1
|
Wang Q, Feng F, Zhang K, He Y, Qi W, Ma Z, Song R. ZmICE1a regulates the defence-storage trade-off in maize endosperm. NATURE PLANTS 2024; 10:1999-2013. [PMID: 39604637 DOI: 10.1038/s41477-024-01845-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 10/08/2024] [Indexed: 11/29/2024]
Abstract
The endosperm of cereal grains feeds the entire world as a major food supply; however, little is known about its defence response during endosperm development. The Inducer of CBF Expression 1 (ICE1) is a well-known regulator of cold tolerance in plants. ICE1 has a monocot-specific homologue that is preferentially expressed in cereal endosperms but with an unclear regulatory function. Here we characterized the function of monocot-specific ZmICE1a, which is expressed in the entire endosperm, with a predominant expression in its peripheral regions, including the aleurone layer, subaleurone layer and basal endosperm transfer layer in maize (Zea mays). Loss of function of ZmICE1a reduced starch content and kernel weight. RNA sequencing and CUT&Tag-seq analyses revealed that ZmICE1a positively regulates genes in starch synthesis while negatively regulating genes in aleurone layer-specific defence and the synthesis of indole-3-acetic acid and jasmonic acid (JA). Exogenous indole-3-acetic acid and JA both induce the expression of numerous defence genes, which show distinct spatial-specific expression in the basal endosperm transfer layer and subaleurone layer, respectively. Moreover, we dissected a JA-ZmJAZ9-ZmICE1a-MPI signalling axis involved in JA-mediated defence regulation. Overall, our study revealed ZmICE1a as a key regulator of endosperm defence response and a coordinator of the defence-storage trade-off in endosperm development.
Collapse
Affiliation(s)
- Qun Wang
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Fan Feng
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Kechun Zhang
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yonghui He
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
| | - Weiwei Qi
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Zeyang Ma
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
- Sanya Institute of China Agricultural University, Sanya, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, China.
| | - Rentao Song
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
- Sanya Institute of China Agricultural University, Sanya, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, China.
| |
Collapse
|
2
|
Peng Y, Liang Z, Cai M, Wang J, Li D, Chen Q, Du X, Gu R, Wang G, Schnable PS, Wang J, Li L. ZmPTOX1, a plastid terminal oxidase, contributes to redox homeostasis during seed development and germination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:460-477. [PMID: 38678554 DOI: 10.1111/tpj.16776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/24/2024] [Accepted: 03/31/2024] [Indexed: 05/01/2024]
Abstract
Maize plastid terminal oxidase1 (ZmPTOX1) plays a pivotal role in seed development by upholding redox balance within seed plastids. This study focuses on characterizing the white kernel mutant 3735 (wk3735) mutant, which yields pale-yellow seeds characterized by heightened protein but reduced carotenoid levels, along with delayed germination compared to wild-type (WT) seeds. We successfully cloned and identified the target gene ZmPTOX1, responsible for encoding maize PTOX-a versatile plastoquinol oxidase and redox sensor located in plastid membranes. While PTOX's established role involves regulating redox states and participating in carotenoid metabolism in Arabidopsis leaves and tomato fruits, our investigation marks the first exploration of its function in storage organs lacking a photosynthetic system. Through our research, we validated the existence of plastid-localized ZmPTOX1, existing as a homomultimer, and established its interaction with ferredoxin-NADP+ oxidoreductase 1 (ZmFNR1), a crucial component of the electron transport chain (ETC). This interaction contributes to the maintenance of redox equilibrium within plastids. Our findings indicate a propensity for excessive accumulation of reactive oxygen species (ROS) in wk3735 seeds. Beyond its known role in carotenoids' antioxidant properties, ZmPTOX1 also impacts ROS homeostasis owing to its oxidizing function. Altogether, our results underscore the critical involvement of ZmPTOX1 in governing seed development and germination by preserving redox balance within the seed plastids.
Collapse
Affiliation(s)
- Yixuan Peng
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, P. R. China
| | - Zhi Liang
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, P. R. China
| | - Minghao Cai
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, P. R. China
| | - Jie Wang
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, P. R. China
| | - Delin Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Quanquan Chen
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, P. R. China
| | - Xuemei Du
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, P. R. China
| | - Riliang Gu
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, P. R. China
| | - Guoying Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Patrick S Schnable
- Department of Agronomy, Iowa State University, 2035 Roy J. Carver Co-Lab, Ames, 50011-3650, Iowa, USA
| | - Jianhua Wang
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, P. R. China
| | - Li Li
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, P. R. China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| |
Collapse
|
3
|
Li J, Gu W, Yang Z, Chen J, Yi F, Li T, Li J, Zhou Y, Guo Y, Song W, Lai J, Zhao H. ZmELP1, an Elongator complex subunit, is required for the maintenance of histone acetylation and RNA Pol II phosphorylation in maize kernels. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1251-1268. [PMID: 38098341 PMCID: PMC11022810 DOI: 10.1111/pbi.14262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 01/26/2024]
Abstract
The Elongator complex was originally identified as an interactor of hyperphosphorylated RNA polymerase II (RNAPII) in yeast and has histone acetyltransferase (HAT) activity. However, the genome-wide regulatory roles of Elongator on transcriptional elongation and histone acetylation remain unclear. We characterized a maize miniature seed mutant, mn7 and map-based cloning revealed that Mn7 encodes one of the subunits of the Elongator complex, ZmELP1. ZmELP1 deficiency causes marked reductions in the kernel size and weight. Molecular analyses showed that ZmELP1 interacts with ZmELP3, which is required for H3K14 acetylation (H3K14ac), and Elongator complex subunits interact with RNA polymerase II (RNAPII) C-terminal domain (CTD). Genome-wide analyses indicated that loss of ZmELP1 leads to a significant decrease in the deposition of H3K14ac and the CTD of phosphorylated RNAPII on Ser2 (Ser2P). These chromatin changes positively correlate with global transcriptomic changes. ZmELP1 mutation alters the expression of genes involved in transcriptional regulation and kernel development. We also showed that the decrease of Ser2P depends on the deposition of Elongator complex-mediated H3K14ac. Taken together, our results reveal an important role of ZmELP1 in the H3K14ac-dependent transcriptional elongation, which is critical for kernel development.
