1
|
Tian Z, Nepomuceno AL, Song Q, Stupar RM, Liu B, Kong F, Ma J, Lee SH, Jackson SA. Soybean2035: A decadal vision for soybean functional genomics and breeding. MOLECULAR PLANT 2025; 18:245-271. [PMID: 39772289 DOI: 10.1016/j.molp.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/29/2024] [Accepted: 01/05/2025] [Indexed: 01/31/2025]
Abstract
Soybean, the fourth most important crop in the world, uniquely serves as a source of both plant oil and plant protein for the world's food and animal feed. Although soybean production has increased approximately 13-fold over the past 60 years, the continually growing global population necessitates further increases in soybean production. In the past, especially in the last decade, significant progress has been made in both functional genomics and molecular breeding. However, many more challenges should be overcome to meet the anticipated future demand. Here, we summarize past achievements in the areas of soybean omics, functional genomics, and molecular breeding. Furthermore, we analyze trends in these areas, including shortages and challenges, and propose new directions, potential approaches, and possible outputs toward 2035. Our views and perspectives provide insight into accelerating the development of elite soybean varieties to meet the increasing demands of soybean production.
Collapse
Affiliation(s)
- Zhixi Tian
- Yazhouwan National Laboratory, Sanya, Hainan, China.
| | | | - Qingxin Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| | - Robert M Stupar
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA.
| | - Bin Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Key Laboratory of Soybean Biology (Beijing) (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Fanjiang Kong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China.
| | - Jianxin Ma
- Department of Agronomy, Purdue University, West Lafayette, IN, USA.
| | - Suk-Ha Lee
- Department of Agriculture, Forestry and Bioresources and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA.
| |
Collapse
|
2
|
Stitzer MC, Seetharam AS, Scheben A, Hsu SK, Schulz AJ, AuBuchon-Elder TM, El-Walid M, Ferebee TH, Hale CO, La T, Liu ZY, McMorrow SJ, Minx P, Phillips AR, Syring ML, Wrightsman T, Zhai J, Pasquet R, McAllister CA, Malcomber ST, Traiperm P, Layton DJ, Zhong J, Costich DE, Dawe RK, Fengler K, Harris C, Irelan Z, Llaca V, Parakkal P, Zastrow-Hayes G, Woodhouse MR, Cannon EK, Portwood JL, Andorf CM, Albert PS, Birchler JA, Siepel A, Ross-Ibarra J, Romay MC, Kellogg EA, Buckler ES, Hufford MB. Extensive genome evolution distinguishes maize within a stable tribe of grasses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.633974. [PMID: 39896679 PMCID: PMC11785232 DOI: 10.1101/2025.01.22.633974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Over the last 20 million years, the Andropogoneae tribe of grasses has evolved to dominate 17% of global land area. Domestication of these grasses in the last 10,000 years has yielded our most productive crops, including maize, sugarcane, and sorghum. The majority of Andropogoneae species, including maize, show a history of polyploidy - a condition that, while offering the evolutionary advantage of multiple gene copies, poses challenges to basic cellular processes, gene expression, and epigenetic regulation. Genomic studies of polyploidy have been limited by sparse sampling of taxa in groups with multiple polyploidy events. Here, we present 33 genome assemblies from 27 species, including chromosome-scale assemblies of maize relatives Zea and Tripsacum. In maize, the after-effects of polyploidy have been widely studied, showing reduced chromosome number, biased fractionation of duplicate genes, and transposable element (TE) expansions. While we observe these patterns within the genus Zea, 12 other polyploidy events deviate significantly. Those tetraploids and hexaploids retain elevated chromosome number, maintain nearly complete complements of duplicate genes, and have only stochastic TE amplifications. These genomes reveal variable outcomes of polyploidy, challenging simple predictions and providing a foundation for understanding its evolutionary implications in an ecologically and economically important clade.
Collapse
Affiliation(s)
- Michelle C Stitzer
- Institute for Genomic Diversity, Cornell University, Ithaca, NY 14850 USA
| | - Arun S Seetharam
- Ecology, Evolution, and Organismal Biology, Iowa State University, Ames IA 50011 USA
| | - Armin Scheben
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724 USA
| | - Sheng-Kai Hsu
- Institute for Genomic Diversity, Cornell University, Ithaca, NY 14850 USA
| | - Aimee J Schulz
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14850 USA
| | | | - Mohamed El-Walid
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14850 USA
| | - Taylor H Ferebee
- Department of Computational Biology, Cornell University, Ithaca, NY 14850 USA
| | - Charles O Hale
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14850 USA
| | - Thuy La
- Institute for Genomic Diversity, Cornell University, Ithaca, NY 14850 USA
| | - Zong-Yan Liu
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14850 USA
| | - Sarah J McMorrow
- Institute for Genomic Diversity, Cornell University, Ithaca, NY 14850 USA
| | - Patrick Minx
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | - Alyssa R Phillips
- Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, Davis CA 95616 USA
| | - Michael L Syring
- Ecology, Evolution, and Organismal Biology, Iowa State University, Ames IA 50011 USA
| | - Travis Wrightsman
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14850 USA
| | - Jingjing Zhai
- Institute for Genomic Diversity, Cornell University, Ithaca, NY 14850 USA
| | - Rémy Pasquet
- DIADE, IRD, CIRAD, University of Montpellier, Montpellier, France
| | | | | | - Paweena Traiperm
- Department of Plant Science, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, Thailand
| | - Daniel J Layton
- Indiana University, Department of Biology, Bloomington, IN 47405 USA
| | - Jinshun Zhong
- South China Agricultural University, Guangzhou, Guangdong, 510642 China
| | - Denise E Costich
- Institute for Genomic Diversity, Cornell University, Ithaca, NY 14850 USA
| | - R Kelly Dawe
- Department of Genetics, University of Georgia, Athens, GA 30602 USA
| | | | | | | | | | | | | | | | - Ethalinda K Cannon
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011 USA
| | - John L Portwood
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011 USA
| | - Carson M Andorf
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011 USA
| | - Patrice S Albert
- Division of Biological Sciences, University of Missouri, Columbia MO 65211 USA
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia MO 65211 USA
| | - Adam Siepel
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724 USA
| | - Jeffrey Ross-Ibarra
- Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, Davis CA 95616 USA
- Genome Center, University of California, Davis, Davis, CA 95616 USA
| | - M Cinta Romay
- Institute for Genomic Diversity, Cornell University, Ithaca, NY 14850 USA
| | | | - Edward S Buckler
- Institute for Genomic Diversity, Cornell University, Ithaca, NY 14850 USA
- USDA-ARS, Ithaca, NY 14850 USA
| | - Matthew B Hufford
- Ecology, Evolution, and Organismal Biology, Iowa State University, Ames IA 50011 USA
| |
Collapse
|
3
|
Huang X, Wang Y, Zhang S, Pei L, You J, Long Y, Li J, Zhang X, Zhu L, Wang M. Epigenomic and 3D genomic mapping reveals developmental dynamics and subgenomic asymmetry of transcriptional regulatory architecture in allotetraploid cotton. Nat Commun 2024; 15:10721. [PMID: 39730363 DOI: 10.1038/s41467-024-55309-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 12/06/2024] [Indexed: 12/29/2024] Open
Abstract
Although epigenetic modification has long been recognized as a vital force influencing gene regulation in plants, the dynamics of chromatin structure implicated in the intertwined transcriptional regulation of duplicated genes in polyploids have yet to be understood. Here, we document the dynamic organization of chromatin structure in two subgenomes of allotetraploid cotton (Gossypium hirsutum) by generating 3D genomic, epigenomic and transcriptomic datasets from 12 major tissues/developmental stages covering the life cycle. We systematically identify a subset of genes that are closely associated with specific tissue functions. Interestingly, these genes exhibit not only higher tissue specificity but also a more pronounced homoeologous bias. We comprehensively elucidate the intricate process of subgenomic collaboration and divergence across various tissues. A comparison among subgenomes in the 12 tissues reveals widespread differences in the reorganization of 3D genome structures, with the Dt subgenome exhibiting a higher extent of dynamic chromatin status than the At subgenome. Moreover, we construct a comprehensive atlas of putative functional genome elements and discover that 37 cis-regulatory elements (CREs) have selection signals acquired during domestication and improvement. These data and analyses are publicly available to the research community through a web portal. In summary, this study provides abundant resources and depicts the regulatory architecture of the genome, which thereby facilitates the understanding of biological processes and guides cotton breeding.
Collapse
Affiliation(s)
- Xianhui Huang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuejin Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sainan Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liuling Pei
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiaqi You
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuexuan Long
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianying Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- College of Life Science, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
4
|
Wang X, Duan J, Clark CB, Feng W, Ma J. Noncanonical transcription initiation is primarily tissue specific and epigenetically tuned in paleopolyploid plants. THE PLANT CELL 2024; 37:koae288. [PMID: 39540911 DOI: 10.1093/plcell/koae288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Alternative transcription initiation (ATI) appears to be a ubiquitous regulatory mechanism of gene expression in eukaryotes. However, the extent to which it affects the products of gene expression and how it evolves and is regulated remain unknown. Here, we report genome-wide identification and analysis of transcription start sites (TSSs) in various soybean (Glycine max) tissues using a survey of transcription initiation at promoter elements with high-throughput sequencing (STRIPE-seq). We defined 193,579 TSS clusters/regions (TSRs) in 37,911 annotated genes, with 56.5% located in canonical regulatory regions and 43.5% from start codons to 3' untranslated regions, which were responsible for changes in open reading frames of 24,131 genes. Strikingly, 6,845 genes underwent ATI within coding sequences (CDSs). These CDS-TSRs were tissue-specific, did not have TATA-boxes typical of canonical promoters, and were embedded in nucleosome-free regions flanked by nucleosomes with enhanced levels of histone marks potentially associated with intragenic transcriptional initiation, suggesting that ATI within CDSs was epigenetically tuned and associated with tissue-specific functions. Overall, duplicated genes possessed more TSRs, exhibited lower degrees of tissue specificity, and underwent stronger purifying selection than singletons. This study highlights the significance of ATI and the genomic and epigenomic factors shaping the distribution of ATI in CDSs in a paleopolyploid eukaryote.
Collapse
Affiliation(s)
- Xutong Wang
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jingbo Duan
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Chancelor B Clark
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Wanjie Feng
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jianxin Ma
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
5
|
Jiao W, Wang M, Guan Y, Guo W, Zhang C, Wei Y, Zhao Z, Ma H, Wang L, Jiang X, Ye W, Cao D, Song Q. Transcriptional regulatory network reveals key transcription factors for regulating agronomic traits in soybean. Genome Biol 2024; 25:313. [PMID: 39695844 DOI: 10.1186/s13059-024-03454-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Transcription factors (TFs) bind regulatory genomic regions to orchestrate spatio-temporal expression of target genes. Global dissection of the cistrome is critical for elucidating transcriptional networks underlying complex agronomic traits in crops. RESULTS Here, we generate a comprehensive genome-wide binding map for 148 TFs using DNA affinity purification sequencing in soybean. We find TF binding sites (TFBSs) exhibit elevated chromatin accessibility and contain more rare alleles than other genomic regions. Intriguingly, the methylation variations at TFBSs partially contribute to expression bias among whole genome duplication paralogs. Furthermore, we construct a soybean gene regulatory network (SoyGRN) by integrating TF-target interactions with diverse datasets encompassing gene expression, TFBS motifs, chromatin accessibility, and evolutionarily conserved regulation. SoyGRN comprises 2.44 million genome-wide interactions among 3188 TFs and 51,665 target genes. We successfully identify key TFs governing seed coat color and oil content and prioritize candidate genes within quantitative trait loci associated with various agronomic traits using SoyGRN. To accelerate utilization of SoyGRN, we develop an interactive webserver ( www.soytfbase.cn ) for soybean community to explore functional TFs involved in trait regulation. CONCLUSIONS Overall, our study unravels intricate landscape of TF-target interactions in soybean and provides a valuable resource for dissecting key regulators for control of agronomic traits to accelerate soybean improvement.
Collapse
Affiliation(s)
- Wu Jiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Mangmang Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Yijian Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Wei Guo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, China
| | - Chang Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Yuanchun Wei
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Zhenwei Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Hongyu Ma
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Longfei Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Xinyu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Wenxue Ye
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Dong Cao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, China.
| | - Qingxin Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
6
|
DiBiase CN, Cheng X, Lee G, Moore RC, McCoy AG, Chilvers MI, Sun L, Wang D, Lin F, Zhao M. DNA methylation analysis reveals local changes in resistant and susceptible soybean lines in response to Phytophthora sansomeana. G3 (BETHESDA, MD.) 2024; 14:jkae191. [PMID: 39141590 PMCID: PMC11457093 DOI: 10.1093/g3journal/jkae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024]
Abstract
Phytophthora sansomeana is an emerging oomycete pathogen causing root rot in many agricultural species including soybean. However, as of now, only one potential resistance gene has been identified in soybean, and our understanding of how genetic and epigenetic regulation in soybean contributes to responses against this pathogen remains largely unknown. In this study, we performed whole genome bisulfite sequencing (WGBS) on two soybean lines, Colfax (resistant) and Williams 82 (susceptible), in response to P. sansomeana at two time points: 4 and 16 hours post-inoculation to compare their methylation changes. Our findings revealed that there were no significant changes in genome-wide CG, CHG (H = A, T, or C), and CHH methylation. However, we observed local methylation changes, specially an increase in CHH methylation around genes and transposable elements (TEs) after inoculation, which occurred earlier in the susceptible line and later in the resistant line. After inoculation, we identified differentially methylated regions (DMRs) in both Colfax and Williams 82, with a predominant presence in TEs. Notably, our data also indicated that more TEs exhibited changes in their methylomes in the susceptible line compared to the resistant line. Furthermore, we discovered 837 DMRs within or flanking 772 differentially expressed genes (DEGs) in Colfax and 166 DMRs within or flanking 138 DEGs in Williams 82. These DEGs had diverse functions, with Colfax primarily showing involvement in metabolic process, defense response, plant and pathogen interaction, anion and nucleotide binding, and catalytic activity, while Williams 82 exhibited a significant association with photosynthesis. These findings suggest distinct molecular responses to P. sansomeana infection in the resistant and susceptible soybean lines.
