1
|
Sun T, Hazra A, Lui A, Zeng S, Wang X, Rao S, Owens LA, Fei Z, Zhao Y, Mazourek M, Giovannoni JG, Li L. GLKs directly regulate carotenoid biosynthesis via interacting with GBFs in plants. THE NEW PHYTOLOGIST 2025; 246:645-665. [PMID: 39953697 DOI: 10.1111/nph.20457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/18/2025] [Indexed: 02/17/2025]
Abstract
Carotenoids are vital photosynthetic pigments for plants. Golden2-like transcription factors (GLKs) are widely recognized as major regulators of Chl biosynthesis and chloroplast development. However, despite GLKs being subjected to intensive investigations, whether GLKs directly regulate carotenoid biosynthesis and the molecular mechanisms by which GLKs transcriptionally activate their target genes remain unclear. Here, we report that GLKs directly regulate carotenoid biosynthesis and activate their target genes in a G-box binding factor (GBF)-dependent manner in Arabidopsis. Both in vitro and in vivo studies reveal that GLKs physically interact with GBFs to activate transcription of phytoene synthase (PSY), the gene encoding a rate-limiting enzyme for carotenoid biosynthesis. While GLKs possess transactivation activity, they depend on GBFs to directly bind to the G-box motif to modulate PSY expression. Loss of GBFs impairs GLK function in regulating carotenoid and Chl biosynthesis. Since the G-box motif is an enriched motif in the promoters of GLK-regulated genes, the GLK-GBF regulatory module likely serves as a common mechanism underlying GLK-regulated photosynthetic pigment biosynthesis and chloroplast development. Our findings uncover a novel regulatory machinery of carotenoid biosynthesis, discover a molecular mechanism of transcriptional regulation by GLKs, and divulge GLKs as important regulators to coordinate photosynthetic pigment synthesis in plants.
Collapse
Affiliation(s)
- Tianhu Sun
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Department of Biological Sciences, College of Arts and Sciences, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Abhijit Hazra
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Andy Lui
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Shaohua Zeng
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xin Wang
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Sombir Rao
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Lauren A Owens
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA
| | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Yunde Zhao
- Section of Cell and Developmental Biology, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Michael Mazourek
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - James G Giovannoni
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
2
|
Gao Y, Zhou X, Huang H, Wang C, Xiao X, Wen J, Wu J, Zhou S, de Dios VR, Rodríguez LG, Yao Y, Liu J, Deng H. ORANGE proteins mediate adaptation to high light and resistance to Pseudomonas syringae in tomato by regulating chlorophylls and carotenoids accumulation. Int J Biol Macromol 2025; 306:141739. [PMID: 40049490 DOI: 10.1016/j.ijbiomac.2025.141739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/19/2025] [Accepted: 03/03/2025] [Indexed: 03/09/2025]
Abstract
Chlorophylls and carotenoids are crucial for photosynthesis and plant survival, with ORANGE (OR) protein being pivotal in pigment accumulation. Despite tomato being rich in carotenoids, the roles of OR proteins in tomato have been overlooked. Herein, we characterized two OR genes in tomato, SlOR and SlOR-like, which are highly expressed in stems, leaves, and flowers, with their proteins being localized to chloroplasts. Overexpression of SlOR in transgenic plants conferred enhanced growth and height, whereas co-silencing of SlOR and SlOR-like resulted in stunted growth, pale-green leaves due to diminished chlorophylls and carotenoids, and fewer thylakoid lamellae and layers. Under normal light, SlOR/SlOR-like-Ri transgenic plants exhibited compromised electron transport and photosynthetic rates; furthermore, high-light exposure exacerbated these effects, resulting in photooxidative stress, elevated reactive oxygen species (ROS) and reduced photosynthetic rates in SlOR/SlOR-like-Ri plants. Transcriptome analysis revealed that photosynthesis-related genes were up-regulated, while defense-related genes were significantly down-regulated in SlOR/SlOR-like-Ri lines relative to wild-type plants. Additionally, SlOR/SlOR-like-Ri plants also displayed enhanced susceptibility to Pseudomonas syringae pv. tomato DC3000. Overall, our study highlights SlOR as a critical protein modulating the accumulation of chlorophylls and carotenoids in tomato, playing a crucial role in adaptation to high light conditions and pathogen resistance.
Collapse
Affiliation(s)
- Yongfeng Gao
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Xue Zhou
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Haitao Huang
- Mianyang Academy of Agricultural Sciences, 621023 Mianyang, China
| | - Cheng Wang
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Xiangxia Xiao
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Jing Wen
- Mianyang Academy of Agricultural Sciences, 621023 Mianyang, China
| | - Jiamin Wu
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Shan Zhou
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Víctor Resco de Dios
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Lucas Gutiérrez Rodríguez
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Yinan Yao
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Jikai Liu
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China.
| | - Heng Deng
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China.
| |
Collapse
|
3
|
Wang Y, Cao Y, Qin G. Multifaceted roles of TCP transcription factors in fate determination. THE NEW PHYTOLOGIST 2025; 245:95-101. [PMID: 39434425 DOI: 10.1111/nph.20188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024]
Abstract
Fate determination is indispensable for the accurate shaping and specialization of plant organs, a process critical to the structural and functional diversity in plant kingdom. The TEOSINTE BRANCHED 1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) family of transcription factors has been recognized for its significant contributions to plant organogenesis and morphogenesis. Recent research has shed light on the pivotal roles that TCPs play in fate determination. In this review, we delve into the current understanding of TCP functions, emphasizing their critical influence on fate determination from the organelle to the cell and organ levels. We also consolidate the molecular mechanisms through which TCPs exert their regulatory effects on fate determination. Additionally, we highlight intriguing points of TCPs that warrant further exploration in future research endeavors.
Collapse
Affiliation(s)
- Yutao Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yu Cao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- Southwest United Graduate School, Kunming, 650092, China
| |
Collapse
|
4
|
Wang Q, Wang L, Song S, Zhao YN, Gu HH, Zhu Z, Wang J, Lu S. ORANGE interplays with TCP7 to regulate endoreduplication and leaf size. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:473-490. [PMID: 39176434 DOI: 10.1111/tpj.16994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/18/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024]
Abstract
Leaf size is a crucial agronomic trait directly affecting crop yield, which is mainly determined by coordinated cell proliferation, growth, and differentiation. Although endoreduplication is known to be correlated with the onset of cell differentiation and leaf size, the underlying molecular mechanisms are largely unclear. The DnaJ-like zinc finger domain-containing protein ORANGE (OR) was initially demonstrated to confer the massive accumulation of carotenoids in cauliflower curds. However, the cauliflower or mutant also possesses other phenotypes such as smaller curds, smaller leaves with elongated petioles, and delayed flowering. Here, we demonstrated that OR physically interacts with the transcription factor TCP7, which promotes endoreduplication by inducing the expression of the cell cycle gene CYCLIN D 1;1 (CYCD1;1). Overexpression of OR resulted in smaller rosette leaves, whereas the OR-silencing plants had larger rosette leaves than wild-type plants. Our microscopic observations and flow cytometry analysis revealed that the variation in leaf size was a result of different endoreduplication levels. Genetic analyses showed that OR functions antagonistically with TCP7 in regulating the endoreduplication levels in leaf cells. While the expression of OR is induced by TCP7, OR represses the transactivation activity of TCP7 by affecting its binding capability to the TCP-binding motif in the promoter region of CYCD1;1. Through this interaction, OR negatively regulates the expression of CYCD1;1 and reduces the nuclear ploidy level in rosette leaf cells. Our findings provide new insights into the regulatory network of leaf size and also reveal a regulatory circuit controlling endoreduplication in leaf cells.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Linjuan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Shuyuan Song
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Ya-Nan Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Hong-Hui Gu
- Zhejiang Academy of Agricultural Sciences, Institute of Vegetables, Hangzhou, 310021, China
| | - Ziqiang Zhu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Jiansheng Wang
- Zhejiang Academy of Agricultural Sciences, Institute of Vegetables, Hangzhou, 310021, China
| | - Shan Lu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
5
|
Liang Y, Hao J, Wang J, Zhang G, Su Y, Liu Z, Wang T. Statistical Genomics Analysis of Simple Sequence Repeats from the Paphiopedilum Malipoense Transcriptome Reveals Control Knob Motifs Modulating Gene Expression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304848. [PMID: 38647414 PMCID: PMC11200097 DOI: 10.1002/advs.202304848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/26/2024] [Indexed: 04/25/2024]
Abstract
Simple sequence repeats (SSRs) are found in nonrandom distributions in genomes and are thought to impact gene expression. The distribution patterns of 48 295 SSRs of Paphiopedilum malipoense are mined and characterized based on the first full-length transcriptome and comprehensive transcriptome dataset from 12 organs. Statistical genomics analyses are used to investigate how SSRs in transcripts affect gene expression. The results demonstrate the correlations between SSR distributions, characteristics, and expression level. Nine expression-modulating motifs (expMotifs) are identified and a model is proposed to explain the effect of their key features, potency, and gene function on an intra-transcribed region scale. The expMotif-transcribed region combination is the most predominant contributor to the expression-modulating effect of SSRs, and some intra-transcribed regions are critical for this effect. Genes containing the same type of expMotif-SSR elements in the same transcribed region are likely linked in function, regulation, or evolution aspects. This study offers novel evidence to understand how SSRs regulate gene expression and provides potential regulatory elements for plant genetic engineering.
Collapse
Affiliation(s)
- Yingyi Liang
- College of Life SciencesSouth China Agricultural UniversityGuangzhou510642China
| | - Jing Hao
- College of Life SciencesSouth China Agricultural UniversityGuangzhou510642China
| | - Jieyu Wang
- College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhou510642China
| | - Guoqiang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and ArtFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Yingjuan Su
- School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
- Research Institute of Sun Yat‐sen University in ShenzhenShenzhen518107China
| | - Zhong‐Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and ArtFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Ting Wang
- College of Life SciencesSouth China Agricultural UniversityGuangzhou510642China
| |
Collapse
|
6
|
Rao S, Cao H, O’Hanna FJ, Zhou X, Lui A, Wrightstone E, Fish T, Yang Y, Thannhauser T, Cheng L, Dudareva N, Li L. Nudix hydrolase 23 post-translationally regulates carotenoid biosynthesis in plants. THE PLANT CELL 2024; 36:1868-1891. [PMID: 38299382 PMCID: PMC11653588 DOI: 10.1093/plcell/koae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/12/2023] [Accepted: 01/10/2024] [Indexed: 02/02/2024]
Abstract
Carotenoids are essential for photosynthesis and photoprotection. Plants must evolve multifaceted regulatory mechanisms to control carotenoid biosynthesis. However, the regulatory mechanisms and the regulators conserved among plant species remain elusive. Phytoene synthase (PSY) catalyzes the highly regulated step of carotenogenesis and geranylgeranyl diphosphate synthase (GGPPS) acts as a hub to interact with GGPP-utilizing enzymes for the synthesis of specific downstream isoprenoids. Here, we report a function of Nudix hydrolase 23 (NUDX23), a Nudix domain-containing protein, in post-translational regulation of PSY and GGPPS for carotenoid biosynthesis. NUDX23 expresses highly in Arabidopsis (Arabidopsis thaliana) leaves. Overexpression of NUDX23 significantly increases PSY and GGPPS protein levels and carotenoid production, whereas knockout of NUDX23 dramatically reduces their abundances and carotenoid accumulation in Arabidopsis. NUDX23 regulates carotenoid biosynthesis via direct interactions with PSY and GGPPS in chloroplasts, which enhances PSY and GGPPS protein stability in a large PSY-GGPPS enzyme complex. NUDX23 was found to co-migrate with PSY and GGPPS proteins and to be required for the enzyme complex assembly. Our findings uncover a regulatory mechanism underlying carotenoid biosynthesis in plants and offer promising genetic tools for developing carotenoid-enriched food crops.
