1
|
Li Y, Yang D, Ren Y, Luo Y, Zheng H, Liu Y, Wang L, Zhang L. Vitamin E in Plants: Biosynthesis Pathways, Biofortification Strategies, and Regulatory Dynamics. Int J Mol Sci 2025; 26:3380. [PMID: 40244263 PMCID: PMC11989935 DOI: 10.3390/ijms26073380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025] Open
Abstract
Vitamin E, mainly encompassing tocopherols and tocotrienols, is an essential antioxidant synthesized in the photosynthetic tissues of plants and photosynthetic bacteria, as well as in certain algae, yet dietary intake often falls short of recommended levels. Although synthetic supplements are available, natural vitamin E demonstrates higher bioavailability, creating a need for biofortification strategies to enrich crops with this nutrient. Recent advances in molecular genetics have elucidated key components of the vitamin E biosynthesis pathway, uncovering complex regulatory mechanisms and expanding opportunities for genetic enhancement. This review integrates current advances in vitamin E biosynthesis, novel gene discovery, diverse biofortification strategies, and insights into transporter-mediated regulation to enhance tocopherol and tocotrienol levels in staple crops. By aligning these advances, this review provides a framework to drive innovative biofortification efforts, positioning vitamin E enrichment as a sustainable solution for improved human and animal health.
Collapse
Affiliation(s)
- Yanjiao Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.L.); (D.Y.); (Y.R.); (Y.L.); (H.Z.); (Y.L.)
| | - Di Yang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.L.); (D.Y.); (Y.R.); (Y.L.); (H.Z.); (Y.L.)
| | - Yuqing Ren
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.L.); (D.Y.); (Y.R.); (Y.L.); (H.Z.); (Y.L.)
| | - Yanzhong Luo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.L.); (D.Y.); (Y.R.); (Y.L.); (H.Z.); (Y.L.)
| | - Hongyan Zheng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.L.); (D.Y.); (Y.R.); (Y.L.); (H.Z.); (Y.L.)
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024,China
| | - Yuan Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.L.); (D.Y.); (Y.R.); (Y.L.); (H.Z.); (Y.L.)
| | - Lei Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.L.); (D.Y.); (Y.R.); (Y.L.); (H.Z.); (Y.L.)
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024,China
| | - Lan Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.L.); (D.Y.); (Y.R.); (Y.L.); (H.Z.); (Y.L.)
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024,China
| |
Collapse
|
2
|
Mathavaraj P, Muthusamy V, Katral A, Mandal P, Zunjare RU, Hossain F. Lipoxygenases (LOXs): Will turning off this genetic switch help safeguard the flavor and nutritional quality of stored lipid-rich staple foods? Food Chem 2025; 470:142637. [PMID: 39752738 DOI: 10.1016/j.foodchem.2024.142637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/07/2024] [Accepted: 12/22/2024] [Indexed: 01/29/2025]
Abstract
Beyond storage capacity, long-term grain storage faces significant challenges due to the activity of lipoxygenases (LOXs). These enzymes catalyze the production of volatiles from free fatty acids, leading to stale odors and off-flavors. These changes degrade the quality of stored grains, even under regulated conditions, affecting the profitability of stored products to the farmers and the assurance of high-quality food for consumers. While LOXs are essential for various biological functions, their impact on storage highlights the need for targeted research to mitigate their negative effects. Optimizing LOX activity could enhance grain storability, reduce spoilage, and improve nutrient retention. This review explores recent advancements in understanding the roles of LOXs, focusing on how they can be tailored to enhance nutritional quality and shelf life. By modulating LOX activity, it is possible to address quality deterioration, support more sustainable food systems, and contribute to better nutritional security for consumers.
Collapse
Affiliation(s)
| | - Vignesh Muthusamy
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| | - Ashvinkumar Katral
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Puja Mandal
- Department of Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, India
| | | | - Firoz Hossain
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
3
|
Herr S, Li X, Wu D, Hunter CT, Magallanes-Lundback M, Wood JC, Kaczmar N, Buell CR, DellaPenna D, Gore MA. Total tocopherol levels in maize grain depend on chlorophyll biosynthesis within the embryo. BMC PLANT BIOLOGY 2025; 25:328. [PMID: 40082754 PMCID: PMC11905637 DOI: 10.1186/s12870-025-06267-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/17/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Tocopherols are a class of lipid-soluble compounds that have multiple functional roles in plants and exhibit vitamin E activity, an essential nutrient for human and animal health. The tocopherol biosynthetic pathway is conserved across the plant kingdom, but source of the key tocopherol pathway precursor, phytol, is unclear. Two protochlorophyllide reductases (POR1 and POR2) were previously identified as loci controlling the natural variation of total tocopherols in maize grain, a non-photosynthetic tissue. POR1 and POR2 are key genes in chlorophyll biosynthesis yet the contribution of the chlorophyll biosynthetic pathway to tocopherol biosynthesis is still not understood. RESULTS We took two approaches to alter the activity of these two POR genes within kernel tissue, physiological treatments and CRISPR/Cas9-mediated knockouts, to determine the role of chlorophyll biosynthesis for tocopherol content. Since light is required for POR enzymatic activity, we imposed a dark treatment on developing kernels, which reduced chlorophyll a and tocopherols levels in embryo tissue by 92-99% and 87-90%, respectively, compared to the light treatment. In CRISPR/Cas9-mediated knockouts, the levels of chlorophyll a and tocopherols in embryos of the por1 por2 double homozygous mutant were reduced by 98-100% and 76-83%, respectively, compared to WT. CONCLUSION These findings demonstrate that tocopherol synthesis in maize grain depends almost entirely on phytol derived from chlorophyll biosynthesis within the embryo. POR1 and POR2 activity play crucial roles in chlorophyll biosynthesis, underscoring the importance of POR alleles and their activity in the biofortification of vitamin E levels in non-photosynthetic grain of maize.
Collapse
Affiliation(s)
- Sam Herr
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Xiaowei Li
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Di Wu
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | | | - Maria Magallanes-Lundback
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Joshua C Wood
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, 30602, USA
| | - Nicholas Kaczmar
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - C Robin Buell
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, 30602, USA
- Department of Crop & Soil Sciences and Institute of Plant Breeding, Genetics, & Genomics, University of Georgia, Athens, GA, 30602, USA
| | - Dean DellaPenna
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Michael A Gore
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
4
|
Chauhan HS, Zunjare RU, Rashmi T, Muthusamy V, Das AK, Mishra SJ, Gain N, Mehta BK, Singh AK, Gupta HS, Hossain F. Enrichment of Vitamin A and Vitamin E in Sweet Corn Kernels Through Genomics-Assisted Introgression of Mutant Version of crtRB1 and vte4 Genes. Appl Biochem Biotechnol 2025; 197:1889-1905. [PMID: 39621223 DOI: 10.1007/s12010-024-05104-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2024] [Indexed: 03/29/2025]
Abstract
Recessive shrunken2 (sh2)-based sweet corn is preferred worldwide as it possesses higher sugar and extended shelf life. However, traditional sh2-based sweet corn is poor in vitamin A and vitamin E. Here, parental lines of two sh2-based sweet corn hybrids, viz. PSSC-2 and ASKH-2, were targeted for introgression of β-carotene hydroxylase 1 (crtRB1) and γ-tocopherol methyltransferase (vte4) genes through marker-assisted backcross breeding. Seeds with sh2sh2sh2 genotype in the endosperm were selected based on the shrunken phenotype in BC1F1, BC2F1 and BC2F2 generations. Gene-based markers, viz. 3'-TE-InDel and 118-InDel specific for crtRB1 and vte4, respectively, were successfully utilized for foreground selection in BC1F1, BC2F1 and BC2F2. Reconstituted hybrids showed high provitamin A (proA: 19.52 ± 0.52 µg/g) with a maximum of 7.8-fold increase over original hybrids (ASKH-2 and PSSC-2: 3.33 ± 0.28 µg/g). High α-tocopherol (20.75 ± 0.44 µg/g) and α/γ-tocopherol ratio (0.55 ± 0.02) with an average enhancement of 2.3- and 1.7-fold, respectively, was recorded among reconstituted hybrids over original versions (α-tocopherol: 9.21 ± 0.33 µg/g, α/γ-tocopherol ratio: 0.31 ± 0.01). The average yield of reconstituted hybrids (11.40 ± 0.22 t/ha) was at par with the original sweetcorn hybrids (11.60 ± 0.20 t/ha). This is the first report of stacking sh2, crtRB1 and vte4 genes to improve nutritional quality in sweet corn. These biofortified sweet corn hybrids hold immense significance to alleviate micronutrient malnutrition.
Collapse
Affiliation(s)
- Hema S Chauhan
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | - Tuhin Rashmi
- Amity University, Noida, Uttar Pradesh, 201301, India
| | - Vignesh Muthusamy
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Abhijit K Das
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
- ICAR-Indian Institute of Maize Research, Ludhiana, Punjab, 141004, India
| | - Subhra J Mishra
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Nisrita Gain
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Brijesh K Mehta
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, Uttar Pradesh, 284003, India
| | - Ashok K Singh
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Hari S Gupta
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Firoz Hossain
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
5
|
Ji S, Yin P, Li T, Du X, Chen W, Zhang R, Yang X, Zhang X. Pan-WD40ome analysis of 26 diverse inbred lines reveals the structural and functional diversity of WD40 proteins in maize. BMC Genomics 2025; 26:181. [PMID: 39987072 PMCID: PMC11847395 DOI: 10.1186/s12864-025-11342-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/10/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND The WD40 repeat proteins are crucial components of eukaryotic genomes and contribute to a wide array of plant developmental processes and environmental interactions. However, the true extent of intraspecific WD40 diversity in plants is unclear. RESULTS We defined a nearly complete species-wide pan-WD40ome in maize based on the published genome sequences of 26 nested association mapping (NAM) population founders. The pan-WD40ome largely saturated with inclusion of approximately 20 inbred lines, with about 95% of the pan-WD40ome being present in at least two founders. The architectural diversity of the WD40 domains, additional domains, and consequent spatial protein structures suggested the functional diversity of the maize pan-WD40ome. This finding was supported by significant associations between 87 WD40 genes and 19 agronomic, 3 kernel-quality, and 3 biotic-stress traits, as well as the multiple molecular pathways through which the trait-associated WD40 genes were predicted to function. In addition, WD40 genes exhibited abundant genomic variations among the NAM founders. Sequence analysis indicated that gene duplications and gene translocations caused by Helitron transposons may play important roles in the amplification of WD40 genes during the evolution of the maize WD40 gene family. CONCLUSIONS In summary, this study provides a comprehensive framework for understanding the structural and functional diversity of the pan-WD40ome in maize and other agronomically important species with complex genomes, as well as excellent candidate genes/alleles for maize genetic improvement.
Collapse
Affiliation(s)
- Shenghui Ji
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Pengfei Yin
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Tao Li
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Xiaoxia Du
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Wenkang Chen
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Renyu Zhang
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Xiaohong Yang
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China.
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China.
| | - Xuan Zhang
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
6
|
Bao Y, Magallanes-Lundback M, Kim SS, Deason N, Niu Y, Johnny C, Froehlich J, DellaPenna D. A family of α/β hydrolases removes phytol from chlorophyll metabolites for tocopherol biosynthesis in Arabidopsis. THE PLANT CELL 2025; 37:koaf021. [PMID: 40036548 PMCID: PMC11878634 DOI: 10.1093/plcell/koaf021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/15/2025] [Indexed: 03/06/2025]
Abstract
Tocopherol synthesis requires phytyl diphosphate derived from phytol esterified to chlorophyll metabolites. The >600-member Arabidopsis thaliana α/β hydrolase (ABH) gene family contains 4 members that can release phytol from chlorophyll metabolites in vitro; however, only pheophytinase (PPH) affects tocopherol synthesis when mutated, reducing seed tocopherols by 5%. We report the biochemical analysis of 2 previously uncharacterized ABHs, chlorophyll dephytylase 2 (CLD2) and CLD3, and their respective mutants singly and in combinations with pph and cld1 alleles. While all CLDs localized to the thylakoid and could hydrolyze phytol from chlorophylls and Pheophytin a in vitro, CLD3 had the highest in vitro activity and the largest effect on tocopherol synthesis in vivo. The 3 CLDs acted cooperatively to provide phytol for 31% of tocopherols synthesized in light-grown leaf tissue. Dark-induced leaf senescence assays showed PPH is required for 18% of the tocopherols synthesized. Though the cld123 triple mutant had no impact on dark-induced tocopherol content, cld123 in the pph background reduced tocopherol levels by an additional 18%. In seeds, pph and cld123 each reduced tocopherol content by 5% and by 15% in the cld123pph quadruple mutant. VTE7 (ViTamin E7) is an envelope-localized ABH that specifically affects chlorophyll biosynthetic intermediates in vivo and is required for 55% of seed tocopherol synthesis. The introduction of cld123pph into the vte7 background further reduced seed tocopherol levels to 23% of that of the wild type. Our findings demonstrate that phytol provision for tocopherol biosynthesis and homeostasis is a complex process involving the coordinated spatiotemporal expression of multiple ABH family members.
Collapse
Affiliation(s)
- Yan Bao
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Maria Magallanes-Lundback
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Nicholas Deason
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Yue Niu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cassandra Johnny
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - John Froehlich
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Dean DellaPenna
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
7
|
Song A, Wang C, Wen W, Zhao Y, Guo X, Zhao C. Predicting the oil content of individual corn kernels combining NIR-HSI and multi-stage parameter optimization techniques. Food Chem 2024; 461:140932. [PMID: 39197321 DOI: 10.1016/j.foodchem.2024.140932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
Predicting the oil content of individual corn kernels using hyperspectral imaging and ML offers the advantages of being rapid and non-destructive. However, traditional methods rely on expert experience for setting parameters. In response to these limitations, this study has designed an innovative multi-stage grid search technique, tailored to the characteristics of spectral data. Initially, the study automatically screening the best model from up to 504 algorithm combinations. Subsequently, multi-stage grid search is utilized for improving precision. We collected 270 kernel samples from different parts of the ear from 15 high oil and regular corn materials, with oil contents ranging from 1.4% to 13.1%. Experimental results show that the combinations SG + NONE+KS + PLSR(R2: 0.8570) and MA + LAR+Random+MLR(R2: 0.8523) performed optimally. After parameter optimization, their R2 values increased to 0.9045 and 0.8730, respectively. Additionally, the ACNNR model achieved an R2 of 0.8878 and an RMSE of 0.2243. The improved algorithm significantly outperforms traditional methods and ACNNR model in prediction accuracy and adaptability, offering an effective method for field applications.