Collapse
Affiliation(s)
| | - Xi Cheng
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL 32611, USA
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Gwonjin Lee
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Richard C Moore
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Austin G McCoy
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Martin I Chilvers
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Lianjun Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Dechun Wang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Feng Lin
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
- Fisher Delta Research, Extension, and Education Center, Division of Plant Sciences and Technology, University of Missouri, Portageville, MO 63873, USA
| | - Meixia Zhao
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL 32611, USA
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
7
|
Shi T, Gao Z, Chen J, Van de Peer Y. Dosage sensitivity shapes balanced expression and gene longevity of homoeologs after whole-genome duplications in angiosperms. THE PLANT CELL 2024; 36:4323-4337. [PMID: 39121058 PMCID: PMC7616505 DOI: 10.1093/plcell/koae227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/23/2024] [Accepted: 08/01/2024] [Indexed: 08/11/2024]
Abstract
Following whole-genome duplication (WGD), duplicate gene pairs (homoeologs) can evolve varying degrees of expression divergence. However, the determinants influencing these relative expression level differences (RFPKM) between homoeologs remain elusive. In this study, we analyzed the RFPKM between homoeologs in 3 angiosperms, Nymphaea colorata, Nelumbo nucifera, and Acorus tatarinowii, all having undergone a single WGD since the origin of angiosperms. Our results show significant positive correlations in RFPKM of homoeologs among tissues within the same species, and among orthologs across these 3 species, indicating convergent expression balance/bias between homoeologous gene copies following independent WGDs. We linked RFPKM between homoeologs to gene attributes associated with dosage-balance constraints, such as protein-protein interactions, lethal-phenotype scores in Arabidopsis (Arabidopsis thaliana) orthologs, domain numbers, and expression breadth. Notably, homoeologs with lower RFPKM often had more interactions and higher lethal-phenotype scores, indicating selective pressures favoring balanced expression. Also, homoeologs with lower RFPKM were more likely to be retained after WGDs in angiosperms. Within Nelumbo, greater RFPKM between homoeologs correlated with increased cis- and trans-regulatory differentiation between species, highlighting the ongoing escalation of gene expression divergence. We further found that expression degeneration in 1 copy of homoeologs is inclined toward nonfunctionalization. Our research highlights the importance of balanced expression, shaped by dosage-balance constraints, in the evolutionary retention of homoeologs in plants.
Collapse
Affiliation(s)
- Tao Shi
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan430074, China
| | - Zhiyan Gao
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan430074, China
| | - Jinming Chen
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan430074, China
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Centre for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, 0028Pretoria, South-Africa
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, 210095Nanjing, China
| |
Collapse
|
8
|
Xu J, Wang Q, Tang X, Feng X, Zhang X, Liu T, Wu F, Wang Q, Feng X, Tang Q, Lisch D, Lu Y. Drought-induced circular RNAs in maize roots: Separating signal from noise. PLANT PHYSIOLOGY 2024; 196:352-367. [PMID: 38669308 DOI: 10.1093/plphys/kiae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 04/28/2024]
Abstract
Circular RNAs (circRNAs) play an important role in diverse biological processes; however, their origin and functions, especially in plants, remain largely unclear. Here, we used 2 maize (Zea mays) inbred lines, as well as 14 of their derivative recombination inbred lines with different drought sensitivity, to systematically characterize 8,790 circRNAs in maize roots under well-watered (WW) and water-stress (WS) conditions. We found that a diverse set of circRNAs expressed at significantly higher levels under WS. Enhanced expression of circRNAs was associated with longer flanking introns and an enrichment of long interspersed nuclear element retrotransposable elements. The epigenetic marks found at the back-splicing junctions of circRNA-producing genes were markedly different from canonical splicing, characterized by increased levels of H3K36me3/H3K4me1, as well as decreased levels of H3K9Ac/H3K27Ac. We found that genes expressing circRNAs are subject to relaxed selection. The significant enrichment of trait-associated sites along their genic regions suggested that genes giving rise to circRNAs were associated with plant survival rate under drought stress, implying that circRNAs play roles in plant drought responses. Furthermore, we found that overexpression of circMED16, one of the drought-responsive circRNAs, enhances drought tolerance in Arabidopsis (Arabidopsis thaliana). Our results provide a framework for understanding the intricate interplay of epigenetic modifications and how they contribute to the fine-tuning of circRNA expression under drought stress.
Collapse
Affiliation(s)
- Jie Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Sichuan 611130, China
- Maize Research Institute, Sichuan Agricultural University, Sichuan 611130, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Sichuan 611130, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Sichuan 611130, China
| | - Qi Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Sichuan 611130, China
- Maize Research Institute, Sichuan Agricultural University, Sichuan 611130, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Sichuan 611130, China
| | - Xin Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Sichuan 611130, China
- Maize Research Institute, Sichuan Agricultural University, Sichuan 611130, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Sichuan 611130, China
| | - Xiaoju Feng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Sichuan 611130, China
- Maize Research Institute, Sichuan Agricultural University, Sichuan 611130, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Sichuan 611130, China
| | - Xiaoyue Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Sichuan 611130, China
- Maize Research Institute, Sichuan Agricultural University, Sichuan 611130, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Sichuan 611130, China
| | - Tianhong Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Sichuan 611130, China
- Maize Research Institute, Sichuan Agricultural University, Sichuan 611130, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Sichuan 611130, China
| | - Fengkai Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Sichuan 611130, China
- Maize Research Institute, Sichuan Agricultural University, Sichuan 611130, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Sichuan 611130, China
| | - Qingjun Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Sichuan 611130, China
- Maize Research Institute, Sichuan Agricultural University, Sichuan 611130, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Sichuan 611130, China
| | - Xuanjun Feng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Sichuan 611130, China
- Maize Research Institute, Sichuan Agricultural University, Sichuan 611130, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Sichuan 611130, China
| | - Qi Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Sichuan 611130, China
- Maize Research Institute, Sichuan Agricultural University, Sichuan 611130, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Sichuan 611130, China
| | - Damon Lisch
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Yanli Lu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Sichuan 611130, China
- Maize Research Institute, Sichuan Agricultural University, Sichuan 611130, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Sichuan 611130, China
| |
Collapse
|
9
|
Li S, Wang W, Sun L, Zhu H, Hou R, Zhang H, Tang X, Clark CB, Swarm SA, Nelson RL, Ma J. Artificial selection of mutations in two nearby genes gave rise to shattering resistance in soybean. Nat Commun 2024; 15:7588. [PMID: 39217192 PMCID: PMC11365945 DOI: 10.1038/s41467-024-52044-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Resistance to pod shattering is a key domestication-related trait selected for seed production in many crops. Here, we show that the transition from shattering in wild soybeans to shattering resistance in cultivated soybeans resulted from selection of mutations within the coding sequences of two nearby genes - Sh1 and Pdh1. Sh1 encodes a C2H2-like zinc finger transcription factor that promotes shattering by repressing SHAT1-5 expression, thereby reducing the secondary wall thickness of fiber cap cells in the abscission layers of pod sutures, while Pdh1 encodes a dirigent protein that orchestrates asymmetric lignin distribution in inner sclerenchyma, creating torsion in pod walls that facilitates shattering. Integration analyses of quantitative trait locus mapping, genome-wide association studies, and allele distribution in representative soybean germplasm suggest that these two genes are primary modulators underlying this domestication trait. Our study thus provides comprehensive understanding regarding the genetic, molecular, and cellular bases of shattering resistance in soybeans.
Collapse
Affiliation(s)
- Shuai Li
- Department of Agronomy, Purdue University, West Lafayette, IN, USA.
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| | - Weidong Wang
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Lianjun Sun
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Hong Zhu
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Rui Hou
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Huiying Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Xuemin Tang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Chancelor B Clark
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Stephen A Swarm
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
- Beck's Hybrids, Atlanta, IN, USA
| | - Randall L Nelson
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
| | - Jianxin Ma
- Department of Agronomy, Purdue University, West Lafayette, IN, USA.
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
10
|
Beringer M, Choudhury RR, Mandáková T, Grünig S, Poretti M, Leitch IJ, Lysak MA, Parisod C. Biased Retention of Environment-Responsive Genes Following Genome Fractionation. Mol Biol Evol 2024; 41:msae155. [PMID: 39073781 PMCID: PMC11306978 DOI: 10.1093/molbev/msae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024] Open
Abstract
The molecular underpinnings and consequences of cycles of whole-genome duplication (WGD) and subsequent gene loss through subgenome fractionation remain largely elusive. Endogenous drivers, such as transposable elements (TEs), have been postulated to shape genome-wide dominance and biased fractionation, leading to a conserved least-fractionated (LF) subgenome and a degenerated most-fractionated (MF) subgenome. In contrast, the role of exogenous factors, such as those induced by environmental stresses, has been overlooked. In this study, a chromosome-scale assembly of the alpine buckler mustard (Biscutella laevigata; Brassicaceae) that underwent a WGD event about 11 million years ago is coupled with transcriptional responses to heat, cold, drought, and herbivory to assess how gene expression is associated with differential gene retention across the MF and LF subgenomes. Counteracting the impact of TEs in reducing the expression and retention of nearby genes across the MF subgenome, dosage balance is highlighted as a main endogenous promoter of the retention of duplicated gene products under purifying selection. Consistent with the "turn a hobby into a job" model, about one-third of environment-responsive duplicates exhibit novel expression patterns, with one copy typically remaining conditionally expressed, whereas the other copy has evolved constitutive expression, highlighting exogenous factors as a major driver of gene retention. Showing uneven patterns of fractionation, with regions remaining unbiased, but with others showing high bias and significant enrichment in environment-responsive genes, this mesopolyploid genome presents evolutionary signatures consistent with an interplay of endogenous and exogenous factors having driven gene content following WGD-fractionation cycles.
Collapse
Affiliation(s)
- Marc Beringer
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Rimjhim Roy Choudhury
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Terezie Mandáková
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Sandra Grünig
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Manuel Poretti
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | | | - Martin A Lysak
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Christian Parisod
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| |
Collapse
|
11
|
Mabry ME, Abrahams RS, Al-Shehbaz IA, Baker WJ, Barak S, Barker MS, Barrett RL, Beric A, Bhattacharya S, Carey SB, Conant GC, Conran JG, Dassanayake M, Edger PP, Hall JC, Hao Y, Hendriks KP, Hibberd JM, King GJ, Kliebenstein DJ, Koch MA, Leitch IJ, Lens F, Lysak MA, McAlvay AC, McKibben MTW, Mercati F, Moore RC, Mummenhoff K, Murphy DJ, Nikolov LA, Pisias M, Roalson EH, Schranz ME, Thomas SK, Yu Q, Yocca A, Pires JC, Harkess AE. Complementing model species with model clades. THE PLANT CELL 2024; 36:1205-1226. [PMID: 37824826 PMCID: PMC11062466 DOI: 10.1093/plcell/koad260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/07/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023]
Abstract
Model species continue to underpin groundbreaking plant science research. At the same time, the phylogenetic resolution of the land plant tree of life continues to improve. The intersection of these 2 research paths creates a unique opportunity to further extend the usefulness of model species across larger taxonomic groups. Here we promote the utility of the Arabidopsis thaliana model species, especially the ability to connect its genetic and functional resources, to species across the entire Brassicales order. We focus on the utility of using genomics and phylogenomics to bridge the evolution and diversification of several traits across the Brassicales to the resources in Arabidopsis, thereby extending scope from a model species by establishing a "model clade." These Brassicales-wide traits are discussed in the context of both the model species Arabidopsis and the family Brassicaceae. We promote the utility of such a "model clade" and make suggestions for building global networks to support future studies in the model order Brassicales.
Collapse
Affiliation(s)
- Makenzie E Mabry
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - R Shawn Abrahams
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN 47906, USA
| | | | | | - Simon Barak
- Ben-Gurion University of the Negev, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Midreshet Ben-Gurion, 8499000, Israel
| | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Russell L Barrett
- National Herbarium of New South Wales, Australian Botanic Garden, Locked Bag 6002, Mount Annan, NSW 2567, Australia
| | - Aleksandra Beric
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, St. Louis, MO 63108, USA
| | - Samik Bhattacharya
- Department of Biology, Botany, University of Osnabrück, D-49076 Osnabrück, Germany
| | - Sarah B Carey
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Gavin C Conant
- Department of Biological Sciences, Bioinformatics Research Center, Program in Genetics, North Carolina State University, Raleigh, NC 27695, USA
| | - John G Conran
- ACEBB and SGC, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI 48864, USA
| | - Jocelyn C Hall
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Yue Hao
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Kasper P Hendriks
- Department of Biology, Botany, University of Osnabrück, D-49076 Osnabrück, Germany
- Functional Traits, Naturalis Biodiversity Center, PO Box 9517, Leiden 2300 RA, the Netherlands
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 1TN, UK
| | - Graham J King
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia
| | | | - Marcus A Koch
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| | - Ilia J Leitch
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | - Frederic Lens
- Functional Traits, Naturalis Biodiversity Center, PO Box 9517, Leiden 2300 RA, the Netherlands
- Institute of Biology Leiden, Plant Sciences, Leiden University, 2333 BE Leiden, the Netherlands
| | - Martin A Lysak
- CEITEC, and NCBR, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Alex C McAlvay
- Institute of Economic Botany, New York Botanical Garden, The Bronx, NY 10458, USA
| | - Michael T W McKibben
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Francesco Mercati
- National Research Council (CNR), Institute of Biosciences and Bioresource (IBBR), Palermo 90129, Italy
| | | | - Klaus Mummenhoff
- Department of Biology, Botany, University of Osnabrück, D-49076 Osnabrück, Germany
| | - Daniel J Murphy
- Royal Botanic Gardens Victoria, Melbourne, VIC 3004, Australia
| | | | - Michael Pisias
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Eric H Roalson
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - M Eric Schranz
- Biosystematics Group, Wageningen University, 6708 PB Wageningen, the Netherlands
| | - Shawn K Thomas
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
- Bioinformatics and Analytics Core, University of Missouri, Columbia, MO 65211, USA
| | - Qingyi Yu
- Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Hilo, HI 96720, USA
| | - Alan Yocca
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - J Chris Pires
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523-1170, USA
| | - Alex E Harkess
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| |
Collapse
|
12
|
Liu B, Yang D, Wang D, Liang C, Wang J, Lisch D, Zhao M. Heritable changes of epialleles near genes in maize can be triggered in the absence of CHH methylation. PLANT PHYSIOLOGY 2024; 194:2511-2532. [PMID: 38109503 PMCID: PMC10980416 DOI: 10.1093/plphys/kiad668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 12/20/2023]
Abstract
Trans-chromosomal interactions resulting in changes in DNA methylation during hybridization have been observed in several plant species. However, little is known about the causes or consequences of these interactions. Here, we compared DNA methylomes of F1 hybrids that are mutant for a small RNA biogenesis gene, Mop1 (Mediator of paramutation1), with that of their parents, wild-type siblings, and backcrossed progeny in maize (Zea mays). Our data show that hybridization triggers global changes in both trans-chromosomal methylation (TCM) and trans-chromosomal demethylation (TCdM), most of which involved changes in CHH methylation. In more than 60% of these TCM differentially methylated regions (DMRs) in which small RNAs are available, no significant changes in the quantity of small RNAs were observed. Methylation at the CHH TCM DMRs was largely lost in the mop1 mutant, although the effects of this mutant varied depending on the location of these DMRs. Interestingly, an increase in CHH at TCM DMRs was associated with enhanced expression of a subset of highly expressed genes and suppressed expression of a small number of lowly expressed genes. Examination of the methylation levels in backcrossed plants demonstrates that both TCM and TCdM can be maintained in the subsequent generation, but that TCdM is more stable than TCM. Surprisingly, although increased CHH methylation in most TCM DMRs in F1 plants required Mop1, initiation of a new epigenetic state of these DMRs did not require a functional copy of this gene, suggesting that initiation of these changes is independent of RNA-directed DNA methylation.