Collapse
Affiliation(s)
- Sombir Rao
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell
University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science,
Cornell University, Ithaca, NY 14853, USA
| | - Hongbo Cao
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell
University, Ithaca, NY 14853, USA
- College of Horticulture, Hebei Agricultural University,
Baoding, Hebei 071000, China
| | - Franz Joseph O’Hanna
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell
University, Ithaca, NY 14853, USA
| | - Xuesong Zhou
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell
University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science,
Cornell University, Ithaca, NY 14853, USA
| | - Andy Lui
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell
University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science,
Cornell University, Ithaca, NY 14853, USA
| | - Emalee Wrightstone
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell
University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science,
Cornell University, Ithaca, NY 14853, USA
| | - Tara Fish
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell
University, Ithaca, NY 14853, USA
| | - Yong Yang
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell
University, Ithaca, NY 14853, USA
| | - Theodore Thannhauser
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell
University, Ithaca, NY 14853, USA
| | - Lailiang Cheng
- Horticulture Section, School of Integrative Plant Science, Cornell
University, Ithaca, NY 14853, USA
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University,
West Lafayette, IN 47907-2063, USA
- Department of Horticulture and Landscape Architecture, Purdue
University, West Lafayette, IN 47907, USA
- Purdue Center for Plant Biology, Purdue University,
West Lafayette, IN 47907, USA
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell
University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science,
Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
7
|
Coe K, Bostan H, Rolling W, Turner-Hissong S, Macko-Podgórni A, Senalik D, Liu S, Seth R, Curaba J, Mengist MF, Grzebelus D, Van Deynze A, Dawson J, Ellison S, Simon P, Iorizzo M. Population genomics identifies genetic signatures of carrot domestication and improvement and uncovers the origin of high-carotenoid orange carrots. NATURE PLANTS 2023; 9:1643-1658. [PMID: 37770615 PMCID: PMC10581907 DOI: 10.1038/s41477-023-01526-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023]
Abstract
Here an improved carrot reference genome and resequencing of 630 carrot accessions were used to investigate carrot domestication and improvement. The study demonstrated that carrot was domesticated during the Early Middle Ages in the region spanning western Asia to central Asia, and orange carrot was selected during the Renaissance period, probably in western Europe. A progressive reduction of genetic diversity accompanied this process. Genes controlling circadian clock/flowering and carotenoid accumulation were under selection during domestication and improvement. Three recessive genes, at the REC, Or and Y2 quantitative trait loci, were essential to select for the high α- and β-carotene orange phenotype. All three genes control high α- and β-carotene accumulation through molecular mechanisms that regulate the interactions between the carotenoid biosynthetic pathway, the photosynthetic system and chloroplast biogenesis. Overall, this study elucidated carrot domestication and breeding history and carotenoid genetics at a molecular level.
Collapse
Affiliation(s)
- Kevin Coe
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Hamed Bostan
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
| | - William Rolling
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Agricultural Research Service, Vegetable Crops Research Unit, US Department of Agriculture, Madison, WI, USA
| | | | - Alicja Macko-Podgórni
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Krakow, Poland
| | - Douglas Senalik
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Agricultural Research Service, Vegetable Crops Research Unit, US Department of Agriculture, Madison, WI, USA
| | - Su Liu
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
| | - Romit Seth
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
| | - Julien Curaba
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
| | - Molla Fentie Mengist
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
| | - Dariusz Grzebelus
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Krakow, Poland
| | - Allen Van Deynze
- Seed Biotechnology Center, University of California, Davis, CA, USA
| | - Julie Dawson
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Shelby Ellison
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Philipp Simon
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, WI, USA.
- Agricultural Research Service, Vegetable Crops Research Unit, US Department of Agriculture, Madison, WI, USA.
| | - Massimo Iorizzo
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA.
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
8
|
Zhou X, Sun T, Owens L, Yang Y, Fish T, Wrightstone E, Lui A, Yuan H, Chayut N, Burger J, Tadmor Y, Thannhauser T, Guo W, Cheng L, Li L. Carotenoid sequestration protein FIBRILLIN participates in CmOR-regulated β-carotene accumulation in melon. PLANT PHYSIOLOGY 2023; 193:643-660. [PMID: 37233026 DOI: 10.1093/plphys/kiad312] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/14/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023]
Abstract
Chromoplasts are plant organelles with a unique ability to sequester and store massive carotenoids. Chromoplasts have been hypothesized to enable high levels of carotenoid accumulation due to enhanced sequestration ability or sequestration substructure formation. However, the regulators that control the substructure component accumulation and substructure formation in chromoplasts remain unknown. In melon (Cucumis melo) fruit, β-carotene accumulation in chromoplasts is governed by ORANGE (OR), a key regulator for carotenoid accumulation in chromoplasts. By using comparative proteomic analysis of a high β-carotene melon variety and its isogenic line low-β mutant that is defective in CmOr with impaired chromoplast formation, we identified carotenoid sequestration protein FIBRILLIN1 (CmFBN1) as differentially expressed. CmFBN1 expresses highly in melon fruit tissue. Overexpression of CmFBN1 in transgenic Arabidopsis (Arabidopsis thaliana) containing ORHis that genetically mimics CmOr significantly enhances carotenoid accumulation, demonstrating its involvement in CmOR-induced carotenoid accumulation. Both in vitro and in vivo evidence showed that CmOR physically interacts with CmFBN1. Such an interaction occurs in plastoglobules and results in promoting CmFBN1 accumulation. CmOR greatly stabilizes CmFBN1, which stimulates plastoglobule proliferation and subsequently carotenoid accumulation in chromoplasts. Our findings show that CmOR directly regulates CmFBN1 protein levels and suggest a fundamental role of CmFBN1 in facilitating plastoglobule proliferation for carotenoid sequestration. This study also reveals an important genetic tool to further enhance OR-induced carotenoid accumulation in chromoplasts in crops.
Collapse
Affiliation(s)
- Xuesong Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Tianhu Sun
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Lauren Owens
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Yong Yang
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Tara Fish
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Emalee Wrightstone
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Andy Lui
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Hui Yuan
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Noam Chayut
- Department of Vegetable Research, ARO, Newe Ya'ar Research Center, Ramat Yishay 30095, Israel
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Joseph Burger
- Department of Vegetable Research, ARO, Newe Ya'ar Research Center, Ramat Yishay 30095, Israel
| | - Yaakov Tadmor
- Department of Vegetable Research, ARO, Newe Ya'ar Research Center, Ramat Yishay 30095, Israel
| | - Theodore Thannhauser
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Lailiang Cheng
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
9
|
Shi G, Ai K, Yan X, Zhou Z, Cai F, Bao M, Zhang J. Genome-Wide Analysis of the BBX Genes in Platanus × acerifolia and Their Relationship with Flowering and/or Dormancy. Int J Mol Sci 2023; 24:ijms24108576. [PMID: 37239923 DOI: 10.3390/ijms24108576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
The B-BOX (BBX) gene family is widely distributed in animals and plants and is involved in the regulation of their growth and development. In plants, BBX genes play important roles in hormone signaling, biotic and abiotic stress, light-regulated photomorphogenesis, flowering, shade response, and pigment accumulation. However, there has been no systematic analysis of the BBX family in Platanus × acerifolia. In this study, we identified 39 BBX genes from the P. × acerifolia genome, and used TBtools, MEGA, MEME, NCBI CCD, PLANTCARE and other tools for gene collinearity analysis, phylogenetic analysis, gene structure, conserved domain analysis, and promoter cis-element analysis, and used the qRT-PCR and transcriptome data for analyzing expression pattern of the PaBBX genes. Collinearity analysis indicated segmental duplication was the main driver of the BBX family in P. × acerifolia, and phylogenetic analysis showed that the PaBBX family was divided into five subfamilies: I, II, III, IV and V. Gene structure analysis showed that some PaBBX genes contained super-long introns that may regulate their own expression. Moreover, the promoter of PaBBX genes contained a significant number of cis-acting elements that are associated with plant growth and development, as well as hormone and stress responses. The qRT-PCR results and transcriptome data indicated that certain PaBBX genes exhibited tissue-specific and stage-specific expression patterns, suggesting that these genes may have distinct regulatory roles in P. × acerifolia growth and development. In addition, some PaBBX genes were regularly expressed during the annual growth of P. × acerifolia, corresponding to different stages of flower transition, dormancy, and bud break, indicating that these genes may be involved in the regulation of flowering and/or dormancy of P. × acerifolia. This article provided new ideas for the study of dormancy regulation and annual growth patterns in perennial deciduous plants.
Collapse
Affiliation(s)
- Gehui Shi
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Afairs, Wuhan 430070, China
| | - Kangyu Ai
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Afairs, Wuhan 430070, China
| | - Xu Yan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Afairs, Wuhan 430070, China
| | - Zheng Zhou
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Afairs, Wuhan 430070, China
| | - Fangfang Cai
- Plant Genomics & Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Manzhu Bao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Afairs, Wuhan 430070, China
| | - Jiaqi Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Afairs, Wuhan 430070, China
| |
Collapse
|
10
|
Reinar WB, Greulich A, Stø IM, Knutsen JB, Reitan T, Tørresen OK, Jentoft S, Butenko MA, Jakobsen KS. Adaptive protein evolution through length variation of short tandem repeats in Arabidopsis. SCIENCE ADVANCES 2023; 9:eadd6960. [PMID: 36947624 PMCID: PMC10032594 DOI: 10.1126/sciadv.add6960] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Intrinsically disordered protein regions are of high importance for biotic and abiotic stress responses in plants. Tracts of identical amino acids accumulate in these regions and can vary in length over generations because of expansions and retractions of short tandem repeats at the genomic level. However, little attention has been paid to what extent length variation is shaped by natural selection. By environmental association analysis on 2514 length variable tracts in 770 whole-genome sequenced Arabidopsis thaliana, we show that length variation in glutamine and asparagine amino acid homopolymers, as well as in interaction hotspots, correlate with local bioclimatic habitat. We determined experimentally that the promoter activity of a light-stress gene depended on polyglutamine length variants in a disordered transcription factor. Our results show that length variations affect protein function and are likely adaptive. Length variants modulating protein function at a global genomic scale has implications for understanding protein evolution and eco-evolutionary biology.