Collapse
Affiliation(s)
- Anran Song
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Information Technology Research Center, Beijing, Academy of Agriculture and Forestry Sciences, Beijing 100097, China; National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China; Beijing Key Laboratory of Digital Plant, Beijing 100097, China
| | - Chuanyu Wang
- Information Technology Research Center, Beijing, Academy of Agriculture and Forestry Sciences, Beijing 100097, China; National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China; Beijing Key Laboratory of Digital Plant, Beijing 100097, China
| | - Weiliang Wen
- National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China
| | - Yue Zhao
- Information Technology Research Center, Beijing, Academy of Agriculture and Forestry Sciences, Beijing 100097, China; National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China; Beijing Key Laboratory of Digital Plant, Beijing 100097, China
| | - Xinyu Guo
- Information Technology Research Center, Beijing, Academy of Agriculture and Forestry Sciences, Beijing 100097, China; National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China; Beijing Key Laboratory of Digital Plant, Beijing 100097, China.
| | - Chunjiang Zhao
- Information Technology Research Center, Beijing, Academy of Agriculture and Forestry Sciences, Beijing 100097, China; National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China
| |
Collapse
|
8
|
Li K, Yu Y, Zhang N, Xie L, Huang W, Qi X, Li W, Li C, Wen T, Zhu W, Yan S, Li G, Guo X, Hu J. Unlocking the genetic basis of vitamin E content in sweet corn kernels: Expanding breeding targets through genome-wide association studies. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112233. [PMID: 39173886 DOI: 10.1016/j.plantsci.2024.112233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/23/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
Tocochromanols, collectively known as Vitamin E, serve as natural lipid-soluble antioxidants that are exclusively obtained through dietary intake in humans. Synthesized by all plants, tocochromanols play an important role in protecting polyunsaturated fatty acids in plant seeds from lipid peroxidation. While the genes involved in tocochromanol biosynthesis have been fully elucidated in Arabidopsis thaliana, Oryza sativa and Zea mays, the genetic basis of tocochromanol accumulation in sweet corn remains poorly understood. This gap is a consequence of limited natural genetic diversity and harvest at immature growth stages. In this study, we conducted comprehensive genome-wide association studies (GWAS) on a sweet corn panel of 295 individuals with a high-density molecular marker set. In total, thirteen quantitative trait loci (QTLs) for individual and derived tocochromanol traits were identified. Our analysis identified novel roles for three genes, ZmCS2, Zmshki1 and ZmB4FMV1, in the regulation of α-tocopherol accumulation in sweet corn kernels. We genetically validated the role of Zmshki1 through the generation of a knock-out line using CRISPR-Cas9 technology. Further gene-based GWAS revealed the function of the canonical tyrosine metabolic enzymes ZmCS2 and Zmhppd1 in the regulation of total tocochromanol content. This comprehensive assessment of the genetic basis for variation in vitamin E content establishes a solid foundation for enhancing vitamin E content not only in sweet corn, but also in other cereal crops.
Collapse
Affiliation(s)
- Kun Li
- Crop Research Institute, Guangdong Academy of Agricultural Sciences; Guangdong Key Laboratory of Crop Genetic Improvement, Guangzhou, China
| | - Yongtao Yu
- Crop Research Institute, Guangdong Academy of Agricultural Sciences; Guangdong Key Laboratory of Crop Genetic Improvement, Guangzhou, China
| | - Nan Zhang
- Crop Research Institute, Guangdong Academy of Agricultural Sciences; Guangdong Key Laboratory of Crop Genetic Improvement, Guangzhou, China
| | - Lihua Xie
- Crop Research Institute, Guangdong Academy of Agricultural Sciences; Guangdong Key Laboratory of Crop Genetic Improvement, Guangzhou, China; School of Food Science and Engineering, South China University of Technology, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, Guangzhou, China
| | - Wenjie Huang
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xitao Qi
- Crop Research Institute, Guangdong Academy of Agricultural Sciences; Guangdong Key Laboratory of Crop Genetic Improvement, Guangzhou, China
| | - Wu Li
- Crop Research Institute, Guangdong Academy of Agricultural Sciences; Guangdong Key Laboratory of Crop Genetic Improvement, Guangzhou, China
| | - Chunyan Li
- Crop Research Institute, Guangdong Academy of Agricultural Sciences; Guangdong Key Laboratory of Crop Genetic Improvement, Guangzhou, China
| | - Tianxiang Wen
- Crop Research Institute, Guangdong Academy of Agricultural Sciences; Guangdong Key Laboratory of Crop Genetic Improvement, Guangzhou, China
| | - Wenguang Zhu
- Crop Research Institute, Guangdong Academy of Agricultural Sciences; Guangdong Key Laboratory of Crop Genetic Improvement, Guangzhou, China
| | - Shijuan Yan
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Gaoke Li
- Crop Research Institute, Guangdong Academy of Agricultural Sciences; Guangdong Key Laboratory of Crop Genetic Improvement, Guangzhou, China.
| | - Xinbo Guo
- School of Food Science and Engineering, South China University of Technology, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, Guangzhou, China.
| | - Jianguang Hu
- Crop Research Institute, Guangdong Academy of Agricultural Sciences; Guangdong Key Laboratory of Crop Genetic Improvement, Guangzhou, China.
| |
Collapse
|
9
|
Kazemzadeh S, Farrokhi N, Ahmadikhah A, Tabar Heydar K, Gilani A, Askari H, Ingvarsson PK. Genome-wide association study and genotypic variation for the major tocopherol content in rice grain. FRONTIERS IN PLANT SCIENCE 2024; 15:1426321. [PMID: 39439508 PMCID: PMC11493719 DOI: 10.3389/fpls.2024.1426321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/03/2024] [Indexed: 10/25/2024]
Abstract
Rice tocopherols, vitamin E compounds with antioxidant activity, play essential roles in human health. Even though the key genes involved in vitamin E biosynthetic pathways have been identified in plants, the genetic architecture of vitamin E content in rice grain remains unclear. A genome-wide association study (GWAS) on 179 genotypically diverse rice accessions with 34,323 SNP markers was conducted to detect QTLs that define total and α- tocopherol contents in rice grains. Total and α-tocopherol contents had a strong positive correlation and varied greatly across the accessions, ranging from 0.230-31.76 and 0.011-30.83 (μg/g), respectively. A total of 13 QTLs were identified, which were spread across five of the rice chromosomes. Among the 13 QTLs, 11 were considered major with phenotypic variation explained (PVE) greater than 10%. Twelve transcription factor (TF) genes, one microprotein (miP), and a transposon were found to be associated with the QTLs with putative roles in controlling tocopherol contents. Moreover, intracellular transport proteins, ABC transporters, nonaspanins, and SNARE, were identified as associated genes on chromosomes 1 and 8. In the vicinity of seven QTLs, protein kinases were identified as key signaling factors. Haplotype analysis revealed the QTLs qAlph1.1, qTot1.1, qAlph2.1, qAlph6.1, qTot6.1, and qTot8.3 to have significant haplogroups. Quantitative RT-PCR validated the expression direction and magnitude of WRKY39 (Os02g0265200), PIP5Ks (Os08g0450800), and MADS59 (Os06g0347700) in defining the major tocopherol contents. This study provides insights for ongoing biofortification efforts to breed and/or engineer vitamin E and antioxidant levels in rice and other cereals.
Collapse
Affiliation(s)
- Sara Kazemzadeh
- Department of Cell and Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Naser Farrokhi
- Department of Cell and Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Asadollah Ahmadikhah
- Department of Cell and Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | | | - Abdolali Gilani
- Agricultural and Natural Resources Research Institute of Khuzestan, Ahwaz, Iran
| | - Hossein Askari
- Department of Cell and Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Pär K. Ingvarsson
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
10
|
Song S, Li H, Lin S, Dong X, Tian R, Wu Z, Li Q, Li M, Zhang K, Liu X, Wan J, Liu L. Heterologous Expression of Sunflower HaHPT and HaTMT Genes Enhances Rice-Grain Vitamin E Content. PLANTS (BASEL, SWITZERLAND) 2024; 13:2392. [PMID: 39273875 PMCID: PMC11397534 DOI: 10.3390/plants13172392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024]
Abstract
Insufficient dietary vitamin intake can lead to severe health conditions in humans. Improving the vitamin E (VE) content of food crops such as rice through breeding is an economical and effective means to alleviate this problem. In this study, Homogentisate phytyltransferase (HPT) and γ-tocopherol methyltransferase (γ-TMT), two genes derived from sunflower (Helianthus annuus L., a high VE species), were introduced into an elite rice (Oryza sativa L.) cultivar "Ningjing 7" for biofortification. We verified the successful expression of the two genes in multiple transformation events. High-performance liquid chromatography revealed that transgenic plants expressing either HaHPT alone or HaHPT and HaTMT accumulate more VE compared with the wild type. We also revealed that the level of α-tocopherol, the form of VE with the highest biological activity, had increased to 2.33 times in transgenic HaTMT plants compared with the wild type. Transcriptome analysis revealed that the expression levels of some chlorophyll synthesis pathway genes related to VE precursor synthesis significantly increased during grain filling in transgenic rice grains. No difference in agronomic traits was observed between the transgenic plants and their wild type except for a slightly reduced plant height associated with the transgenic plants. These data demonstrate that the heterologous expression of HaHPT gene is effective in increasing the total VE content, while HaTMT plays an important role in the relative abundance of α-tocopherol in rice grains. This study demonstrates a promising strategy for breeding rice with elevated VE content via metabolic engineering.
Collapse
Affiliation(s)
- Shuang Song
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in Mid-Lower Yangtze River, Ministry of Agriculture and Rural Affairs, Sanya Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Hang Li
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in Mid-Lower Yangtze River, Ministry of Agriculture and Rural Affairs, Sanya Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoyan Lin
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in Mid-Lower Yangtze River, Ministry of Agriculture and Rural Affairs, Sanya Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoou Dong
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in Mid-Lower Yangtze River, Ministry of Agriculture and Rural Affairs, Sanya Research Institute, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing 210095, China
| | - Ruiping Tian
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in Mid-Lower Yangtze River, Ministry of Agriculture and Rural Affairs, Sanya Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Zewan Wu
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in Mid-Lower Yangtze River, Ministry of Agriculture and Rural Affairs, Sanya Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Qing Li
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in Mid-Lower Yangtze River, Ministry of Agriculture and Rural Affairs, Sanya Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingyi Li
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in Mid-Lower Yangtze River, Ministry of Agriculture and Rural Affairs, Sanya Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Keying Zhang
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in Mid-Lower Yangtze River, Ministry of Agriculture and Rural Affairs, Sanya Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Xi Liu
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in Mid-Lower Yangtze River, Ministry of Agriculture and Rural Affairs, Sanya Research Institute, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing 210095, China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in Mid-Lower Yangtze River, Ministry of Agriculture and Rural Affairs, Sanya Research Institute, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing 210095, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Linglong Liu
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in Mid-Lower Yangtze River, Ministry of Agriculture and Rural Affairs, Sanya Research Institute, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing 210095, China
| |
Collapse
|
11
|
Kassem MA, Knizia D, Meksem K. A Summary of Two Decades of QTL and Candidate Genes That Control Seed Tocopherol Contents in Maize ( Zea mays L.). Genes (Basel) 2024; 15:472. [PMID: 38674406 PMCID: PMC11049817 DOI: 10.3390/genes15040472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Tocopherols are secondary metabolites synthesized through the shikimate biosynthetic pathway in the plastids of most plants. It is well known that α-Tocopherol (vitamin E) has many health benefits for humans and animals; therefore, it is highly used in human and animal diets. Tocopherols vary considerably in most crop (and plant) species and within cultivars of the same species depending on environmental and growth conditions; tocopherol content is a polygenic, complex traits, and its inheritance is poorly understood. The objective of this review paper was to summarize all identified quantitative trait loci (QTL) that control seed tocopherols and related contents identified in maize (Zea mays) during the past two decades (2002-2022). Candidate genes identified within these QTL regions are also discussed. The QTL described here, and candidate genes identified within these genomic regions could be used in breeding programs to develop maize cultivars with high, beneficial levels of seed tocopherol contents.
Collapse
Affiliation(s)
- My Abdelmajid Kassem
- Plant Genomics and Biotechnology Laboratory, Department of Biological and Forensic Sciences, Fayetteville State University, Fayetteville, NC 28301, USA
| | - Dounya Knizia
- School of Agricultural Sciences, Southern Illinois University, Carbondale, IL 62901, USA; (D.K.); (K.M.)
| | - Khalid Meksem
- School of Agricultural Sciences, Southern Illinois University, Carbondale, IL 62901, USA; (D.K.); (K.M.)
| |
Collapse
|
12
|
Romer J, Gutbrod K, Schuppener A, Melzer M, Müller-Schüssele SJ, Meyer AJ, Dörmann P. Tocopherol and phylloquinone biosynthesis in chloroplasts requires the phytol kinase VITAMIN E PATHWAY GENE5 (VTE5) and the farnesol kinase (FOLK). THE PLANT CELL 2024; 36:1140-1158. [PMID: 38124486 PMCID: PMC10980339 DOI: 10.1093/plcell/koad316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
Chlorophyll degradation causes the release of phytol, which is converted into phytyl diphosphate (phytyl-PP) by phytol kinase (VITAMIN E PATHWAY GENE5 [VTE5]) and phytyl phosphate (phytyl-P) kinase (VTE6). The kinase pathway is important for tocopherol synthesis, as the Arabidopsis (Arabidopsis thaliana) vte5 mutant contains reduced levels of tocopherol. Arabidopsis harbors one paralog of VTE5, farnesol kinase (FOLK) involved in farnesol phosphorylation. Here, we demonstrate that VTE5 and FOLK harbor kinase activities for phytol, geranylgeraniol, and farnesol with different specificities. While the tocopherol content of the folk mutant is unchanged, vte5-2 folk plants completely lack tocopherol. Tocopherol deficiency in vte5-2 plants can be complemented by overexpression of FOLK, indicating that FOLK is an authentic gene of tocopherol synthesis. The vte5-2 folk plants contain only ∼40% of wild-type amounts of phylloquinone, demonstrating that VTE5 and FOLK both contribute in part to phylloquinone synthesis. Tocotrienol and menaquinone-4 were produced in vte5-2 folk plants after supplementation with homogentisate or 1,4-dihydroxy-2-naphthoic acid, respectively, indicating that their synthesis is independent of the VTE5/FOLK pathway. These results show that phytyl moieties for tocopherol synthesis are completely but, for phylloquinone production, only partially derived from geranylgeranyl-chlorophyll and phytol phosphorylation by VTE5 and FOLK.
