIPPER gene denoted as DEFECTIVE TOMATO MERISTEM (DTM). DTM forms a negative feedback loop with class III homeodomain-leucine zipper (HD-ZIP III) transcription factors to confine CLV3 and WUS expression to specific domains of the shoot meristems. Our findings reveal a new layer of complexity in the regulation of plant stem cell homeostasis.
Collapse
Affiliation(s)
- Qian Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Rd, 200032 Shanghai, China
| | - Rong Li
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Rd, 200032 Shanghai, China
| | - Lin Weng
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Rd, 200032 Shanghai, China
| | - Yuan Sun
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Rd, 200032 Shanghai, China
| | - Meng Li
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Rd, 200032 Shanghai, China
| | - Han Xiao
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Rd, 200032 Shanghai, China
| |
Collapse
|
17
|
Genome-wide identification, phylogeny analysis, expression profiling, and determination of protein-protein interactions of the LEUNIG gene family members in tomato. Gene 2018; 679:1-10. [PMID: 30171936 DOI: 10.1016/j.gene.2018.08.075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/08/2018] [Accepted: 08/27/2018] [Indexed: 12/14/2022]
Abstract
Members of the LEUNIG gene family have recently emerged as key players in gene repression, affecting several developmental mechanisms in plants, especially flower development. LEUNIG proteins function via recruiting adaptor SEUSS proteins. Nevertheless, no systematic studies on the LEUNIG and SEUSS gene families have been undertaken in tomato (Solanum lycopersicum, a fleshy fruit-bearing model plant, belonging to the Solanaceae family). Here, we present the results of a genome-wide analysis of tomato LEUNIG and SEUSS genes. In our study, we identified three SlLUG and four SlSEU genes. All three SlLUG full-length proteins contained the LEUNIG canonical domains (LUFS and two WD40 repeats), and the four full-length SlSEU genes contained the Lim-binding domain. All the members of the SlLUG and SlSEU family proteins were localized to the nucleus. All the SlSEU and SlLUG genes were detected in the tomato tissues tested. Expression analysis showed that the SlLUGs and SlSEUs exhibited tissue-specific expression, and that they responded to exogenous plant hormone and stress treatment. Protein-protein interaction analysis showed that only SlLUGs, but not SlSEUs, interacted with SlYABBY. Only a weak interaction between SlLUG1 and SlSEU3 was observed among all the SlLUG and SlSEU proteins. Taken together, these findings may help elucidate the roles played by SlLUG and SlSEU family members in plant growth and development.
Collapse
|
18
|
Mach J. Meristem Doming and the Transition to Reproductive Development in Tomato. THE PLANT CELL 2017; 29:603. [PMID: 28408658 PMCID: PMC5435446 DOI: 10.1105/tpc.17.00302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
|