Collapse
Affiliation(s)
- William B. Reinar
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Anne Greulich
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Ida M. Stø
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Jonfinn B. Knutsen
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Trond Reitan
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Ole K. Tørresen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Melinka A. Butenko
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Kjetill S. Jakobsen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
11
|
Viola IL, Alem AL, Jure RM, Gonzalez DH. Physiological Roles and Mechanisms of Action of Class I TCP Transcription Factors. Int J Mol Sci 2023; 24:ijms24065437. [PMID: 36982512 PMCID: PMC10049435 DOI: 10.3390/ijms24065437] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
TEOSINTE BRANCHED1, CYCLOIDEA, PROLIFERATING CELL FACTOR 1 and 2 (TCP) proteins constitute a plant-specific transcription factors family exerting effects on multiple aspects of plant development, such as germination, embryogenesis, leaf and flower morphogenesis, and pollen development, through the recruitment of other factors and the modulation of different hormonal pathways. They are divided into two main classes, I and II. This review focuses on the function and regulation of class I TCP proteins (TCPs). We describe the role of class I TCPs in cell growth and proliferation and summarize recent progresses in understanding the function of class I TCPs in diverse developmental processes, defense, and abiotic stress responses. In addition, their function in redox signaling and the interplay between class I TCPs and proteins involved in immunity and transcriptional and posttranslational regulation is discussed.
Collapse
Affiliation(s)
- Ivana L. Viola
- Correspondence: (I.L.V.); (D.H.G.); Tel.: +54-342-4511370 (ext. 5021) (I.L.V.)
| | | | | | - Daniel H. Gonzalez
- Correspondence: (I.L.V.); (D.H.G.); Tel.: +54-342-4511370 (ext. 5021) (I.L.V.)
| |
Collapse
|
12
|
Moulick D, Bhutia KL, Sarkar S, Roy A, Mishra UN, Pramanick B, Maitra S, Shankar T, Hazra S, Skalicky M, Brestic M, Barek V, Hossain A. The intertwining of Zn-finger motifs and abiotic stress tolerance in plants: Current status and future prospects. FRONTIERS IN PLANT SCIENCE 2023; 13:1083960. [PMID: 36684752 PMCID: PMC9846276 DOI: 10.3389/fpls.2022.1083960] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Environmental stresses such as drought, high salinity, and low temperature can adversely modulate the field crop's ability by altering the morphological, physiological, and biochemical processes of the plants. It is estimated that about 50% + of the productivity of several crops is limited due to various types of abiotic stresses either presence alone or in combination (s). However, there are two ways plants can survive against these abiotic stresses; a) through management practices and b) through adaptive mechanisms to tolerate plants. These adaptive mechanisms of tolerant plants are mostly linked to their signalling transduction pathway, triggering the action of plant transcription factors and controlling the expression of various stress-regulated genes. In recent times, several studies found that Zn-finger motifs have a significant function during abiotic stress response in plants. In the first report, a wide range of Zn-binding motifs has been recognized and termed Zn-fingers. Since the zinc finger motifs regulate the function of stress-responsive genes. The Zn-finger was first reported as a repeated Zn-binding motif, comprising conserved cysteine (Cys) and histidine (His) ligands, in Xenopus laevis oocytes as a transcription factor (TF) IIIA (or TFIIIA). In the proteins where Zn2+ is mainly attached to amino acid residues and thus espousing a tetrahedral coordination geometry. The physical nature of Zn-proteins, defining the attraction of Zn-proteins for Zn2+, is crucial for having an in-depth knowledge of how a Zn2+ facilitates their characteristic function and how proteins control its mobility (intra and intercellular) as well as cellular availability. The current review summarized the concept, importance and mechanisms of Zn-finger motifs during abiotic stress response in plants.
Collapse
Affiliation(s)
- Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, India
| | - Karma Landup Bhutia
- Department of Agricultural Biotechnology & Molecular Breeding, College of Basic Science and Humanities, Dr. Rajendra Prasad Central Agricultural University, Samastipur, India
| | - Sukamal Sarkar
- School of Agriculture and Rural Development, Faculty Centre for Integrated Rural Development and Management (IRDM), Ramakrishna Mission Vivekananda Educational and Research Institute, Ramakrishna Mission Ashrama, Narendrapur, Kolkata, India
| | - Anirban Roy
- School of Agriculture and Rural Development, Faculty Centre for Integrated Rural Development and Management (IRDM), Ramakrishna Mission Vivekananda Educational and Research Institute, Ramakrishna Mission Ashrama, Narendrapur, Kolkata, India
| | - Udit Nandan Mishra
- Department of Crop Physiology and Biochemistry, Sri University, Cuttack, Odisha, India
| | - Biswajit Pramanick
- Department of Agronomy, Dr. Rajendra Prasad Central Agricultural University, PUSA, Samastipur, Bihar, India
- Department of Agronomy and Horticulture, University of Nebraska Lincoln, Scottsbluff, NE, United States
| | - Sagar Maitra
- Department of Agronomy and Agroforestry, Centurion University of Technology and Management, Paralakhemundi, Odisha, India
| | - Tanmoy Shankar
- Department of Agronomy and Agroforestry, Centurion University of Technology and Management, Paralakhemundi, Odisha, India
| | - Swati Hazra
- School of Agricultural Sciences, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Marian Brestic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- Institute of Plant and Environmental Sciences, Slovak University of Agriculture, Nitra, Slovakia
| | - Viliam Barek
- Department of Water Resources and Environmental Engineering, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Nitra, Slovakia
| | - Akbar Hossain
- Division of Agronomy, Bangladesh Wheat and Maize Research Institute, Dinajpur, Bangladesh
| |
Collapse
|
13
|
Zhang D, Guo W, Wang T, Wang Y, Le L, Xu F, Wu Y, Wuriyanghan H, Sung ZR, Pu L. RNA 5-Methylcytosine Modification Regulates Vegetative Development Associated with H3K27 Trimethylation in Arabidopsis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2204885. [PMID: 36382558 PMCID: PMC9811455 DOI: 10.1002/advs.202204885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Methylating RNA post-transcriptionally is emerging as a significant mechanism of gene regulation in eukaryotes. The crosstalk between RNA methylation and histone modification is critical for chromatin state and gene expression in mammals. However, it is not well understood mechanistically in plants. Here, the authors report a genome-wide correlation between RNA 5-cytosine methylation (m5 C) and histone 3 lysine27 trimethylation (H3K27me3) in Arabidopsis. The plant-specific Polycomb group (PcG) protein EMBRYONIC FLOWER1 (EMF1) plays dual roles as activators or repressors. Transcriptome-wide RNA m5 C profiling revealed that m5 C peaks are mostly enriched in chromatin regions that lacked H3K27me3 in both wild type and emf1 mutants. EMF1 repressed the expression of m5 C methyltransferase tRNA specific methyltransferase 4B (TRM4B) through H3K4me3, independent of PcG-mediated H3K27me3 mechanism. The 5-Cytosine methylation on targets is increased in emf1 mutants, thereby decreased the mRNA transcripts of photosynthesis and chloroplast genes. In addition, impairing EMF1 activity reduced H3K27me3 levels of PcG targets, such as starch genes, which are de-repressed in emf1 mutants. Both EMF1-mediated promotion and repression of gene activities via m5 C and H3K27me3 are required for normal vegetative growth. Collectively, t study reveals a previously undescribed epigenetic mechanism of RNA m5 C modifications and histone modifications to regulate gene expression in eukaryotes.
Collapse
Affiliation(s)
- Daolei Zhang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081P. R. China
- School of Life ScienceInner Mongolia UniversityHohhot010021P. R. China
| | - Weijun Guo
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081P. R. China
| | - Ting Wang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081P. R. China
- Shangrao Normal UniversityShangrao334001P. R. China
| | - Yifan Wang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081P. R. China
| | - Liang Le
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081P. R. China
| | - Fan Xu
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081P. R. China
| | - Yue Wu
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081P. R. China
| | - Hada Wuriyanghan
- School of Life ScienceInner Mongolia UniversityHohhot010021P. R. China
| | - Zinmay Renee Sung
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCA94720USA
| | - Li Pu
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081P. R. China
| |
Collapse
|
14
|
Zhang YM, Wu RH, Wang L, Wang YH, Liu H, Xiong AS, Xu ZS. Plastid diversity and chromoplast biogenesis in differently coloured carrots: role of the DcOR3 Leu gene. PLANTA 2022; 256:104. [PMID: 36308565 DOI: 10.1007/s00425-022-04016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Distinct plastid types and ultrastructural changes are associated with differences in carotenoid pigment profiles in differently coloured carrots, and a variant of the OR gene, DcOR3Leu is vital for chromoplast biogenesis. Accumulation of different types and amounts of carotenoids in carrots impart different colours to their taproots. In this study, the carotenoid pigment profiles, morphology, and ultrastructure of plastids in 25 carrot varieties with orange, red, yellow, or white taproots were investigated by ultra-high performance liquid chromatography as well as light and transmission electron microscopy. α-/β-Carotene and lycopene were identified as colour-determining carotenoids in orange and red carrots, respectively. In contrast, lutein was identified as the colour-determining carotenoid in almost all tested yellow and white carrots. The latter contained only trace amounts of lutein as a unique detectable carotenoid. Striking differences in plastid types that coincided with distinct carotenoid profiles were observed among the differently coloured carrots. Microscopic analysis of the different carotenoid pigment-loaded plastids revealed abundant crystalloid chromoplasts in the orange and red carrots, whereas amyloplasts were dominant in most of the yellow and white carrots, except for the yellow carrot 'Yellow Stone', where yellow chromoplasts were observed. Plastoglobuli and crystal remnants, the carotenoid sequestering substructures, were identified in crystalloid chromoplasts. Crystal remnants were often associated with a characteristic undulated internal membrane in orange carrots or several undulated membranes in red carrots. No crystal remnants, but some plastoglobuli, were observed in the plastids of all tested yellow and white carrots. In addition, the presence of chromoplast in carrot taproots was found to be associated with DcOR3Leu, a natural variant of DcOR3, which was previously reported to be co-segregated with carotene content in carrots. Knocking out DcOR3Leu in the orange carrot 'Kurodagosun' depressed chromoplast biogenesis and led to the generation of yellow carrots. Our results support that DcOR3Leu is vital but insufficient for chromoplasts biogenesis in carrots, and add to the understanding of the formation of chromoplasts in carrots.