Collapse
Affiliation(s)
- Jianrui Li
- State Key Laboratory of Maize Bio‐breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Wei Gu
- State Key Laboratory of Maize Bio‐breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
- Crop Breeding, Cultivation Research Institution/CIMMYT‐China Specialty Maize Research Center, Shanghai Engineering Research Center of Specialty Maize, Shanghai Key Laboratory of Agricultural Genetics and BreedingShanghai Academy of Agricultural SciencesShanghaiChina
| | - Zhijia Yang
- State Key Laboratory of Maize Bio‐breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Jian Chen
- State Key Laboratory of Maize Bio‐breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Fei Yi
- State Key Laboratory of Maize Bio‐breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
- Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Tong Li
- State Key Laboratory of Maize Bio‐breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Jingrui Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yue Zhou
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
| | - Yan Guo
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Weibin Song
- State Key Laboratory of Maize Bio‐breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Jinsheng Lai
- State Key Laboratory of Maize Bio‐breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Haiming Zhao
- State Key Laboratory of Maize Bio‐breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| |
Collapse
|
4
|
Luo JH, Guo T, Wang M, Liu JH, Zheng LM, He Y. RNA m6A modification facilitates DNA methylation during maize kernel development. PLANT PHYSIOLOGY 2024; 194:2165-2182. [PMID: 37995374 DOI: 10.1093/plphys/kiad625] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 11/25/2023]
Abstract
N6-methyladenosine (m6A) in mRNA and 5-methylcytosine (5mC) in DNA have critical functions for regulating gene expression and modulating plant growth and development. However, the interplay between m6A and 5mC is an elusive territory and remains unclear mechanistically in plants. We reported an occurrence of crosstalk between m6A and 5mC in maize (Zea mays) via the interaction between mRNA adenosine methylase (ZmMTA), the core component of the m6A methyltransferase complex, and decrease in DNA methylation 1 (ZmDDM1), a key chromatin-remodeling factor that regulates DNA methylation. Genes with m6A modification were coordinated with a much higher level of DNA methylation than genes without m6A modification. Dysfunction of ZmMTA caused severe arrest during maize embryogenesis and endosperm development, leading to a significant decrease in CHH methylation in the 5' region of m6A-modified genes. Instead, loss of function of ZmDDM1 had no noteworthy effects on ZmMTA-related activity. This study establishes a direct link between m6A and 5mC during maize kernel development and provides insights into the interplay between RNA modification and DNA methylation.
Collapse
Affiliation(s)
- Jin-Hong Luo
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ting Guo
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Min Wang
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jing-Han Liu
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Lei-Ming Zheng
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yan He
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
He Y, Lu C, Jiang Z, Sun Y, Liu H, Yin Z. NADH dehydrogenase-like complex L subunit improves salt tolerance by enhancing photosynthetic electron transport. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108420. [PMID: 38324953 DOI: 10.1016/j.plaphy.2024.108420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/17/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Cyclic electron transport (CET) around photosystem I (PSI) mediated by the NADH dehydrogenase-like (NDH) complex is closely related to plant salt tolerance. However, whether overexpression of a core subunit of the NDH complex affects the photosynthetic electron transport under salt stress is currently unclear. Here, we expressed the NDH complex L subunit (Ndhl) genes ZmNdhl1 and ZmNdhl2 from C4 plant maize (Zea mays) or OsNdhl from C3 plant rice (Oryza sativa) using a constitutive promoter in rice. Transgenic rice lines expressing ZmNdhl1, ZmNdhl2, or OsNdhl displayed enhanced salt tolerance, as indicated by greater plant height, dry weight, and leaf relative water content, as well as lower malondialdehyde content compared to wild-type plants under salt stress. Fluorescence parameters such as post-illumination rise (PIR), the prompt chlorophyll a fluorescence transient (OJIP), modulated 820-nm reflection (MR), and delayed chlorophyll a fluorescence (DF) remained relatively normal in transgenic plants during salt stress. These results indicate that expression of ZmNdhl1, ZmNdhl2, or OsNdhl increases cyclic electron transport activity, slows down damage to linear electron transport, alleviates oxidative damage to the PSI reaction center and plastocyanin, and reduces damage to electron transport on the receptor side of PSI in rice leaves under salt stress. Thus, expression of Ndhl genes from maize or rice improves salt tolerance by enhancing photosynthetic electron transport in rice. Maize and rice Ndhl genes played a similar role in enhancing salinity tolerance and avoiding photosynthetic damage.
Collapse
Affiliation(s)
- Yonghui He
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology/ Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education/ Key Laboratory of Saline-alkali Soil Improvement and Utilization (Coastal Saline-alkali Lands) of the Ministry of Agriculture and Rural Affairs, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Chengcheng Lu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology/ Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education/ Key Laboratory of Saline-alkali Soil Improvement and Utilization (Coastal Saline-alkali Lands) of the Ministry of Agriculture and Rural Affairs, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Zifan Jiang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology/ Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education/ Key Laboratory of Saline-alkali Soil Improvement and Utilization (Coastal Saline-alkali Lands) of the Ministry of Agriculture and Rural Affairs, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Yu Sun
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology/ Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education/ Key Laboratory of Saline-alkali Soil Improvement and Utilization (Coastal Saline-alkali Lands) of the Ministry of Agriculture and Rural Affairs, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Huanhuan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology/ Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education/ Key Laboratory of Saline-alkali Soil Improvement and Utilization (Coastal Saline-alkali Lands) of the Ministry of Agriculture and Rural Affairs, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Zhitong Yin
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology/ Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education/ Key Laboratory of Saline-alkali Soil Improvement and Utilization (Coastal Saline-alkali Lands) of the Ministry of Agriculture and Rural Affairs, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
6
|
Chen Q, Guo Y, Zhang J, Zheng N, Wang J, Liu Y, Lu J, Zhen S, Du X, Li L, Fu J, Wang G, Gu R, Wang J, Liu Y. RNA polymerase common subunit ZmRPABC5b is transcriptionally activated by Opaque2 and essential for endosperm development in maize. Nucleic Acids Res 2023; 51:7832-7850. [PMID: 37403778 PMCID: PMC10450181 DOI: 10.1093/nar/gkad571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/08/2023] [Accepted: 06/24/2023] [Indexed: 07/06/2023] Open
Abstract
Maize (Zea mays) kernel size is an important factor determining grain yield; although numerous genes regulate kernel development, the roles of RNA polymerases in this process are largely unclear. Here, we characterized the defective kernel 701 (dek701) mutant that displays delayed endosperm development but normal vegetative growth and flowering transition, compared to its wild type. We cloned Dek701, which encoded ZmRPABC5b, a common subunit to RNA polymerases I, II and III. Loss-of-function mutation of Dek701 impaired the function of all three RNA polymerases and altered the transcription of genes related to RNA biosynthesis, phytohormone response and starch accumulation. Consistent with this observation, loss-of-function mutation of Dek701 affected cell proliferation and phytohormone homeostasis in maize endosperm. Dek701 was transcriptionally regulated in the endosperm by the transcription factor Opaque2 through binding to the GCN4 motif within the Dek701 promoter, which was subjected to strong artificial selection during maize domestication. Further investigation revealed that DEK701 interacts with the other common RNA polymerase subunit ZmRPABC2. The results of this study provide substantial insight into the Opaque2-ZmRPABC5b transcriptional regulatory network as a central hub for regulating endosperm development in maize.