Collapse
Affiliation(s)
- Beibei Liu
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Diya Yang
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Dafang Wang
- Biology Department, Hofstra University, Hempstead, NY 11549, USA
| | - Chun Liang
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Jianping Wang
- Agronomy Department, University of Florida, Gainesville, FL 32610, USA
| | - Damon Lisch
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Meixia Zhao
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
13
|
Ma R, Huang W, Hu Q, Tian G, An J, Fang T, Liu J, Hou J, Zhao M, Sun L. Tandemly duplicated MYB genes are functionally diverged in the regulation of anthocyanin biosynthesis in soybean. PLANT PHYSIOLOGY 2024; 194:2549-2563. [PMID: 38235827 DOI: 10.1093/plphys/kiae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/13/2023] [Accepted: 12/20/2023] [Indexed: 01/19/2024]
Abstract
Gene duplications have long been recognized as a driving force in the evolution of genes, giving rise to novel functions. The soybean (Glycine max) genome is characterized by a large number of duplicated genes. However, the extent and mechanisms of functional divergence among these duplicated genes in soybean remain poorly understood. In this study, we revealed that 4 MYB genes (GmMYBA5, GmMYBA2, GmMYBA1, and Glyma.09g235000)-presumably generated by tandem duplication specifically in the Phaseoleae lineage-exhibited a stronger purifying selection in soybean compared to common bean (Phaseolus vulgaris). To gain insights into the diverse functions of these tandemly duplicated MYB genes in anthocyanin biosynthesis, we examined the expression, transcriptional activity, induced metabolites, and evolutionary history of these 4 MYB genes. Our data revealed that Glyma.09g235000 is a pseudogene, while the remaining 3 MYB genes exhibit strong transcriptional activation activity, promoting anthocyanin biosynthesis in different soybean tissues. GmMYBA5, GmMYBA2, and GmMYBA1 induced anthocyanin accumulation by upregulating the expression of anthocyanin pathway-related genes. Notably, GmMYBA5 showed a lower capacity for gene induction compared to GmMYBA2 and GmMYBA1. Metabolomics analysis further demonstrated that GmMYBA5 induced distinct anthocyanin accumulation in Nicotiana benthamiana leaves and soybean hairy roots compared to GmMYBA2 and GmMYBA1, suggesting their functional divergence leading to the accumulation of different metabolites accumulation following gene duplication. Together, our data provide evidence of functional divergence within the MYB gene cluster following tandem duplication, which sheds light on the potential evolutionary directions of gene duplications during legume evolution.
Collapse
Affiliation(s)
- Ruirui Ma
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Wenxuan Huang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Quan Hu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Guo Tian
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jie An
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ting Fang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jia Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jingjing Hou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Meixia Zhao
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Lianjun Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
14
|
Fang C, Jiang N, Teresi SJ, Platts AE, Agarwal G, Niederhuth C, Edger PP, Jiang J. Dynamics of accessible chromatin regions and subgenome dominance in octoploid strawberry. Nat Commun 2024; 15:2491. [PMID: 38509076 PMCID: PMC10954716 DOI: 10.1038/s41467-024-46861-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 03/12/2024] [Indexed: 03/22/2024] Open
Abstract
Subgenome dominance has been reported in diverse allopolyploid species, where genes from one subgenome are preferentially retained and are more highly expressed than those from other subgenome(s). However, the molecular mechanisms responsible for subgenome dominance remain poorly understood. Here, we develop genome-wide map of accessible chromatin regions (ACRs) in cultivated strawberry (2n = 8x = 56, with A, B, C, D subgenomes). Each ACR is identified as an MNase hypersensitive site (MHS). We discover that the dominant subgenome A contains a greater number of total MHSs and MHS per gene than the submissive B/C/D subgenomes. Subgenome A suffers fewer losses of MHS-related DNA sequences and fewer MHS fragmentations caused by insertions of transposable elements. We also discover that genes and MHSs related to stress response have been preferentially retained in subgenome A. We conclude that preservation of genes and their cognate ACRs, especially those related to stress responses, play a major role in the establishment of subgenome dominance in octoploid strawberry.
Collapse
Affiliation(s)
- Chao Fang
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Ning Jiang
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Michigan State University AgBioResearch, East Lansing, MI, 48824, USA
- Genetics and Genome Sciences Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Scott J Teresi
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Genetics and Genome Sciences Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Adrian E Platts
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Gaurav Agarwal
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Chad Niederhuth
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Michigan State University AgBioResearch, East Lansing, MI, 48824, USA
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA.
- Michigan State University AgBioResearch, East Lansing, MI, 48824, USA.
- Genetics and Genome Sciences Program, Michigan State University, East Lansing, MI, 48824, USA.
| | - Jiming Jiang
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA.
- Michigan State University AgBioResearch, East Lansing, MI, 48824, USA.
| |
Collapse
|
15
|
Meca E, Díez CM, Gaut BS. Modeling transposable elements dynamics during polyploidization in plants. J Theor Biol 2024; 579:111701. [PMID: 38128754 DOI: 10.1016/j.jtbi.2023.111701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 11/24/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
In this work we study the proliferation of transposable elements (TEs) and the epigenetic response of plants during the process of polyploidization. Through a deterministic model, expanding on our previous work on TE proliferation under epigenetic regulation, we study the long-term TE distribution and TE stability in the subgenomes of both autopolyploids and allopolyploids. We also explore different small-interfering RNA (siRNA) action modes on the subgenomes, including a model where siRNAs are not directed to specific genomes and one where siRNAs are directed - i.e. more active - in subgenomes with higher TE loads. In the autopolyploid case, we find long-term stable equilbria that tend to equilibrate the number of active TEs between subgenomes. In the allopolyploid case, directed siRNA action is fundamental to avoid a "winner takes all" outcome of the competition between the TEs in the different subgenomes. We also show that decaying oscillations in the number of TEs occur naturally in all cases, perhaps explaining some of the observed features of 'genomic shock' after hybridization events, and that the balance in the dynamics of the different types of siRNA is determinant for the synchronization of these oscillations.
Collapse
Affiliation(s)
- Esteban Meca
- Departamento de Física Aplicada, Radiología y Medicina Física, Universidad de Córdoba, Campus Universitario de Rabanales, Edificio Albert Einstein (C2), 14014 Córdoba, Spain.
| | - Concepción M Díez
- Departamento de Agronomía, Universidad de Córdoba, Campus Universitario de Rabanales, Edificio Celestino Mutis (C4), 14014 Córdoba, Spain.
| | - Brandon S Gaut
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697-3875, United States of America.
| |
Collapse
|
16
|
Xie WZ, Zheng YY, He W, Bi F, Li Y, Dou T, Zhou R, Guo YX, Deng G, Zhang W, Yuan MH, Sanz-Jimenez P, Zhu XT, Xu XD, Zhou ZW, Zhou ZW, Feng JW, Liu S, Li C, Yang Q, Hu C, Gao H, Dong T, Dang J, Guo Q, Cai W, Zhang J, Yi G, Song JM, Sheng O, Chen LL. Two haplotype-resolved genome assemblies for AAB allotriploid bananas provide insights into banana subgenome asymmetric evolution and Fusarium wilt control. PLANT COMMUNICATIONS 2024; 5:100766. [PMID: 37974402 PMCID: PMC10873913 DOI: 10.1016/j.xplc.2023.100766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Bananas (Musa spp.) are one of the world's most important fruit crops and play a vital role in food security for many developing countries. Most banana cultivars are triploids derived from inter- and intraspecific hybridizations between the wild diploid ancestor species Musa acuminate (AA) and M. balbisiana (BB). We report two haplotype-resolved genome assemblies of the representative AAB-cultivated types, Plantain and Silk, and precisely characterize ancestral contributions by examining ancestry mosaics across the genome. Widespread asymmetric evolution is observed in their subgenomes, which can be linked to frequent homologous exchange events. We reveal the genetic makeup of triploid banana cultivars and verify that subgenome B is a rich source of disease resistance genes. Only 58.5% and 59.4% of Plantain and Silk genes, respectively, are present in all three haplotypes, with >50% of genes being differentially expressed alleles in different subgenomes. We observed that the number of upregulated genes in Plantain is significantly higher than that in Silk at one-week post-inoculation with Fusarium wilt tropical race 4 (Foc TR4), which confirms that Plantain can initiate defense responses faster than Silk. Additionally, we compared genomic and transcriptomic differences among the genes related to carotenoid synthesis and starch metabolism between Plantain and Silk. Our study provides resources for better understanding the genomic architecture of cultivated bananas and has important implications for Musa genetics and breeding.
Collapse
Affiliation(s)
- Wen-Zhao Xie
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China; College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Yu Zheng
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Weidi He
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Fangcheng Bi
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Yaoyao Li
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Tongxin Dou
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Run Zhou
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi-Xiong Guo
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Guiming Deng
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Wenhui Zhang
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Min-Hui Yuan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Pablo Sanz-Jimenez
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Xi-Tong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Xin-Dong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Zu-Wen Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Zhi-Wei Zhou
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Jia-Wu Feng
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Siwen Liu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Chunyu Li
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Qiaosong Yang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Chunhua Hu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Huijun Gao
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Tao Dong
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Jiangbo Dang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Qigao Guo
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Wenguo Cai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jianwei Zhang
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Ganjun Yi
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China.
| | - Jia-Ming Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China.
| | - Ou Sheng
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China.
| | - Ling-Ling Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
17
|
Yu ST, Zhao R, Sun XQ, Hou MX, Cao YM, Zhang J, Chen YJ, Wang KK, Zhang Y, Li JT, Wang Q. DNA Methylation and Chromatin Accessibility Impact Subgenome Expression Dominance in the Common Carp ( Cyprinus carpio). Int J Mol Sci 2024; 25:1635. [PMID: 38338913 PMCID: PMC10855618 DOI: 10.3390/ijms25031635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
DNA methylation and chromatin accessibility play important roles in gene expression, but their function in subgenome expression dominance remains largely unknown. We conducted comprehensive analyses of the transcriptome, DNA methylation, and chromatin accessibility in liver and muscle tissues of allotetraploid common carp, aiming to reveal the function of epigenetic modifications in subgenome expression dominance. A noteworthy overlap in differential expressed genes (DEGs) as well as their functions was observed across the two subgenomes. In the promoter and gene body, the DNA methylation level of the B subgenome was significantly different than that of the A subgenome. Nevertheless, differences in DNA methylation did not align with changes in homoeologous biased expression across liver and muscle tissues. Moreover, the B subgenome exhibited a higher prevalence of open chromatin regions and greater chromatin accessibility, in comparison to the A subgenome. The expression levels of genes located proximally to open chromatin regions were significantly higher than others. Genes with higher chromatin accessibility in the B subgenome exhibited significantly elevated expression levels compared to the A subgenome. Contrastingly, genes without accessibility exhibited similar expression levels in both subgenomes. This study contributes to understanding the regulation of subgenome expression dominance in allotetraploid common carp.
Collapse
Affiliation(s)
- Shuang-Ting Yu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (S.-T.Y.); (R.Z.); (X.-Q.S.); (M.-X.H.); (Y.-M.C.); (J.Z.); (Y.-J.C.); (K.-K.W.); (Y.Z.)
- Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ran Zhao
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (S.-T.Y.); (R.Z.); (X.-Q.S.); (M.-X.H.); (Y.-M.C.); (J.Z.); (Y.-J.C.); (K.-K.W.); (Y.Z.)
| | - Xiao-Qing Sun
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (S.-T.Y.); (R.Z.); (X.-Q.S.); (M.-X.H.); (Y.-M.C.); (J.Z.); (Y.-J.C.); (K.-K.W.); (Y.Z.)
| | - Ming-Xi Hou
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (S.-T.Y.); (R.Z.); (X.-Q.S.); (M.-X.H.); (Y.-M.C.); (J.Z.); (Y.-J.C.); (K.-K.W.); (Y.Z.)
| | - Yi-Ming Cao
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (S.-T.Y.); (R.Z.); (X.-Q.S.); (M.-X.H.); (Y.-M.C.); (J.Z.); (Y.-J.C.); (K.-K.W.); (Y.Z.)
| | - Jin Zhang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (S.-T.Y.); (R.Z.); (X.-Q.S.); (M.-X.H.); (Y.-M.C.); (J.Z.); (Y.-J.C.); (K.-K.W.); (Y.Z.)
| | - Ying-Jie Chen
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (S.-T.Y.); (R.Z.); (X.-Q.S.); (M.-X.H.); (Y.-M.C.); (J.Z.); (Y.-J.C.); (K.-K.W.); (Y.Z.)
| | - Kai-Kuo Wang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (S.-T.Y.); (R.Z.); (X.-Q.S.); (M.-X.H.); (Y.-M.C.); (J.Z.); (Y.-J.C.); (K.-K.W.); (Y.Z.)
| | - Yan Zhang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (S.-T.Y.); (R.Z.); (X.-Q.S.); (M.-X.H.); (Y.-M.C.); (J.Z.); (Y.-J.C.); (K.-K.W.); (Y.Z.)
| | - Jiong-Tang Li
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (S.-T.Y.); (R.Z.); (X.-Q.S.); (M.-X.H.); (Y.-M.C.); (J.Z.); (Y.-J.C.); (K.-K.W.); (Y.Z.)
| | - Qi Wang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (S.-T.Y.); (R.Z.); (X.-Q.S.); (M.-X.H.); (Y.-M.C.); (J.Z.); (Y.-J.C.); (K.-K.W.); (Y.Z.)
| |
Collapse
|
18
|
Cao S, Sawettalake N, Shen L. Gapless genome assembly and epigenetic profiles reveal gene regulation of whole-genome triplication in lettuce. Gigascience 2024; 13:giae043. [PMID: 38991853 PMCID: PMC11238431 DOI: 10.1093/gigascience/giae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/24/2024] [Accepted: 06/22/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Lettuce, an important member of the Asteraceae family, is a globally cultivated cash vegetable crop. With a highly complex genome (∼2.5 Gb; 2n = 18) rich in repeat sequences, current lettuce reference genomes exhibit thousands of gaps, impeding a comprehensive understanding of the lettuce genome. FINDINGS Here, we present a near-complete gapless reference genome for cutting lettuce with high transformability, using long-read PacBio HiFi and Nanopore sequencing data. In comparison to stem lettuce genome, we identify 127,681 structural variations (SVs, present in 0.41 Gb of sequence), reflecting the divergence of leafy and stem lettuce. Interestingly, these SVs are related to transposons and DNA methylation states. Furthermore, we identify 4,612 whole-genome triplication genes exhibiting high expression levels associated with low DNA methylation levels and high N6-methyladenosine RNA modifications. DNA methylation changes are also associated with activation of genes involved in callus formation. CONCLUSIONS Our gapless lettuce genome assembly, an unprecedented achievement in the Asteraceae family, establishes a solid foundation for functional genomics, epigenomics, and crop breeding and sheds new light on understanding the complexity of gene regulation associated with the dynamics of DNA and RNA epigenetics in genome evolution.
Collapse
Affiliation(s)
- Shuai Cao
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
| | - Nunchanoke Sawettalake
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
| | - Lisha Shen
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
19
|
Xu Y, Bush SJ, Yang X, Xu L, Wang B, Ye K. Evolutionary analysis of conserved non-coding elements subsequent to whole-genome duplication in opium poppy. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1804-1824. [PMID: 37706612 DOI: 10.1111/tpj.16466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
Whole-genome duplication (WGD) leads to the duplication of both coding and non-coding sequences within an organism's genome, providing an abundant supply of genetic material that can drive evolution, ultimately contributing to plant adaptation and speciation. Although non-coding sequences contain numerous regulatory elements, they have been understudied compared to coding sequences. In order to address this gap, we explored the evolutionary patterns of regulatory sequences, coding sequences and transcriptomes using conserved non-coding elements (CNEs) as regulatory element proxies following the recent WGD event in opium poppy (Papaver somniferum). Our results showed similar evolutionary patterns in subgenomes of regulatory and coding sequences. Specifically, the biased or unbiased retention of coding sequences reflected the same pattern as retention levels in regulatory sequences. Further, the divergence of gene expression patterns mediated by regulatory element variations occurred at a more rapid pace than that of gene coding sequences. However, gene losses were purportedly dependent on relaxed selection pressure in coding sequences. Specifically, the rapid evolution of tissue-specific benzylisoquinoline alkaloid production in P. somniferum was associated with regulatory element changes. The origin of a novel stem-specific ACR, which utilized ancestral cis-elements as templates, is likely to be linked to the evolutionary trajectory behind the transition of the PSMT1-CYP719A21 cluster from high levels of expression solely in P. rhoeas root tissue to its elevated expression in P. somniferum stem tissue. Our findings demonstrate that rapid regulatory element evolution can contribute to the emergence of new phenotypes and provide valuable insights into the high evolvability of regulatory elements.
Collapse
Affiliation(s)
- Yu Xu
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Stephen J Bush
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xinyi Yang
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Linfeng Xu
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Bo Wang
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Kai Ye
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Genome Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
20
|
Zadesenets KS, Ershov NI, Bondar NP, Rubtsov NB. Unraveling the Unusual Subgenomic Organization in the Neopolyploid Free-Living Flatworm Macrostomum lignano. Mol Biol Evol 2023; 40:msad250. [PMID: 37979163 PMCID: PMC10733133 DOI: 10.1093/molbev/msad250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/21/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023] Open
Abstract
Whole genome duplication (WGD) is an evolutionary event resulting in a redundancy of genetic material. Different mechanisms of WGD, allo- or autopolyploidization, lead to distinct evolutionary trajectories of newly formed polyploids. Genome studies on such species are important for understanding the early stages of genome evolution. However, assembling neopolyploid is a challenging task due to the presence of 2 homologous (or homeologous) chromosome sets and therefore the existence of the extended paralogous regions in its genome. Post-WGD evolution of polyploids includes cytogenetic diploidization leading to the formation of species, whose polyploid origin might be hidden by disomic inheritance. Earlier we uncovered the hidden polyploid origin of the free-living flatworms of the genus Macrostomum (Macrostomum lignano, M. janickei, and M. mirumnovem). Cytogenetic diploidization in these species is accompanied by intensive chromosomal rearrangements including chromosomes fusions. In this study, we unravel the M. lignano genome organization through generation and sequencing of 2 sublines of the commonly used inbred line of M. lignano (called DV1) differing only in a copy number of the largest chromosome (MLI1). Using nontrivial assembly free comparative analysis of their genomes, we deciphered DNA sequences belonging to MLI1 and validated them by sequencing the pool of microdissected MLI1. Here we presented the uncommon mechanism of genome rediplodization of M. lignano, which consists of (i) presence of 3 subgenomes, which emerged via formation of large fused chromosomes and its variants, and (ii) sustaining their heterozygosity through inter- and intrachromosomal rearrangements.
Collapse
Affiliation(s)
- Kira S Zadesenets
- Department of Molecular Genetics, Cell Biology and Bionformatics, The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | - Nikita I Ershov
- Department of Molecular Genetics, Cell Biology and Bionformatics, The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | - Natalia P Bondar
- Department of Molecular Genetics, Cell Biology and Bionformatics, The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Nikolai B Rubtsov
- Department of Molecular Genetics, Cell Biology and Bionformatics, The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
21
|
Pan Y, Zhuang Y, Liu T, Chen H, Wang L, Varshney RK, Zhuang W, Wang X. Deciphering peanut complex genomes paves a way to understand its origin and domestication. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2173-2181. [PMID: 37523347 PMCID: PMC10579718 DOI: 10.1111/pbi.14125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 06/12/2023] [Accepted: 07/01/2023] [Indexed: 08/02/2023]
Abstract
Peanut (Arachis) is a key oil and protein crop worldwide with large genome. The genomes of diploid and tetraploid peanuts have been sequenced, which were compared to decipher their genome structures, evolutionary, and life secrets. Genome sequencing efforts showed that different cultivars, although Bt homeologs being more privileged in gene retention and gene expression. This subgenome bias, extended to sequence variation and point mutation, might be related to the long terminal repeat (LTR) explosions after tetraploidization, especially in At subgenomes. Except that, whole-genome sequences revealed many important genes, for example, fatty acids and triacylglycerols pathway, NBS-LRR (nucleotide-binding site-leucine-rich repeats), and seed size decision genes, were enriched after recursive polyploidization. Each ancestral polyploidy, with old ones having occurred hundreds of thousand years ago, has thousands of duplicated genes in extant genomes, contributing to genetic novelty. Notably, although full genome sequences are available, the actual At subgenome ancestor has still been elusive, highlighted with new debate about peanut origin. Although being an orphan crop lagging behind other crops in genomic resources, the genome sequencing achievement has laid a solid foundation for advancing crop enhancement and system biology research of peanut.
Collapse
Affiliation(s)
- Yuxin Pan
- Center for Genomics and Computational BiologyCollege of Life Science, and College of ScienceNorth China University of Science and TechnologyTangshanHebeiChina
| | - Yuhui Zhuang
- Fujian Provincial Key Laboratory of Plant Molecular and Cell BiologyOil Crops Research InstituteState Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Tao Liu
- Center for Genomics and Computational BiologyCollege of Life Science, and College of ScienceNorth China University of Science and TechnologyTangshanHebeiChina
| | - Hua Chen
- Fujian Provincial Key Laboratory of Plant Molecular and Cell BiologyOil Crops Research InstituteState Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Lihui Wang
- Fujian Provincial Key Laboratory of Plant Molecular and Cell BiologyOil Crops Research InstituteState Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Rajeev K. Varshney
- State Agricultural Biotechnology Centre, and Centre for Crop & Food InnovationFood Futures InstituteMurdoch UniversityMurdochWest AustraliaAustralia
| | - Weijian Zhuang
- Fujian Provincial Key Laboratory of Plant Molecular and Cell BiologyOil Crops Research InstituteState Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xiyin Wang
- Center for Genomics and Computational BiologyCollege of Life Science, and College of ScienceNorth China University of Science and TechnologyTangshanHebeiChina
| |
Collapse
|
22
|
Fang C, Yang M, Tang Y, Zhang L, Zhao H, Ni H, Chen Q, Meng F, Jiang J. Dynamics of cis-regulatory sequences and transcriptional divergence of duplicated genes in soybean. Proc Natl Acad Sci U S A 2023; 120:e2303836120. [PMID: 37871213 PMCID: PMC10622917 DOI: 10.1073/pnas.2303836120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/19/2023] [Indexed: 10/25/2023] Open
Abstract
Transcriptional divergence of duplicated genes after whole genome duplication (WGD) has been described in many plant lineages and is often associated with subgenome dominance, a genome-wide mechanism. However, it is unknown what underlies the transcriptional divergence of duplicated genes in polyploid species that lack subgenome dominance. Soybean is a paleotetraploid with a WGD that occurred 5 to 13 Mya. Approximately 50% of the duplicated genes retained from this WGD exhibit transcriptional divergence. We developed accessible chromatin region (ACR) datasets from leaf, flower, and seed tissues using MNase-hypersensitivity sequencing. We validated enhancer function of several ACRs associated with known genes using CRISPR/Cas9-mediated genome editing. The ACR datasets were used to examine and correlate the transcriptional patterns of 17,111 pairs of duplicated genes in different tissues. We demonstrate that ACR dynamics are correlated with divergence of both expression level and tissue specificity of individual gene pairs. Gain or loss of flanking ACRs and mutation of cis-regulatory elements (CREs) within the ACRs can change the balance of the expression level and/or tissue specificity of the duplicated genes. Analysis of DNA sequences associated with ACRs revealed that the extensive sequence rearrangement after the WGD reshaped the CRE landscape, which appears to play a key role in the transcriptional divergence of duplicated genes in soybean. This may represent a general mechanism for transcriptional divergence of duplicated genes in polyploids that lack subgenome dominance.
Collapse
Affiliation(s)
- Chao Fang
- Department of Plant Biology, Michigan State University, East Lansing, MI48824
| | - Mingyu Yang
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin150081, China
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin150030, China
| | - Yuecheng Tang
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin150081, China
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin150030, China
| | - Ling Zhang
- Agro-Biotechnology Research Institute, Jilin Academy of Agricultural Sciences, Changchun130033, China
| | - Hainan Zhao
- Department of Plant Biology, Michigan State University, East Lansing, MI48824
| | - Hejia Ni
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin150030, China
| | - Qingshan Chen
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin150030, China
| | - Fanli Meng
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin150081, China
| | - Jiming Jiang
- Department of Plant Biology, Michigan State University, East Lansing, MI48824
- Department of Horticulture, Michigan State University, East Lansing, MI48824
- Michigan State University AgBioResearch, East Lansing, MI48824
| |
Collapse
|
23
|
Lallemand T, Leduc M, Desmazières A, Aubourg S, Rizzon C, Landès C, Celton JM. Insights into the Evolution of Ohnologous Sequences and Their Epigenetic Marks Post-WGD in Malus Domestica. Genome Biol Evol 2023; 15:evad178. [PMID: 37847638 PMCID: PMC10601995 DOI: 10.1093/gbe/evad178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/25/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023] Open
Abstract
A Whole Genome Duplication (WGD) event occurred several Ma in a Rosaceae ancestor, giving rise to the Maloideae subfamily which includes today many pome fruits such as pear (Pyrus communis) and apple (Malus domestica). This complete and well-conserved genome duplication makes the apple an organism of choice to study the early evolutionary events occurring to ohnologous chromosome fragments. In this study, we investigated gene sequence evolution and expression, transposable elements (TE) density, and DNA methylation level. Overall, we identified 16,779 ohnologous gene pairs in the apple genome, confirming the relatively recent WGD. We identified several imbalances in QTL localization among duplicated chromosomal fragments and characterized various biases in genome fractionation, gene transcription, TE densities, and DNA methylation. Our results suggest a particular chromosome dominance in this autopolyploid species, a phenomenon that displays similarities with subgenome dominance that has only been described so far in allopolyploids.
Collapse
Affiliation(s)
- Tanguy Lallemand
- Université d’Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Martin Leduc
- Université d’Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Adèle Desmazières
- Université d’Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Sébastien Aubourg
- Université d’Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Carène Rizzon
- Laboratoire de Mathématiques et Modélisation d’Evry (LaMME), UMR CNRS 8071, ENSIIE, USC INRA, Université d’Evry Val d’Essonne, Evry, France
| | - Claudine Landès
- Université d’Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Jean-Marc Celton
- Université d’Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| |
Collapse
|
24
|
Bellec A, Sow MD, Pont C, Civan P, Mardoc E, Duchemin W, Armisen D, Huneau C, Thévenin J, Vernoud V, Depège-Fargeix N, Maunas L, Escale B, Dubreucq B, Rogowsky P, Bergès H, Salse J. Tracing 100 million years of grass genome evolutionary plasticity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1243-1266. [PMID: 36919199 DOI: 10.1111/tpj.16185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/29/2023] [Accepted: 02/24/2023] [Indexed: 05/17/2023]
Abstract
Grasses derive from a family of monocotyledonous plants that includes crops of major economic importance such as wheat, rice, sorghum and barley, sharing a common ancestor some 100 million years ago. The genomic attributes of plant adaptation remain obscure and the consequences of recurrent whole genome duplications (WGD) or polyploidization events, a major force in plant evolution, remain largely speculative. We conducted a comparative analysis of omics data from ten grass species to unveil structural (inversions, fusions, fissions, duplications, substitutions) and regulatory (expression and methylation) basis of genome plasticity, as possible attributes of plant long lasting evolution and adaptation. The present study demonstrates that diverged polyploid lineages sharing a common WGD event often present the same patterns of structural changes and evolutionary dynamics, but these patterns are difficult to generalize across independent WGD events as a result of non-WGD factors such as selection and domestication of crops. Polyploidy is unequivocally linked to the evolutionary success of grasses during the past 100 million years, although it remains difficult to attribute this success to particular genomic consequences of polyploidization, suggesting that polyploids harness the potential of genome duplication, at least partially, in lineage-specific ways. Overall, the present study clearly demonstrates that post-polyploidization reprogramming is more complex than traditionally reported in investigating single species and calls for a critical and comprehensive comparison across independently polyploidized lineages.