Collapse
Affiliation(s)
- Yu-Min Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Rong-Hua Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Lu Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Ya-Hui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Hui Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
| |
Collapse
|
15
|
Mapping and Validation of BrGOLDEN: A Dominant Gene Regulating Carotenoid Accumulation in Brassica rapa. Int J Mol Sci 2022; 23:ijms232012442. [PMID: 36293299 PMCID: PMC9603932 DOI: 10.3390/ijms232012442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/19/2022] Open
Abstract
In plants, the accumulation of carotenoids can maintain the balance of the photosystem and improve crop nutritional quality. Therefore, the molecular mechanisms underlying carotenoid synthesis and accumulation should be further explored. In this study, carotenoid accumulation differed significantly among parental Brassica rapa. Genetic analysis was carried out using the golden inner leaf ‘1900264′ line and the light−yellow inner leaf ‘1900262′ line, showing that the golden inner leaf phenotype was controlled by a single dominant gene. Using bulked−segregant analysis sequencing, BraA09g007080.3C encoding the ORANGE protein was selected as a candidate gene. Sequence alignment revealed that a 4.67 kb long terminal repeat insertion in the third exon of the BrGOLDEN resulted in three alternatively spliced transcripts. The spatiotemporal expression results indicated that BrGOLDEN might regulate the expression levels of carotenoid−synthesis−related genes. After transforming BrGOLDEN into Arabidopsis thaliana, the seed−derived callus showed that BrGOLDENIns and BrGOLDENDel lines presented a yellow color and the BrGOLDENLdel line presented a transparent phenotype. In addition, using the yeast two−hybrid assay, BrGOLDENIns, BrGOLDENLdel, and Brgoldenwt exhibited strong interactions with BrPSY1, but BrGOLDENDel did not interact with BrPSY1 in the split−ubiquitin membrane system. In the secondary and 3D structure analysis, BrGOLDENDel was shown to have lost the PNFPSFIPFLPPL sequences at the 125 amino acid position, which resulted in the α−helices of BrGOLDENDel being disrupted, restricting the formation of the 3D structure and affecting the functions of the protein. These findings may provide new insights into the regulation of carotenoid synthesis in B. rapa.
Collapse
|
16
|
Zhao L, Jia T, Jiao Q, Hu X. Research Progress in J-Proteins in the Chloroplast. Genes (Basel) 2022; 13:1469. [PMID: 36011380 PMCID: PMC9407819 DOI: 10.3390/genes13081469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
The J-proteins, also called DNAJ-proteins or heat shock protein 40 (HSP40), are one of the famous molecular chaperones. J-proteins, HSP70s and other chaperones work together as constitute ubiquitous types of molecular chaperone complex, which function in a wide variety of physiological processes. J-proteins are widely distributed in major cellular compartments. In the chloroplast of higher plants, around 18 J-proteins and multiple J-like proteins are present; however, the functions of most of them remain unclear. During the last few years, important progress has been made in the research on their roles in plants. There is increasing evidence that the chloroplast J-proteins play essential roles in chloroplast development, photosynthesis, seed germination and stress response. Here, we summarize recent research advances on the roles of J-proteins in the chloroplast, and discuss the open questions that remain in this field.
Collapse
Affiliation(s)
- Lu Zhao
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Ting Jia
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Qingsong Jiao
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Xueyun Hu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
17
|
Zheng X, Lan J, Yu H, Zhang J, Zhang Y, Qin Y, Su XD, Qin G. Arabidopsis transcription factor TCP4 represses chlorophyll biosynthesis to prevent petal greening. PLANT COMMUNICATIONS 2022; 3:100309. [PMID: 35605201 PMCID: PMC9284284 DOI: 10.1016/j.xplc.2022.100309] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/16/2022] [Accepted: 03/01/2022] [Indexed: 05/06/2023]
Abstract
Green petals pose a challenge for pollinators to distinguish flowers from leaves, but they are valuable as a specialty flower trait. However, little is understood about the molecular mechanisms that underlie the development of green petals. Here, we report that CINCINNATA (CIN)-like TEOSINTE BRANCHED 1/CYCLOIDEA/PCF (TCP) proteins play key roles in the control of petal color. The septuple tcp2/3/4/5/10/13/17 mutant produced flowers with green petals due to chlorophyll accumulation. Expression of TCP4 complemented the petal phenotype of tcp2/3/4/5/10/13/17. We found that chloroplasts were converted into leucoplasts in the distal parts of wild-type petals but not in the proximal parts during flower development, whereas plastid conversion was compromised in the distal parts of tcp2/3/4/5/10/13/17 petals. TCP4 and most CIN-like TCPs were predominantly expressed in distal petal regions, consistent with the green-white pattern in wild-type petals and the petal greening observed in the distal parts of tcp2/3/4/5/10/13/17 petals. RNA-sequencing data revealed that most chlorophyll biosynthesis genes were downregulated in the white distal parts of wild-type petals, but these genes had elevated expression in the distal green parts of tcp2/3/4/5/10/13/17 petals and the green proximal parts of wild-type petals. We revealed that TCP4 repressed chlorophyll biosynthesis by directly binding to the promoters of PROTOCHLOROPHYLLIDE REDUCTASE (PORB), DIVINYL REDUCTASE (DVR), and SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1), which are known to promote petal greening. We found that the conversion of chloroplasts to leucoplasts and the green coloration in the proximal parts of petals appeared to be conserved among plant species. Our findings uncover a major molecular mechanism that underpins the formation of petal color patterns and provide a foundation for the breeding of plants with green flowers.
Collapse
Affiliation(s)
- Xinhui Zheng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Jingqiu Lan
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Hao Yu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Jingzhe Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Yi Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Yongmei Qin
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Xiao-Dong Su
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People's Republic of China.
| |
Collapse
|
18
|
Wang Q, Wang GL, Song SY, Zhao YN, Lu S, Zhou F. ORANGE negatively regulates flowering time in Arabidopsisthaliana. JOURNAL OF PLANT PHYSIOLOGY 2022; 274:153719. [PMID: 35598433 DOI: 10.1016/j.jplph.2022.153719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Floral transition is an important process in plant development, which is regulated by at least four flowering pathways: the photoperiod, vernalization, autonomous, and gibberellin (GA)-dependent pathways. The DnaJ-like zinc finger domain-containing protein ORANGE (OR) was originally cloned from the cauliflower or mutant, which has distinct phenotypes of the carotenoid-accumulating curd, the elongated petioles, and the delayed-flowering time. OR has been demonstrated to interact with phytoene synthase for carotenoid biosynthesis in plastids and with eukaryotic release factor 1-2 (eRF1-2) in the nucleus for the first two phenotypes, respectively. In this study, we showed that overexpression of OR in Arabidopsis thaliana resulted in a delayed-flowering phenotype resembling the cauliflower or mutant. Our results indicated that OR negatively regulates the expression of the flowering integrator genes FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1). Both GA3 and vernalization treatments could not rescue the delayed-flowering phenotype of the OR-overexpressing seedlings, suggesting the repression of floral transition by OR does not depend on SOC1-mediated vernalization or GA-dependent pathways. Moreover, our analysis revealed that transcripts of OR and FT fluctuated in opposite directions diurnally, and the overexpression of OR repressed the accumulation of CONSTANS (CO), FT, and SOC1 transcripts in a 16 h/8 h light/dark long-day cycle. Our results indicated the possibility that OR represses flowering through the CO-FT-SOC1-mediated photoperiodic flowering pathway.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Guang-Ling Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Shu-Yuan Song
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Ya-Nan Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Shan Lu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Fei Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
19
|
The DnaJ-like Zinc Finger Protein ORANGE Promotes Proline Biosynthesis in Drought-Stressed Arabidopsis Seedlings. Int J Mol Sci 2022; 23:ijms23073907. [PMID: 35409266 PMCID: PMC8999238 DOI: 10.3390/ijms23073907] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 02/01/2023] Open
Abstract
Orange (OR) is a DnaJ-like zinc finger protein with both nuclear and plastidial localizations. OR, and its orthologs, are highly conserved in flowering plants, sharing a characteristic C-terminal tandem 4× repeats of the CxxCxxxG signature. It was reported to trigger chromoplast biogenesis, promote carotenoid accumulation in plastids of non-pigmented tissues, and repress chlorophyll biosynthesis and chloroplast biogenesis in the nucleus of de-etiolating cotyledons cells. Its ectopic overexpression was found to enhance plant resistance to abiotic stresses. Here, we report that the expression of OR in Arabidopsis thaliana was upregulated by drought treatment, and seedlings of the OR-overexpressing (OE) lines showed improved growth performance and survival rate under drought stress. Compared with the wild-type (WT) and OR-silencing (or) lines, drought-stressed OE seedlings possessed lower contents of reactive oxygen species (such as H2O2 and O2-), higher activities of both superoxide dismutase and catalase, and a higher level of proline content. Our enzymatic assay revealed a relatively higher activity of Δ1-pyrroline-5-carboxylate synthase (P5CS), a rate-limiting enzyme for proline biosynthesis, in drought-stressed OE seedlings, compared with the WT and or lines. We further demonstrated that the P5CS activity could be enhanced by supplementing exogenous OR in our in vitro assays. Taken together, our results indicated a novel contribution of OR to drought tolerance, through its impact on proline biosynthesis.
Collapse
|
20
|
Sun T, Rao S, Zhou X, Li L. Plant carotenoids: recent advances and future perspectives. MOLECULAR HORTICULTURE 2022; 2:3. [PMID: 37789426 PMCID: PMC10515021 DOI: 10.1186/s43897-022-00023-2] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/03/2022] [Indexed: 10/05/2023]
Abstract
Carotenoids are isoprenoid metabolites synthesized de novo in all photosynthetic organisms. Carotenoids are essential for plants with diverse functions in photosynthesis, photoprotection, pigmentation, phytohormone synthesis, and signaling. They are also critically important for humans as precursors of vitamin A synthesis and as dietary antioxidants. The vital roles of carotenoids to plants and humans have prompted significant progress toward our understanding of carotenoid metabolism and regulation. New regulators and novel roles of carotenoid metabolites are continuously revealed. This review focuses on current status of carotenoid metabolism and highlights recent advances in comprehension of the intrinsic and multi-dimensional regulation of carotenoid accumulation. We also discuss the functional evolution of carotenoids, the agricultural and horticultural application, and some key areas for future research.
Collapse
Affiliation(s)
- Tianhu Sun
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Sombir Rao
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Xuesong Zhou
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA.