Collapse
Affiliation(s)
- Jill Romer
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, 53115 Bonn, Germany
| | - Katharina Gutbrod
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, 53115 Bonn, Germany
| | - Antonia Schuppener
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, 53115 Bonn, Germany
| | - Michael Melzer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department Physiology and Cell Biology, 06466 Seeland, OT Gatersleben, Germany
| | | | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53113 Bonn, Germany
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
13
|
Liu N, Du Y, Yan S, Chen W, Deng M, Xu S, Wang H, Zhan W, Huang W, Yin Y, Yang X, Zhao Q, Fernie AR, Yan J. The light and hypoxia induced gene ZmPORB1 determines tocopherol content in the maize kernel. SCIENCE CHINA. LIFE SCIENCES 2024; 67:435-448. [PMID: 38289421 DOI: 10.1007/s11427-023-2489-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/11/2023] [Indexed: 03/05/2024]
Abstract
Tocopherol is an important lipid-soluble antioxidant beneficial for both human health and plant growth. Here, we fine mapped a major QTL-qVE1 affecting γ-tocopherol content in maize kernel, positionally cloned and confirmed the underlying gene ZmPORB1 (por1), as a protochlorophyllide oxidoreductase. A 13.7 kb insertion reduced the tocopherol and chlorophyll content, and the photosynthetic activity by repressing ZmPORB1 expression in embryos of NIL-K22, but did not affect the levels of the tocopherol precursors HGA (homogentisic acid) and PMP (phytyl monophosphate). Furthermore, ZmPORB1 is inducible by low oxygen and light, thereby involved in the hypoxia response in developing embryos. Concurrent with natural hypoxia in embryos, the redox state has been changed with NO increasing and H2O2 decreasing, which lowered γ-tocopherol content via scavenging reactive nitrogen species. In conclusion, we proposed that the lower light-harvesting chlorophyll content weakened embryo photosynthesis, leading to fewer oxygen supplies and consequently diverse hypoxic responses including an elevated γ-tocopherol consumption. Our findings shed light on the mechanism for fine-tuning endogenous oxygen concentration in the maize embryo through a novel feedback pathway involving the light and low oxygen regulation of ZmPORB1 expression and chlorophyll content.
Collapse
Affiliation(s)
- Nannan Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yuanhao Du
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Shijuan Yan
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Min Deng
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Shutu Xu
- College of Agronomy, Northwest A&F University, Xi'an, 710000, China
| | - Hong Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Sub-center of National Maize Improvement Center of China, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Wei Zhan
- College of Life Sciences, South-Central Minzu University, Wuhan, 430070, China
| | - Wenjie Huang
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Yan Yin
- Plant Science Facility of the Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xiaohong Yang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qiao Zhao
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
14
|
Tibbs-Cortes LE, Guo T, Li X, Tanaka R, Vanous AE, Peters D, Gardner C, Magallanes-Lundback M, Deason NT, DellaPenna D, Gore MA, Yu J. Genomic prediction of tocochromanols in exotic-derived maize. THE PLANT GENOME 2023; 16:e20286. [PMID: 36575809 DOI: 10.1002/tpg2.20286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/16/2022] [Indexed: 06/17/2023]
Abstract
Tocochromanols (vitamin E) are an essential part of the human diet. Plant products, including maize (Zea mays L.) grain, are the major dietary source of tocochromanols; therefore, breeding maize with higher vitamin content (biofortification) could improve human nutrition. Incorporating exotic germplasm in maize breeding for trait improvement including biofortification is a promising approach and an important research topic. However, information about genomic prediction of exotic-derived lines using available training data from adapted germplasm is limited. In this study, genomic prediction was systematically investigated for nine tocochromanol traits within both an adapted (Ames Diversity Panel [AP]) and an exotic-derived (Backcrossed Germplasm Enhancement of Maize [BGEM]) maize population. Although prediction accuracies up to 0.79 were achieved using genomic best linear unbiased prediction (gBLUP) when predicting within each population, genomic prediction of BGEM based on an AP training set resulted in low prediction accuracies. Optimal training population (OTP) design methods fast and unique representative subset selection (FURS), maximization of connectedness and diversity (MaxCD), and partitioning around medoids (PAM) were adapted for inbreds and, along with the methods mean coefficient of determination (CDmean) and mean prediction error variance (PEVmean), often improved prediction accuracies compared with random training sets of the same size. When applied to the combined population, OTP designs enabled successful prediction of the rest of the exotic-derived population. Our findings highlight the importance of leveraging genotype data in training set design to efficiently incorporate new exotic germplasm into a plant breeding program.
Collapse
Affiliation(s)
| | - Tingting Guo
- Hubei Hongshan Laboratory, Wuhan, China
- Huazhong Agricultural Univ., Wuhan, China
| | - Xianran Li
- USDA ARS, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA, USA
| | - Ryokei Tanaka
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell Univ., Ithaca, NY, USA
| | - Adam E Vanous
- USDA ARS, North Central Regional Plant Introduction Station, Ames, IA, USA
| | - David Peters
- USDA ARS, North Central Regional Plant Introduction Station, Ames, IA, USA
| | - Candice Gardner
- USDA ARS, North Central Regional Plant Introduction Station, Ames, IA, USA
| | | | - Nicholas T Deason
- Dep. of Biochemistry and Molecular Biology, Michigan State Univ., East Lansing, MI, USA
| | - Dean DellaPenna
- Dep. of Biochemistry and Molecular Biology, Michigan State Univ., East Lansing, MI, USA
| | - Michael A Gore
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell Univ., Ithaca, NY, USA
| | - Jianming Yu
- Dep. of Agronomy, Iowa State Univ., Ames, IA, USA
| |
Collapse
|
15
|
Tanaka R, Wu D, Li X, Tibbs-Cortes LE, Wood JC, Magallanes-Lundback M, Bornowski N, Hamilton JP, Vaillancourt B, Li X, Deason NT, Schoenbaum GR, Buell CR, DellaPenna D, Yu J, Gore MA. Leveraging prior biological knowledge improves prediction of tocochromanols in maize grain. THE PLANT GENOME 2023; 16:e20276. [PMID: 36321716 DOI: 10.1002/tpg2.20276] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
With an essential role in human health, tocochromanols are mostly obtained by consuming seed oils; however, the vitamin E content of the most abundant tocochromanols in maize (Zea mays L.) grain is low. Several large-effect genes with cis-acting variants affecting messenger RNA (mRNA) expression are mostly responsible for tocochromanol variation in maize grain, with other relevant associated quantitative trait loci (QTL) yet to be fully resolved. Leveraging existing genomic and transcriptomic information for maize inbreds could improve prediction when selecting for higher vitamin E content. Here, we first evaluated a multikernel genomic best linear unbiased prediction (MK-GBLUP) approach for modeling known QTL in the prediction of nine tocochromanol grain phenotypes (12-21 QTL per trait) within and between two panels of 1,462 and 242 maize inbred lines. On average, MK-GBLUP models improved predictive abilities by 7.0-13.6% when compared with GBLUP. In a second approach with a subset of 545 lines from the larger panel, the highest average improvement in predictive ability relative to GBLUP was achieved with a multi-trait GBLUP model (15.4%) that had a tocochromanol phenotype and transcript abundances in developing grain for a few large-effect candidate causal genes (1-3 genes per trait) as multiple response variables. Taken together, our study illustrates the enhancement of prediction models when informed by existing biological knowledge pertaining to QTL and candidate causal genes.
Collapse
Affiliation(s)
- Ryokei Tanaka
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell Univ., Ithaca, NY, 14853, USA
| | - Di Wu
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell Univ., Ithaca, NY, 14853, USA
| | - Xiaowei Li
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell Univ., Ithaca, NY, 14853, USA
| | | | - Joshua C Wood
- Institute for Plant Breeding, Genetics & Genomics, Center for Applied Genetic Technologies, Dep. of Crop & Soil Sciences, Univ. of Georgia, Athens, GA, 30602, USA
| | | | - Nolan Bornowski
- Dep. of Plant Biology, Michigan State Univ., East Lansing, MI, 48824, USA
| | - John P Hamilton
- Institute for Plant Breeding, Genetics & Genomics, Center for Applied Genetic Technologies, Dep. of Crop & Soil Sciences, Univ. of Georgia, Athens, GA, 30602, USA
| | - Brieanne Vaillancourt
- Institute for Plant Breeding, Genetics & Genomics, Center for Applied Genetic Technologies, Dep. of Crop & Soil Sciences, Univ. of Georgia, Athens, GA, 30602, USA
| | - Xianran Li
- USDA ARS, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA, 99164, USA
| | - Nicholas T Deason
- Dep. of Biochemistry and Molecular Biology, Michigan State Univ., East Lansing, MI, 48824, USA
| | | | - C Robin Buell
- Institute for Plant Breeding, Genetics & Genomics, Center for Applied Genetic Technologies, Dep. of Crop & Soil Sciences, Univ. of Georgia, Athens, GA, 30602, USA
| | - Dean DellaPenna
- Dep. of Biochemistry and Molecular Biology, Michigan State Univ., East Lansing, MI, 48824, USA
| | - Jianming Yu
- Dep. of Agronomy, Iowa State Univ., Ames, IA, 50011, USA
| | - Michael A Gore
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell Univ., Ithaca, NY, 14853, USA
| |
Collapse
|
16
|
Kumar R, Brar MS, Kunduru B, Ackerman AJ, Yang Y, Luo F, Saski CA, Bridges WC, de Leon N, McMahan C, Kaeppler SM, Sekhon RS. Genetic architecture of source-sink-regulated senescence in maize. PLANT PHYSIOLOGY 2023; 193:2459-2479. [PMID: 37595026 DOI: 10.1093/plphys/kiad460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/12/2023] [Accepted: 07/21/2023] [Indexed: 08/20/2023]
Abstract
Source and sink interactions play a critical but mechanistically poorly understood role in the regulation of senescence. To disentangle the genetic and molecular mechanisms underlying source-sink-regulated senescence (SSRS), we performed a phenotypic, transcriptomic, and systems genetics analysis of senescence induced by the lack of a strong sink in maize (Zea mays). Comparative analysis of genotypes with contrasting SSRS phenotypes revealed that feedback inhibition of photosynthesis, a surge in reactive oxygen species, and the resulting endoplasmic reticulum (ER) stress were the earliest outcomes of weakened sink demand. Multienvironmental evaluation of a biparental population and a diversity panel identified 12 quantitative trait loci and 24 candidate genes, respectively, underlying SSRS. Combining the natural diversity and coexpression networks analyses identified 7 high-confidence candidate genes involved in proteolysis, photosynthesis, stress response, and protein folding. The role of a cathepsin B like protease 4 (ccp4), a candidate gene supported by systems genetic analysis, was validated by analysis of natural alleles in maize and heterologous analyses in Arabidopsis (Arabidopsis thaliana). Analysis of natural alleles suggested that a 700-bp polymorphic promoter region harboring multiple ABA-responsive elements is responsible for differential transcriptional regulation of ccp4 by ABA and the resulting variation in SSRS phenotype. We propose a model for SSRS wherein feedback inhibition of photosynthesis, ABA signaling, and oxidative stress converge to induce ER stress manifested as programed cell death and senescence. These findings provide a deeper understanding of signals emerging from loss of sink strength and offer opportunities to modify these signals to alter senescence program and enhance crop productivity.
Collapse
Affiliation(s)
- Rohit Kumar
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Manwinder S Brar
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Bharath Kunduru
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Arlyn J Ackerman
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Yuan Yang
- School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC 29634, USA
| | - Feng Luo
- School of Computing, Clemson University, Clemson, SC 29634, USA
| | - Christopher A Saski
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA
| | - William C Bridges
- School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC 29634, USA
| | - Natalia de Leon
- Department of Agronomy, University of Wisconsin, Madison, WI 53706, USA
| | - Christopher McMahan
- School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC 29634, USA
| | - Shawn M Kaeppler
- Department of Agronomy, University of Wisconsin, Madison, WI 53706, USA
| | - Rajandeep S Sekhon
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
17
|
Ferrão LFV, Dhakal R, Dias R, Tieman D, Whitaker V, Gore MA, Messina C, Resende MFR. Machine learning applications to improve flavor and nutritional content of horticultural crops through breeding and genetics. Curr Opin Biotechnol 2023; 83:102968. [PMID: 37515935 DOI: 10.1016/j.copbio.2023.102968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/31/2023]
Abstract
Over the last decades, significant strides were made in understanding the biochemical factors influencing the nutritional content and flavor profile of fruits and vegetables. Product differentiation in the produce aisle is the natural consequence of increasing consumer power in the food industry. Cotton-candy grapes, specialty tomatoes, and pineapple-flavored white strawberries provide a few examples. Given the increased demand for flavorful varieties, and pressing need to reduce micronutrient malnutrition, we expect breeding to increase its prioritization toward these traits. Reaching this goal will, in part, necessitate knowledge of the genetic architecture controlling these traits, as well as the development of breeding methods that maximize their genetic gain. Can artificial intelligence (AI) help predict flavor preferences, and can such insights be leveraged by breeding programs? In this Perspective, we outline both the opportunities and challenges for the development of more flavorful and nutritious crops, and how AI can support these breeding initiatives.