Collapse
Affiliation(s)
- Quanquan Chen
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Maize Bio-breeding; Center for Seed Science and Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yingmei Guo
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Maize Bio-breeding; Center for Seed Science and Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jie Zhang
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Maize Bio-breeding; Center for Seed Science and Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Nannan Zheng
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Maize Bio-breeding; Center for Seed Science and Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jie Wang
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Maize Bio-breeding; Center for Seed Science and Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yan Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiawen Lu
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Maize Bio-breeding; Center for Seed Science and Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Sihan Zhen
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Maize Bio-breeding; Center for Seed Science and Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xuemei Du
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Maize Bio-breeding; Center for Seed Science and Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Li Li
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Maize Bio-breeding; Center for Seed Science and Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Junjie Fu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guoying Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Riliang Gu
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Maize Bio-breeding; Center for Seed Science and Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jianhua Wang
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Maize Bio-breeding; Center for Seed Science and Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yunjun Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
7
|
Tang H, Dong H, Guo X, Cheng M, Li M, Chen Q, Yuan Z, Pu Z, Wang J. Identification of candidate gene for the defective kernel phenotype using bulked segregant RNA and exome capture sequencing methods in wheat. FRONTIERS IN PLANT SCIENCE 2023; 14:1173861. [PMID: 37342127 PMCID: PMC10277647 DOI: 10.3389/fpls.2023.1173861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/03/2023] [Indexed: 06/22/2023]
Abstract
Wheat is a significant source of protein and starch worldwide. The defective kernel (Dek) mutant AK-3537, displaying a large hollow area in the endosperm and shrunken grain, was obtained through ethyl methane sulfonate (EMS) treatment of the wheat cultivar Aikang 58 (AK58). The mode of inheritance of the AK-3537 grain Dek phenotype was determined to be recessive with a specific statistical significance level. We used bulked segregant RNA-seq (BSR-seq), BSA-based exome capture sequencing (BSE-seq), and the ΔSNP-index algorithm to identify candidate regions for the grain Dek phenotype. Two major candidate regions, DCR1 (Dek candidate region 1) and DCR2, were identified on chromosome 7A between 279.98 and 287.93 Mb and 565.34 and 568.59 Mb, respectively. Based on transcriptome analysis and previous reports, we designed KASP genotyping assays based on SNP variations in the candidate regions and speculated that the candidate gene is TraesCS7A03G0625900 (HMGS-7A), which encodes a 3-hydroxy-3-methylglutaryl-CoA synthase. One SNP variation located at position 1,049 in the coding sequence (G>A) causes an amino acid change from Gly to Asp. The research suggests that functional changes in HMGS-7A may affect the expression of key enzyme genes involved in wheat starch syntheses, such as GBSSII and SSIIIa.
Collapse
Affiliation(s)
- Hao Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Huixue Dong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Xiaojiang Guo
- Ministry of Education Key Laboratory for Crop Genetic Resources and Improvement in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Mengping Cheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Maolian Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Qian Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Zhongwei Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Zhien Pu
- Ministry of Education Key Laboratory for Crop Genetic Resources and Improvement in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Ministry of Education Key Laboratory for Crop Genetic Resources and Improvement in Southwest China, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
8
|
Zhu Y, Zhang S, Yu J. ZmAdSS1 encodes adenylosuccinate synthetase and plays a critical role in maize seed development and the accumulation of nutrients. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111644. [PMID: 36806609 DOI: 10.1016/j.plantsci.2023.111644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/20/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Adenylosuccinate synthetase (AdSS, EC.6.3.4.4) is a key enzyme in the de novo synthesis of purine nucleotides in organisms. Its downstream product AMP plays a critical role in the process of energy metabolism, which can affect the content of ADP and ATP. However, impacts of its loss-of-function on plant metabolism and development has been relatively poorly reported. Here, we report the identification and analysis of a maize yu18 mutant obtained by mutagenesis with ethylmethane sulfonate (EMS). The yu18 is a lethal-seed mutant. Map-based cloning and allelic testing confirmed that yu18 encodes adenylosuccinate synthetase and was named ZmAdSS1. ZmAdSS1 is constitutively expressed. In the yu18 mutant, the activity of the ZmAdSS1 enzyme was decreased, which caused AMP content reduced 33.62%. The yu18 mutation significantly suppressed endoreduplication and disrupted nutrient accumulation, resulting in lower starch and protein contents that are responsible for seed filling. Further transcriptome and metabolome analysis revealed dramatic alterations in the carbohydrate metabolic pathway and amino acid metabolic pathway in yu18 kernels. Our findings demonstrate that ZmAdSS1 participates in the synthesis of AMP and affects endosperm development and nutrient accumulation in maize seeds.
Collapse
Affiliation(s)
- Yaxi Zhu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China.
| | - Shuaisong Zhang
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, PR China.
| | - Jingjuan Yu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
9
|
Zhu W, Miao X, Qian J, Chen S, Jin Q, Li M, Han L, Zhong W, Xie D, Shang X, Li L. A translatome-transcriptome multi-omics gene regulatory network reveals the complicated functional landscape of maize. Genome Biol 2023; 24:60. [PMID: 36991439 PMCID: PMC10053466 DOI: 10.1186/s13059-023-02890-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 03/04/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Maize (Zea mays L.) is one of the most important crops worldwide. Although sophisticated maize gene regulatory networks (GRNs) have been constructed for functional genomics and phenotypic dissection, a multi-omics GRN connecting the translatome and transcriptome is lacking, hampering our understanding and exploration of the maize regulatome. RESULTS We collect spatio-temporal translatome and transcriptome data and systematically explore the landscape of gene transcription and translation across 33 tissues or developmental stages of maize. Using this comprehensive transcriptome and translatome atlas, we construct a multi-omics GRN integrating mRNAs and translated mRNAs, demonstrating that translatome-related GRNs outperform GRNs solely using transcriptomic data and inter-omics GRNs outperform intra-omics GRNs in most cases. With the aid of the multi-omics GRN, we reconcile some known regulatory networks. We identify a novel transcription factor, ZmGRF6, which is associated with growth. Furthermore, we characterize a function related to drought response for the classic transcription factor ZmMYB31. CONCLUSIONS Our findings provide insights into spatio-temporal changes across maize development at both the transcriptome and translatome levels. Multi-omics GRNs represent a useful resource for dissection of the regulatory mechanisms underlying phenotypic variation.
Collapse
Affiliation(s)
- Wanchao Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- HuBei HongShan Laboratory, Wuhan, 430070, China
| | - Xinxin Miao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- HuBei HongShan Laboratory, Wuhan, 430070, China
| | - Jia Qian
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- HuBei HongShan Laboratory, Wuhan, 430070, China
| | - Sijia Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qixiao Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- HuBei HongShan Laboratory, Wuhan, 430070, China
| | - Mingzhu Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- HuBei HongShan Laboratory, Wuhan, 430070, China
| | - Linqian Han
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- HuBei HongShan Laboratory, Wuhan, 430070, China
| | - Wanshun Zhong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- HuBei HongShan Laboratory, Wuhan, 430070, China
| | - Dan Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- HuBei HongShan Laboratory, Wuhan, 430070, China
| | - Xiaoyang Shang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- HuBei HongShan Laboratory, Wuhan, 430070, China
| | - Lin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
- HuBei HongShan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
10
|
Zhou Q, Fu Z, Li M, Shen Q, Sun C, Feng Y, Liu Y, Jiang J, Qin T, Mao T, Hearne SJ, Wang G, Tang J. Maize tubulin folding cofactor B is required for cell division and cell growth through modulating microtubule homeostasis. THE NEW PHYTOLOGIST 2023. [PMID: 36843261 DOI: 10.1111/nph.18839] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Tubulin folding cofactors (TFCs) are required for tubulin folding, α/β tubulin heterodimer formation, and microtubule (MT) dynamics in yeast and mammals. However, the functions of their plant counterparts remain to be characterized. We identified a natural maize crumpled kernel mutant, crk2, which exhibits reductions in endosperm cell number and size, as well as embryo/seedling lethality. Map-based cloning and functional complementation confirmed that ZmTFCB is causal for the mutation. ZmTFCB is targeted mainly to the cytosol. It facilitates α-tubulin folding and heterodimer formation through sequential interactions with the cytosolic chaperonin-containing TCP-1 ε subunit ZmCCT5 and ZmTFCE, thus affecting the organization of both the spindle and phragmoplast MT array and the cortical MT polymerization and array formation, which consequently mediated cell division and cell growth. We detected a physical association between ZmTFCB and the maize MT plus-end binding protein END-BINDING1 (ZmEB1), indicating that ZmTFCB1 may modulate MT dynamics by sequestering ZmEB1. Our data demonstrate that ZmTFCB is required for cell division and cell growth through modulating MT homeostasis, an evolutionarily conserved machinery with some species-specific divergence.