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
21
|
Jaramillo AM, Sierra S, Chavarriaga-Aguirre P, Castillo DK, Gkanogiannis A, López-Lavalle LAB, Arciniegas JP, Sun T, Li L, Welsch R, Boy E, Álvarez D. Characterization of cassava ORANGE proteins and their capability to increase provitamin A carotenoids accumulation. PLoS One 2022; 17:e0262412. [PMID: 34995328 PMCID: PMC8741059 DOI: 10.1371/journal.pone.0262412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 12/23/2021] [Indexed: 11/19/2022] Open
Abstract
Cassava (Manihot esculenta Crantz) biofortification with provitamin A carotenoids is an ongoing process that aims to alleviate vitamin A deficiency. The moderate content of provitamin A carotenoids achieved so far limits the contribution to providing adequate dietary vitamin A levels. Strategies to increase carotenoid content focused on genes from the carotenoids biosynthesis pathway. In recent years, special emphasis was given to ORANGE protein (OR), which promotes the accumulation of carotenoids and their stability in several plants. The aim of this work was to identify, characterize and investigate the role of OR in the biosynthesis and stabilization of carotenoids in cassava and its relationship with phytoene synthase (PSY), the rate-limiting enzyme of the carotenoids biosynthesis pathway. Gene and protein characterization of OR, expression levels, protein amounts and carotenoids levels were evaluated in roots of one white (60444) and two yellow cassava cultivars (GM5309-57 and GM3736-37). Four OR variants were found in yellow cassava roots. Although comparable expression was found for three variants, significantly higher OR protein amounts were observed in the yellow varieties. In contrast, cassava PSY1 expression was significantly higher in the yellow cultivars, but PSY protein amount did not vary. Furthermore, we evaluated whether expression of one of the variants, MeOR_X1, affected carotenoid accumulation in cassava Friable Embryogenic Callus (FEC). Overexpression of maize PSY1 alone resulted in carotenoids accumulation and induced crystal formation. Co-expression with MeOR_X1 led to greatly increase of carotenoids although PSY1 expression was high in the co-expressed FEC. Our data suggest that posttranslational mechanisms controlling OR and PSY protein stability contribute to higher carotenoid levels in yellow cassava. Moreover, we showed that cassava FEC can be used to study the efficiency of single and combinatorial gene expression in increasing the carotenoid content prior to its application for the generation of biofortified cassava with enhanced carotenoids levels.
Collapse
Affiliation(s)
- Angélica M. Jaramillo
- HarvestPlus, c/o The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Santiago Sierra
- The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Paul Chavarriaga-Aguirre
- The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Diana Katherine Castillo
- The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Anestis Gkanogiannis
- The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | | | - Juan Pablo Arciniegas
- The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Tianhu Sun
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, New York, United States of America
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, New York, United States of America
| | - Ralf Welsch
- Faculty of Biology II, University of Freiburg, Freiburg, Germany
| | - Erick Boy
- HarvestPlus, International Food Policy Research Institute, Washington, DC, United States of America
| | - Daniel Álvarez
- HarvestPlus, c/o The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| |
Collapse
|
22
|
Gupta P, Hirschberg J. The Genetic Components of a Natural Color Palette: A Comprehensive List of Carotenoid Pathway Mutations in Plants. FRONTIERS IN PLANT SCIENCE 2022; 12:806184. [PMID: 35069664 PMCID: PMC8770946 DOI: 10.3389/fpls.2021.806184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/08/2021] [Indexed: 05/16/2023]
Abstract
Carotenoids comprise the most widely distributed natural pigments. In plants, they play indispensable roles in photosynthesis, furnish colors to flowers and fruit and serve as precursor molecules for the synthesis of apocarotenoids, including aroma and scent, phytohormones and other signaling molecules. Dietary carotenoids are vital to human health as a source of provitamin A and antioxidants. Hence, the enormous interest in carotenoids of crop plants. Over the past three decades, the carotenoid biosynthesis pathway has been mainly deciphered due to the characterization of natural and induced mutations that impair this process. Over the year, numerous mutations have been studied in dozens of plant species. Their phenotypes have significantly expanded our understanding of the biochemical and molecular processes underlying carotenoid accumulation in crops. Several of them were employed in the breeding of crops with higher nutritional value. This compendium of all known random and targeted mutants available in the carotenoid metabolic pathway in plants provides a valuable resource for future research on carotenoid biosynthesis in plant species.
Collapse
Affiliation(s)
| | - Joseph Hirschberg
- Department of Genetics, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
23
|
Plant LHC-like proteins show robust folding and static non-photochemical quenching. Nat Commun 2021; 12:6890. [PMID: 34824207 PMCID: PMC8617258 DOI: 10.1038/s41467-021-27155-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 11/02/2021] [Indexed: 11/17/2022] Open
Abstract
Life on Earth depends on photosynthesis, the conversion of light energy into chemical energy. Plants collect photons by light harvesting complexes (LHC)-abundant membrane proteins containing chlorophyll and xanthophyll molecules. LHC-like proteins are similar in their amino acid sequence to true LHC antennae, however, they rather serve a photoprotective function. Whether the LHC-like proteins bind pigments has remained unclear. Here, we characterize plant LHC-like proteins (LIL3 and ELIP2) produced in the cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis). Both proteins were associated with chlorophyll a (Chl) and zeaxanthin and LIL3 was shown to be capable of quenching Chl fluorescence via direct energy transfer from the Chl Qy state to zeaxanthin S1 state. Interestingly, the ability of the ELIP2 protein to quench can be acquired by modifying its N-terminal sequence. By employing Synechocystis carotenoid mutants and site-directed mutagenesis we demonstrate that, although LIL3 does not need pigments for folding, pigments stabilize the LIL3 dimer.
Collapse
|
24
|
Chen WC, Wang Q, Cao TJ, Lu S. UBC19 is a new interacting protein of ORANGE for its nuclear localization in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2021; 16:1964847. [PMID: 34405771 PMCID: PMC8525976 DOI: 10.1080/15592324.2021.1964847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
ORANGE (OR) is a member of the DnaJ-like zinc finger domain-containing protein family, of which all orthologs share a highly conserved quadruple repeat of the CxxCxxxG signatures at their C-termini. Dual subcellular localization and different interacting partner proteins have been reported for OR. In plastids, OR interacts with phytoene synthase, the entry enzyme for carotenoid biosynthesis, to promote chromoplast biogenesis and carotenoid accumulation in non-pigmented tissues. In the nucleus, OR interacts with the eukaryotic release factor eRF1-2 to regulate cell elongation in the petiole, and with the transcription factor TCP14 to repress the expression of Early Light-Induced Proteins (ELIPs) and chloroplast biogenesis in de-etiolating cotyledons. In this study, we demonstrated the E2 ubiquitin-conjugating enzyme UBC19 as a new interacting partner of OR. The lysine58 of OR was found to be ubiquitinated, and OR lost its nuclear localization and the capability in repressing ELIPs when lysine58 was substituted by alanine. Our findings raised the possibility that the ubiquitination by UBC19 is essential for the nuclear localization of OR.
Collapse
Affiliation(s)
- Wei-Cai Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Tian-Jun Cao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shan Lu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Shenzhen Research Institute of Nanjing University, Shenzhen, China
| |
Collapse
|
25
|
Screening and Identification of Candidate GUN1-Interacting Proteins in Arabidopsis thaliana. Int J Mol Sci 2021; 22:ijms222111364. [PMID: 34768794 PMCID: PMC8583188 DOI: 10.3390/ijms222111364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 11/17/2022] Open
Abstract
Chloroplasts are semi-autonomous organelles governed by the precise coordination between the genomes of their own and the nucleus for functioning correctly in response to developmental and environmental cues. Under stressed conditions, various plastid-to-nucleus retrograde signals are generated to regulate the expression of a large number of nuclear genes for acclimation. Among these retrograde signaling pathways, the chloroplast protein GENOMES UNCOUPLED 1 (GUN1) is the first component identified. However, in addition to integrating aberrant physiological signals when chloroplasts are challenged by stresses such as photooxidative damage or the inhibition of plastid gene expression, GUN1 was also found to regulate other developmental processes such as flowering. Several partner proteins have been found to interact with GUN1 and facilitate its different regulatory functions. In this study, we report 15 possible interacting proteins identified through yeast two-hybrid (Y2H) screening, among which 11 showed positive interactions by pair-wise Y2H assay. Through the bimolecular fluorescence complementation assay in Arabidopsis protoplasts, two candidate proteins with chloroplast localization, DJC31 and HCF145, were confirmed to interact with GUN1 in planta. Genes for these GUN1-interacting proteins showed different fluctuations in the WT and gun1 mutant under norflurazon and lincomycin treatments. Our results provide novel clues for a better understanding of molecular mechanisms underlying GUN1-mediated regulations.
Collapse
|
26
|
Sandoval-Ibáñez O, Sharma A, Bykowski M, Borràs-Gas G, Behrendorff JBYH, Mellor S, Qvortrup K, Verdonk JC, Bock R, Kowalewska Ł, Pribil M. Curvature thylakoid 1 proteins modulate prolamellar body morphology and promote organized thylakoid biogenesis in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2021; 118:e2113934118. [PMID: 34654749 PMCID: PMC8594483 DOI: 10.1073/pnas.2113934118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 11/18/2022] Open
Abstract
The term "de-etiolation" refers to the light-dependent differentiation of etioplasts to chloroplasts in angiosperms. The underlying process involves reorganization of prolamellar bodies (PLBs) and prothylakoids into thylakoids, with concurrent changes in protein, lipid, and pigment composition, which together lead to the assembly of active photosynthetic complexes. Despite the highly conserved structure of PLBs among land plants, the processes that mediate PLB maintenance and their disassembly during de-etiolation are poorly understood. Among chloroplast thylakoid membrane-localized proteins, to date, only Curvature thylakoid 1 (CURT1) proteins were shown to exhibit intrinsic membrane-bending capacity. Here, we show that CURT1 proteins, which play a critical role in grana margin architecture and thylakoid plasticity, also participate in de-etiolation and modulate PLB geometry and density. Lack of CURT1 proteins severely perturbs PLB organization and vesicle fusion, leading to reduced accumulation of the light-dependent enzyme protochlorophyllide oxidoreductase (LPOR) and a delay in the onset of photosynthesis. In contrast, overexpression of CURT1A induces excessive bending of PLB membranes, which upon illumination show retarded disassembly and concomitant overaccumulation of LPOR, though without affecting greening or the establishment of photosynthesis. We conclude that CURT1 proteins contribute to the maintenance of the paracrystalline PLB morphology and are necessary for efficient and organized thylakoid membrane maturation during de-etiolation.