Collapse
Affiliation(s)
- Luís Felipe V Ferrão
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Rakshya Dhakal
- Plant Breeding Graduate Program, University of Florida, Gainesville, FL, United States
| | - Raquel Dias
- Microbiology and Cell Science Department, University of Florida, Gainesville, FL, United States
| | - Denise Tieman
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Vance Whitaker
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States; Plant Breeding Graduate Program, University of Florida, Gainesville, FL, United States
| | - Michael A Gore
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Carlos Messina
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States; Plant Breeding Graduate Program, University of Florida, Gainesville, FL, United States
| | - Márcio F R Resende
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States; Plant Breeding Graduate Program, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
18
|
Faizan M, Alam P, Rajput VD, Shareen, Kaur K, Faraz A, Minkina T, Maqbool Ahmed S, Rajpal VR, Hayat S. Potential role of tocopherol in protecting crop plants against abiotic stresses. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1563-1575. [PMID: 38076764 PMCID: PMC10709276 DOI: 10.1007/s12298-023-01354-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/03/2023] [Accepted: 08/28/2023] [Indexed: 12/17/2023]
Abstract
The changing global climate have given rise to abiotic stresses that adversely affect the metabolic activities of plants, limit their growth, and agricultural output posing a serious threat to food production. The abiotic stresses commonly lead to production of reactive oxygen species (ROS) that results in cellular oxidation. Over the course of evolution, plants have devised efficient enzymatic and non-enzymatic anti-oxidative strategies to counteract harmful effects of ROS. Among the emerging non-enzymatic anti-oxidative technologies, the chloroplast lipophilic antioxidant vitamin A (Tocopherol) shows great promise. Working in coordination with the other cellular antioxidant machinery, it scavenges ROS, prevents lipid peroxidation, regulates stable cellular redox conditions, simulates signal cascades, improves membrane stability, confers photoprotection and enhances resistance against abiotic stresses. The amount of tocopherol production varies based on the severity of stress and its proposed mechanism of action involves arresting lipid peroxidation while quenching singlet oxygen species and lipid peroxyl radicals. Additionally, studies have demonstrated its coordination with other cellular antioxidants and phytohormones. Despite its significance, the precise mechanism of tocopherol action and signaling coordination are not yet fully understood. To bridge this knowledge gap, the present review aims to explore and understand the biosynthesis and antioxidant functions of Vitamin E, along with its signal transduction and stress regulation capacities and responses. Furthermore, the review delves into the light harvesting and photoprotection capabilities of tocopherol. By providing insights into these domains, this review offers new opportunities and avenues for using tocopherol in the management of abiotic stresses in agriculture.
Collapse
Affiliation(s)
- Mohammad Faizan
- Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad, 500032 India
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia 344090
| | - Shareen
- Department of Environmental Engineering, College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037 China
| | - Khushdeep Kaur
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, 141004 India
| | - Ahmad Faraz
- School of Life Sciences, Glocal University, Saharanpur, India
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia 344090
| | - S. Maqbool Ahmed
- Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad, 500032 India
| | - Vijay Rani Rajpal
- Department of Botany, Hans Raj College, Delhi University, Delhi, 110007 India
| | - Shamsul Hayat
- Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002 India
| |
Collapse
|
19
|
Gunjević V, Zurak D, Grbeša D, Kiš G, Međimurec T, Pirgozliev V, Kljak K. Bioaccessibility of Tocols in Commercial Maize Hybrids Determined by an In Vitro Digestion Model for Poultry. Molecules 2023; 28:5015. [PMID: 37446677 DOI: 10.3390/molecules28135015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Despite the high proportion of maize grain in animal diets, the contribution made by maize phytochemicals is neglected. Tocols and their contribution to the vitamin E content of animal diets are one example, exacerbated by sparse information on the tocol bioaccessibility of commercial hybrids. In this study, the contents of individual and total tocols and their bioaccessibility were determined in the grain samples of 103 commercial hybrids using a standardized INFOGEST digestion procedure. In the studied hybrids, total tocol content ranged from 19.24 to 54.44 µg/g of dry matter. The contents of micellar α-, γ-, δ-tocopherols, γ-tocotrienol, and total tocols correlated positively with the corresponding contents in the grain samples of the studied hybrids. In contrast, a negative correlation was observed between the bioaccessibility of γ- tocopherol, α- and γ-tocotrienol, and total tocols, along with the corresponding contents in the grain of studied hybrids. The highest bioaccessibility was exhibited by γ-tocotrienol (532.77 g/kg), followed by δ-tocopherol (529.88 g/kg), γ-tocopherol (461.76 g/kg), α-tocopherol (406.49 g/kg), and α-tocotrienol (359.07 g/kg). Overall, there are significant differences in the content and bioaccessibility of total and individual tocols among commercial maize hybrids, allowing the selection of hybrids for animal production based not only on crude chemical composition but also on the content of phytochemicals.
Collapse
Affiliation(s)
- Veronika Gunjević
- Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| | - Dora Zurak
- Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| | - Darko Grbeša
- Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| | - Goran Kiš
- Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| | - Tatjana Međimurec
- Ministry of Agriculture, Directorate for Professional Support to the Development of Agriculture and Fisheries, Bani 110, Buzin, 10010 Zagreb, Croatia
| | - Vasil Pirgozliev
- National Institute of Poultry Husbandry, Harper Adams University, Newport TF10 8NB, UK
| | - Kristina Kljak
- Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| |
Collapse
|
20
|
Chen J, Wang Z, Tan K, Huang W, Shi J, Li T, Hu J, Wang K, Wang C, Xin B, Zhao H, Song W, Hufford MB, Schnable JC, Jin W, Lai J. A complete telomere-to-telomere assembly of the maize genome. Nat Genet 2023:10.1038/s41588-023-01419-6. [PMID: 37322109 DOI: 10.1038/s41588-023-01419-6] [Citation(s) in RCA: 114] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/05/2023] [Indexed: 06/17/2023]
Abstract
A complete telomere-to-telomere (T2T) finished genome has been the long pursuit of genomic research. Through generating deep coverage ultralong Oxford Nanopore Technology (ONT) and PacBio HiFi reads, we report here a complete genome assembly of maize with each chromosome entirely traversed in a single contig. The 2,178.6 Mb T2T Mo17 genome with a base accuracy of over 99.99% unveiled the structural features of all repetitive regions of the genome. There were several super-long simple-sequence-repeat arrays having consecutive thymine-adenine-guanine (TAG) tri-nucleotide repeats up to 235 kb. The assembly of the entire nucleolar organizer region of the 26.8 Mb array with 2,974 45S rDNA copies revealed the enormously complex patterns of rDNA duplications and transposon insertions. Additionally, complete assemblies of all ten centromeres enabled us to precisely dissect the repeat compositions of both CentC-rich and CentC-poor centromeres. The complete Mo17 genome represents a major step forward in understanding the complexity of the highly recalcitrant repetitive regions of higher plant genomes.
Collapse
Affiliation(s)
- Jian Chen
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Zijian Wang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Kaiwen Tan
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Wei Huang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Junpeng Shi
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Tong Li
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Jiang Hu
- Grandomics Biosciences, Wuhan, P. R. China
| | - Kai Wang
- Grandomics Biosciences, Wuhan, P. R. China
| | - Chao Wang
- Grandomics Biosciences, Wuhan, P. R. China
| | - Beibei Xin
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Haiming Zhao
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Weibin Song
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Matthew B Hufford
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - James C Schnable
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Weiwei Jin
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Jinsheng Lai
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China.
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, P. R. China.
- Sanya Institute of China Agricultural University, Sanya, P. R. China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, P. R. China.
| |
Collapse
|
21
|
Lira BS, Gramegna G, Amaral P, Dos Reis Moreira J, Wu RTA, Vicente MH, Nogueira FTS, Freschi L, Rossi M. Phytol recycling: essential, yet not limiting for tomato fruit tocopherol accumulation under normal growing conditions. PLANT MOLECULAR BIOLOGY 2023; 111:365-378. [PMID: 36587296 DOI: 10.1007/s11103-022-01331-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Tocopherols are potent membrane-bound antioxidant molecules that are paramount for plant physiology and also important for human health. In the past years, chlorophyll catabolism was identified as the primary source of phytyl diphosphate for tocopherol synthesis by the action of two enzymes, PHYTOL KINASE (VTE5) and PHYTHYL PHOSPHATE KINASE (VTE6) that are able to recycle the chlorophyll-derived phytol. While VTE5 and VTE6 were proven essential for tocopherol metabolism in tomato fruits, it remains unknown whether they are rate-limiting steps in this pathway. To address this question, transgenic tomato plants expressing AtVTE5 and AtVTE6 in a fruit-specific manner were generated. Although ripe transgenic fruits exhibited higher amounts of tocopherol, phytol recycling revealed a more intimate association with chlorophyll than with tocopherol content. Interestingly, protein-protein interactions assays showed that VTE5 and VTE6 are complexed, channeling free phytol and phytyl-P, thus mitigating their cytotoxic nature. Moreover, the analysis of tocopherol accumulation dynamics in roots, a chlorophyll-devoid organ, revealed VTE5-dependent tocopherol accumulation, hinting at the occurrence of shoot-to-root phytol trafficking. Collectively, these results demonstrate that phytol recycling is essential for tocopherol biosynthesis, even in chlorophyll-devoid organs, yet it is not the rate-limiting step for this pathway under normal growth conditions.
Collapse
Affiliation(s)
- Bruno Silvestre Lira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, 05508-090, Brazil
| | - Giovanna Gramegna
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, 05508-090, Brazil
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Rome, Italy
| | - Paula Amaral
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, 05508-090, Brazil
| | - Juliene Dos Reis Moreira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, 05508-090, Brazil
| | - Raquel Tsu Ay Wu
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, 05508-090, Brazil
| | - Mateus Henrique Vicente
- Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, 13418-900, Brazil
| | - Fabio Tebaldi Silveira Nogueira
- Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, 13418-900, Brazil
| | - Luciano Freschi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, 05508-090, Brazil
| | - Magdalena Rossi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, 05508-090, Brazil.
| |
Collapse
|
22
|
Khaipho-Burch M, Ferebee T, Giri A, Ramstein G, Monier B, Yi E, Romay MC, Buckler ES. Elucidating the patterns of pleiotropy and its biological relevance in maize. PLoS Genet 2023; 19:e1010664. [PMID: 36943844 PMCID: PMC10030035 DOI: 10.1371/journal.pgen.1010664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/09/2023] [Indexed: 03/23/2023] Open
Abstract
Pleiotropy-when a single gene controls two or more seemingly unrelated traits-has been shown to impact genes with effects on flowering time, leaf architecture, and inflorescence morphology in maize. However, the genome-wide impact of biological pleiotropy across all maize phenotypes is largely unknown. Here, we investigate the extent to which biological pleiotropy impacts phenotypes within maize using GWAS summary statistics reanalyzed from previously published metabolite, field, and expression phenotypes across the Nested Association Mapping population and Goodman Association Panel. Through phenotypic saturation of 120,597 traits, we obtain over 480 million significant quantitative trait nucleotides. We estimate that only 1.56-32.3% of intervals show some degree of pleiotropy. We then assess the relationship between pleiotropy and various biological features such as gene expression, chromatin accessibility, sequence conservation, and enrichment for gene ontology terms. We find very little relationship between pleiotropy and these variables when compared to permuted pleiotropy. We hypothesize that biological pleiotropy of common alleles is not widespread in maize and is highly impacted by nuisance terms such as population structure and linkage disequilibrium. Natural selection on large standing natural variation in maize populations may target wide and large effect variants, leaving the prevalence of detectable pleiotropy relatively low.
Collapse
Affiliation(s)
| | - Taylor Ferebee
- Department of Computational Biology, Cornell University, Ithaca, New York
| | - Anju Giri
- Institute for Genomic Diversity, Cornell University, Ithaca, New York
| | - Guillaume Ramstein
- Institute for Genomic Diversity, Cornell University, Ithaca, New York
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| | - Brandon Monier
- Institute for Genomic Diversity, Cornell University, Ithaca, New York
| | - Emily Yi
- Institute for Genomic Diversity, Cornell University, Ithaca, New York
| | - M Cinta Romay
- Institute for Genomic Diversity, Cornell University, Ithaca, New York
| | - Edward S Buckler
- Section of Plant Breeding and Genetics, Cornell University, Ithaca, New York
- Institute for Genomic Diversity, Cornell University, Ithaca, New York
- USDA-ARS, Ithaca, New York, United States of America
| |
Collapse
|
23
|
Traber MG, Cross C. Alpha-Tocopherol from people to plants is an essential cog in the metabolic machinery. Antioxid Redox Signal 2023; 38:775-791. [PMID: 36793193 DOI: 10.1089/ars.2022.0212] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
SIGNIFICANCE Protection from oxygen, a di-radical, became a necessity with the evolution of photosynthetic organisms about 2.7 billion years. α-Tocopherol plays an essential role in organisms from plants to people. An overview of human conditions that result in severe vitamin E (α-tocopherol) deficiency is provided. RECENT ADVANCES α-Tocopherol has a critical role in the oxygen protection system by stopping lipid peroxidation, its induced damage and cellular death by ferroptosis. Recent findings in bacteria and plants support the concept of why lipid peroxidation is so dangerous to life and why the family of tocochromanols are essential for aerobic organisms and for plants. CRITICAL ISSUES The hypothesis that prevention of the propagation of lipid peroxidation is the basis for the α-tocopherol requirement in vertebrates is proposed and further that its absence dysregulates energy metabolism, one-carbon metabolism and thiol homeostasis. By recruiting intermediate metabolites from adjacent pathways to sustain effective lipid hydroperoxide elimination, α-tocopherol function is linked not only to NADPH metabolism and its formation through the pentose phosphate pathway via glucose metabolism, but also to sulfur-containing amino acid metabolism, and to one-carbon metabolism. FUTURE DIRECTIONS Evidence from humans, animals and plants support the hypothesis but future studies are needed to assess the genetic sensors that detect lipid peroxidation and cause the ensuing metabolic dysregulation.