Collapse
Affiliation(s)
- Qingqian Zhou
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zhiyuan Fu
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Mengyuan Li
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Qingwen Shen
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Canran Sun
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yijian Feng
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yang Liu
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jianjun Jiang
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Tao Qin
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tonglin Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Sarah Jane Hearne
- CIMMYT, KM 45 Carretera Mexico-Veracruz, El Batan, Texcoco, Estado de México, 56237, Mexico
| | - Guifeng Wang
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
- The Shennong Laboratory, Zhengzhou, Henan, 450002, China
| |
Collapse
|
11
|
Ma B, Zhang L, He Z. Understanding the regulation of cereal grain filling: The way forward. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:526-547. [PMID: 36648157 DOI: 10.1111/jipb.13456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
During grain filling, starch and other nutrients accumulate in the endosperm; this directly determines grain yield and grain quality in crops such as rice (Oryza sativa), maize (Zea mays), and wheat (Triticum aestivum). Grain filling is a complex trait affected by both intrinsic and environmental factors, making it difficult to explore the underlying genetics, molecular regulation, and the application of these genes for breeding. With the development of powerful genetic and molecular techniques, much has been learned about the genes and molecular networks related to grain filling over the past decades. In this review, we highlight the key factors affecting grain filling, including both biological and abiotic factors. We then summarize the key genes controlling grain filling and their roles in this event, including regulators of sugar translocation and starch biosynthesis, phytohormone-related regulators, and other factors. Finally, we discuss how the current knowledge of valuable grain filling genes could be integrated with strategies for breeding cereal varieties with improved grain yield and quality.
Collapse
Affiliation(s)
- Bin Ma
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Lin Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
12
|
Wang J, Wang H, Li K, Liu X, Cao X, Zhou Y, Huang C, Peng Y, Hu X. Characterization and Transcriptome Analysis of Maize Small-Kernel Mutant smk7a in Different Development Stages. PLANTS (BASEL, SWITZERLAND) 2023; 12:354. [PMID: 36679067 PMCID: PMC9866416 DOI: 10.3390/plants12020354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
The kernel serves as a storage organ for various nutrients and determines the yield and quality of maize. Understanding the mechanisms regulating kernel development is important for maize production. In this study, a small-kernel mutant smk7a of maize was characterized. Cytological observation suggested that the development of the endosperm and embryo was arrested in smk7a in the early development stage. Biochemical tests revealed that the starch, zein protein, and indole-3-acetic acid (IAA) contents were significantly lower in smk7a compared with wild-type (WT). Consistent with the defective development phenotype, transcriptome analysis of the kernels 12 and 20 days after pollination (DAP) revealed that the starch, zein, and auxin biosynthesis-related genes were dramatically downregulated in smk7a. Genetic mapping indicated that the mutant was controlled by a recessive gene located on chromosome 2. Our results suggest that disrupted nutrition accumulation and auxin synthesis cause the defective endosperm and embryo development of smk7a.
Collapse
Affiliation(s)
- Jing Wang
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Hongwu Wang
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Kun Li
- National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaogang Liu
- National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoxiong Cao
- National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuqiang Zhou
- National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Changling Huang
- National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yunling Peng
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaojiao Hu
- National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
13
|
Wang C, Li H, Long Y, Dong Z, Wang J, Liu C, Wei X, Wan X. A Systemic Investigation of Genetic Architecture and Gene Resources Controlling Kernel Size-Related Traits in Maize. Int J Mol Sci 2023; 24:1025. [PMID: 36674545 PMCID: PMC9865405 DOI: 10.3390/ijms24021025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023] Open
Abstract
Grain yield is the most critical and complex quantitative trait in maize. Kernel length (KL), kernel width (KW), kernel thickness (KT) and hundred-kernel weight (HKW) associated with kernel size are essential components of yield-related traits in maize. With the extensive use of quantitative trait locus (QTL) mapping and genome-wide association study (GWAS) analyses, thousands of QTLs and quantitative trait nucleotides (QTNs) have been discovered for controlling these traits. However, only some of them have been cloned and successfully utilized in breeding programs. In this study, we exhaustively collected reported genes, QTLs and QTNs associated with the four traits, performed cluster identification of QTLs and QTNs, then combined QTL and QTN clusters to detect consensus hotspot regions. In total, 31 hotspots were identified for kernel size-related traits. Their candidate genes were predicted to be related to well-known pathways regulating the kernel developmental process. The identified hotspots can be further explored for fine mapping and candidate gene validation. Finally, we provided a strategy for high yield and quality maize. This study will not only facilitate causal genes cloning, but also guide the breeding practice for maize.
Collapse
Affiliation(s)
- Cheng Wang
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Huangai Li
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Yan Long
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Zhenying Dong
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Jianhui Wang
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Chang Liu
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Xun Wei
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Xiangyuan Wan
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| |
Collapse
|
14
|
Huang W, Li Y, Du Y, Pan L, Huang Y, Liu H, Zhao Y, Shi Y, Ruan YL, Dong Z, Jin W. Maize cytosolic invertase INVAN6 ensures faithful meiotic progression under heat stress. THE NEW PHYTOLOGIST 2022; 236:2172-2188. [PMID: 36104957 DOI: 10.1111/nph.18490] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Faithful meiotic progression ensures the generation of viable gametes. Studies suggested the male meiosis of plants is sensitive to ambient temperature, but the underlying molecular mechanisms remain elusive. Here, we characterized a maize (Zea mays ssp. mays L.) dominant male sterile mutant Mei025, in which the meiotic process of pollen mother cells (PMCs) was arrested after pachytene. An Asp-to-Asn replacement at position 276 of INVERTASE ALKALINE NEUTRAL 6 (INVAN6), a cytosolic invertase (CIN) that predominantly exists in PMCs and specifically hydrolyses sucrose, was revealed to cause meiotic defects in Mei025. INVAN6 interacts with itself as well as with four other CINs and seven 14-3-3 proteins. Although INVAN6Mei025 , the variant of INVAN6 found in Mei025, lacks hydrolytic activity entirely, its presence is deleterious to male meiosis, possibly in a dominant negative repression manner through interacting with its partner proteins. Notably, heat stress aggravated meiotic defects in invan6 null mutant. Further transcriptome data suggest INVAN6 has a fundamental role for sugar homeostasis and stress tolerance of male meiocytes. In summary, this work uncovered the function of maize CIN in male meiosis and revealed the role of CIN-mediated sugar metabolism and signalling in meiotic progression under heat stress.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Yunfei Li
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yan Du
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
| | - Lingling Pan
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yumin Huang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Hongbing Liu
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yue Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yunlu Shi
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yong-Ling Ruan
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Zhaobin Dong
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Weiwei Jin
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
- Fresh Corn Research Center of BTH, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China
| |
Collapse
|
15
|
Tian Q, Wang G, Ma X, Shen Q, Ding M, Yang X, Luo X, Li R, Wang Z, Wang X, Fu Z, Yang Q, Tang J, Wang G. Riboflavin integrates cellular energetics and cell cycle to regulate maize seed development. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1487-1501. [PMID: 35426230 PMCID: PMC9342611 DOI: 10.1111/pbi.13826] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/10/2022] [Indexed: 05/23/2023]
Abstract
Riboflavin is the precursor of essential cofactors for diverse metabolic processes. Unlike animals, plants can de novo produce riboflavin through an ancestrally conserved pathway, like bacteria and fungi. However, the mechanism by which riboflavin regulates seed development is poorly understood. Here, we report a novel maize (Zea mays L.) opaque mutant o18, which displays an increase in lysine accumulation, but impaired endosperm filling and embryo development. O18 encodes a rate-limiting bifunctional enzyme ZmRIBA1, targeted to plastid where to initiate riboflavin biosynthesis. Loss of function of O18 specifically disrupts respiratory complexes I and II, but also decreases SDH1 flavinylation, and in turn shifts the mitochondrial tricarboxylic acid (TCA) cycle to glycolysis. The deprivation of cellular energy leads to cell-cycle arrest at G1 and S phases in both mitosis and endoreduplication during endosperm development. The unexpected up-regulation of cell-cycle genes in o18 correlates with the increase of H3K4me3 levels, revealing a possible H3K4me-mediated epigenetic back-up mechanism for cell-cycle progression under unfavourable circumstances. Overexpression of O18 increases riboflavin production and confers osmotic tolerance. Altogether, our results substantiate a key role of riboflavin in coordinating cellular energy and cell cycle to modulate maize endosperm development.