Collapse
Affiliation(s)
- Arnaud Bellec
- INRAE/CNRGV US 1258, 24 Chemin de Borde Rouge, 31320, Auzeville-Tolosane, France
| | - Mamadou Dia Sow
- UCA, INRAE, GDEC, 5 Chemin de Beaulieu, 63000, Clermont-Ferrand, France
| | - Caroline Pont
- UCA, INRAE, GDEC, 5 Chemin de Beaulieu, 63000, Clermont-Ferrand, France
| | - Peter Civan
- UCA, INRAE, GDEC, 5 Chemin de Beaulieu, 63000, Clermont-Ferrand, France
| | - Emile Mardoc
- UCA, INRAE, GDEC, 5 Chemin de Beaulieu, 63000, Clermont-Ferrand, France
| | | | - David Armisen
- UCA, INRAE, GDEC, 5 Chemin de Beaulieu, 63000, Clermont-Ferrand, France
| | - Cécile Huneau
- UCA, INRAE, GDEC, 5 Chemin de Beaulieu, 63000, Clermont-Ferrand, France
| | - Johanne Thévenin
- INRAE/AgroParisTech-UMR 1318. Bat 2. Centre INRA de Versailles, route de Saint Cyr, 78026, Versailles CEDEX, France
| | - Vanessa Vernoud
- INRAE/CNRS/ENS/Univ. Lyon-UMR 879, 46 allée d'Italie, 69364, Lyon Cedex 07, France
| | | | - Laurent Maunas
- Arvalis-Institut du végétal, 21 chemin de Pau, 64121 Montardon, France
| | - Brigitte Escale
- Arvalis-Institut du végétal, 21 chemin de Pau, 64121 Montardon, France
- Direction de l'agriculture de Polynésie française, Route de l'Hippodrome, 98713, Papeete, France
| | - Bertrand Dubreucq
- INRAE/AgroParisTech-UMR 1318. Bat 2. Centre INRA de Versailles, route de Saint Cyr, 78026, Versailles CEDEX, France
| | - Peter Rogowsky
- INRAE/CNRS/ENS/Univ. Lyon-UMR 879, 46 allée d'Italie, 69364, Lyon Cedex 07, France
| | - Hélène Bergès
- INRAE/CNRGV US 1258, 24 Chemin de Borde Rouge, 31320, Auzeville-Tolosane, France
| | - Jerome Salse
- UCA, INRAE, GDEC, 5 Chemin de Beaulieu, 63000, Clermont-Ferrand, France
| |
Collapse
|
25
|
Yuan J, Song Q. Polyploidy and diploidization in soybean. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:51. [PMID: 37313224 PMCID: PMC10244302 DOI: 10.1007/s11032-023-01396-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/22/2023] [Indexed: 06/15/2023]
Abstract
Polyploidy is widespread and particularly common in angiosperms. The prevalence of polyploidy in the plant suggests it as a crucial driver of diversification and speciation. The paleopolyploid soybean (Glycine max) is one of the most important crops of plant protein and oil for humans and livestock. Soybean experienced two rounds of whole genome duplication around 13 and 59 million years ago. Due to the relatively slow process of post-polyploid diploidization, most genes are present in multiple copies across the soybean genome. Growing evidence suggests that polyploidization and diploidization could cause rapid and dramatic changes in genomic structure and epigenetic modifications, including gene loss, transposon amplification, and reorganization of chromatin architecture. This review is focused on recent progresses about genetic and epigenetic changes during polyploidization and diploidization of soybean and represents the challenges and potentials for application of polyploidy in soybean breeding.
Collapse
Affiliation(s)
- Jingya Yuan
- College of Life Sciences, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095 Jiangsu China
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095 Jiangsu China
| | - Qingxin Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095 Jiangsu China
| |
Collapse
|
26
|
Liu B, Yang D, Wang D, Liang C, Wang J, Lisch D, Zhao M. Heritable changes of epialleles in maize can be triggered in the absence of DNA methylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.15.537008. [PMID: 37131670 PMCID: PMC10153178 DOI: 10.1101/2023.04.15.537008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Trans-chromosomal interactions resulting in changes in DNA methylation during hybridization have been observed in several plant species. However, very little is known about the causes or consequences of these interactions. Here, we compared DNA methylomes of F1 hybrids that are mutant for a small RNA biogenesis gene, Mop1 (mediator of paramutation1) with that of their parents, wild type siblings, and backcrossed progeny in maize. Our data show that hybridization triggers global changes in both trans-chromosomal methylation (TCM) and trans-chromosomal demethylation (TCdM), most of which involved changes in CHH methylation. In more than 60% of these TCM differentially methylated regions (DMRs) in which small RNAs are available, no significant changes in the quantity of small RNAs were observed. Methylation at the CHH TCM DMRs was largely lost in the mop1 mutant, although the effects of this mutant varied depending on the location of the CHH DMRs. Interestingly, an increase in CHH at TCM DMRs was associated with enhanced expression of a subset of highly expressed genes and suppressed expression of a small number of lowly expressed genes. Examination of the methylation levels in backcrossed plants demonstrates that TCM and TCdM can be maintained in the subsequent generation, but that TCdM is more stable than TCM. Surprisingly, although increased CHH methylation in F1 plants did require Mop1, initiation of the changes in the epigenetic state of TCM DMRs did not require a functional copy of this gene, suggesting that initiation of these changes is not dependent on RNA-directed DNA methylation.
Collapse
Affiliation(s)
- Beibei Liu
- Department of Biology, Miami University, Oxford, OH 45056
| | - Diya Yang
- Department of Biology, Miami University, Oxford, OH 45056
| | - Dafang Wang
- Biology Department, Hofstra University, Hempstead, NY 11549
| | - Chun Liang
- Department of Biology, Miami University, Oxford, OH 45056
| | - Jianping Wang
- Agronomy Department, University of Florida, Gainesville, FL 32610
| | - Damon Lisch
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
| | - Meixia Zhao
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611
| |
Collapse
|
27
|
Chen H, Guo M, Dong S, Wu X, Zhang G, He L, Jiao Y, Chen S, Li L, Luo H. A chromosome-scale genome assembly of Artemisia argyi reveals unbiased subgenome evolution and key contributions of gene duplication to volatile terpenoid diversity. PLANT COMMUNICATIONS 2023; 4:100516. [PMID: 36597358 DOI: 10.1016/j.xplc.2023.100516] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/14/2022] [Accepted: 12/31/2022] [Indexed: 05/11/2023]
Abstract
Artemisia argyi Lévl. et Vant., a perennial Artemisia herb with an intense fragrance, is widely used in traditional medicine in China and many other Asian countries. Here, we present a chromosome-scale genome assembly of A. argyi comprising 3.89 Gb assembled into 17 pseudochromosomes. Phylogenetic and comparative genomic analyses revealed that A. argyi underwent a recent lineage-specific whole-genome duplication (WGD) event after divergence from Artemisia annua, resulting in two subgenomes. We deciphered the diploid ancestral genome of A. argyi, and unbiased subgenome evolution was observed. The recent WGD led to a large number of duplicated genes in the A. argyi genome. Expansion of the terpene synthase (TPS) gene family through various types of gene duplication may have greatly contributed to the diversity of volatile terpenoids in A. argyi. In particular, we identified a typical germacrene D synthase gene cluster within the expanded TPS gene family. The entire biosynthetic pathways of germacrenes, (+)-borneol, and (+)-camphor were elucidated in A. argyi. In addition, partial deletion of the amorpha-4,11-diene synthase (ADS) gene and loss of function of ADS homologs may have resulted in the lack of artemisinin production in A. argyi. Our study provides new insights into the genome evolution of Artemisia and lays a foundation for further improvement of the quality of this important medicinal plant.
Collapse
Affiliation(s)
- Hongyu Chen
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Miaoxian Guo
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Shuting Dong
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xinling Wu
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Guobin Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, China; College of Agronomy, Shandong Agricultural University, Taian 271018, China
| | - Liu He
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yuannian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| | - Hongmei Luo
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
28
|
Chen K, Yang H, Peng Y, Liu D, Zhang J, Zhao Z, Wu L, Lin T, Bai L, Wang L. Genomic analyses provide insights into the polyploidization-driven herbicide adaptation in Leptochloa weeds. PLANT BIOTECHNOLOGY JOURNAL 2023. [PMID: 37154437 PMCID: PMC10363762 DOI: 10.1111/pbi.14065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/21/2023] [Accepted: 04/14/2023] [Indexed: 05/10/2023]
Abstract
Polyploidy confers a selective advantage under stress conditions; however, whether polyploidization mediates enhanced herbicide adaptation remains largely unknown. Tetraploid Leptochloa chinensis is a notorious weed in the rice ecosystem, causing severe yield loss in rice. In China, L. chinensis has only one sister species, the diploid L. panicea, whose damage is rarely reported. To gain insights into the effects of polyploidization on herbicide adaptation, we first assembled a high-quality genome of L. panicea and identified genome structure variations with L. chinensis. Moreover, we identified herbicide-resistance genes specifically expanded in L. chinensis, which may confer a greater herbicide adaptability in L. chinensis. Analysis of gene retention and loss showed that five herbicide target-site genes and several herbicide nontarget-site resistance gene families were retained during polyploidization. Notably, we identified three pairs of polyploidization-retained genes including LcABCC8, LcCYP76C1 and LcCYP76C4 that may enhance herbicide resistance. More importantly, we found that both copies of LcCYP76C4 were under herbicide selection during the spread of L. chinensis in China. Furthermore, we identified another gene potentially involved in herbicide resistance, LcCYP709B2, which is also retained during polyploidization and under selection. This study provides insights into the genomic basis of the enhanced herbicide adaptability of Leptochloa weeds during polyploidization and provides guidance for the precise and efficient control of polyploidy weeds.
Collapse
Affiliation(s)
- Ke Chen
- State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha, China
- Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Ministry of Agriculture and Rural Affairs, Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- Huangpu Research Institute of Longping Agricultural Science and Technology, Guangzhou, China
- Longping Branch, College of Biology, Hunan University, Changsha, China
- Hunan Weed Science Key Laboratory, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Haona Yang
- State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha, China
- Huangpu Research Institute of Longping Agricultural Science and Technology, Guangzhou, China
- Hunan Weed Science Key Laboratory, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yajun Peng
- State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha, China
- Hunan Weed Science Key Laboratory, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Ducai Liu
- Hunan Weed Science Key Laboratory, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | | | - Zhenghong Zhao
- State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha, China
- Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Ministry of Agriculture and Rural Affairs, Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- Huangpu Research Institute of Longping Agricultural Science and Technology, Guangzhou, China
- Longping Branch, College of Biology, Hunan University, Changsha, China
| | - Lamei Wu
- Hunan Weed Science Key Laboratory, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Tao Lin
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Lianyang Bai
- State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha, China
- Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Ministry of Agriculture and Rural Affairs, Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- Huangpu Research Institute of Longping Agricultural Science and Technology, Guangzhou, China
- Longping Branch, College of Biology, Hunan University, Changsha, China
- Hunan Weed Science Key Laboratory, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Lifeng Wang
- State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha, China
- Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Ministry of Agriculture and Rural Affairs, Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- Huangpu Research Institute of Longping Agricultural Science and Technology, Guangzhou, China
- Longping Branch, College of Biology, Hunan University, Changsha, China
- Hunan Weed Science Key Laboratory, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
29
|
Guillotin B, Rahni R, Passalacqua M, Mohammed MA, Xu X, Raju SK, Ramírez CO, Jackson D, Groen SC, Gillis J, Birnbaum KD. A pan-grass transcriptome reveals patterns of cellular divergence in crops. Nature 2023; 617:785-791. [PMID: 37165193 PMCID: PMC10657638 DOI: 10.1038/s41586-023-06053-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 04/05/2023] [Indexed: 05/12/2023]
Abstract
Different plant species within the grasses were parallel targets of domestication, giving rise to crops with distinct evolutionary histories and traits1. Key traits that distinguish these species are mediated by specialized cell types2. Here we compare the transcriptomes of root cells in three grass species-Zea mays, Sorghum bicolor and Setaria viridis. We show that single-cell and single-nucleus RNA sequencing provide complementary readouts of cell identity in dicots and monocots, warranting a combined analysis. Cell types were mapped across species to identify robust, orthologous marker genes. The comparative cellular analysis shows that the transcriptomes of some cell types diverged more rapidly than those of others-driven, in part, by recruitment of gene modules from other cell types. The data also show that a recent whole-genome duplication provides a rich source of new, highly localized gene expression domains that favour fast-evolving cell types. Together, the cell-by-cell comparative analysis shows how fine-scale cellular profiling can extract conserved modules from a pan transcriptome and provide insight on the evolution of cells that mediate key functions in crops.
Collapse
Affiliation(s)
- Bruno Guillotin
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Ramin Rahni
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | | | - Mohammed Ateequr Mohammed
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Xiaosa Xu
- Cold Spring Harbor Laboratory, New York, NY, USA
| | - Sunil Kenchanmane Raju
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Carlos Ortiz Ramírez
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
- UGA-LANGEBIO Cinvestav, Guanajuato, México
| | | | - Simon C Groen
- Department of Nematology and Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Jesse Gillis
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Kenneth D Birnbaum
- Center for Genomics and Systems Biology, New York University, New York, NY, USA.