Collapse
Affiliation(s)
- Maret G Traber
- Oregon State University, 2694, Linus Pauling Institute, 307 LPSC, Corvallis, Oregon, United States, 97331-4501;
| | - Carroll Cross
- University of California Davis School of Medicine, 12218, Sacramento, California, United States;
| |
Collapse
|
24
|
Shahidi F, Danielski R, Rhein SO, Meisel LA, Fuentes J, Speisky H, Schwember AR, de Camargo AC. Wheat and Rice beyond Phenolic Acids: Genetics, Identification Database, Antioxidant Properties, and Potential Health Effects. PLANTS (BASEL, SWITZERLAND) 2022; 11:3283. [PMID: 36501323 PMCID: PMC9739071 DOI: 10.3390/plants11233283] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Wheat and rice play a vital role in human nutrition and food security. A better understanding of the potential health benefits associated with consuming these cereals, combined with studies by plant scientists and food chemists to view the entire food value chain from the field, pre and post-harvest processing, and subsequent "fork" consumption, may provide the necessary tools to optimize wheat and rice production towards the goal of better human health improvement and food security, providing tools to better adapt to the challenges associated with climate change. Since the available literature usually focuses on only one food chain segment, this narrative review was designed to address the identities and concentration of phenolics of these cereal crops from a farm-to-fork perspective. Wheat and rice genetics, phenolic databases, antioxidant properties, and potential health effects are summarized. These cereals contain much more than phenolic acids, having significant concentrations of flavonoids (including anthocyanins) and proanthocyanidins in a cultivar-dependent manner. Their potential health benefits in vitro have been extensively studied. According to a number of in vivo studies, consumption of whole wheat, wheat bran, whole rice, and rice bran may be strategies to improve health. Likewise, anthocyanin-rich cultivars have shown to be very promising as functional foods.
Collapse
Affiliation(s)
- Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| | - Renan Danielski
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| | - Samantha Ottani Rhein
- Nutrition and Food Technology Institute, University of Chile, Santiago 7830490, Chile
| | - Lee A. Meisel
- Nutrition and Food Technology Institute, University of Chile, Santiago 7830490, Chile
| | - Jocelyn Fuentes
- Nutrition and Food Technology Institute, University of Chile, Santiago 7830490, Chile
| | - Hernan Speisky
- Nutrition and Food Technology Institute, University of Chile, Santiago 7830490, Chile
| | - Andrés R. Schwember
- Departament of Plant Sciences, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | | |
Collapse
|
25
|
Xiao Y, Yu Y, Xie L, Li K, Guo X, Li G, Liu J, Li G, Hu J. A genome-wide association study of folates in sweet corn kernels. FRONTIERS IN PLANT SCIENCE 2022; 13:1004455. [PMID: 36247547 PMCID: PMC9562826 DOI: 10.3389/fpls.2022.1004455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/02/2022] [Indexed: 06/10/2023]
Abstract
Folate is commonly synthesized in natural plants and is an essential water-soluble vitamin of great importance inhuman health. Although the key genes involved in folate biosynthesis and transformation pathways have been identified in plants, the genetic architecture of folate in sweet corn kernels remain largely unclear. In this study, an association panel of 295 inbred lines of sweet corn was constructed. Six folate derivatives were quantified in sweet corn kernels at 20 days after pollination and a total of 95 loci were identified for eight folate traits using a genome-wide association study. A peak GWAS signal revealed that natural variation in ZmFCL, encoding a 5-formyltetrahydrofolate cyclo-ligase, accounted for 30.12% of phenotypic variation in 5-FTHF content. Further analysis revealed that two adjacent SNPs on the second exon resulting in an AA-to-GG in the gene and an Asn-to-Gly change in the protein could be the causative variant influencing 5-FTHF content. Meanwhile, 5-FTHF content was negatively correlated with ZmFCL expression levels in the population. These results extend our knowledge regarding the genetic basis of folate and provide molecular markers for the optimization of folate levels in sweet corn kernels.
Collapse
Affiliation(s)
- Yingni Xiao
- Crops Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Guangzhou, China
| | - Yongtao Yu
- Crops Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Guangzhou, China
| | - Lihua Xie
- Crops Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Guangzhou, China
| | - Kun Li
- Crops Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Guangzhou, China
| | - Xinbo Guo
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Guangyu Li
- Crops Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Guangzhou, China
| | - Jianhua Liu
- Crops Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Guangzhou, China
| | - Gaoke Li
- Crops Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Guangzhou, China
| | - Jianguang Hu
- Crops Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Guangzhou, China
| |
Collapse
|
26
|
Niu Y, Zhang Q, Wang J, Li Y, Wang X, Bao Y. Vitamin E synthesis and response in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:994058. [PMID: 36186013 PMCID: PMC9515888 DOI: 10.3389/fpls.2022.994058] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Vitamin E, also known as tocochromanol, is a lipid-soluble antioxidant that can only be produced by photosynthetic organisms in nature. Vitamin E is not only essential in human diets, but also required for plant environment adaptions. To synthesize vitamin E, specific prenyl groups needs to be incorporated with homogentisate as the first step of reaction. After decades of studies, an almost complete roadmap has been revealed for tocochromanol biosynthesis pathway. However, chlorophyll-derived prenyl precursors for synthesizing tocochromanols are still a mystery. In recent years, by employing forward genetic screening and genome-wide-association approaches, significant achievements were acquired in studying vitamin E. In this review, by summarizing the recent progresses in vitamin E, we provide to date the most updated whole view of vitamin E biosynthesis pathway. Also, we discussed about the role of vitamin E in plants stress response and its potential as signaling molecules.
Collapse
Affiliation(s)
- Yue Niu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Zhang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaojiao Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yanjie Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xinhua Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Bao
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
27
|
Role of Tocochromanols in Tolerance of Cereals to Biotic Stresses: Specific Focus on Pathogenic and Toxigenic Fungal Species. Int J Mol Sci 2022; 23:ijms23169303. [PMID: 36012567 PMCID: PMC9408828 DOI: 10.3390/ijms23169303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Fungal pathogens capable of producing mycotoxins are one of the main threats to the cultivation of cereals and the safety of the harvested kernels. Improving the resistance of crops to fungal disease and accumulation of mycotoxins is therefore a crucial issue. Achieving this goal requires a deep understanding of plant defense mechanisms, most of them involving specialized metabolites. However, while numerous studies have addressed the contribution of phenylpropanoids and carotenoids to plant chemical defense, very few have dealt with tocochromanols. Tocochromanols, which encompass tocopherols and tocotrienols and constitute the vitamin E family, are widely distributed in cereal kernels; their biosynthetic pathway has been extensively studied with the aim to enrich plant oils and combat vitamin E deficiency in humans. Here we provide strong assumptions arguing in favor of an involvement of tocochromanols in plant–fungal pathogen interactions. These assumptions are based on both direct effects resulting from their capacity to scavenge reactive oxygen species, including lipid peroxyl radicals, on their potential to inhibit fungal growth and mycotoxin yield, and on more indirect effects mainly based on their role in plant protection against abiotic stresses.
Collapse
|
28
|
Lv G, Chen X, Ying D, Li J, Fan Y, Wang B, Fang R. Marker-assisted pyramiding of γ-tocopherol methyltransferase and glutamate formiminotransferase genes for development of biofortified sweet corn hybrids. PeerJ 2022; 10:e13629. [PMID: 35818359 PMCID: PMC9270877 DOI: 10.7717/peerj.13629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/02/2022] [Indexed: 01/22/2023] Open
Abstract
Micronutrients, including vitamins, minerals, and other bioactive compounds, have tremendous impacts on human health. Much progress has been made in improving the micronutrient content of inbred lines in various crops through biofortified breeding. However, biofortified breeding still falls short for the rapid generation of high-yielding hybrids rich in multiple micronutrients. Here, we bred multi-biofortified sweet corn hybrids efficiently through marker-assisted selection. Screening by molecular markers for vitamin E and folic acid, we obtained 15 inbred lines carrying favorable alleles (six for vitamin E, nine for folic acid, and three for both). Multiple biofortified corn hybrids were developed through crossing and genetic diversity analysis.
Collapse
Affiliation(s)
- Guihua Lv
- Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Dongyang, Zhejiang, China
| | - Xiaolong Chen
- Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Dongyang, Zhejiang, China
| | - Duo Ying
- Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Dongyang, Zhejiang, China
| | - Jiansheng Li
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Yinghu Fan
- Chuxiong Academy of Agricultural Sciences, Chuxiong, China
| | - Bin Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Ruiqiu Fang
- Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Dongyang, Zhejiang, China
| |
Collapse
|
29
|
Genome-wide association identifies a missing hydrolase for tocopherol synthesis in plants. Proc Natl Acad Sci U S A 2022; 119:e2113488119. [PMID: 35639691 DOI: 10.1073/pnas.2113488119] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceTocopherols (vitamin E) are plant-synthesized, lipid-soluble antioxidants whose dietary intake, primarily from seed oils, is essential for human health. Tocopherols contain a phytol-derived hydrophobic tail whose in vivo source has been elusive. The most significant genome-wide association signal for Arabidopsis seed tocopherols identified an uncharacterized, seed-specific esterase (VTE7) localized to the chloroplast envelope, where tocopherol synthesis occurs. VTE7 disruption and overexpression had large impacts on tissue tocopherol contents with metabolic phenotypes consistent with release of prenyl alcohols, including phytol, during chlorophyll synthesis, rather than from the bulk degradation of thylakoid chlorophylls as has long been assumed. Understanding the source of phytol for tocopherols will enable breeding and engineering plants for vitamin E biofortification and enhanced stress resilience.
Collapse
|
30
|
Wu D, Li X, Tanaka R, Wood JC, Tibbs-Cortes LE, Magallanes-Lundback M, Bornowski N, Hamilton JP, Vaillancourt B, Diepenbrock CH, Li X, Deason NT, Schoenbaum GR, Yu J, Buell CR, DellaPenna D, Gore MA. Combining GWAS and TWAS to identify candidate causal genes for tocochromanol levels in maize grain. Genetics 2022; 221:6603118. [PMID: 35666198 PMCID: PMC9339294 DOI: 10.1093/genetics/iyac091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/01/2022] [Indexed: 11/20/2022] Open
Abstract
Tocochromanols (tocopherols and tocotrienols, collectively vitamin E) are lipid-soluble antioxidants important for both plant fitness and human health. The main dietary sources of vitamin E are seed oils that often accumulate high levels of tocopherol isoforms with lower vitamin E activity. The tocochromanol biosynthetic pathway is conserved across plant species but an integrated view of the genes and mechanisms underlying natural variation of tocochromanol levels in seed of most cereal crops remains limited. To address this issue, we utilized the high mapping resolution of the maize Ames panel of ∼1,500 inbred lines scored with 12.2 million single-nucleotide polymorphisms to generate metabolomic (mature grain tocochromanols) and transcriptomic (developing grain) data sets for genetic mapping. By combining results from genome- and transcriptome-wide association studies, we identified a total of 13 candidate causal gene loci, including 5 that had not been previously associated with maize grain tocochromanols: 4 biosynthetic genes (arodeH2 paralog, dxs1, vte5, and vte7) and a plastid S-adenosyl methionine transporter (samt1). Expression quantitative trait locus (eQTL) mapping of these 13 gene loci revealed that they are predominantly regulated by cis-eQTL. Through a joint statistical analysis, we implicated cis-acting variants as responsible for colocalized eQTL and GWAS association signals. Our multiomics approach provided increased statistical power and mapping resolution to enable a detailed characterization of the genetic and regulatory architecture underlying tocochromanol accumulation in maize grain and provided insights for ongoing biofortification efforts to breed and/or engineer vitamin E and antioxidant levels in maize and other cereals.
Collapse
Affiliation(s)
| | | | | | - Joshua C Wood
- Department of Crop & Soil Sciences, Institute of Plant Breeding, Genetics, & Genomics, University of Georgia, Athens, GA 30602, USA
| | | | - Maria Magallanes-Lundback
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Nolan Bornowski
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - John P Hamilton
- Department of Crop & Soil Sciences, Institute of Plant Breeding, Genetics, & Genomics, University of Georgia, Athens, GA 30602, USA
| | - Brieanne Vaillancourt
- Department of Crop & Soil Sciences, Institute of Plant Breeding, Genetics, & Genomics, University of Georgia, Athens, GA 30602, USA
| | | | - Xianran Li
- United States Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164, USA
| | - Nicholas T Deason
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | - Jianming Yu
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA
| | - C Robin Buell
- Department of Crop & Soil Sciences, Institute of Plant Breeding, Genetics, & Genomics, University of Georgia, Athens, GA 30602, USA
| | - Dean DellaPenna
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Michael A Gore
- Corresponding author: Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
31
|
Hershberger J, Tanaka R, Wood JC, Kaczmar N, Wu D, Hamilton JP, DellaPenna D, Buell CR, Gore MA. Transcriptome-wide association and prediction for carotenoids and tocochromanols in fresh sweet corn kernels. THE PLANT GENOME 2022; 15:e20197. [PMID: 35262278 DOI: 10.1002/tpg2.20197] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Sweet corn (Zea mays L.) is consistently one of the most highly consumed vegetables in the United States, providing a valuable opportunity to increase nutrient intake through biofortification. Significant variation for carotenoid (provitamin A, lutein, zeaxanthin) and tocochromanol (vitamin E, antioxidants) levels is present in temperate sweet corn germplasm, yet previous genome-wide association studies (GWAS) of these traits have been limited by low statistical power and mapping resolution. Here, we employed a high-quality transcriptomic dataset collected from fresh sweet corn kernels to conduct transcriptome-wide association studies (TWAS) and transcriptome prediction studies for 39 carotenoid and tocochromanol traits. In agreement with previous GWAS findings, TWAS detected significant associations for four causal genes, β-carotene hydroxylase (crtRB1), lycopene epsilon cyclase (lcyE), γ-tocopherol methyltransferase (vte4), and homogentisate geranylgeranyltransferase (hggt1) on a transcriptome-wide level. Pathway-level analysis revealed additional associations for deoxy-xylulose synthase2 (dxs2), diphosphocytidyl methyl erythritol synthase2 (dmes2), cytidine methyl kinase1 (cmk1), and geranylgeranyl hydrogenase1 (ggh1), of which, dmes2, cmk1, and ggh1 have not previously been identified through maize association studies. Evaluation of prediction models incorporating genome-wide markers and transcriptome-wide abundances revealed a trait-dependent benefit to the inclusion of both genomic and transcriptomic data over solely genomic data, but both transcriptome- and genome-wide datasets outperformed a priori candidate gene-targeted prediction models for most traits. Altogether, this study represents an important step toward understanding the role of regulatory variation in the accumulation of vitamins in fresh sweet corn kernels.