Collapse
Affiliation(s)
- Qiuzhen Tian
- National Key Laboratory of Wheat and Maize Crops ScienceCIMMYT‐Henan Joint Center for Wheat and Maize ImprovementCollaborative Innovation Center of Henan Grain CropsCollege of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Gang Wang
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xuexia Ma
- Shanghai Key Laboratory of Bio‐Energy CropsSchool of Life SciencesShanghai UniversityShanghaiChina
| | - Qingwen Shen
- National Key Laboratory of Wheat and Maize Crops ScienceCIMMYT‐Henan Joint Center for Wheat and Maize ImprovementCollaborative Innovation Center of Henan Grain CropsCollege of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Mengli Ding
- National Key Laboratory of Wheat and Maize Crops ScienceCIMMYT‐Henan Joint Center for Wheat and Maize ImprovementCollaborative Innovation Center of Henan Grain CropsCollege of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Xueyi Yang
- National Key Laboratory of Wheat and Maize Crops ScienceCIMMYT‐Henan Joint Center for Wheat and Maize ImprovementCollaborative Innovation Center of Henan Grain CropsCollege of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Xiaoli Luo
- National Key Laboratory of Wheat and Maize Crops ScienceCIMMYT‐Henan Joint Center for Wheat and Maize ImprovementCollaborative Innovation Center of Henan Grain CropsCollege of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Rongrong Li
- National Key Laboratory of Wheat and Maize Crops ScienceCIMMYT‐Henan Joint Center for Wheat and Maize ImprovementCollaborative Innovation Center of Henan Grain CropsCollege of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Zhenghui Wang
- National Key Laboratory of Wheat and Maize Crops ScienceCIMMYT‐Henan Joint Center for Wheat and Maize ImprovementCollaborative Innovation Center of Henan Grain CropsCollege of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Xiangyang Wang
- National Key Laboratory of Wheat and Maize Crops ScienceCIMMYT‐Henan Joint Center for Wheat and Maize ImprovementCollaborative Innovation Center of Henan Grain CropsCollege of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Zhiyuan Fu
- National Key Laboratory of Wheat and Maize Crops ScienceCIMMYT‐Henan Joint Center for Wheat and Maize ImprovementCollaborative Innovation Center of Henan Grain CropsCollege of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Qinghua Yang
- National Key Laboratory of Wheat and Maize Crops ScienceCIMMYT‐Henan Joint Center for Wheat and Maize ImprovementCollaborative Innovation Center of Henan Grain CropsCollege of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crops ScienceCIMMYT‐Henan Joint Center for Wheat and Maize ImprovementCollaborative Innovation Center of Henan Grain CropsCollege of AgronomyHenan Agricultural UniversityZhengzhouChina
- The Shennong LaboratoryZhengzhouChina
| | - Guifeng Wang
- National Key Laboratory of Wheat and Maize Crops ScienceCIMMYT‐Henan Joint Center for Wheat and Maize ImprovementCollaborative Innovation Center of Henan Grain CropsCollege of AgronomyHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
16
|
Qu Z, Wu Y, Hu D, Li T, Liang H, Ye F, Xue J, Xu S. Genome-Wide Association Analysis for Candidate Genes Contributing to Kernel-Related Traits in Maize. FRONTIERS IN PLANT SCIENCE 2022; 13:872292. [PMID: 35685022 PMCID: PMC9171146 DOI: 10.3389/fpls.2022.872292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/06/2022] [Indexed: 06/01/2023]
Abstract
Maize grain size is the main factor determining grain yield. Dissecting the genetic basis of maize grain size may help reveal the regulatory mechanism of maize seed development and yield formation. In this study, two associated populations were used for genome-wide association analysis of kernel length, kernel width, kernel thickness, and hundred-kernel weight from multiple locations in AM122 and AM180, respectively. Then, genome-wide association mapping was performed based on the maize 6H90K SNP chip. A total of 139 loci were identified as associated with the four traits with p < 1 × 10-4 using two models (FarmCPU and MLM). The transcriptome data showed that 15 of them were expressed differentially in two maize-inbred lines KB182 (small kernel) and KB020 (big kernel) during kernel development. These candidate genes were enriched in regulating peroxidase activity, oxidoreductase, and leaf senescence. The molecular function was major in binding and catalytic activity. This study provided important reference information for exploring maize kernel development mechanisms and applying molecular markers in high-yield breeding.
Collapse
Affiliation(s)
- Zhibo Qu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, China
- Maize Engineering Technology Research Centre, Yangling, China
| | - Ying Wu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, China
- Maize Engineering Technology Research Centre, Yangling, China
| | - Die Hu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, China
- Maize Engineering Technology Research Centre, Yangling, China
| | - Ting Li
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, China
- Maize Engineering Technology Research Centre, Yangling, China
| | - Hangyu Liang
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, China
- Maize Engineering Technology Research Centre, Yangling, China
| | - Fan Ye
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, China
- Maize Engineering Technology Research Centre, Yangling, China
| | - Jiquan Xue
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, China
- Maize Engineering Technology Research Centre, Yangling, China
| | - Shutu Xu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, China
- Maize Engineering Technology Research Centre, Yangling, China
| |
Collapse
|
17
|
Liu J, Wu MW, Liu CM. Cereal Endosperms: Development and Storage Product Accumulation. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:255-291. [PMID: 35226815 DOI: 10.1146/annurev-arplant-070221-024405] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The persistent triploid endosperms of cereal crops are the most important source of human food and animal feed. The development of cereal endosperms progresses through coenocytic nuclear division, cellularization, aleurone and starchy endosperm differentiation, and storage product accumulation. In the past few decades, the cell biological processes involved in endosperm formation in most cereals have been described. Molecular genetic studies performed in recent years led to the identification of the genes underlying endosperm differentiation, regulatory network governing storage product accumulation, and epigenetic mechanism underlying imprinted gene expression. In this article, we outline recent progress in this area and propose hypothetical models to illustrate machineries that control aleurone and starchy endosperm differentiation, sugar loading, and storage product accumulations. A future challenge in this area is to decipher the molecular mechanisms underlying coenocytic nuclear division, endosperm cellularization, and programmed cell death.