Collapse
Affiliation(s)
- Omar Sandoval-Ibáñez
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Copenhagen, Denmark
- Max Planck Institute of Molecular Plant Physiology, Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, 14476 Potsdam, Germany
| | - Anurag Sharma
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Copenhagen, Denmark
| | - Michał Bykowski
- Department of Plant Anatomy and Cytology, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, PL-02-096 Warsaw, Poland
| | - Guillem Borràs-Gas
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Copenhagen, Denmark
| | - James B Y H Behrendorff
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Copenhagen, Denmark
| | - Silas Mellor
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Copenhagen, Denmark
| | - Klaus Qvortrup
- Core Facility for Integrated Microscopy, The Panum Institute, Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Julian C Verdonk
- Horticulture and Product Physiology, Plant Sciences Group, Wageningen University, 6708 PD Wageningen, The Netherlands
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, 14476 Potsdam, Germany
| | - Łucja Kowalewska
- Department of Plant Anatomy and Cytology, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, PL-02-096 Warsaw, Poland;
| | - Mathias Pribil
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Copenhagen, Denmark;
| |
Collapse
|
27
|
Torres-Montilla S, Rodriguez-Concepcion M. Making extra room for carotenoids in plant cells: New opportunities for biofortification. Prog Lipid Res 2021; 84:101128. [PMID: 34530006 DOI: 10.1016/j.plipres.2021.101128] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 12/22/2022]
Abstract
Plant carotenoids are essential for photosynthesis and photoprotection and provide colors in the yellow to red range to non-photosynthetic organs such as petals and ripe fruits. They are also the precursors of biologically active molecules not only in plants (including hormones and retrograde signals) but also in animals (including retinoids such as vitamin A). A carotenoid-rich diet has been associated with improved health and cognitive capacity in humans, whereas the use of carotenoids as natural pigments is widespread in the agrofood and cosmetic industries. The nutritional and economic relevance of carotenoids has spurred a large number of biotechnological strategies to enrich plant tissues with carotenoids. Most of such approaches to alter carotenoid contents in plants have been focused on manipulating their biosynthesis or degradation, whereas improving carotenoid sink capacity in plant tissues has received much less attention. Our knowledge on the molecular mechanisms influencing carotenoid storage in plants has substantially grown in the last years, opening new opportunities for carotenoid biofortification. Here we will review these advances with a particular focus on those creating extra room for carotenoids in plant cells either by promoting the differentiation of carotenoid-sequestering structures within plastids or by transferring carotenoid production to the cytosol.
Collapse
Affiliation(s)
- Salvador Torres-Montilla
- Institute for Plant Molecular and Cell Biology (IBMCP), Agencia Estatal Consejo Superior de Investigaciones Cientificas - Universitat Politècnica de València, 46022 Valencia, Spain
| | - Manuel Rodriguez-Concepcion
- Institute for Plant Molecular and Cell Biology (IBMCP), Agencia Estatal Consejo Superior de Investigaciones Cientificas - Universitat Politècnica de València, 46022 Valencia, Spain.
| |
Collapse
|
28
|
Yu Y, Yu J, Wang Q, Wang J, Zhao G, Wu H, Zhu Y, Chu C, Fang J. Overexpression of the rice ORANGE gene OsOR negatively regulates carotenoid accumulation, leads to higher tiller numbers and decreases stress tolerance in Nipponbare rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 310:110962. [PMID: 34315587 DOI: 10.1016/j.plantsci.2021.110962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/22/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
The ORANGE (OR) gene has been reported to regulate chromoplast differentiation and enhance carotenoid biosynthesis in many dicotyledonous plants. However, the function of the OR gene in monocotyledons, especially rice, is poorly known. Here, the OR gene from rice, OsOR, was isolated and characterized by generating overexpressing and genome editing mutant lines. The OsOR-overexpressing plants exhibited pleiotropic phenotypes, such as alternating transverse green and white sectors on leaves at the early tillering stage, that were due to changes in thylakoid development and reduced carotenoid content. In addition, the number of tillers significantly increased in OsOR-overexpressing plants but decreased in osor mutant lines, a result similar to that previously reported for the carotenoid isomerase mutant mit3. The expression of the DWARF3 and DWARF53 genes that are involved in the strigolactone signalling pathway were similarly downregulated in OsOR-overexpressing plants but upregulated in osor mutants. Moreover, the OsOR-overexpressing plants exhibited greater sensitivity to salt and cold stress, and had lower total chlorophyll and higher MDA contents. All results suggest that the OsOR gene plays an important role not only in carotenoid accumulation but also in tiller number regulation and in responses to environmental stress in rice.
Collapse
Affiliation(s)
- Yang Yu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin, China; College of Life Science and Engineering, Shenyang University, Shenyang, China
| | - Jiyang Yu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin, China; Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, China
| | - Qinglong Wang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jing Wang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin, China; Quality and Safety Institute of Agriculture Products, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Guangxin Zhao
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin, China; College of Advanced Agricultural Science, University of Chinese Academy of Sciences, Beijing, China
| | - Hongkai Wu
- College of Agriculture and Food Science, Zhejiang A&F University, Hangzhou, China
| | - Yanming Zhu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Science, University of Chinese Academy of Sciences, Beijing, China.
| | - Jun Fang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin, China; College of Advanced Agricultural Science, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
29
|
Ma Y, Xu D, Yan X, Wu Z, Kayani SI, Shen Q, Fu X, Xie L, Hao X, Hassani D, Li L, Liu H, Pan Q, Lv Z, Liu P, Sun X, Tang K. Jasmonate- and abscisic acid-activated AaGSW1-AaTCP15/AaORA transcriptional cascade promotes artemisinin biosynthesis in Artemisia annua. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1412-1428. [PMID: 33539631 PMCID: PMC8313134 DOI: 10.1111/pbi.13561] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/24/2021] [Accepted: 01/28/2021] [Indexed: 05/12/2023]
Abstract
Artemisinin, a sesquiterpene lactone widely used in malaria treatment, was discovered in the medicinal plant Artemisia annua. The biosynthesis of artemisinin is efficiently regulated by jasmonate (JA) and abscisic acid (ABA) via regulatory factors. However, the mechanisms linking JA and ABA signalling with artemisinin biosynthesis through an associated regulatory network of downstream transcription factors (TFs) remain enigmatic. Here we report AaTCP15, a JA and ABA dual-responsive teosinte branched1/cycloidea/proliferating (TCP) TF, which is essential for JA and ABA-induced artemisinin biosynthesis by directly binding to and activating the promoters of DBR2 and ALDH1, two genes encoding enzymes for artemisinin biosynthesis. Furthermore, AaORA, another positive regulator of artemisinin biosynthesis responds to JA and ABA, interacts with and enhances the transactivation activity of AaTCP15 and simultaneously activates AaTCP15 transcripts. Hence, they form an AaORA-AaTCP15 module to synergistically activate DBR2, a crucial gene for artemisinin biosynthesis. More importantly, AaTCP15 expression is activated by the multiple reported JA and ABA-responsive TFs that promote artemisinin biosynthesis. Among them, AaGSW1 acts at the nexus of JA and ABA signalling to activate the artemisinin biosynthetic pathway and directly binds to and activates the AaTCP15 promoter apart from the AaORA promoter, which further facilitates formation of the AaGSW1-AaTCP15/AaORA regulatory module to integrate JA and ABA-mediated artemisinin biosynthesis. Our results establish a multilayer regulatory network of the AaGSW1-AaTCP15/AaORA module to regulate artemisinin biosynthesis through JA and ABA signalling, and provide an interesting avenue for future research exploring the special transcriptional regulation module of TCP genes associated with specialized metabolites in plants.
Collapse
Affiliation(s)
- Ya‐Nan Ma
- Joint International Research Laboratory of Metabolic and Developmental SciencesKey Laboratory of Urban Agriculture (South) Ministry of AgriculturePlant Biotechnology Research CenterFudan‐SJTU‐Nottingham Plant Biotechnology R&D CenterSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Dong‐Bei Xu
- Joint International Research Laboratory of Metabolic and Developmental SciencesKey Laboratory of Urban Agriculture (South) Ministry of AgriculturePlant Biotechnology Research CenterFudan‐SJTU‐Nottingham Plant Biotechnology R&D CenterSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
- Institute of Ecological AgricultureSichuan Agricultural UniversityChengduChina
| | - Xin Yan
- Joint International Research Laboratory of Metabolic and Developmental SciencesKey Laboratory of Urban Agriculture (South) Ministry of AgriculturePlant Biotechnology Research CenterFudan‐SJTU‐Nottingham Plant Biotechnology R&D CenterSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Zhang‐Kuanyu Wu
- Joint International Research Laboratory of Metabolic and Developmental SciencesKey Laboratory of Urban Agriculture (South) Ministry of AgriculturePlant Biotechnology Research CenterFudan‐SJTU‐Nottingham Plant Biotechnology R&D CenterSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Sadaf Ilyas Kayani
- Joint International Research Laboratory of Metabolic and Developmental SciencesKey Laboratory of Urban Agriculture (South) Ministry of AgriculturePlant Biotechnology Research CenterFudan‐SJTU‐Nottingham Plant Biotechnology R&D CenterSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Qian Shen
- Joint International Research Laboratory of Metabolic and Developmental SciencesKey Laboratory of Urban Agriculture (South) Ministry of AgriculturePlant Biotechnology Research CenterFudan‐SJTU‐Nottingham Plant Biotechnology R&D CenterSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xue‐Qing Fu
- Joint International Research Laboratory of Metabolic and Developmental SciencesKey Laboratory of Urban Agriculture (South) Ministry of AgriculturePlant Biotechnology Research CenterFudan‐SJTU‐Nottingham Plant Biotechnology R&D CenterSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Li‐Hui Xie
- Joint International Research Laboratory of Metabolic and Developmental SciencesKey Laboratory of Urban Agriculture (South) Ministry of AgriculturePlant Biotechnology Research CenterFudan‐SJTU‐Nottingham Plant Biotechnology R&D CenterSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xiao‐Long Hao
- Laboratory of Medicinal Plant BiotechnologyCollege of PharmacyZhejiang Chinese Medical UniversityHangzhouChina
| | - Danial Hassani
- Joint International Research Laboratory of Metabolic and Developmental SciencesKey Laboratory of Urban Agriculture (South) Ministry of AgriculturePlant Biotechnology Research CenterFudan‐SJTU‐Nottingham Plant Biotechnology R&D CenterSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Ling Li
- Joint International Research Laboratory of Metabolic and Developmental SciencesKey Laboratory of Urban Agriculture (South) Ministry of AgriculturePlant Biotechnology Research CenterFudan‐SJTU‐Nottingham Plant Biotechnology R&D CenterSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Hang Liu
- Joint International Research Laboratory of Metabolic and Developmental SciencesKey Laboratory of Urban Agriculture (South) Ministry of AgriculturePlant Biotechnology Research CenterFudan‐SJTU‐Nottingham Plant Biotechnology R&D CenterSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Qi‐Fang Pan
- Joint International Research Laboratory of Metabolic and Developmental SciencesKey Laboratory of Urban Agriculture (South) Ministry of AgriculturePlant Biotechnology Research CenterFudan‐SJTU‐Nottingham Plant Biotechnology R&D CenterSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Zong‐You Lv
- Joint International Research Laboratory of Metabolic and Developmental SciencesKey Laboratory of Urban Agriculture (South) Ministry of AgriculturePlant Biotechnology Research CenterFudan‐SJTU‐Nottingham Plant Biotechnology R&D CenterSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Pin Liu
- Joint International Research Laboratory of Metabolic and Developmental SciencesKey Laboratory of Urban Agriculture (South) Ministry of AgriculturePlant Biotechnology Research CenterFudan‐SJTU‐Nottingham Plant Biotechnology R&D CenterSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xiao‐Fen Sun
- Joint International Research Laboratory of Metabolic and Developmental SciencesKey Laboratory of Urban Agriculture (South) Ministry of AgriculturePlant Biotechnology Research CenterFudan‐SJTU‐Nottingham Plant Biotechnology R&D CenterSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Ke‐Xuan Tang
- Joint International Research Laboratory of Metabolic and Developmental SciencesKey Laboratory of Urban Agriculture (South) Ministry of AgriculturePlant Biotechnology Research CenterFudan‐SJTU‐Nottingham Plant Biotechnology R&D CenterSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
30
|
Choi H, Yi T, Ha SH. Diversity of Plastid Types and Their Interconversions. FRONTIERS IN PLANT SCIENCE 2021; 12:692024. [PMID: 34220916 PMCID: PMC8248682 DOI: 10.3389/fpls.2021.692024] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/24/2021] [Indexed: 05/03/2023]
Abstract
Plastids are pivotal subcellular organelles that have evolved to perform specialized functions in plant cells, including photosynthesis and the production and storage of metabolites. They come in a variety of forms with different characteristics, enabling them to function in a diverse array of organ/tissue/cell-specific developmental processes and with a variety of environmental signals. Here, we have comprehensively reviewed the distinctive roles of plastids and their transition statuses, according to their features. Furthermore, the most recent understanding of their regulatory mechanisms is highlighted at both transcriptional and post-translational levels, with a focus on the greening and non-greening phenotypes.