Collapse
Affiliation(s)
- Jenna Hershberger
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell Univ., Ithaca, NY, 14853, USA
| | - Ryokei Tanaka
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell Univ., Ithaca, NY, 14853, USA
| | - Joshua C Wood
- Dep. of Crop & Soil Sciences, Univ. of Georgia, Athens, GA, 30602, USA
| | - Nicholas Kaczmar
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell Univ., Ithaca, NY, 14853, USA
| | - Di Wu
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell Univ., Ithaca, NY, 14853, USA
| | - John P Hamilton
- Dep. of Crop & Soil Sciences, Univ. of Georgia, Athens, GA, 30602, USA
| | - Dean DellaPenna
- Dep. of Biochemistry and Molecular Biology, Michigan State Univ., East Lansing, MI, 48824, USA
| | - C Robin Buell
- Dep. of Crop & Soil Sciences, Univ. of Georgia, Athens, GA, 30602, USA
| | - Michael A Gore
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell Univ., Ithaca, NY, 14853, USA
| |
Collapse
|
32
|
Brzozowski LJ, Campbell MT, Hu H, Caffe M, Gutiérrez LA, Smith KP, Sorrells ME, Gore MA, Jannink JL. Generalizable approaches for genomic prediction of metabolites in plants. THE PLANT GENOME 2022; 15:e20205. [PMID: 35470586 DOI: 10.1002/tpg2.20205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Plant metabolites are important traits for plant breeders seeking to improve nutrition and agronomic performance yet integrating selection for metabolomic traits can be limited by phenotyping expense and degree of genetic characterization, especially of uncommon metabolites. As such, developing generalizable genomic selection methods based on biochemical pathway biology for metabolites that are transferable across plant populations would benefit plant breeding programs. We tested genomic prediction accuracy for >600 metabolites measured by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) in oat (Avena sativa L.) seed. Using a discovery germplasm panel, we conducted metabolite genome-wide association study (mGWAS) and selected loci to use in multikernel models that encompassed metabolome-wide mGWAS results or mGWAS from specific metabolite structures or biosynthetic pathways. Metabolite kernels developed from LC-MS metabolites in the discovery panel improved prediction accuracy of LC-MS metabolite traits in the validation panel consisting of more advanced breeding lines. No approach, however, improved prediction accuracy for GC-MS metabolites. We ranked model performance by metabolite and found that metabolites with similar polarity had consistent rankings of models. Overall, testing biological rationales for developing kernels for genomic prediction across populations contributes to developing frameworks for plant breeding for metabolite traits.
Collapse
Affiliation(s)
- Lauren J Brzozowski
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell Univ., Ithaca, NY, 14853, USA
| | - Malachy T Campbell
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell Univ., Ithaca, NY, 14853, USA
| | - Haixiao Hu
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell Univ., Ithaca, NY, 14853, USA
| | - Melanie Caffe
- Dep. of Agronomy, Horticulture & Plant Science, South Dakota State Univ., Brookings, SD, 57006, USA
| | - Lucı A Gutiérrez
- Dep. of Agronomy, Univ. of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Kevin P Smith
- Dep. of Agronomy & Plant Genetics, Univ. of Minnesota, St. Paul, MN, 55108, USA
| | - Mark E Sorrells
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell Univ., Ithaca, NY, 14853, USA
| | - Michael A Gore
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell Univ., Ithaca, NY, 14853, USA
| | - Jean-Luc Jannink
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell Univ., Ithaca, NY, 14853, USA
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| |
Collapse
|
33
|
LaPorte MF, Vachev M, Fenn M, Diepenbrock C. Simultaneous dissection of grain carotenoid levels and kernel color in biparental maize populations with yellow-to-orange grain. G3 (BETHESDA, MD.) 2022; 12:6506523. [PMID: 35100389 PMCID: PMC8895983 DOI: 10.1093/g3journal/jkac006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/30/2021] [Indexed: 01/19/2023]
Abstract
Maize enriched in provitamin A carotenoids could be key in combatting vitamin A deficiency in human populations relying on maize as a food staple. Consumer studies indicate that orange maize may be regarded as novel and preferred. This study identifies genes of relevance for grain carotenoid concentrations and kernel color, through simultaneous dissection of these traits in 10 families of the US maize nested association mapping panel that have yellow to orange grain. Quantitative trait loci were identified via joint-linkage analysis, with phenotypic variation explained for individual kernel color quantitative trait loci ranging from 2.4% to 17.5%. These quantitative trait loci were cross-analyzed with significant marker-trait associations in a genome-wide association study that utilized ∼27 million variants. Nine genes were identified: four encoding activities upstream of the core carotenoid pathway, one at the pathway branchpoint, three within the α- or β-pathway branches, and one encoding a carotenoid cleavage dioxygenase. Of these, three exhibited significant pleiotropy between kernel color and one or more carotenoid traits. Kernel color exhibited moderate positive correlations with β-branch and total carotenoids and negligible correlations with α-branch carotenoids. These findings can be leveraged to simultaneously achieve desirable kernel color phenotypes and increase concentrations of provitamin A and other priority carotenoids.
Collapse
Affiliation(s)
- Mary-Francis LaPorte
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Mishi Vachev
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Matthew Fenn
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
34
|
Medeiros DB, Brotman Y, Fernie AR. The utility of metabolomics as a tool to inform maize biology. PLANT COMMUNICATIONS 2021; 2:100187. [PMID: 34327322 PMCID: PMC8299083 DOI: 10.1016/j.xplc.2021.100187] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/26/2021] [Accepted: 04/19/2021] [Indexed: 05/04/2023]
Abstract
With the rise of high-throughput omics tools and the importance of maize and its products as food and bioethanol, maize metabolism has been extensively explored. Modern maize is still rich in genetic and phenotypic variation, yielding a wide range of structurally and functionally diverse metabolites. The maize metabolome is also incredibly dynamic in terms of topology and subcellular compartmentalization. In this review, we examine a broad range of studies that cover recent developments in maize metabolism. Particular attention is given to current methodologies and to the use of metabolomics as a tool to define biosynthetic pathways and address biological questions. We also touch upon the use of metabolomics to understand maize natural variation and evolution, with a special focus on research that has used metabolite-based genome-wide association studies (mGWASs).
Collapse
Affiliation(s)
- David B. Medeiros
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheva, Israel
| | | |
Collapse
|
35
|
Genome-wide association studies: assessing trait characteristics in model and crop plants. Cell Mol Life Sci 2021; 78:5743-5754. [PMID: 34196733 PMCID: PMC8316211 DOI: 10.1007/s00018-021-03868-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 01/19/2023]
Abstract
GWAS involves testing genetic variants across the genomes of many individuals of a population to identify genotype–phenotype association. It was initially developed and has proven highly successful in human disease genetics. In plants genome-wide association studies (GWAS) initially focused on single feature polymorphism and recombination and linkage disequilibrium but has now been embraced by a plethora of different disciplines with several thousand studies being published in model and crop species within the last decade or so. Here we will provide a comprehensive review of these studies providing cases studies on biotic resistance, abiotic tolerance, yield associated traits, and metabolic composition. We also detail current strategies of candidate gene validation as well as the functional study of haplotypes. Furthermore, we provide a critical evaluation of the GWAS strategy and its alternatives as well as future perspectives that are emerging with the emergence of pan-genomic datasets.
Collapse
|
36
|
Diepenbrock CH, Ilut DC, Magallanes-Lundback M, Kandianis CB, Lipka AE, Bradbury PJ, Holland JB, Hamilton JP, Wooldridge E, Vaillancourt B, Góngora-Castillo E, Wallace JG, Cepela J, Mateos-Hernandez M, Owens BF, Tiede T, Buckler ES, Rocheford T, Buell CR, Gore MA, DellaPenna D. Eleven biosynthetic genes explain the majority of natural variation in carotenoid levels in maize grain. THE PLANT CELL 2021; 33:882-900. [PMID: 33681994 PMCID: PMC8226291 DOI: 10.1093/plcell/koab032] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/26/2021] [Indexed: 05/03/2023]
Abstract
Vitamin A deficiency remains prevalent in parts of Asia, Latin America, and sub-Saharan Africa where maize (Zea mays) is a food staple. Extensive natural variation exists for carotenoids in maize grain. Here, to understand its genetic basis, we conducted a joint linkage and genome-wide association study of the US maize nested association mapping panel. Eleven of the 44 detected quantitative trait loci (QTL) were resolved to individual genes. Six of these were correlated expression and effect QTL (ceeQTL), showing strong correlations between RNA-seq expression abundances and QTL allelic effect estimates across six stages of grain development. These six ceeQTL also had the largest percentage of phenotypic variance explained, and in major part comprised the three to five loci capturing the bulk of genetic variation for each trait. Most of these ceeQTL had strongly correlated QTL allelic effect estimates across multiple traits. These findings provide an in-depth genome-level understanding of the genetic and molecular control of carotenoids in plants. In addition, these findings provide a roadmap to accelerate breeding for provitamin A and other priority carotenoid traits in maize grain that should be readily extendable to other cereals.
Collapse
Affiliation(s)
| | - Daniel C Ilut
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | - Maria Magallanes-Lundback
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Catherine B Kandianis
- Present addresses: Nacre Innovations, Houston, Texas 77002 (C.B.K.); Department of Crop Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801 (A.E.L.); University of Michigan, Ann Arbor, MI 48109 (E.W.); Centro de Investigación Científica de Yucatan, CONACYT—Unidad de Biotecnologia, Merida, Yucatan 97200, Mexico (E.G.-C.); Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, Minnesota 55455 (J.C.); Bayer, Stonington, Illinois 62567 (M.M.-H.); BASF, Dawson, Georgia 39842 (B.F.O.); and Corteva Agriscience, St. Paul, Minnesota 55108 (T.T.)
| | - Alexander E Lipka
- Present addresses: Nacre Innovations, Houston, Texas 77002 (C.B.K.); Department of Crop Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801 (A.E.L.); University of Michigan, Ann Arbor, MI 48109 (E.W.); Centro de Investigación Científica de Yucatan, CONACYT—Unidad de Biotecnologia, Merida, Yucatan 97200, Mexico (E.G.-C.); Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, Minnesota 55455 (J.C.); Bayer, Stonington, Illinois 62567 (M.M.-H.); BASF, Dawson, Georgia 39842 (B.F.O.); and Corteva Agriscience, St. Paul, Minnesota 55108 (T.T.)
| | - Peter J Bradbury
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853
- United States Department of Agriculture—Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853
| | - James B Holland
- United States Department of Agriculture—Agricultural Research Service, Plant Science Research Unit, Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina 27695
| | - John P Hamilton
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Edmund Wooldridge
- Present addresses: Nacre Innovations, Houston, Texas 77002 (C.B.K.); Department of Crop Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801 (A.E.L.); University of Michigan, Ann Arbor, MI 48109 (E.W.); Centro de Investigación Científica de Yucatan, CONACYT—Unidad de Biotecnologia, Merida, Yucatan 97200, Mexico (E.G.-C.); Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, Minnesota 55455 (J.C.); Bayer, Stonington, Illinois 62567 (M.M.-H.); BASF, Dawson, Georgia 39842 (B.F.O.); and Corteva Agriscience, St. Paul, Minnesota 55108 (T.T.)
| | - Brieanne Vaillancourt
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Elsa Góngora-Castillo
- Present addresses: Nacre Innovations, Houston, Texas 77002 (C.B.K.); Department of Crop Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801 (A.E.L.); University of Michigan, Ann Arbor, MI 48109 (E.W.); Centro de Investigación Científica de Yucatan, CONACYT—Unidad de Biotecnologia, Merida, Yucatan 97200, Mexico (E.G.-C.); Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, Minnesota 55455 (J.C.); Bayer, Stonington, Illinois 62567 (M.M.-H.); BASF, Dawson, Georgia 39842 (B.F.O.); and Corteva Agriscience, St. Paul, Minnesota 55108 (T.T.)
| | - Jason G Wallace
- Department of Crop and Soil Sciences, University of Georgia, Athens, Georgia 30602
| | - Jason Cepela
- Present addresses: Nacre Innovations, Houston, Texas 77002 (C.B.K.); Department of Crop Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801 (A.E.L.); University of Michigan, Ann Arbor, MI 48109 (E.W.); Centro de Investigación Científica de Yucatan, CONACYT—Unidad de Biotecnologia, Merida, Yucatan 97200, Mexico (E.G.-C.); Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, Minnesota 55455 (J.C.); Bayer, Stonington, Illinois 62567 (M.M.-H.); BASF, Dawson, Georgia 39842 (B.F.O.); and Corteva Agriscience, St. Paul, Minnesota 55108 (T.T.)
| | - Maria Mateos-Hernandez
- Present addresses: Nacre Innovations, Houston, Texas 77002 (C.B.K.); Department of Crop Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801 (A.E.L.); University of Michigan, Ann Arbor, MI 48109 (E.W.); Centro de Investigación Científica de Yucatan, CONACYT—Unidad de Biotecnologia, Merida, Yucatan 97200, Mexico (E.G.-C.); Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, Minnesota 55455 (J.C.); Bayer, Stonington, Illinois 62567 (M.M.-H.); BASF, Dawson, Georgia 39842 (B.F.O.); and Corteva Agriscience, St. Paul, Minnesota 55108 (T.T.)
| | - Brenda F Owens
- Present addresses: Nacre Innovations, Houston, Texas 77002 (C.B.K.); Department of Crop Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801 (A.E.L.); University of Michigan, Ann Arbor, MI 48109 (E.W.); Centro de Investigación Científica de Yucatan, CONACYT—Unidad de Biotecnologia, Merida, Yucatan 97200, Mexico (E.G.-C.); Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, Minnesota 55455 (J.C.); Bayer, Stonington, Illinois 62567 (M.M.-H.); BASF, Dawson, Georgia 39842 (B.F.O.); and Corteva Agriscience, St. Paul, Minnesota 55108 (T.T.)