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
30
|
Chen Y, Fang T, Su H, Duan S, Ma R, Wang P, Wu L, Sun W, Hu Q, Zhao M, Sun L, Dong X. A reference-grade genome assembly for Astragalus mongholicus and insights into the biosynthesis and high accumulation of triterpenoids and flavonoids in its roots. PLANT COMMUNICATIONS 2023; 4:100469. [PMID: 36307985 PMCID: PMC10030368 DOI: 10.1016/j.xplc.2022.100469] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/18/2022] [Accepted: 10/23/2022] [Indexed: 05/04/2023]
Abstract
Astragalus membranaceus var. mongholicus (AMM), a member of the Leguminosae, is one of the most important medicinal plants worldwide. The dried roots of AMM have a wide range of pharmacological effects and are a traditional Chinese medicine. Here, we report the first chromosome-level reference genome of AMM, comprising nine pseudochromosomes with a total size of 1.47 Gb and 27 868 protein-encoding genes. Comparative genomic analysis reveals that AMM has not experienced an independent whole-genome duplication (WGD) event after the WGD event shared by the Papilionoideae species. Analysis of long terminal repeat retrotransposons suggests a recent burst of these elements at approximately 0.13 million years ago, which may explain the large size of the AMM genome. Multiple gene families involved in the biosynthesis of triterpenoids and flavonoids were expanded, and our data indicate that tandem duplication has been the main driver for expansion of these families. Among the expanded families, the phenylalanine ammonia-lyase gene family was primarily expressed in the roots of AMM, suggesting their roles in the biosynthesis of phenylpropanoid compounds. The functional versatility of 2,3-oxidosqualene cyclase genes in cluster III may play a critical role in the diversification of triterpenoids in AMM. Our findings provide novel insights into triterpenoid and flavonoid biosynthesis and can facilitate future research on the genetics and medical applications of AMM.
Collapse
Affiliation(s)
- Yi Chen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ting Fang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - He Su
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China
| | - Sifei Duan
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ruirui Ma
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ping Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Lin Wu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Wenbin Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Qichen Hu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Meixia Zhao
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Lianjun Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Xuehui Dong
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
31
|
Wu N, He Z, Fang J, Liu X, Shen X, Zhang J, Lei Y, Xia Y, He H, Liu W, Chu C, Wang C, Qi Z. Chromosome diversity in Dasypyrum villosum, an important genetic and trait resource for hexaploid wheat engineering. ANNALS OF BOTANY 2023; 131:185-198. [PMID: 35451455 PMCID: PMC9904354 DOI: 10.1093/aob/mcac054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/20/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS Dasypyrum villosum (2n = 2x = 14) harbours potentially beneficial genes for hexaploid and tetraploid wheat improvement. Highly diversified chromosome variation exists among and within accessions due to its open-pollination nature. The wheat-D. villosum T6VS·6AL translocation was widely used in breeding mainly because gene Pm21 in the 6VS segment conferred high and lasting powdery mildew resistance. However, the widespread use of this translocation may narrow the genetic base of wheat. A better solution is to utilize diversified D. villosum accessions as the genetic source for wheat breeding. Analysis of cytological and genetic polymorphisms among D. villosum accessions also provides genetic evolution information on the species. Using cytogenetic and molecular tools we analysed genetic polymorphisms among D. villosum accessions and developed consensus karyotypes to assist the introgression of beneficial genes from D. villosum into wheat. METHODS A multiplex probe of repeats for FISH, GISH and molecular markers were used to detect chromosome polymorphisms among D. villosum accessions. Polymorphic signal block types, chromosome heterogeneity and heterozygosity, and chromosome polymorphic information content were used in genetic diversity analysis. KEY RESULTS Consensus karyotypes of D. villosum were developed, and the homoeologous statuses of individual D. villosum chromosomes relative to wheat were determined. Tandem repeat probes of pSc119.2, (GAA)10 and the AFA family produced high-resolution signals and not only showed different signal patterns in D. villosum chromosomes but also revealed the varied distribution of tandem repeats among chromosomes and accessions. A total of 106 polymorphic chromosomes were identified from 13 D. villosum accessions and high levels of chromosomal heterozygosity and heterogeneity were observed. A subset of 56 polymorphic chromosomes was transferred into durum wheat through wide crosses, and seven polymorphic chromosomes are described in two newly developed durum-D. villosum amphidiploids. CONCLUSIONS Consensus karyotypes of D. villosum and oligonucleotide FISH facilitated identification of polymorphic signal blocks and a high level of chromosomal heterozygosity and heterogeneity among D. villosum accessions, seen in newly developed amphiploids. The abundant genetic diversity of D. villosum and range of alleles, exploitable through interploid crosses, backcrosses and recombination (chromosome engineering), allow introduction of biotic and abiotic stress resistances into wheat, translating into increasing yield, end-use quality and crop sustainability.
Collapse
Affiliation(s)
- Nan Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Ziming He
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaxin Fang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xia Shen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanhong Lei
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yating Xia
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Huagang He
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wenxuan Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Chenggen Chu
- USDA-ARS, Sugarbeet & Potato Research Unit, Fargo, ND 58102, USA
| | - Conglei Wang
- Tianjin Crops Research Institute, Tianjin 300384, China
| | - Zengjun Qi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
32
|
Liu C, Wang YG. Does one subgenome become dominant in the formation and evolution of a polyploid? ANNALS OF BOTANY 2023; 131:11-16. [PMID: 35291007 PMCID: PMC9904339 DOI: 10.1093/aob/mcac024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/15/2022] [Indexed: 06/02/2023]
Abstract
BACKGROUND Polyploids are common in flowering plants and they tend to have more expanded ranges of distributions than their diploid progenitors. Possible mechanisms underlying polyploid success have been intensively investigated. Previous studies showed that polyploidy generates novel changes and that subgenomes in allopolyploid species often differ in gene number, gene expression levels and levels of epigenetic alteration. It is widely believed that such differences are the results of conflicts among the subgenomes. These differences have been treated by some as subgenome dominance, and it is claimed that the magnitude of subgenome dominance increases in polyploid evolution. SCOPE In addition to changes which occurred during evolution, differences between subgenomes of a polyploid species may also be affected by differences between the diploid donors and changes which occurred during polyploidization. The variable genome components in many plant species are extensive, which would result in exaggerated differences between a subgenome and its progenitor when a single genotype or a small number of genotypes are used to represent a polyploid or its donors. When artificially resynthesized polyploids are used as surrogates for newly formed genotypes which have not been exposed to evolutionary selection, differences between diploid genotypes available today and those involved in the formation of the natural polyploid genotypes must also be considered. CONCLUSIONS Contrary to the now widely held views that subgenome biases in polyploids are the results of conflicts among the subgenomes and that one of the parental subgenomes generally retains more genes which are more highly expressed, available results show that subgenome biases mainly reflect legacy from the progenitors and that they can be detected before the completion of polyploidization events. Further, there is no convincing evidence that the magnitudes of subgenome biases have significantly changed during evolution for any of the allopolyploid species assessed.
Collapse
Affiliation(s)
| | - You-Gan Wang
- Science and Engineering Facility, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
33
|
Abstract
The CoGe software suite at genomevolution.org hosts a number of tools that facilitate genomic research on plant and animal whole-genome multiplication-polyploidy. SynMap permits analysis and visualization of two-way syntenic dotplot alignments of genomes, includes many options and data/graphics download possibilities, and even permits three-genome synteny maps and interactive views. FractBias is a tool that operates within SynMap that permits calculation and graphic display of genome fragments (such as chromosomes) of one species mapped to another, displaying both blockwise homology depths and the extent of syntenic gene (syntelog) loss following polyploidy events. SynMap macrosynteny results can segue into the microsynteny tool GEvo, which provides genome-browser-like views of homologous genome blocks. CoGe FeatView allows call-up of given gene features already stored in the CoGe resource, and CoGeBlast permits searches for additional features that can be analyzed or downloaded further. Links from these tools can be fed into SynFind, which can find syntenic blocks surrounding a feature across multiple specified genomes while also simultaneously providing overall genome-wide syntenic depth calculations that can be interpreted to reflect polyploidy levels. Here, we describe basic use of these tools on the CoGe software suite.
Collapse
|
34
|
Li T, Yin L, Stoll CE, Lisch D, Zhao M. Conserved noncoding sequences and de novo Mutator insertion alleles are imprinted in maize. PLANT PHYSIOLOGY 2023; 191:299-316. [PMID: 36173333 PMCID: PMC9806621 DOI: 10.1093/plphys/kiac459] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/30/2022] [Indexed: 05/20/2023]
Abstract
Genomic imprinting is an epigenetic phenomenon in which differential allele expression occurs in a parent-of-origin-dependent manner. Imprinting in plants is tightly linked to transposable elements (TEs), and it has been hypothesized that genomic imprinting may be a consequence of demethylation of TEs. Here, we performed high-throughput sequencing of ribonucleic acids from four maize (Zea mays) endosperms that segregated newly silenced Mutator (Mu) transposons and identified 110 paternally expressed imprinted genes (PEGs) and 139 maternally expressed imprinted genes (MEGs). Additionally, two potentially novel paternally suppressed MEGs are associated with de novo Mu insertions. In addition, we find evidence for parent-of-origin effects on expression of 407 conserved noncoding sequences (CNSs) in maize endosperm. The imprinted CNSs are largely localized within genic regions and near genes, but the imprinting status of the CNSs are largely independent of their associated genes. Both imprinted CNSs and PEGs have been subject to relaxed selection. However, our data suggest that although MEGs were already subject to a higher mutation rate prior to their being imprinted, imprinting may be the cause of the relaxed selection of PEGs. In addition, although DNA methylation is lower in the maternal alleles of both the maternally and paternally expressed CNSs (mat and pat CNSs), the difference between the two alleles in H3K27me3 levels was only observed in pat CNSs. Together, our findings point to the importance of both transposons and CNSs in genomic imprinting in maize.
Collapse
Affiliation(s)
- Tong Li
- Department of Biology, Miami University, Oxford, Ohio 45056, USA
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, P.R. China
| | - Liangwei Yin
- Department of Biology, Miami University, Oxford, Ohio 45056, USA
| | - Claire E Stoll
- Department of Biology, Miami University, Oxford, Ohio 45056, USA
| | - Damon Lisch
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Meixia Zhao
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
35
|
Tian G, Xiao G, Wu T, Zhou J, Xu W, Wang Y, Xia G, Wang M. Alteration of synonymous codon usage bias accompanies polyploidization in wheat. Front Genet 2022; 13:979902. [PMID: 36313462 PMCID: PMC9614214 DOI: 10.3389/fgene.2022.979902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
The diploidization of polyploid genomes is accompanied by genomic variation, including synonymous nucleotide substitutions that may lead to synonymous codon usage bias (SCUB). SCUB can mirror the evolutionary specialization of plants, but its effect on the formation of polyploidies is not well documented. We explored this issue here with hexaploid wheat and its progenitors. Synonymous codons (SCs) ending in either cytosine (NNC) or guanidine (NNG) were more frequent than those ending in either adenosine (NNA) or thymine (NNT), and the preference for NNC/G codons followed the increase in genome ploidy. The ratios between NNC/G and NNA/T codons gradually decreased in genes with more introns, and the difference in these ratios between wheat and its progenitors diminished with increasing ploidy. SCUB frequencies were heterogeneous among exons, and the bias preferred to NNA/T in more internal exons, especially for genes with more exons; while the preference did not appear to associate with ploidy. The SCUB alteration of the progenitors was different during the formation of hexaploid wheat, so that SCUB was the homogeneous among A, B and D subgenomes. DNA methylation-mediated conversion from cytosine to thymine weakened following the increase of genome ploidy, coinciding with the stronger bias for NNC/G SCs in the genome as a function of ploidy, suggesting that SCUB contribute to the epigenetic variation in hexaploid wheat. The patterns in SCUB mirrored the formation of hexaploid wheat, which provides new insight into genome shock-induced genetic variation during polyploidization. SCs representing non-neutral synonymous mutations can be used for genetic dissection and improvement of agricultural traits of wheat and other polyploidies.
Collapse
Affiliation(s)
- Geng Tian
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Guilian Xiao
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Tong Wu
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Junzhi Zhou
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Wenjing Xu
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Yanxia Wang
- Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Guangmin Xia
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Mengcheng Wang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
- *Correspondence: Mengcheng Wang,
| |
Collapse
|
36
|
Michael TP. Core circadian clock and light signaling genes brought into genetic linkage across the green lineage. PLANT PHYSIOLOGY 2022; 190:1037-1056. [PMID: 35674369 PMCID: PMC9516744 DOI: 10.1093/plphys/kiac276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The circadian clock is conserved at both the level of transcriptional networks as well as core genes in plants, ensuring that biological processes are phased to the correct time of day. In the model plant Arabidopsis (Arabidopsis thaliana), the core circadian SHAQKYF-type-MYB (sMYB) genes CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and REVEILLE (RVE4) show genetic linkage with PSEUDO-RESPONSE REGULATOR 9 (PRR9) and PRR7, respectively. Leveraging chromosome-resolved plant genomes and syntenic ortholog analysis enabled tracing this genetic linkage back to Amborella trichopoda, a sister lineage to the angiosperm, and identifying an additional evolutionarily conserved genetic linkage in light signaling genes. The LHY/CCA1-PRR5/9, RVE4/8-PRR3/7, and PIF3-PHYA genetic linkages emerged in the bryophyte lineage and progressively moved within several genes of each other across an array of angiosperm families representing distinct whole-genome duplication and fractionation events. Soybean (Glycine max) maintained all but two genetic linkages, and expression analysis revealed the PIF3-PHYA linkage overlapping with the E4 maturity group locus was the only pair to robustly cycle with an evening phase, in contrast to the sMYB-PRR morning and midday phase. While most monocots maintain the genetic linkages, they have been lost in the economically important grasses (Poaceae), such as maize (Zea mays), where the genes have been fractionated to separate chromosomes and presence/absence variation results in the segregation of PRR7 paralogs across heterotic groups. The environmental robustness model is put forward, suggesting that evolutionarily conserved genetic linkages ensure superior microhabitat pollinator synchrony, while wide-hybrids or unlinking the genes, as seen in the grasses, result in heterosis, adaptation, and colonization of new ecological niches.