Collapse
Affiliation(s)
- Jinxin Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China;
| | - Ming-Wei Wu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China;
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China;
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| |
Collapse
|
18
|
Wang Y, Xu J, Yu J, Zhu D, Zhao Q. Maize GSK3-like kinase ZmSK2 is involved in embryonic development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 318:111221. [PMID: 35351312 DOI: 10.1016/j.plantsci.2022.111221] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 05/28/2023]
Abstract
Grain size and weight are closely related to the yield of cereal crops. Abnormal development of the embryo, an important part of the grain, not only affects crop yield but also impacts next-generation survival. Here, we found that maize GSK3-like kinase ZmSK2, a homolog of BIN2 in Arabidopsis, is involved in embryonic development. ZmSK2 overexpression resulted in severe BR defective phenotypes and arrested embryonic development at the transition stage, while the zmsk2 knockout lines showed enlarged embryos. ZmSK2 interacts with Aux/IAA-transcription factor 28 (ZmIAA28), a negative regulator of auxin signaling, and the interaction region is the auxin degron "GWPPV" motif of ZmIAA28 domain II. Coexpression of ZmSK2 with ZmIAA28 increased the accumulation of ZmIAA28 in maize protoplasts, which may have been due to phosphorylation by ZmSK2. In conclusion, this study reveals the function of ZmSK2 in maize embryonic development and proposes that ZmSK2-ZmIAA28 may be another link in the signaling pathway that integrates BR and auxin.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Jianghai Xu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Jingjuan Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Dengyun Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Qian Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
19
|
Dek504 Encodes a Mitochondrion-Targeted E+-Type Pentatricopeptide Repeat Protein Essential for RNA Editing and Seed Development in Maize. Int J Mol Sci 2022; 23:ijms23052513. [PMID: 35269656 PMCID: PMC8910059 DOI: 10.3390/ijms23052513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 12/21/2022] Open
Abstract
In flowering plants, RNA editing is a post-transcriptional process that selectively deaminates cytidines (C) to uridines (U) in organellar transcripts. Pentatricopeptide repeat (PPR) proteins have been identified as site-specific recognition factors for RNA editing. Here, we report the map-based cloning and molecular characterization of the defective kernel mutant dek504 in maize. Loss of Dek504 function leads to delayed embryogenesis and endosperm development, which produce small and collapsed kernels. Dek504 encodes an E+-type PPR protein targeted to the mitochondria, which is required for RNA editing of mitochondrial NADH dehydrogenase 3 at the nad3-317 and nad3-44 sites. Biochemical analysis of mitochondrial protein complexes revealed a significant reduction in the mitochondrial NADH dehydrogenase complex I activity, indicating that the alteration of the amino acid sequence at nad3-44 and nad3-317 through RNA editing is essential for NAD3 function. Moreover, the amino acids are highly conserved in monocots and eudicots, whereas the events of C-to-U editing are not conserved in flowering plants. Thus, our results indicate that Dek504 is essential for RNA editing of nad3, which is critical for NAD3 function, mitochondrial complex I stability, and seed development in maize.
Collapse
|
20
|
Zhang Y, Jiao F, Li J, Pei Y, Zhao M, Song X, Guo X. Transcriptomic analysis of the maize inbred line Chang7-2 and a large-grain mutant tc19. BMC Genomics 2022; 23:4. [PMID: 34983391 PMCID: PMC8725412 DOI: 10.1186/s12864-021-08230-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/10/2021] [Indexed: 11/10/2022] Open
Abstract
Backgrounds Grain size is a key factor in crop yield that gradually develops after pollination. However, few studies have reported gene expression patterns in maize grain development using large-grain mutants. To investigate the developmental mechanisms of grain size, we analyzed a large-grain mutant, named tc19, at the morphological and transcriptome level at five stages corresponding to days after pollination (DAP). Results After maturation, the grain length, width, and thickness in tc19 were greater than that in Chang7-2 (control) and increased by 3.57, 8.80, and 3.88%, respectively. Further analysis showed that grain width and 100-kernel weight in tc19 was lower than in Chang7-2 at 14 and 21 DAP, but greater than that in Chang7-2 at 28 DAP, indicating that 21 to 28 DAP was the critical stage for kernel width and weight development. For all five stages, the concentrations of auxin and brassinosteroids were significantly higher in tc19 than in Chang7-2. Gibberellin was higher at 7, 14, and 21 DAP, and cytokinin was higher at 21 and 35 DAP, in tc19 than in Chang7-2. Through transcriptome analysis at 14, 21, and 28 DAP, we identified 2987, 2647 and 3209 differentially expressed genes (DEGs) between tc19 and Chang7-2. By using KEGG analysis, 556, 500 and 633 DEGs at 14, 21 and 28 DAP were pathway annotated, respectively, 77 of them are related to plant hormone signal transduction pathway. ARF3, AO2, DWF4 and XTH are higher expressed in tc19 than that in Chang7-2. Conclusions We found some DEGs in maize grain development by using Chang7-2 and a large-grain mutant tc19. These DEGs have potential application value in improving maize performance. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08230-9.
Collapse
Affiliation(s)
- Yanrong Zhang
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, Shandong, China.,Key Laboratory of Major Crop Germplasm Innovation and Application in Qingdao, Qingdao, 266109, Shandong, China
| | - Fuchao Jiao
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, Shandong, China.,Key Laboratory of Major Crop Germplasm Innovation and Application in Qingdao, Qingdao, 266109, Shandong, China
| | - Jun Li
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, Shandong, China.,Key Laboratory of Major Crop Germplasm Innovation and Application in Qingdao, Qingdao, 266109, Shandong, China
| | - Yuhe Pei
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, Shandong, China.,Key Laboratory of Major Crop Germplasm Innovation and Application in Qingdao, Qingdao, 266109, Shandong, China
| | - Meiai Zhao
- Key Laboratory of Major Crop Germplasm Innovation and Application in Qingdao, Qingdao, 266109, Shandong, China.,College of Life Science, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Xiyun Song
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, Shandong, China. .,Key Laboratory of Major Crop Germplasm Innovation and Application in Qingdao, Qingdao, 266109, Shandong, China.
| | - Xinmei Guo
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, Shandong, China. .,Key Laboratory of Major Crop Germplasm Innovation and Application in Qingdao, Qingdao, 266109, Shandong, China.
| |
Collapse
|
21
|
Li Y, Ma S, Zhao Q, Lv D, Wang B, Xiao K, Zhu J, Li S, Yang W, Liu X, Wang H, Zhou X, Chen R. ZmGRAS11, transactivated by Opaque2, positively regulates kernel size in maize. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:2031-2037. [PMID: 34850567 DOI: 10.1111/jipb.13198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
Although the genetic basis for endosperm development in maize (Zea mays) has been well studied, the mechanism for coordinating grain filling with increasing kernel size remains elusive. Here, we report that increased kernel size was selected during modern breeding and identify a novel DELLA-like transcriptional regulator, ZmGRAS11, which positively regulates kernel size and kernel weight in maize. We find that Opaque2, a core transcription factor for zein protein and starch accumulation, transactivates the expression of ZmGRAS11. Our data suggest that the Opaque2-ZmGRAS11 module mediates synergistic endosperm enlargement with grain filling.