| | - Tyler Tiede
- Present addresses: Nacre Innovations, Houston, Texas 77002 (C.B.K.); Department of Crop Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801 (A.E.L.); University of Michigan, Ann Arbor, MI 48109 (E.W.); Centro de Investigación Científica de Yucatan, CONACYT—Unidad de Biotecnologia, Merida, Yucatan 97200, Mexico (E.G.-C.); Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, Minnesota 55455 (J.C.); Bayer, Stonington, Illinois 62567 (M.M.-H.); BASF, Dawson, Georgia 39842 (B.F.O.); and Corteva Agriscience, St. Paul, Minnesota 55108 (T.T.)
| | - Edward S Buckler
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853
- United States Department of Agriculture—Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853
| | - Torbert Rocheford
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
| | - C Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Michael A Gore
- Authors for correspondence: (C.H.D.), (M.A.G.), and (D.D.P.)
| | - Dean DellaPenna
- Authors for correspondence: (C.H.D.), (M.A.G.), and (D.D.P.)
| |
Collapse
|
37
|
Gutbrod P, Reichert S, Gutbrod K, Hamai A, Bréhélin C, Ngando-Ebongue G, Dörmann P. Fatty acid isoprenoid alcohol ester synthesis in fruits of the African Oil Palm (Elaeis guineensis). PHYTOCHEMISTRY 2021; 185:112684. [PMID: 33581596 DOI: 10.1016/j.phytochem.2021.112684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
The African Oil Palm (Elaeis guineensis; family Arecaceae) represents the most important oil crop for food and feed production and for biotechnological applications. Two types of oil can be extracted from palm fruits, the mesocarp oil which is rich in palmitic acid and in carotenoids (provitamin A) and tocochromanols (vitamin E), and the kernel oil with high amounts of lauric and myristic acid. We identified fatty acid phytyl esters (FAPEs) in the mesocarp and kernel tissues of mature fruits, mostly esterified with oleic acid and very long chain fatty acids. In addition, fatty acid geranylgeranyl esters (FAGGEs) accumulated in mesocarp and kernels to even larger amounts. In contrast, FAPEs and FAGGEs amounts and fatty acid composition in leaves were very similar. Analysis of wild accessions of African Oil Palm from Cameroon revealed a considerable variation in the amounts and composition of FAPEs and FAGGEs in mesocarp and kernel tissues. Exogenous supplementation of phytol or geranylgeraniol to mesocarp slices resulted in the incorporation of these alcohols into FAPEs and FAGGEs, respectively, indicating that they are synthesized via enzymatic reactions. Three candidate genes of the esterase/lipase/thioesterase (ELT) family were identified in the Oil Palm genome. The genes are differentially expressed in mesocarp tissue with EgELT1 showing the highest expression. Geranylgeraniol from FAGGE might be recycled and used as a substrate for the synthesis of carotenoids and tocotrienols during fruit development. Thus, FAPEs and FAGGEs in the mesocarp and kernel of Oil Palm provide an additional metabolic source for fatty acids and phytol or geranylgeraniol, respectively.
Collapse
Affiliation(s)
- Philipp Gutbrod
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Karlrobert-Kreiten-Strasse 13, 53115, Bonn, Germany
| | - Sophie Reichert
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Karlrobert-Kreiten-Strasse 13, 53115, Bonn, Germany
| | - Katharina Gutbrod
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Karlrobert-Kreiten-Strasse 13, 53115, Bonn, Germany
| | - Amazigh Hamai
- Université de Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140, Villenave d'Ornon, France
| | - Claire Bréhélin
- Université de Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140, Villenave d'Ornon, France
| | - Georges Ngando-Ebongue
- Institute of Agricultural Research for Development, Center for Oil Palm Research (IRAD-CEREPAH) of La Dibamba, P.O. Box 243, Douala, Cameroon
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Karlrobert-Kreiten-Strasse 13, 53115, Bonn, Germany.
| |
Collapse
|
38
|
Burgos E, Belen De Luca M, Diouf I, de Haro LA, Albert E, Sauvage C, Tao ZJ, Bermudez L, Asís R, Nesi AN, Matringe M, Bréhélin C, Guiraud T, Ferrand C, Atienza I, Jorly J, Mauxion JP, Baldet P, Fernie AR, Quadrana L, Rothan C, Causse M, Carrari F. Validated MAGIC and GWAS population mapping reveals the link between vitamin E content and natural variation in chorismate metabolism in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:907-923. [PMID: 33179365 DOI: 10.1111/tpj.15077] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/27/2020] [Indexed: 05/21/2023]
Abstract
Tocochromanols constitute the different forms of vitamin E (VTE), essential components of the human diet, and display a high membrane protectant activity. By combining interval mapping and genome-wide association studies (GWAS), we unveiled the genetic determinants of tocochromanol accumulation in tomato (Solanum lycopersicum) fruits. To enhance the nutritional value of this highly consumed vegetable, we dissected the natural intraspecific variability of tocochromanols in tomato fruits and genetically engineered their biosynthetic pathway. These analyses allowed the identification of a total of 25 quantitative trait loci interspersed across the genome pinpointing the chorismate-tyrosine pathway as a regulatory hub controlling the supply of the aromatic head group for tocochromanol biosynthesis. To validate the link between the chorismate-tyrosine pathway and VTE, we engineered tomato plants to bypass the pathway at the arogenate branch point. Transgenic tomatoes showed moderate increments in tocopherols (up to approximately 20%) and a massive accumulation of tocotrienols (up to approximately 3400%). Gene expression analyses of these plants reveal a trade-off between VTE and natural variation in chorismate metabolism explained by transcriptional reprogramming of specific structural genes of the pathway. By restoring the accumulation of alpha-tocotrienols (α-t3) in fruits, the plants produced here are of high pharmacological and nutritional interest.
Collapse
Affiliation(s)
- Estanislao Burgos
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, C1428EHA, Argentina
| | - Maria Belen De Luca
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, C1428EHA, Argentina
| | - Isidore Diouf
- INRAE, Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, 67 Allée des Chênes, Domaine Saint Maurice CS60094, Montfavet, 84143, France
| | - Luis A de Haro
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, C1428EHA, Argentina
| | - Elise Albert
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | | | - Zhao J Tao
- INRAE, Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, 67 Allée des Chênes, Domaine Saint Maurice CS60094, Montfavet, 84143, France
| | - Luisa Bermudez
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria, and Consejo Nacional de Investigaciones Científicas y Técnicas, PO Box 25, Castelar, B1712WAA, Argentina
- Facultad de Agronomía, Cátedra de Genética, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ramon Asís
- CIBICI, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CC, 5000, Argentina
| | - Adriano N Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Michel Matringe
- Laboratoire de Physiologie Cellulaire Végétale, Unité Mixte de Recherche 5168 CNRS-CEA-INRAE, Université Joseph Fourier, CEA Grenoble, PCV, Grenoble Cedex 9, Grenoble, 38054, France
| | - Claire Bréhélin
- Laboratoire de Physiologie Cellulaire Végétale, Unité Mixte de Recherche 5168 CNRS-CEA-INRAE, Université Joseph Fourier, CEA Grenoble, PCV, Grenoble Cedex 9, Grenoble, 38054, France
| | - Thomas Guiraud
- Univ. Bordeaux, Biologie du Fruit et Pathologie, INRAE, Villenave d'OrnoF-33140, Villenave d'Ornon Cedex, UMR 1332, France
| | - Carine Ferrand
- Univ. Bordeaux, Biologie du Fruit et Pathologie, INRAE, Villenave d'OrnoF-33140, Villenave d'Ornon Cedex, UMR 1332, France
| | - Isabelle Atienza
- Univ. Bordeaux, Biologie du Fruit et Pathologie, INRAE, Villenave d'OrnoF-33140, Villenave d'Ornon Cedex, UMR 1332, France
| | - Joana Jorly
- Univ. Bordeaux, Biologie du Fruit et Pathologie, INRAE, Villenave d'OrnoF-33140, Villenave d'Ornon Cedex, UMR 1332, France
| | - Jean P Mauxion
- Univ. Bordeaux, Biologie du Fruit et Pathologie, INRAE, Villenave d'OrnoF-33140, Villenave d'Ornon Cedex, UMR 1332, France
| | - Pierre Baldet
- Univ. Bordeaux, Biologie du Fruit et Pathologie, INRAE, Villenave d'OrnoF-33140, Villenave d'Ornon Cedex, UMR 1332, France
| | - Alisdair R Fernie
- Institute of Molecular Plant Physiology, Max-Planck, Am Muehlenberg 1, Potsdam-Golm, 14476, Germany
| | - Leandro Quadrana
- Centre National de la Recherche Scientifique (CNRS), Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, F-75005, France
| | - Christophe Rothan
- Univ. Bordeaux, Biologie du Fruit et Pathologie, INRAE, Villenave d'OrnoF-33140, Villenave d'Ornon Cedex, UMR 1332, France
| | - Mathilde Causse
- INRAE, Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, 67 Allée des Chênes, Domaine Saint Maurice CS60094, Montfavet, 84143, France
| | - Fernando Carrari
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, C1428EHA, Argentina
- Facultad de Agronomía, Cátedra de Genética, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
39
|
Yadav CB, Tokas J, Yadav D, Winters A, Singh RB, Yadav R, Gangashetty PI, Srivastava RK, Yadav RS. Identifying Anti-Oxidant Biosynthesis Genes in Pearl Millet [ Pennisetum glaucum (L.) R. Br.] Using Genome-Wide Association Analysis. FRONTIERS IN PLANT SCIENCE 2021; 12:599649. [PMID: 34122460 PMCID: PMC8194398 DOI: 10.3389/fpls.2021.599649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 04/19/2021] [Indexed: 05/05/2023]
Abstract
Pearl millet [Pennisetum glaucum (L.) R Br.] is an important staple food crop in the semi-arid tropics of Asia and Africa. It is a cereal grain that has the prospect to be used as a substitute for wheat flour for celiac patients. It is an important antioxidant food resource present with a wide range of phenolic compounds that are good sources of natural antioxidants. The present study aimed to identify the total antioxidant content of pearl millet flour and apply it to evaluate the antioxidant activity of its 222 genotypes drawn randomly from the pearl millet inbred germplasm association panel (PMiGAP), a world diversity panel of this crop. The total phenolic content (TPC) significantly correlated with DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity (% inhibition), which ranged from 2.32 to 112.45% and ferric-reducing antioxidant power (FRAP) activity ranging from 21.68 to 179.66 (mg ascorbic acid eq./100 g). Genome-wide association studies (GWAS) were conducted using 222 diverse accessions and 67 K SNPs distributed across all the seven pearl millet chromosomes. Approximately, 218 SNPs were found to be strongly associated with DPPH and FRAP activity at high confidence [-log (p) > 3.0-7.4]. Furthermore, flanking regions of significantly associated SNPs were explored for candidate gene harvesting. This identified 18 candidate genes related to antioxidant pathway genes (flavanone 7-O-beta-glycosyltransferase, GDSL esterase/lipase, glutathione S-transferase) residing within or near the association signal that can be selected for further functional characterization. Patterns of genetic variability and the associated genes reported in this study are useful findings, which would need further validation before their utilization in molecular breeding for high antioxidant-containing pearl millet cultivars.
Collapse
Affiliation(s)
- Chandra Bhan Yadav
- Institute of Biological Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Jayanti Tokas
- Institute of Biological Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
- Chaudhary Charan Singh (CCS) Haryana Agricultural University, Hisar, India
| | - Devvart Yadav
- Institute of Biological Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
- Chaudhary Charan Singh (CCS) Haryana Agricultural University, Hisar, India
| | - Ana Winters
- Institute of Biological Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Ram B. Singh
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India
| | - Rama Yadav
- Institute of Biological Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | | | - Rakesh K. Srivastava
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India
| | - Rattan S. Yadav
- Institute of Biological Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
- *Correspondence: Rattan S. Yadav
| |
Collapse
|
40
|
Li Y, Yang C, Ahmad H, Maher M, Fang C, Luo J. Benefiting others and self: Production of vitamins in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:210-227. [PMID: 33289302 DOI: 10.1111/jipb.13047] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Vitamins maintain growth and development in humans, animals, and plants. Because plants serve as essential producers of vitamins, increasing the vitamin contents in plants has become a goal of crop breeding worldwide. Here, we begin with a summary of the functions of vitamins. We then review the achievements to date in elucidating the molecular mechanisms underlying how vitamins are synthesized, transported, and regulated in plants. We also stress the exploration of variation in vitamins by the use of forward genetic approaches, such as quantitative trait locus mapping and genome-wide association studies. Overall, we conclude that exploring the diversity of vitamins could provide new insights into plant metabolism and crop breeding.
Collapse
Affiliation(s)
- Yufei Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Chenkun Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Hasan Ahmad
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Mohamed Maher
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuanying Fang
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Jie Luo
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| |
Collapse
|
41
|
Zeng Z, Han N, Liu C, Buerte B, Zhou C, Chen J, Wang M, Zhang Y, Tang Y, Zhu M, Wang J, Yang Y, Bian H. Functional dissection of HGGT and HPT in barley vitamin E biosynthesis via CRISPR/Cas9-enabled genome editing. ANNALS OF BOTANY 2020; 126:929-942. [PMID: 32575125 PMCID: PMC7539355 DOI: 10.1093/aob/mcaa115] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/18/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND AIMS Vitamin E (tocochromanol) is a lipid-soluble antioxidant and an essential nutrient for human health. Among cereal crops, barley (Hordeum vulgare) contains a high level of vitamin E, which includes both tocopherols and tocotrienols. Although the vitamin E biosynthetic pathway has been characterized in dicots, such as Arabidopsis, which only accumulate tocopherols, knowledge regarding vitamin E biosynthesis in monocots is limited because of the lack of functional mutants. This study aimed to obtain gene knockout mutants to elucidate the genetic control of vitamin E composition in barley. METHODS Targeted knockout mutations of HvHPT and HvHGGT in barley were created with CRISPR/Cas9-enabled genome editing. High-performance liquid chromatography (HPLC) was performed to analyse the content of tocochromanol isomers in transgene-free homozygous Hvhpt and Hvhggt mutants. KEY RESULTS Mutagenesis efficiency among T0 regenerated plantlets was 50-65 % as a result of two simultaneously expressed guide RNAs targeting each gene; most of the mutations were stably inherited by the next generation. The transgene-free homozygous mutants of Hvhpt and Hvhggt exhibited decreased grain size and weight, and the HvHGGT mutation led to a shrunken phenotype and significantly lower total starch content in grains. HPLC analysis revealed that targeted mutation of HvHPT significantly reduced the content of both tocopherols and tocotrienols, whereas mutations in HvHGGT completely blocked tocotrienol biosynthesis in barley grains. Transient overexpression of an HvHPT homologue in tobacco leaves significantly increased the production of γ- and δ-tocopherols, which may partly explain why targeted mutation of HvHPT in barley grains did not eliminate tocopherol production. CONCLUSIONS Our results functionally validated that HvHGGT is the only committed gene for the production of tocotrienols, whereas HvHPT is partly responsible for tocopherol biosynthesis in barley.