Collapse
Affiliation(s)
| | | | - Sun-Hwa Ha
- Department of Genetics and Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, South Korea
| |
Collapse
|
31
|
Chayut N, Yuan H, Saar Y, Zheng Y, Sun T, Zhou X, Hermanns A, Oren E, Faigenboim A, Hui M, Fei Z, Mazourek M, Burger J, Tadmor Y, Li L. Comparative transcriptome analyses shed light on carotenoid production and plastid development in melon fruit. HORTICULTURE RESEARCH 2021; 8:112. [PMID: 33931604 PMCID: PMC8087762 DOI: 10.1038/s41438-021-00547-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/24/2021] [Accepted: 03/26/2021] [Indexed: 05/03/2023]
Abstract
Carotenoids, such as β-carotene, accumulate in chromoplasts of various fleshy fruits, awarding them with colors, aromas, and nutrients. The Orange (CmOr) gene controls β-carotene accumulation in melon fruit by posttranslationally enhancing carotenogenesis and repressing β-carotene turnover in chromoplasts. Carotenoid isomerase (CRTISO) isomerizes yellow prolycopene into red lycopene, a prerequisite for further metabolism into β-carotene. We comparatively analyzed the developing fruit transcriptomes of orange-colored melon and its two isogenic EMS-induced mutants, low-β (Cmor) and yofi (Cmcrtiso). The Cmor mutation in low-β caused a major transcriptomic change in the mature fruit. In contrast, the Cmcrtiso mutation in yofi significantly changed the transcriptome only in early fruit developmental stages. These findings indicate that melon fruit transcriptome is primarily altered by changes in carotenoid metabolic flux and plastid conversion, but minimally by carotenoid composition in the ripe fruit. Clustering of the differentially expressed genes into functional groups revealed an association between fruit carotenoid metabolic flux with the maintenance of the photosynthetic apparatus in fruit chloroplasts. Moreover, large numbers of thylakoid localized photosynthetic genes were differentially expressed in low-β. CmOR family proteins were found to physically interact with light-harvesting chlorophyll a-b binding proteins, suggesting a new role of CmOR for chloroplast maintenance in melon fruit. This study brings more insights into the cellular and metabolic processes associated with fruit carotenoid accumulation in melon fruit and reveals a new maintenance mechanism of the photosynthetic apparatus for plastid development.
Collapse
Affiliation(s)
- Noam Chayut
- Department of Vegetable Research, ARO, Newe Ya'ar Research Center, P.O. Box 1021, Ramat Yishay, 30095, Israel
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Hui Yuan
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Yuval Saar
- Department of Vegetable Research, ARO, Newe Ya'ar Research Center, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Yi Zheng
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Tianhu Sun
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Xuesong Zhou
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Anna Hermanns
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Elad Oren
- Department of Vegetable Research, ARO, Newe Ya'ar Research Center, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Adi Faigenboim
- Department of Vegetable Research, ARO, Newe Ya'ar Research Center, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Maixia Hui
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
| | - Zhangjun Fei
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Michael Mazourek
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Joseph Burger
- Department of Vegetable Research, ARO, Newe Ya'ar Research Center, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Yaakov Tadmor
- Department of Vegetable Research, ARO, Newe Ya'ar Research Center, P.O. Box 1021, Ramat Yishay, 30095, Israel.
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA.
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
32
|
Rödiger A, Agne B, Dobritzsch D, Helm S, Müller F, Pötzsch N, Baginsky S. Chromoplast differentiation in bell pepper (Capsicum annuum) fruits. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1431-1442. [PMID: 33258209 DOI: 10.1111/tpj.15104] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 05/21/2023]
Abstract
We report here a detailed analysis of the proteome adjustments that accompany chromoplast differentiation from chloroplasts during bell pepper (Capsicum annuum) fruit ripening. While the two photosystems are disassembled and their constituents degraded, the cytochrome b6 f complex, the ATPase complex, and Calvin cycle enzymes are maintained at high levels up to fully mature chromoplasts. This is also true for ferredoxin (Fd) and Fd-dependent NADP reductase, suggesting that ferredoxin retains a central role in the chromoplasts' redox metabolism. There is a significant increase in the amount of enzymes of the typical metabolism of heterotrophic plastids, such as the oxidative pentose phosphate pathway (OPPP) and amino acid and fatty acid biosynthesis. Enzymes of chlorophyll catabolism and carotenoid biosynthesis increase in abundance, supporting the pigment reorganization that goes together with chromoplast differentiation. The majority of plastid encoded proteins decline but constituents of the plastid ribosome and AccD increase in abundance. Furthermore, the amount of plastid terminal oxidase (PTOX) remains unchanged despite a significant increase in phytoene desaturase (PDS) levels, suggesting that the electrons from phytoene desaturation are consumed by another oxidase. This may be a particularity of non-climacteric fruits such as bell pepper that lack a respiratory burst at the onset of fruit ripening.
Collapse
Affiliation(s)
- Anja Rödiger
- Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
- Biochemistry of Plants, Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Birgit Agne
- Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
- Biochemistry of Plants, Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Dirk Dobritzsch
- Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Stefan Helm
- Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Fränze Müller
- Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
- Biochemistry and Functional Proteomics, Institute of Biology II, University of Freiburg, Freiburg, Germany
| | - Nina Pötzsch
- Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Sacha Baginsky
- Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
- Biochemistry of Plants, Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
33
|
Huang XQ, Wang LJ, Kong MJ, Huang N, Liu XY, Liang HY, Zhang JX, Lu S. At3g53630 encodes a GUN1-interacting protein under norflurazon treatment. PROTOPLASMA 2021; 258:371-378. [PMID: 33108535 DOI: 10.1007/s00709-020-01578-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
Chloroplasts are semi-autonomous organelles, with more than 95% of their proteins encoded by the nuclear genome. The chloroplast-to-nucleus retrograde signals are critical for the nucleus to coordinate its gene expression for optimizing or repairing chloroplast functions in response to changing environments. In chloroplasts, the pentatricopeptide-repeat protein GENOMES UNCOUPLED 1 (GUN1) is a master switch that senses aberrant physiological states, such as the photooxidative stress induced by norflurazon (NF) treatment, and represses the expression of photosynthesis-associated nuclear genes (PhANGs). However, it is largely unknown how the retrograde signal is transmitted beyond GUN1. In this study, a protein GUN1-INTERACTING PROTEIN 1 (GIP1), encoded by At3g53630, was identified to interact with GUN1 by different approaches. We demonstrated that GIP1 has both cytosol and chloroplast localizations, and its abundance in chloroplasts is enhanced by NF treatment with the presence of GUN1. Our results suggest that GIP1 and GUN1 may function antagonistically in the retrograde signaling pathway.
Collapse
Affiliation(s)
- Xing-Qi Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Lin-Juan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Meng-Juan Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Na Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Xin-Ya Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Han-Yu Liang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jia-Xin Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Shan Lu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
34
|
Yuan H, Pawlowski EG, Yang Y, Sun T, Thannhauser TW, Mazourek M, Schnell D, Li L. Arabidopsis ORANGE protein regulates plastid pre-protein import through interacting with Tic proteins. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1059-1072. [PMID: 33165598 DOI: 10.1093/jxb/eraa528] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/30/2020] [Indexed: 05/19/2023]
Abstract
Chloroplast-targeted proteins are actively imported into chloroplasts via the machinery spanning the double-layered membranes of chloroplasts. While the key translocons at the outer (TOC) and inner (TIC) membranes of chloroplasts are defined, proteins that interact with the core components to facilitate pre-protein import are continuously being discovered. A DnaJ-like chaperone ORANGE (OR) protein is known to regulate carotenoid biosynthesis as well as plastid biogenesis and development. In this study, we found that OR physically interacts with several Tic proteins including Tic20, Tic40, and Tic110 in the classic TIC core complex of the chloroplast import machinery. Knocking out or and its homolog or-like greatly affects the import efficiency of some photosynthetic and non-photosynthetic pre-proteins. Consistent with the direct interactions of OR with Tic proteins, the binding efficiency assay revealed that the effect of OR occurs at translocation at the inner envelope membrane (i.e. at the TIC complex). OR is able to reduce the Tic40 protein turnover rate through its chaperone activity. Moreover, OR was found to interfere with the interaction between Tic40 and Tic110, and reduces the binding of pre-proteins to Tic110 in aiding their release for translocation and processing. Our findings suggest that OR plays a new and regulatory role in stabilizing key translocons and in facilitating the late stage of plastid pre-protein translocation to regulate plastid pre-protein import.
Collapse
Affiliation(s)
- Hui Yuan
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Emily G Pawlowski
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Yong Yang
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, USA
| | - Tianhu Sun
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Theodore W Thannhauser
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, USA
| | - Michael Mazourek
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Danny Schnell
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| |
Collapse
|
35
|
The Nuclear Localization of the DnaJ-Like Zinc Finger Domain-Containing Protein EDA3 Affects Seed Development in Arabidopsis thaliana. Int J Mol Sci 2020; 21:ijms21217979. [PMID: 33121105 PMCID: PMC7662858 DOI: 10.3390/ijms21217979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 12/29/2022] Open
Abstract
The DnaJ-like zinc finger domain-containing proteins are involved in different aspects of plastid function and development. Some of these proteins were recently reported to have dual subcellular localization in the nucleus and plastids. One member of this family, PSA2 (AT2G34860), was found to localize to the thylakoid lumen and regulate the assembly of photosystem I (PSI). However, PSA2 was also annotated as Embryo sac Development Arrest 3 (EDA3) from the observation that its embryo sac development was arrested at the two-nuclear stage. In this study, we characterized the eda3 mutant, and demonstrated that, as compared with the wild-type (WT) plants, the mutant has shorter siliques, fewer siliques per plant, and fewer seeds per silique. Both aborted and undeveloped ovules were observed in siliques of the mutant. By immunoblot analysis, we found that, different from the chloroplast localization in mature leaves, EDA3 localizes in the nucleus in seeds. A nuclear localization signal was identified from the deduced amino acid sequence of EDA3, and also proved to be sufficient for directing its fusion peptide into the nucleus.