Collapse
Affiliation(s)
- Ye Li
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory of Agricultural Products Chemical and Biological Processing Technology, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Shuai Ma
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qianqian Zhao
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Di Lv
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Baobao Wang
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ke Xiao
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Jiameng Zhu
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China
| | - Suzhen Li
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenzhu Yang
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoqing Liu
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haiyang Wang
- College of Life Sciences, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaojin Zhou
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Rumei Chen
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
22
|
Pedroza-Garcia JA, Eekhout T, Achon I, Nisa MU, Coussens G, Vercauteren I, Van den Daele H, Pauwels L, Van Lijsebettens M, Raynaud C, De Veylder L. Maize ATR safeguards genome stability during kernel development to prevent early endosperm endocycle onset and cell death. THE PLANT CELL 2021; 33:2662-2684. [PMID: 34086963 PMCID: PMC8408457 DOI: 10.1093/plcell/koab158] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/31/2021] [Indexed: 05/06/2023]
Abstract
The ataxia-telangiectasia mutated (ATM) and ATM and Rad3-related (ATR) kinases coordinate the DNA damage response. The roles described for Arabidopsis thaliana ATR and ATM are assumed to be conserved over other plant species, but molecular evidence is scarce. Here, we demonstrate that the functions of ATR and ATM are only partially conserved between Arabidopsis and maize (Zea mays). In both species, ATR and ATM play a key role in DNA repair and cell cycle checkpoint activation, but whereas Arabidopsis plants do not suffer from the absence of ATR under control growth conditions, maize mutant plants accumulate replication defects, likely due to their large genome size. Moreover, contrarily to Arabidopsis, maize ATM deficiency does not trigger meiotic defects, whereas the ATR kinase appears to be crucial for the maternal fertility. Strikingly, ATR is required to repress premature endocycle onset and cell death in the maize endosperm. Its absence results in a reduction of kernel size, protein and starch content, and a stochastic death of kernels, a process being counteracted by ATM. Additionally, while Arabidopsis atr atm double mutants are viable, no such mutants could be obtained for maize. Therefore, our data highlight that the mechanisms maintaining genome integrity may be more important for vegetative and reproductive development than previously anticipated.
Collapse
Affiliation(s)
- Jose Antonio Pedroza-Garcia
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Thomas Eekhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Ignacio Achon
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Maher-Un Nisa
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, Paris University, Sorbonne Paris-Cite, University of Paris-Saclay, 91405, Orsay, France
| | - Griet Coussens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Ilse Vercauteren
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Hilde Van den Daele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Laurens Pauwels
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Mieke Van Lijsebettens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Cécile Raynaud
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, Paris University, Sorbonne Paris-Cite, University of Paris-Saclay, 91405, Orsay, France
| | | |
Collapse
|
23
|
Chen Q, Zhang J, Wang J, Xie Y, Cui Y, Du X, Li L, Fu J, Liu Y, Wang J, Wang G, Gu R. Small kernel 501 (smk501) encodes the RUBylation activating enzyme E1 subunit ECR1 (E1 C-TERMINAL RELATED 1) and is essential for multiple aspects of cellular events during kernel development in maize. THE NEW PHYTOLOGIST 2021; 230:2337-2354. [PMID: 33749863 DOI: 10.1111/nph.17354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/13/2021] [Indexed: 05/27/2023]
Abstract
RUBylation plays essential roles in plant growth and development through regulating Cullin-RING ubiquitin E3 ligase (CRL) activities and the CRL-mediated protein degradations. However, the function of RUBylation in regulating kernel development remains unclear. Through genetic and molecular analyses of a small kernel 501 (smk501) mutant in maize (Zea mays), we cloned the smk501 gene, revealed its molecular function, and defined its roles in RUBylation pathway and seed development. Smk501 encodes a RUBylation activating enzyme E1 subunit ZmECR1 (E1 C-TERMINAL RELATED 1) protein. Destruction in RUBylation by smk501 mutation resulted in less embryo and endosperm cell number and smaller kernel size. The transcriptome and proteome profiling, hormone evaluation and cell proliferation observation revealed that disturbing ZmECR1 expression mainly affects pathways on hormone signal transduction, cell cycle progression and starch accumulation during kernel development. In addition, mutant in zmaxr1 (Auxin resistant 1), another RUB E1 subunit, also showed similar defects in kernel development. Double mutation of zmecr1 and zmaxr1 lead to empty pericarp kernel phenotype. RUBylation is a novel regulatory pathway affecting maize kernel development, majorly through its functions in modifying multiple cellular progresses.
Collapse
Affiliation(s)
- Quanquan Chen
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jie Zhang
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jie Wang
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yuxin Xie
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yu Cui
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xuemei Du
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Li Li
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Junjie Fu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yunjun Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jianhua Wang
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Guoying Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Riliang Gu
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
24
|
He Y, Yang Q, Yang J, Wang YF, Sun X, Wang S, Qi W, Ma Z, Song R. shrunken4 is a mutant allele of ZmYSL2 that affects aleurone development and starch synthesis in maize. Genetics 2021; 218:6261937. [PMID: 34009311 DOI: 10.1093/genetics/iyab070] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Minerals are stored in the aleurone layer and embryo during maize seed development, but how they affect endosperm development and activity is unclear. Here, we cloned the gene underlying the classic maize kernel mutant shrunken4 (sh4) and found that it encodes the YELLOW STRIPE-LIKE oligopeptide metal transporter ZmYSL2. sh4 kernels had a shrunken phenotype with developmental defects in the aleurone layer and starchy endosperm cells. ZmYSL2 showed iron and zinc transporter activity in Xenopus laevis oocytes. Analysis using a specific antibody indicated that ZmYSL2 predominately accumulated in the aleurone and sub-aleurone layers in endosperm and the scutellum in embryos. Specific iron deposition was observed in the aleurone layer in wild-type kernels. In sh4, however, the outermost monolayer of endosperm cells failed to accumulate iron and lost aleurone cell characteristics, indicating that proper functioning of ZmYSL2 and iron accumulation are essential for aleurone cell development. Transcriptome analysis of sh4 endosperm revealed that loss of ZmYSL2 function affects the expression of genes involved in starch synthesis and degradation processes, which is consistent with the delayed development and premature degradation of starch grains in sh4 kernels. Therefore, ZmYSL2 is critical for aleurone cell development and starchy endosperm cell activity during maize seed development.