Collapse
Affiliation(s)
- Zhanghui Zeng
- Institute of Genetics and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ning Han
- Institute of Genetics and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Cuicui Liu
- Institute of Genetics and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - B Buerte
- Institute of Genetics and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Chenlu Zhou
- Institute of Genetics and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jianshu Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Mengyao Wang
- Institute of Genetics and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yuhong Zhang
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Yawei Tang
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Muyuan Zhu
- Institute of Genetics and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Junhui Wang
- Institute of Genetics and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yinong Yang
- Department of Plant Pathology and Environment Microbiology, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Hongwu Bian
- Institute of Genetics and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, China
- For correspondence. E-mail
| |
Collapse
|
42
|
Gage JL, Monier B, Giri A, Buckler ES. Ten Years of the Maize Nested Association Mapping Population: Impact, Limitations, and Future Directions. THE PLANT CELL 2020; 32:2083-2093. [PMID: 32398275 PMCID: PMC7346555 DOI: 10.1105/tpc.19.00951] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/02/2020] [Accepted: 05/11/2020] [Indexed: 05/21/2023]
Abstract
It has been just over a decade since the release of the maize (Zea mays) Nested Association Mapping (NAM) population. The NAM population has been and continues to be an invaluable resource for the maize genetics community and has yielded insights into the genetic architecture of complex traits. The parental lines have become some of the most well-characterized maize germplasm, and their de novo assemblies were recently made publicly available. As we enter an exciting new stage in maize genomics, this retrospective will summarize the design and intentions behind the NAM population; its application, the discoveries it has enabled, and its influence in other systems; and use the past decade of hindsight to consider whether and how it will remain useful in a new age of genomics.
Collapse
Affiliation(s)
- Joseph L Gage
- U.S. Department of Agriculture-Agricultural Research Service, Ithaca, New York 14853
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853
| | - Brandon Monier
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853
| | - Anju Giri
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853
| | - Edward S Buckler
- U.S. Department of Agriculture-Agricultural Research Service, Ithaca, New York 14853
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| |
Collapse
|
43
|
Liang Z, Qiu Y, Schnable JC. Genome-Phenome Wide Association in Maize and Arabidopsis Identifies a Common Molecular and Evolutionary Signature. MOLECULAR PLANT 2020; 13:907-922. [PMID: 32171733 DOI: 10.1016/j.molp.2020.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/20/2020] [Accepted: 03/08/2020] [Indexed: 06/10/2023]
Abstract
Linking natural genetic variation to trait variation can help determine the functional roles ofdifferent genes. Variations of one or several traits are often assessed separately. High-throughput phenotyping and data mining can capture dozens or hundreds of traits from the same individuals. Here, we test the association between markers within a gene and many traits simultaneously. This genome-phenome wide association study (GPWAS) is both a multi-marker and multi-trait test. Genes identified using GPWAS with 260 phenotypic traits in maize were enriched for genes independently linked to phenotypic variation. Traits associated with classical mutants were consistent with reported phenotypes for mutant alleles. Genes linked to phenomic variation in maize using GPWAS shared molecular, population genetic, and evolutionary features with classical mutants in maize. Genes linked to phenomic variation in Arabidopsis using GPWAS are significantly enriched in genes with known loss-of-function phenotypes. GPWAS may be an effective strategy to identify genes in which loss-of-function alleles produce mutant phenotypes. The shared signatures present in classical mutants and genes identified using GPWAS may be markers for genes with a role in specifying plant phenotypes generally or pleiotropy specifically.
Collapse
Affiliation(s)
- Zhikai Liang
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA; Plant Science Innovation Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Yumou Qiu
- Department of Statistics, Iowa State University, Ames, IA, USA
| | - James C Schnable
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA; Plant Science Innovation Center, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
44
|
Slaten ML, Yobi A, Bagaza C, Chan YO, Shrestha V, Holden S, Katz E, Kanstrup C, Lipka AE, Kliebenstein DJ, Nour-Eldin HH, Angelovici R. mGWAS Uncovers Gln-Glucosinolate Seed-Specific Interaction and its Role in Metabolic Homeostasis. PLANT PHYSIOLOGY 2020; 183:483-500. [PMID: 32317360 PMCID: PMC7271782 DOI: 10.1104/pp.20.00039] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/26/2020] [Indexed: 05/04/2023]
Abstract
Gln is a key player in plant metabolism. It is one of the major free amino acids that is transported into the developing seed and is central for nitrogen metabolism. However, Gln natural variation and its regulation and interaction with other metabolic processes in seeds remain poorly understood. To investigate the latter, we performed a metabolic genome-wide association study (mGWAS) of Gln-related traits measured from the dry seeds of the Arabidopsis (Arabidopsis thaliana) diversity panel using all potential ratios between Gln and the other members of the Glu family as traits. This semicombinatorial approach yielded multiple candidate genes that, upon further analysis, revealed an unexpected association between the aliphatic glucosinolates (GLS) and the Gln-related traits. This finding was confirmed by an independent quantitative trait loci mapping and statistical analysis of the relationships between the Gln-related traits and the presence of specific GLS in seeds. Moreover, an analysis of Arabidopsis mutants lacking GLS showed an extensive seed-specific impact on Gln levels and composition that manifested early in seed development. The elimination of GLS in seeds was associated with a large effect on seed nitrogen and sulfur homeostasis, which conceivably led to the Gln response. This finding indicates that both Gln and GLS play key roles in shaping the seed metabolic homeostasis. It also implies that select secondary metabolites might have key functions in primary seed metabolism. Finally, our study shows that an mGWAS performed on dry seeds can uncover key metabolic interactions that occur early in seed development.
Collapse
Affiliation(s)
- Marianne L Slaten
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Abou Yobi
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Clement Bagaza
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Yen On Chan
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Vivek Shrestha
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Samuel Holden
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Ella Katz
- Department of Plant Sciences, University of California Davis, Davis, California 95616
| | - Christa Kanstrup
- DynaMo Center, Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Alexander E Lipka
- Department of Crop Sciences, University of Illinois, Urbana, Illinois 61801
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California Davis, Davis, California 95616
| | - Hussam Hassan Nour-Eldin
- DynaMo Center, Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Ruthie Angelovici
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| |
Collapse
|
45
|
Genetic variability for kernel tocopherols and haplotype analysis of γ-tocopherol methyl transferase (vte4) gene among exotic- and indigenous- maize inbreds. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
46
|
Baxter I. We aren't good at picking candidate genes, and it's slowing us down. CURRENT OPINION IN PLANT BIOLOGY 2020; 54:57-60. [PMID: 32106014 DOI: 10.1016/j.pbi.2020.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/05/2020] [Accepted: 01/28/2020] [Indexed: 05/26/2023]
Abstract
In order to gain a molecular understanding of the genetic basis for plant traits, we need to be able to identify the underlying gene and the causal allele for genetic loci. This process usually involves a step where a researcher selects likely candidate genes from a list. The process of picking candidate genes is inherently prone to distortion due to human bias, and this is slowing down our research enterprise.
Collapse
Affiliation(s)
- Ivan Baxter
- Donald Danforth Plant Science Center, United States.
| |
Collapse
|
47
|
Alves ML, Bento-Silva A, Carbas B, Gaspar D, Paulo M, Brites C, Mendes-Moreira P, Brites CM, Bronze MDR, Malosetti M, van Eeuwijk F, Vaz Patto MC. Alleles to Enhance Antioxidant Content in Maize-A Genome-Wide Association Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4051-4061. [PMID: 32141752 DOI: 10.1021/acs.jafc.9b07190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The interest in antioxidant compound breeding in maize (Zea mays L.), a major food crop, has increased in recent years. However, breeding of antioxidant compounds in maize can be hampered, given the complex genetic nature of these compounds. In this work, we followed a genome-wide association approach, using a unique germplasm collection (containing Portuguese germplasm), to study the genetic basis of several antioxidants in maize. Sixty-seven genomic regions associated with seven antioxidant compounds and two color-related traits were identified. Several significant associations were located within or near genes involved in the carotenoid (Zm00001d036345) and tocopherol biosynthetic pathways (Zm00001d017746). Some indications of a negative selection against α-tocopherol levels were detected in the Portuguese maize germplasm. The strongest single nucleotide polymorphism (SNP)-trait associations and the SNP alleles with larger effect sizes were pinpointed and set as priority for future validation studies; these associations detected now constitute a benchmark for developing molecular selection tools for antioxidant compound selection in maize.
Collapse
Affiliation(s)
- Mara Lisa Alves
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
| | - Andreia Bento-Silva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
- Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Bruna Carbas
- Instituto Nacional de Investigação Agrária e Veterinária, Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
| | - Daniel Gaspar
- Instituto Politécnico de Coimbra, Escola Superior Agrária, Bencanta, 3045-601 Coimbra, Portugal
| | - Manuel Paulo
- Instituto Politécnico de Coimbra, Escola Superior Agrária, Bencanta, 3045-601 Coimbra, Portugal
| | - Cláudia Brites
- Instituto Politécnico de Coimbra, Escola Superior Agrária, Bencanta, 3045-601 Coimbra, Portugal
| | - Pedro Mendes-Moreira
- Instituto Politécnico de Coimbra, Escola Superior Agrária, Bencanta, 3045-601 Coimbra, Portugal
| | - Carla Moita Brites
- Instituto Nacional de Investigação Agrária e Veterinária, Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
| | - Maria do Rosário Bronze
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
- Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Instituto de Biologia Experimental e Tecnológica, Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
| | - Marcos Malosetti
- Biometris-Applied Statistics, Wageningen University, Radix, Building 107, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Fred van Eeuwijk
- Biometris-Applied Statistics, Wageningen University, Radix, Building 107, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Maria Carlota Vaz Patto
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
| |
Collapse
|
48
|
|
49
|
Prasanna BM, Palacios-Rojas N, Hossain F, Muthusamy V, Menkir A, Dhliwayo T, Ndhlela T, San Vicente F, Nair SK, Vivek BS, Zhang X, Olsen M, Fan X. Molecular Breeding for Nutritionally Enriched Maize: Status and Prospects. Front Genet 2020; 10:1392. [PMID: 32153628 PMCID: PMC7046684 DOI: 10.3389/fgene.2019.01392] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022] Open
Abstract
Maize is a major source of food security and economic development in sub-Saharan Africa (SSA), Latin America, and the Caribbean, and is among the top three cereal crops in Asia. Yet, maize is deficient in certain essential amino acids, vitamins, and minerals. Biofortified maize cultivars enriched with essential minerals and vitamins could be particularly impactful in rural areas with limited access to diversified diet, dietary supplements, and fortified foods. Significant progress has been made in developing, testing, and deploying maize cultivars biofortified with quality protein maize (QPM), provitamin A, and kernel zinc. In this review, we outline the status and prospects of developing nutritionally enriched maize by successfully harnessing conventional and molecular marker-assisted breeding, highlighting the need for intensification of efforts to create greater impacts on malnutrition in maize-consuming populations, especially in the low- and middle-income countries. Molecular marker-assisted selection methods are particularly useful for improving nutritional traits since conventional breeding methods are relatively constrained by the cost and throughput of nutritional trait phenotyping.
Collapse
Affiliation(s)
| | | | - Firoz Hossain
- ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Vignesh Muthusamy
- ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Abebe Menkir
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | | | | | | | | | | | | | - Mike Olsen
- International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| | - Xingming Fan
- Institute of Crop Sciences, Yunnan Academy of Agricultural Sciences (YAAS), Kunming, China
| |
Collapse
|
50
|
Interaction Between Induced and Natural Variation at oil yellow1 Delays Reproductive Maturity in Maize. G3-GENES GENOMES GENETICS 2020; 10:797-810. [PMID: 31822516 PMCID: PMC7003087 DOI: 10.1534/g3.119.400838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We previously demonstrated that maize (Zea mays) locus very oil yellow1 (vey1) encodes a putative cis-regulatory expression polymorphism at the magnesium chelatase subunit I gene (aka oil yellow1) that strongly modifies the chlorophyll content of the semi-dominant Oy1-N1989 mutants. The vey1 allele of Mo17 inbred line reduces chlorophyll content in the mutants leading to reduced photosynthetic output. Oy1-N1989 mutants in B73 reached reproductive maturity four days later than wild-type siblings. Enhancement of Oy1-N1989 by the Mo17 allele at the vey1 QTL delayed maturity further, resulting in detection of a flowering time QTL in two bi-parental mapping populations crossed to Oy1-N1989. The near isogenic lines of B73 harboring the vey1 allele from Mo17 delayed flowering of Oy1-N1989 mutants by twelve days. Just as previously observed for chlorophyll content, vey1 had no effect on reproductive maturity in the absence of the Oy1-N1989 allele. Loss of chlorophyll biosynthesis in Oy1-N1989 mutants and enhancement by vey1 reduced CO2 assimilation. We attempted to separate the effects of photosynthesis on the induction of flowering from a possible impact of chlorophyll metabolites and retrograde signaling by manually reducing leaf area. Removal of leaves, independent of the Oy1-N1989 mutant, delayed flowering but surprisingly reduced chlorophyll contents of emerging leaves. Thus, defoliation did not completely separate the identity of the signal(s) that regulates flowering time from changes in chlorophyll content in the foliage. These findings illustrate the necessity to explore the linkage between metabolism and the mechanisms that connect it to flowering time regulation.
Collapse
|