Collapse
Affiliation(s)
- Todd P Michael
- The Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| |
Collapse
|
37
|
Parey E, Louis A, Montfort J, Guiguen Y, Crollius HR, Berthelot C. An atlas of fish genome evolution reveals delayed rediploidization following the teleost whole-genome duplication. Genome Res 2022; 32:1685-1697. [PMID: 35961774 PMCID: PMC9528989 DOI: 10.1101/gr.276953.122] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/09/2022] [Indexed: 11/25/2022]
Abstract
Teleost fishes are ancient tetraploids descended from an ancestral whole-genome duplication that may have contributed to the impressive diversification of this clade. Whole-genome duplications can occur via self-doubling (autopolyploidy) or via hybridization between different species (allopolyploidy). The mode of tetraploidization conditions evolutionary processes by which duplicated genomes return to diploid meiotic pairing, and subsequent genetic divergence of duplicated genes (cytological and genetic rediploidization). How teleosts became tetraploid remains unresolved, leaving a fundamental gap in the interpretation of their functional evolution. As a result of the whole-genome duplication, identifying orthologous and paralogous genomic regions across teleosts is challenging, hindering genome-wide investigations into their polyploid history. Here, we combine tailored gene phylogeny methodology together with a state-of-the-art ancestral karyotype reconstruction to establish the first high-resolution comparative atlas of paleopolyploid regions across 74 teleost genomes. We then leverage this atlas to investigate how rediploidization occurred in teleosts at the genome-wide level. We uncover that some duplicated regions maintained tetraploidy for more than 60 million years, with three chromosome pairs diverging genetically only after the separation of major teleost families. This evidence suggests that the teleost ancestor was an autopolyploid. Further, we find evidence for biased gene retention along several duplicated chromosomes, contradicting current paradigms that asymmetrical evolution is specific to allopolyploids. Altogether, our results offer novel insights into genome evolutionary dynamics following ancient polyploidizations in vertebrates.
Collapse
Affiliation(s)
- Elise Parey
- Institut de Biologie de l'Ecole normale supérieure (IBENS), Département de Biologie, Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
- INRAE, LPGP, 35000, Rennes, France
| | - Alexandra Louis
- Institut de Biologie de l'Ecole normale supérieure (IBENS), Département de Biologie, Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | | | | | - Hugues Roest Crollius
- Institut de Biologie de l'Ecole normale supérieure (IBENS), Département de Biologie, Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Camille Berthelot
- Institut de Biologie de l'Ecole normale supérieure (IBENS), Département de Biologie, Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| |
Collapse
|
38
|
Yin L, Xu G, Yang J, Zhao M. The Heterogeneity in the Landscape of Gene Dominance in Maize is Accompanied by Unique Chromatin Environments. Mol Biol Evol 2022; 39:6709529. [PMID: 36130304 PMCID: PMC9547528 DOI: 10.1093/molbev/msac198] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Subgenome dominance after whole-genome duplication (WGD) has been observed in many plant species. However, the degree to which the chromatin environment affects this bias has not been explored. Here, we compared the dominant subgenome (maize1) and the recessive subgenome (maize2) with respect to patterns of sequence substitutions, genes expression, transposable element accumulation, small interfering RNAs, DNA methylation, histone modifications, and accessible chromatin regions (ACRs). Our data show that the degree of bias between subgenomes for all the measured variables does not vary significantly when both of the WGD genes are located in pericentromeric regions. Our data further indicate that the location of maize1 genes in chromosomal arms is pivotal for maize1 to maintain its dominance, but location has a less effect on maize2 homoeologs. In addition to homoeologous genes, we compared ACRs, which often harbor cis-regulatory elements, between the two subgenomes and demonstrate that maize1 ACRs have a higher level of chromatin accessibility, a lower level of sequence substitution, and are enriched in chromosomal arms. Furthermore, we find that a loss of maize1 ACRs near their nearby genes is associated with a reduction in purifying selection and expression of maize1 genes relative to their maize2 homoeologs. Taken together, our data suggest that chromatin environment and cis-regulatory elements are important determinants shaping the divergence and evolution of duplicated genes.
Collapse
Affiliation(s)
- Liangwei Yin
- Department of Biology, Miami University, Oxford, OH 45056
| | - Gen Xu
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588,Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - Jinliang Yang
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588,Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68583
| | | |
Collapse
|
39
|
Zhao H, Liu H, Jin J, Ma X, Li K. Physiological and Transcriptome Analysis on Diploid and Polyploid Populus ussuriensis Kom. under Salt Stress. Int J Mol Sci 2022; 23:ijms23147529. [PMID: 35886879 PMCID: PMC9319462 DOI: 10.3390/ijms23147529] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 12/30/2022] Open
Abstract
Populus ussuriensis Kom. is a valuable forest regeneration tree species in the eastern mountainous region of Northeast China. It is known that diploid P. ussuriensis (CK) performed barely satisfactorily under salt stress, but the salt stress tolerance of polyploid (i.e., triploid (T12) and tetraploid (F20)) P. ussuriensis is still unknown. In order to compare the salt stress tolerance and salt stress response mechanism between diploid and polyploid P. ussuriensis, phenotypic observation, biological and biochemistry index detections, and transcriptome sequencing (RNA-seq) were performed on CK, T12, and F20. Phenotypic observation and leaf salt injury index analysis indicated CK suffered more severe salt injury than T12 and F20. SOD and POD activity detections indicated the salt stress response capacity of T12 was stronger than that of CK and F20. MDA content, proline content and relative electric conductivity detections indicated CK suffered the most severe cell-membrane damage, and T12 exhibited the strongest osmoprotective capacity under salt stress. Transcriptome analysis indicated the DEGs of CK, T12, and F20 under salt stress were different in category and change trend, and there were abundant WRKY, NAM, MYB and AP2/ERF genes among the DEGs in CK, T12, and F20 under salt stress. GO term enrichment indicated the basic growth progresses of CK, and F20 was obviously influenced, while T12 immediately launched more salt stress response processes in 36 h after salt stress. KEGG enrichment indicated the DEGs of CK mainly involved in plant−pathogen interaction, ribosome biogenesis in eukaryotes, protein processing in endoplasmic reticulum, degradation of aromatic compounds, plant hormone signal transduction, photosynthesis, and carbon metabolism pathways. The DEGs of T12 were mainly involved in plant−pathogen interaction, cysteine and methionine metabolism, phagosomes, biosynthesis of amino acids, phenylalanine, tyrosine and tryptophan biosynthesis, plant hormone signal transduction, and starch and sucrose metabolism pathways. The DEGs of F20 were mainly involved in plant hormone signal transduction, plant−pathogen interaction, zeatin biosynthesis, and glutathione metabolism pathways. In conclusion, triploid exhibited stronger salt stress tolerance than tetraploid and diploid P. ussuriensis (i.e., T12 > F20 > CK). The differences between the DEGs of CK, T12, and F20 probably are the key clues for discovering the salt stress response signal transduction network in P. Ussuriensis.
Collapse
Affiliation(s)
- Hui Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Z.); (H.L.); (J.J.); (X.M.)
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Huanzhen Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Z.); (H.L.); (J.J.); (X.M.)
| | - Jiaojiao Jin
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Z.); (H.L.); (J.J.); (X.M.)
| | - Xiaoyu Ma
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Z.); (H.L.); (J.J.); (X.M.)
| | - Kailong Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Z.); (H.L.); (J.J.); (X.M.)
- Correspondence:
| |
Collapse
|
40
|
Birchler JA, Yang H. The multiple fates of gene duplications: Deletion, hypofunctionalization, subfunctionalization, neofunctionalization, dosage balance constraints, and neutral variation. THE PLANT CELL 2022; 34:2466-2474. [PMID: 35253876 PMCID: PMC9252495 DOI: 10.1093/plcell/koac076] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/17/2022] [Indexed: 05/13/2023]
Abstract
Gene duplications have long been recognized as a contributor to the evolution of genes with new functions. Multiple copies of genes can result from tandem duplication, from transposition to new chromosomes, or from whole-genome duplication (polyploidy). The most common fate is that one member of the pair is deleted to return the gene to the singleton state. Other paths involve the reduced expression of both copies (hypofunctionalization) that are held in duplicate to maintain sufficient quantity of function. The two copies can split functions (subfunctionalization) or can diverge to generate a new function (neofunctionalization). Retention of duplicates resulting from doubling of the whole genome occurs for genes involved with multicomponent interactions such as transcription factors and signal transduction components. In contrast, these classes of genes are underrepresented in small segmental duplications. This complementary pattern suggests that the balance of interactors affects the fate of the duplicate pair. We discuss the different mechanisms that maintain duplicated genes, which may change over time and intersect.
Collapse
Affiliation(s)
- James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Hua Yang
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| |
Collapse
|
41
|
Wang L, Sun X, Peng Y, Chen K, Wu S, Guo Y, Zhang J, Yang H, Jin T, Wu L, Zhou X, Liang B, Zhao Z, Liu D, Fei Z, Bai L. Genomic insights into the origin, adaptive evolution, and herbicide resistance of Leptochloa chinensis, a devastating tetraploid weedy grass in rice fields. MOLECULAR PLANT 2022; 15:1045-1058. [PMID: 35524410 DOI: 10.1016/j.molp.2022.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 04/30/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
Chinese sprangletop (Leptochloa chinensis), belonging to the grass subfamily Chloridoideae, is one of the most notorious weeds in rice ecosystems. Here, we report a chromosome-scale reference genome assembly and a genomic variation map of the tetraploid L. chinensis. The L. chinensis genome is derived from two diploid progenitors that diverged ∼10.9 million years ago, and its two subgenomes display neither fractionation bias nor overall gene expression dominance. Comparative genomic analyses reveal substantial genome rearrangements in L. chinensis after its divergence from the common ancestor of Chloridoideae and, together with transcriptome profiling, demonstrate the important contribution of tetraploidization to the gene sources for the herbicide resistance of L. chinensis. Population genomic analyses of 89 accessions from China reveal that L. chinensis accessions collected from southern/southwestern provinces have substantially higher nucleotide diversity than those from the middle and lower reaches of the Yangtze River, suggesting that L. chinensis spread in China from the southern/southwestern provinces to the middle and lower reaches of the Yangtze River. During this spread, L. chinensis developed significantly increased herbicide resistance, accompanied by the selection of numerous genes involved in herbicide resistance. Taken together, our study generated valuable genomic resources for future fundamental research and agricultural management of L. chinensis, and provides significant new insights into the herbicide resistance as well as the origin and adaptive evolution of L. chinensis.
Collapse
Affiliation(s)
- Lifeng Wang
- State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Weed Science Key Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xuepeng Sun
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA; College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Yajun Peng
- State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Weed Science Key Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ke Chen
- State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Weed Science Key Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Shan Wu
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Yanan Guo
- State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Weed Science Key Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jingyuan Zhang
- Qingdao Kingagroot Compounds Co. Ltd, Qingdao 266000, China
| | - Haona Yang
- State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Weed Science Key Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Tao Jin
- Qingdao Kingagroot Compounds Co. Ltd, Qingdao 266000, China
| | - Lamei Wu
- State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Weed Science Key Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xiaomao Zhou
- State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Bin Liang
- State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Zhenghong Zhao
- Hunan Weed Science Key Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ducai Liu
- State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA; USDA-ARS, Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853, USA.
| | - Lianyang Bai
- State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Weed Science Key Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| |
Collapse
|
42
|
Specificities and Dynamics of Transposable Elements in Land Plants. BIOLOGY 2022; 11:biology11040488. [PMID: 35453688 PMCID: PMC9033089 DOI: 10.3390/biology11040488] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/10/2022] [Accepted: 03/18/2022] [Indexed: 01/27/2023]
Abstract
Simple Summary Transposable elements are dynamic components of plant genomes, and display a high diversity of lineages and distribution as the result of evolutionary driving forces and overlapping mechanisms of genetic and epigenetic regulation. They are now regarded as main contributors for genome evolution and function, and important regulators of endogenous gene expression. In this review, we survey recent progress and current challenges in the identification and classification of transposon lineages in complex plant genomes, highlighting the molecular specificities that may explain the expansion and diversification of mobile genetic elements in land plants. Abstract Transposable elements (TEs) are important components of most plant genomes. These mobile repetitive sequences are highly diverse in terms of abundance, structure, transposition mechanisms, activity and insertion specificities across plant species. This review will survey the different mechanisms that may explain the variability of TE patterns in land plants, highlighting the tight connection between TE dynamics and host genome specificities, and their co-evolution to face and adapt to a changing environment. We present the current TE classification in land plants, and describe the different levels of genetic and epigenetic controls originating from the plant, the TE itself, or external environmental factors. Such overlapping mechanisms of TE regulation might be responsible for the high diversity and dynamics of plant TEs observed in nature.
Collapse
|
43
|
Zhuang Y, Wang X, Li X, Hu J, Fan L, Landis JB, Cannon SB, Grimwood J, Schmutz J, Jackson SA, Doyle JJ, Zhang XS, Zhang D, Ma J. Phylogenomics of the genus Glycine sheds light on polyploid evolution and life-strategy transition. NATURE PLANTS 2022; 8:233-244. [PMID: 35288665 DOI: 10.1038/s41477-022-01102-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Polyploidy and life-strategy transitions between annuality and perenniality often occur in flowering plants. However, the evolutionary propensities of polyploids and the genetic bases of such transitions remain elusive. We assembled chromosome-level genomes of representative perennial species across the genus Glycine including five diploids and a young allopolyploid, and constructed a Glycine super-pangenome framework by integrating 26 annual soybean genomes. These perennial diploids exhibit greater genome stability and possess fewer centromere repeats than the annuals. Biased subgenomic fractionation occurred in the allopolyploid, primarily by accumulation of small deletions in gene clusters through illegitimate recombination, which was associated with pre-existing local subgenomic differentiation. Two genes annotated to modulate vegetative-reproductive phase transition and lateral shoot outgrowth were postulated as candidates underlying the perenniality-annuality transition. Our study provides insights into polyploid genome evolution and lays a foundation for unleashing genetic potential from the perennial gene pool for soybean improvement.