Collapse
|
36
|
Llorente B, Torres-Montilla S, Morelli L, Florez-Sarasa I, Matus JT, Ezquerro M, D'Andrea L, Houhou F, Majer E, Picó B, Cebolla J, Troncoso A, Fernie AR, Daròs JA, Rodriguez-Concepcion M. Synthetic conversion of leaf chloroplasts into carotenoid-rich plastids reveals mechanistic basis of natural chromoplast development. Proc Natl Acad Sci U S A 2020; 117:21796-21803. [PMID: 32817419 PMCID: PMC7474630 DOI: 10.1073/pnas.2004405117] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Plastids, the defining organelles of plant cells, undergo physiological and morphological changes to fulfill distinct biological functions. In particular, the differentiation of chloroplasts into chromoplasts results in an enhanced storage capacity for carotenoids with industrial and nutritional value such as beta-carotene (provitamin A). Here, we show that synthetically inducing a burst in the production of phytoene, the first committed intermediate of the carotenoid pathway, elicits an artificial chloroplast-to-chromoplast differentiation in leaves. Phytoene overproduction initially interferes with photosynthesis, acting as a metabolic threshold switch mechanism that weakens chloroplast identity. In a second stage, phytoene conversion into downstream carotenoids is required for the differentiation of chromoplasts, a process that involves a concurrent reprogramming of nuclear gene expression and plastid morphology for improved carotenoid storage. We hence demonstrate that loss of photosynthetic competence and enhanced production of carotenoids are not just consequences but requirements for chloroplasts to differentiate into chromoplasts.
Collapse
Affiliation(s)
- Briardo Llorente
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193 Barcelona, Spain;
- ARC Center of Excellence in Synthetic Biology, Department of Molecular Sciences, Macquarie University, Sydney NSW 2109, Australia
- CSIRO Synthetic Biology Future Science Platform, Sydney NSW 2109, Australia
| | - Salvador Torres-Montilla
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193 Barcelona, Spain
| | - Luca Morelli
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193 Barcelona, Spain
| | - Igor Florez-Sarasa
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193 Barcelona, Spain
| | - José Tomás Matus
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193 Barcelona, Spain
- Institute for Integrative Systems Biology (I2SysBio), Universitat de Valencia-CSIC, 46908 Paterna, Valencia, Spain
| | - Miguel Ezquerro
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193 Barcelona, Spain
| | - Lucio D'Andrea
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193 Barcelona, Spain
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| | - Fakhreddine Houhou
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universitat Politècnica de València, 46022 Valencia, Spain
| | - Eszter Majer
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universitat Politècnica de València, 46022 Valencia, Spain
| | - Belén Picó
- Instituto de Conservación y Mejora de la Agrodiversidad, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Jaime Cebolla
- Instituto de Conservación y Mejora de la Agrodiversidad, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Adrian Troncoso
- Sorbonne Universités, Université de Technologie de Compiègne, Génie Enzymatique et Cellulaire, UMR-CNRS 7025, CS 60319, 60203 Compiègne Cedex, France
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universitat Politècnica de València, 46022 Valencia, Spain
| | - Manuel Rodriguez-Concepcion
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193 Barcelona, Spain;
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universitat Politècnica de València, 46022 Valencia, Spain
| |
Collapse
|
37
|
Miyagishima SY. A Multifunctional Modulator Coordinates Nuclear Transcription and Plastid Metabolism and Proliferation. MOLECULAR PLANT 2020; 13:820-822. [PMID: 32434073 DOI: 10.1016/j.molp.2020.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Shin-Ya Miyagishima
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka 411-8540, Japan; Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, Shizuoka 411-8540, Japan; JST-Mirai Program, Japan Science and Technology Agency, Saitama 332-0012, Japan.
| |
Collapse
|
38
|
Sun T, Yuan H, Chen C, Kadirjan-Kalbach DK, Mazourek M, Osteryoung KW, Li L. OR His, a Natural Variant of OR, Specifically Interacts with Plastid Division Factor ARC3 to Regulate Chromoplast Number and Carotenoid Accumulation. MOLECULAR PLANT 2020; 13:864-878. [PMID: 32222485 DOI: 10.1016/j.molp.2020.03.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 05/19/2023]
Abstract
Chromoplasts are colored plastids that synthesize and store massive amounts of carotenoids. Chromoplast number and size define the sink strength for carotenoid accumulation in plants. However, nothing is known about the mechanisms controlling chromoplast number. Previously, a natural allele of Orange (OR), ORHis, was found to promote carotenoid accumulation by activating chromoplast differentiation and increasing carotenoid biosynthesis, but cells in orange tissues in melon fruit and cauliflower OR mutant have only one or two enlarged chromoplasts. In this study, we investigated an ORHis variant of Arabidopsis OR, genetically mimicking the melon ORHis allele, and found that it also constrains chromoplast number in Arabidopsis calli. Both in vitro and in vivo experiments demonstrate that ORHis specifically interacts with the Membrane Occupation and Recognition Nexus domain of ACCUMULATION AND REPLICATION OF CHLOROPLASTS 3 (ARC3), a crucial regulator of chloroplast division. We further showed that ORHis interferes with the interaction between ARC3 and PARALOG OF ARC6 (PARC6), another key regulator of chloroplast division, suggesting a role of ORHis in competing with PARC6 for binding to ARC3 to restrict chromoplast number. Overexpression or knockout of ARC3 in Arabidopsis ORHis plants significantly alters total carotenoid levels. Moreover, overexpression of the plastid division factor PLASTID DIVISION 1 greatly enhances carotenoid accumulation. These division factors likely alter carotenoid levels via their influence on chromoplast number and/or size. Taken together, our findings provide novel mechanistic insights into the machinery controlling chromoplast number and highlight a potential new strategy for enhancing carotenoid accumulation and nutritional value in food crops.
Collapse
Affiliation(s)
- Tianhu Sun
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Hui Yuan
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Cheng Chen
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | - Michael Mazourek
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | | | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
39
|
Watkins JL, Pogson BJ. Prospects for Carotenoid Biofortification Targeting Retention and Catabolism. TRENDS IN PLANT SCIENCE 2020; 25:501-512. [PMID: 31956035 DOI: 10.1016/j.tplants.2019.12.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 11/20/2019] [Accepted: 12/16/2019] [Indexed: 05/08/2023]
Abstract
Due to the ongoing prevalence of vitamin A deficiency (VAD) in developing countries there has been a large effort towards increasing the carotenoid content of staple foods via biofortification. Common strategies used for carotenoid biofortification include altering flux through the biosynthesis pathway to direct synthesis to a specific product, generally β-carotene, or via increasing the expression of genes early in the carotenoid biosynthesis pathway. Recently, carotenoid biofortification strategies are turning towards increasing the retention of carotenoids in plant tissues either via altering sequestration within the cell or via downregulating enzymes known to cause degradation of carotenoids. To date, little attention has focused on increasing the stability of carotenoids, which may be a promising method of increasing carotenoid content in staple foods.
Collapse
Affiliation(s)
- Jacinta L Watkins
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Barry J Pogson
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, ACT 0200, Australia.
| |
Collapse
|
40
|
Tee EE. Orange Is the New Green: Arabidopsis ORANGE Represses Chloroplast Biogenesis. THE PLANT CELL 2019; 31:2824-2825. [PMID: 31619509 PMCID: PMC6924999 DOI: 10.1105/tpc.19.00670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Estee E Tee
- Research School of BiologyAustralian National University Canberra
| |
Collapse
|
41
|
Welsch R, Zhou X, Koschmieder J, Schlossarek T, Yuan H, Sun T, Li L. Characterization of Cauliflower OR Mutant Variants. FRONTIERS IN PLANT SCIENCE 2019; 10:1716. [PMID: 32038686 PMCID: PMC6985574 DOI: 10.3389/fpls.2019.01716] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/05/2019] [Indexed: 05/19/2023]
Abstract
Cauliflower Orange (Or) mutant is characterized by high level of β-carotene in its curd. Or mutation affects the OR protein that was shown to be involved in the posttranslational control of phytoene synthase (PSY), a major rate-limiting enzyme of carotenoid biosynthesis, and in maintaining PSY proteostasis with the plastid Clp protease system. A transposon integration into the cauliflower wild-type Or gene (BoOR-wt) results in the formation of three differently spliced transcripts. One of them is characterized by insertion (BoOR-Ins), while the other two have exon-skipping deletions (BoOR-Del and BoOR-LD). We investigated the properties of individual BoOR variants and examined their effects on carotenoid accumulation. Using the yeast split-ubiquitin system, we showed that all variants were able to form OR dimers except BoOR-LD. The deletion in BoOR-LD eliminated the first of two adjacent transmembrane domains and was predicted to result in a misplacement of the C-terminal zinc finger domain to the opposite side of membrane, thus preventing OR dimerization. As interaction with PSY is mediated by the N-terminus of BoOR, which remains unaffected after splicing, all BoOR variants including BoOR-LD maintained interactions with PSY. Expression of individual BoOR mutant variants in Arabidopsis revealed that their protein stability varied greatly. While expression of BoOR-Del and BoOR-Ins resulted in increased BoOR protein levels as BoOR-wt, minimal amounts of BoOR-LD protein accumulated. Carotenoid accumulation showed correlated changes in calli of Arabidopsis expressing these variants. Furthermore, we found that OR also functions in E. coli to increase the proportion of native, enzymatically active PSY from plants upon co-expression, but not of bacterial phytoene synthase CrtB. Taken together, these results suggest that OR dimerization is required for OR stability in planta and that the simultaneous presence of PSY interaction-domains in both OR and PSY proteins is required for the holdase function of OR. The more pronounced effect of simultaneous expression of all BoOR variants in cauliflower Or mutant compared with individual overexpression on carotenoid accumulation suggests an enhanced activity with possible formation of various BoOR heterodimers.
Collapse
Affiliation(s)
- Ralf Welsch
- Faculty of Biology II, University of Freiburg, Freiburg, Germany
- *Correspondence: Ralf Welsch, ; Li Li,
| | - Xiangjun Zhou
- Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, US Department of Agriculture, Cornell University, Ithaca, NY, United States
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | | | - Tim Schlossarek
- Faculty of Biology II, University of Freiburg, Freiburg, Germany
| | - Hui Yuan
- Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, US Department of Agriculture, Cornell University, Ithaca, NY, United States
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Tianhu Sun
- Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, US Department of Agriculture, Cornell University, Ithaca, NY, United States
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, US Department of Agriculture, Cornell University, Ithaca, NY, United States
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
- *Correspondence: Ralf Welsch, ; Li Li,
| |
Collapse
|