Collapse
Affiliation(s)
- Yongbin Zhuang
- College of Agriculture, and State Key Laboratory of Crop Biology, Shangdong Agricultural University, Tai'an, China
| | - Xutong Wang
- Department of Agronomy, and Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Xianchong Li
- College of Agriculture, and State Key Laboratory of Crop Biology, Shangdong Agricultural University, Tai'an, China
| | - Junmei Hu
- College of Agriculture, and State Key Laboratory of Crop Biology, Shangdong Agricultural University, Tai'an, China
| | - Lichuan Fan
- College of Agriculture, and State Key Laboratory of Crop Biology, Shangdong Agricultural University, Tai'an, China
| | - Jacob B Landis
- School of Integrative Plant Science Plant Biology Section, Cornell University, Ithaca, NY, USA
| | - Steven B Cannon
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Ames, IA, USA
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | - Jeffrey J Doyle
- School of Integrative Plant Science Plant Biology Section, Cornell University, Ithaca, NY, USA
| | - Xian Sheng Zhang
- College of Life Sciences, and State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
| | - Dajian Zhang
- College of Agriculture, and State Key Laboratory of Crop Biology, Shangdong Agricultural University, Tai'an, China.
| | - Jianxin Ma
- Department of Agronomy, and Center for Plant Biology, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
44
|
Khan D, Ziegler DJ, Kalichuk JL, Hoi V, Huynh N, Hajihassani A, Parkin IAP, Robinson SJ, Belmonte MF. Gene expression profiling reveals transcription factor networks and subgenome bias during Brassica napus seed development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:477-489. [PMID: 34786793 DOI: 10.1111/tpj.15587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 11/01/2021] [Accepted: 11/10/2021] [Indexed: 05/22/2023]
Abstract
We profiled the global gene expression landscape across the reproductive lifecycle of Brassica napus. Comparative analysis of this nascent amphidiploid revealed the contribution of each subgenome to plant reproduction. Whole-genome transcription factor networks identified BZIP11 as a transcriptional regulator of early B. napus seed development. Knockdown of BZIP11 using RNA interference resulted in a similar reduction in gene activity of predicted gene targets, and a reproductive-lethal phenotype. Global mRNA profiling revealed lower accumulation of Cn subgenome transcripts relative to the An subgenome. Subgenome-specific transcription factor networks identified distinct transcription factor families enriched in each of the An and Cn subgenomes early in seed development. Analysis of laser-microdissected seed subregions further reveal subgenome expression dynamics in the embryo, endosperm and seed coat of early stage seeds. Transcription factors predicted to be regulators encoded by the An subgenome are expressed primarily in the seed coat, whereas regulators encoded by the Cn subgenome were expressed primarily in the embryo. Data suggest subgenome bias are characteristic features of the B. napus seed throughout development, and that such bias might not be universal across the embryo, endosperm and seed coat of the developing seed. Transcriptional networks spanning both the An and Cn genomes of the whole B. napus seed can identify valuable targets for seed development research and that -omics level approaches to studying gene regulation in B. napus can benefit from both broad and high-resolution analyses.
Collapse
Affiliation(s)
- Deirdre Khan
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Dylan J Ziegler
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Jenna L Kalichuk
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Vanessa Hoi
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Nina Huynh
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Abolfazl Hajihassani
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Isobel A P Parkin
- Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, S7N 0X2, Canada
| | - Stephen J Robinson
- Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, S7N 0X2, Canada
| | - Mark F Belmonte
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| |
Collapse
|
45
|
Miao Z, Zhang T, Xie B, Qi Y, Ma C. Evolutionary implications of the RNA N6-methyladenosine methylome in plants. Mol Biol Evol 2021; 39:6388042. [PMID: 34633447 PMCID: PMC8763109 DOI: 10.1093/molbev/msab299] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Epigenetic modifications play important roles in genome evolution and innovation. However, most analyses have focused on the evolutionary role of DNA modifications, and little is understood about the influence of post-transcriptional RNA modifications on genome evolution. To explore the evolutionary significance of RNA modifications, we generated transcriptome-wide profiles of N6-methyladenosine (m6A), the most prevalent internal modification of mRNA, for 13 representative plant species spanning over half a billion years of evolution. These data reveal the evolutionary conservation and divergence of m6A methylomes in plants, uncover the preference of m6A modifications on ancient orthologous genes, and demonstrate less m6A divergence between orthologous gene pairs with earlier evolutionary origins. Further investigation revealed that the evolutionary divergence of m6A modifications is related to sequence variation between homologs from whole genome duplication and gene family expansion from local genome duplication. Unexpectedly, a significant negative correlation was found between the retention ratio of m6A modifications and the number of family members. Moreover, the divergence of m6A modifications is accompanied by variation in the expression level and translation efficiency of duplicated genes from whole and local genome duplication. Our work reveals new insights into evolutionary patterns of m6A methylomes in plant species and their implications, and provides a resource of plant m6A profiles for further studies of m6A regulation and function in an evolutionary context.
Collapse
Affiliation(s)
- Zhenyan Miao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Shaanxi, Yangling, 712100, China.,Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Shaanxi, Yangling, 712100, China
| | - Ting Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Shaanxi, Yangling, 712100, China
| | - Bin Xie
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Shaanxi, Yangling, 712100, China
| | - Yuhong Qi
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Shaanxi, Yangling, 712100, China
| | - Chuang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Shaanxi, Yangling, 712100, China.,Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Shaanxi, Yangling, 712100, China
| |
Collapse
|
46
|
Abstract
Meiotic recombination is a fundamental process that generates genetic diversity and ensures the accurate segregation of homologous chromosomes. While a great deal is known about genetic factors that regulate recombination, relatively little is known about epigenetic factors, such as DNA methylation. In maize, we examined the effects on meiotic recombination of a mutation in a component of the RNA-directed DNA methylation pathway, Mop1 (Mediator of paramutation1), as well as a mutation in a component of the trans-acting small interference RNA biogenesis pathway, Lbl1 (Leafbladeless1). MOP1 is of particular interest with respect to recombination because it is responsible for methylation of transposable elements that are immediately adjacent to transcriptionally active genes. In the mop1 mutant, we found that meiotic recombination is uniformly decreased in pericentromeric regions but is generally increased in gene rich chromosomal arms. This observation was further confirmed by cytogenetic analysis showing that although overall crossover numbers are unchanged, they occur more frequently in chromosomal arms in mop1 mutants. Using whole genome bisulfite sequencing, our data show that crossover redistribution is driven by loss of CHH (where H = A, T, or C) methylation within regions near genes. In contrast to what we observed in mop1 mutants, no significant changes were observed in the frequency of meiotic recombination in lbl1 mutants. Our data demonstrate that CHH methylation has a significant impact on the overall recombination landscape in maize despite its low frequency relative to CG and CHG methylation.
Collapse
|
47
|
Wang L, Jia G, Jiang X, Cao S, Chen ZJ, Song Q. Altered chromatin architecture and gene expression during polyploidization and domestication of soybean. THE PLANT CELL 2021; 33:1430-1446. [PMID: 33730165 PMCID: PMC8254482 DOI: 10.1093/plcell/koab081] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/12/2021] [Indexed: 05/04/2023]
Abstract
Polyploidy or whole-genome duplication (WGD) is widespread in plants and is a key driver of evolution and speciation, accompanied by rapid and dynamic changes in genomic structure and gene expression. The 3D structure of the genome is intricately linked to gene expression, but its role in transcription regulation following polyploidy and domestication remains unclear. Here, we generated high-resolution (∼2 kb) Hi-C maps for cultivated soybean (Glycine max), wild soybean (Glycine soja), and common bean (Phaseolus vulgaris). We found polyploidization in soybean may induce architecture changes of topologically associating domains and subsequent diploidization led to chromatin topology alteration around chromosome-rearrangement sites. Compared with single-copy and small-scale duplicated genes, WGD genes displayed more long-range chromosomal interactions and were coupled with higher levels of gene expression and chromatin accessibilities but void of DNA methylation. Interestingly, chromatin loop reorganization was involved in expression divergence of the genes during soybean domestication. Genes with chromatin loops were under stronger artificial selection than genes without loops. These findings provide insights into the roles of dynamic chromatin structures on gene expression during polyploidization, diploidization, and domestication of soybean.
Collapse
Affiliation(s)
- Longfei Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, China
| | - Guanghong Jia
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, China
| | - Xinyu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, China
| | - Shuai Cao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, China
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Qingxin Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, China
| |
Collapse
|
48
|
Li Z, McKibben MTW, Finch GS, Blischak PD, Sutherland BL, Barker MS. Patterns and Processes of Diploidization in Land Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:387-410. [PMID: 33684297 DOI: 10.1146/annurev-arplant-050718-100344] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Most land plants are now known to be ancient polyploids that have rediploidized. Diploidization involves many changes in genome organization that ultimately restore bivalent chromosome pairing and disomic inheritance, and resolve dosage and other issues caused by genome duplication. In this review, we discuss the nature of polyploidy and its impact on chromosome pairing behavior. We also provide an overview of two major and largely independent processes of diploidization: cytological diploidization and genic diploidization/fractionation. Finally, we compare variation in gene fractionation across land plants and highlight the differences in diploidization between plants and animals. Altogether, we demonstrate recent advancements in our understanding of variation in the patterns and processes of diploidization in land plants and provide a road map for future research to unlock the mysteries of diploidization and eukaryotic genome evolution.
Collapse
Affiliation(s)
- Zheng Li
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA; , , , , ,
| | - Michael T W McKibben
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA; , , , , ,
| | - Geoffrey S Finch
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA; , , , , ,
| | - Paul D Blischak
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA; , , , , ,
| | - Brittany L Sutherland
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA; , , , , ,
| | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA; , , , , ,
| |
Collapse
|
49
|
Ma PF, Liu YL, Jin GH, Liu JX, Wu H, He J, Guo ZH, Li DZ. The Pharus latifolius genome bridges the gap of early grass evolution. THE PLANT CELL 2021; 33:846-864. [PMID: 33630094 PMCID: PMC8226297 DOI: 10.1093/plcell/koab015] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/11/2021] [Indexed: 05/07/2023]
Abstract
The grass family (Poaceae) includes all commercial cereal crops and is a major contributor to biomass in various terrestrial ecosystems. The ancestry of all grass genomes includes a shared whole-genome duplication (WGD), named rho (ρ) WGD, but the evolutionary significance of ρ-WGD remains elusive. We sequenced the genome of Pharus latifolius, a grass species (producing a true spikelet) in the subfamily Pharoideae, a sister lineage to the core Poaceae including the (Panicoideae, Arundinoideae, Chloridoideae, Micrairoideae, Aristidoideae, and Danthonioideae (PACMAD) and Bambusoideae, Oryzoideae, and Pooideae (BOP) clades. Our results indicate that the P. latifolius genome has evolved slowly relative to cereal grass genomes, as reflected by moderate rates of molecular evolution, limited chromosome rearrangements and a low rate of gene loss for duplicated genes. We show that the ρ-WGD event occurred approximately 98.2 million years ago (Ma) in a common ancestor of the Pharoideae and the PACMAD and BOP grasses. This was followed by contrasting patterns of diploidization in the Pharus and core Poaceae lineages. The presence of two FRIZZY PANICLE-like genes in P. latifolius, and duplicated MADS-box genes, support the hypothesis that the ρ-WGD may have played a role in the origin and functional diversification of the spikelet, an adaptation in grasses related directly to cereal yields. The P. latifolius genome sheds light on the origin and early evolution of grasses underpinning the biology and breeding of cereals.
Collapse
Affiliation(s)
- Peng-Fei Ma
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yun-Long Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Gui-Hua Jin
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jing-Xia Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Hong Wu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650201, China
| | - Jun He
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Zhen-Hua Guo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650201, China
- Author for correspondence: (D.-Z.L)
| |
Collapse
|
50
|
Hao Y, Mabry ME, Edger PP, Freeling M, Zheng C, Jin L, VanBuren R, Colle M, An H, Abrahams RS, Washburn JD, Qi X, Barry K, Daum C, Shu S, Schmutz J, Sankoff D, Barker MS, Lyons E, Pires JC, Conant GC. The contributions from the progenitor genomes of the mesopolyploid Brassiceae are evolutionarily distinct but functionally compatible. Genome Res 2021; 31:799-810. [PMID: 33863805 PMCID: PMC8092008 DOI: 10.1101/gr.270033.120] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 03/05/2021] [Indexed: 01/08/2023]
Abstract
The members of the tribe Brassiceae share a whole-genome triplication (WGT), and one proposed model for its formation is a two-step pair of hybridizations producing hexaploid descendants. However, evidence for this model is incomplete, and the evolutionary and functional constraints that drove evolution after the hexaploidy are even less understood. Here, we report a new genome sequence of Crambe hispanica, a species sister to most sequenced Brassiceae. Using this new genome and three others that share the hexaploidy, we traced the history of gene loss after the WGT using the Polyploidy Orthology Inference Tool (POInT). We confirm the two-step formation model and infer that there was a significant temporal gap between those two allopolyploidizations, with about a third of the gene losses from the first two subgenomes occurring before the arrival of the third. We also, for the 90,000 individual genes in our study, make parental subgenome assignments, inferring, with measured uncertainty, from which of the progenitor genomes of the allohexaploidy each gene derives. We further show that each subgenome has a statistically distinguishable rate of homoeolog losses. There is little indication of functional distinction between the three subgenomes: the individual subgenomes show no patterns of functional enrichment, no excess of shared protein-protein or metabolic interactions between their members, and no biases in their likelihood of having experienced a recent selective sweep. We propose a "mix and match" model of allopolyploidy, in which subgenome origin drives homoeolog loss propensities but where genes from different subgenomes function together without difficulty.
Collapse
Affiliation(s)
- Yue Hao
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Makenzie E Mabry
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824, USA
- Genetics and Genome Sciences, Michigan State University, East Lansing, Michigan 48824, USA
| | - Michael Freeling
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | - Chunfang Zheng
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Lingling Jin
- Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Robert VanBuren
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan 48824, USA
| | - Marivi Colle
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824, USA
| | - Hong An
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | - R Shawn Abrahams
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | - Jacob D Washburn
- Plant Genetics Research Unit, USDA-ARS, Columbia, Missouri 65211, USA
| | - Xinshuai Qi
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA
| | - Kerrie Barry
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Christopher Daum
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Shengqiang Shu
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Jeremy Schmutz
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - David Sankoff
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA
| | - Eric Lyons
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona 85721, USA
| | - J Chris Pires
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri 65211, USA
- Informatics Institute, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | - Gavin C Conant
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27695, USA
- Program in Genetics, North Carolina State University, Raleigh, North Carolina 27695, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
- Division of Animal Sciences, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| |
Collapse
|