Collapse
Affiliation(s)
- Yonghui He
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.,Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Qing Yang
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jun Yang
- National Engineering Laboratory of Crop Stress Resistance, School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Yong-Fei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaoliang Sun
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Shu Wang
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Weiwei Qi
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Zeyang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Rentao Song
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
25
|
Dai D, Ma Z, Song R. Maize endosperm development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:613-627. [PMID: 33448626 DOI: 10.1111/jipb.13069] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/12/2021] [Indexed: 05/22/2023]
Abstract
Recent breakthroughs in transcriptome analysis and gene characterization have provided valuable resources and information about the maize endosperm developmental program. The high temporal-resolution transcriptome analysis has yielded unprecedented access to information about the genetic control of seed development. Detailed spatial transcriptome analysis using laser-capture microdissection has revealed the expression patterns of specific populations of genes in the four major endosperm compartments: the basal endosperm transfer layer (BETL), aleurone layer (AL), starchy endosperm (SE), and embryo-surrounding region (ESR). Although the overall picture of the transcriptional regulatory network of endosperm development remains fragmentary, there have been some exciting advances, such as the identification of OPAQUE11 (O11) as a central hub of the maize endosperm regulatory network connecting endosperm development, nutrient metabolism, and stress responses, and the discovery that the endosperm adjacent to scutellum (EAS) serves as a dynamic interface for endosperm-embryo crosstalk. In addition, several genes that function in BETL development, AL differentiation, and the endosperm cell cycle have been identified, such as ZmSWEET4c, Thk1, and Dek15, respectively. Here, we focus on current advances in understanding the molecular factors involved in BETL, AL, SE, ESR, and EAS development, including the specific transcriptional regulatory networks that function in each compartment during endosperm development.
Collapse
Affiliation(s)
- Dawei Dai
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Zeyang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Rentao Song
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
26
|
Bolaños-Villegas P. The Role of Structural Maintenance of Chromosomes Complexes in Meiosis and Genome Maintenance: Translating Biomedical and Model Plant Research Into Crop Breeding Opportunities. FRONTIERS IN PLANT SCIENCE 2021; 12:659558. [PMID: 33868354 PMCID: PMC8044525 DOI: 10.3389/fpls.2021.659558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/15/2021] [Indexed: 06/06/2023]
Abstract
Cohesin is a multi-unit protein complex from the structural maintenance of chromosomes (SMC) family, required for holding sister chromatids together during mitosis and meiosis. In yeast, the cohesin complex entraps sister DNAs within tripartite rings created by pairwise interactions between the central ring units SMC1 and SMC3 and subunits such as the α-kleisin SCC1 (REC8/SYN1 in meiosis). The complex is an indispensable regulator of meiotic recombination in eukaryotes. In Arabidopsis and maize, the SMC1/SMC3 heterodimer is a key determinant of meiosis. In Arabidopsis, several kleisin proteins are also essential: SYN1/REC8 is meiosis-specific and is essential for double-strand break repair, whereas AtSCC2 is a subunit of the cohesin SCC2/SCC4 loading complex that is important for synapsis and segregation. Other important meiotic subunits are the cohesin EXTRA SPINDLE POLES (AESP1) separase, the acetylase ESTABLISHMENT OF COHESION 1/CHROMOSOME TRANSMISSION FIDELITY 7 (ECO1/CTF7), the cohesion release factor WINGS APART-LIKE PROTEIN 1 (WAPL) in Arabidopsis (AtWAPL1/AtWAPL2), and the WAPL antagonist AtSWITCH1/DYAD (AtSWI1). Other important complexes are the SMC5/SMC6 complex, which is required for homologous DNA recombination during the S-phase and for proper meiotic synapsis, and the condensin complexes, featuring SMC2/SMC4 that regulate proper clustering of rDNA arrays during interphase. Meiotic recombination is the key to enrich desirable traits in commercial plant breeding. In this review, I highlight critical advances in understanding plant chromatid cohesion in the model plant Arabidopsis and crop plants and suggest how manipulation of crossover formation during meiosis, somatic DNA repair and chromosome folding may facilitate transmission of desirable alleles, tolerance to radiation, and enhanced transcription of alleles that regulate sexual development. I hope that these findings highlight opportunities for crop breeding.
Collapse
Affiliation(s)
- Pablo Bolaños-Villegas
- Fabio Baudrit Agricultural Research Station, University of Costa Rica, Alajuela, Costa Rica
- Lankester Botanical Garden, University of Costa Rica, Cartago, Costa Rica
| |
Collapse
|
27
|
Dai D, Ma Z, Song R. Maize kernel development. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:2. [PMID: 37309525 PMCID: PMC10231577 DOI: 10.1007/s11032-020-01195-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/03/2020] [Indexed: 06/14/2023]
Abstract
Maize (Zea mays) is a leading cereal crop in the world. The maize kernel is the storage organ and the harvest portion of this crop and is closely related to its yield and quality. The development of maize kernel is initiated by the double fertilization event, leading to the formation of a diploid embryo and a triploid endosperm. The embryo and endosperm are then undergone independent developmental programs, resulting in a mature maize kernel which is comprised of a persistent endosperm, a large embryo, and a maternal pericarp. Due to the well-characterized morphogenesis and powerful genetics, maize kernel has long been an excellent model for the study of cereal kernel development. In recent years, with the release of the maize reference genome and the development of new genomic technologies, there has been an explosive expansion of new knowledge for maize kernel development. In this review, we overviewed recent progress in the study of maize kernel development, with an emphasis on genetic mapping of kernel traits, transcriptome analysis during kernel development, functional gene cloning of kernel mutants, and genetic engineering of kernel traits.
Collapse
Affiliation(s)
- Dawei Dai
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444 China
| | - Zeyang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Rentao Song
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
28
|
Luo H, Meng D, Liu H, Xie M, Yin C, Liu F, Dong Z, Jin W. Ectopic Expression of the Transcriptional Regulator silky3 Causes Pleiotropic Meristem and Sex Determination Defects in Maize Inflorescences. THE PLANT CELL 2020; 32:3750-3773. [PMID: 32989171 PMCID: PMC7721320 DOI: 10.1105/tpc.20.00043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 09/04/2020] [Accepted: 09/25/2020] [Indexed: 05/12/2023]
Abstract
Maize (Zea mays) is a monoecious plant, in which inflorescence morphogenesis involves complicated molecular regulatory mechanisms. Although many related genes have been cloned, our understanding of the molecular mechanism underlying maize inflorescence development remains limited. Here, we identified a maize semi-dominant mutant Silky3 (Si3), which displays pleiotropic defects during inflorescence development, including loss of determinacy and identity in meristems and floral organs, as well as the sexual transformation of tassel florets. We cloned the si3 gene using a map-based approach. Functional analysis reveals that SI3 is a nuclear protein and may act as a transcriptional regulator. Transcriptome analysis reveals that the ectopic expression of si3 strongly represses multiple biological processes, especially the flower development pathways. RNA in situ hybridization similarly shows that the expression patterns of genes responsible for flower development are changed in the Si3 mutant. In addition, the homeostasis of jasmonic acid and gibberellic acid are altered in the Si3 young tassels, and application of exogenous jasmonic acid can rescue the sex reversal phenotype of Si3 The defects we characterized in various regulatory pathways can explain the complex phenotypes of Si3 mutant, and this study deepens our knowledge of maize inflorescence development.
Collapse
Affiliation(s)
- Haishan Luo
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Dexuan Meng
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Hongbing Liu
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Mujiao Xie
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Changfa Yin
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Fang Liu
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Zhaobin Dong
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Weiwei Jin
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
29
|
Dai D, Jin L, Huo Z, Yan S, Ma Z, Qi W, Song R. Maize pentatricopeptide repeat protein DEK53 is required for mitochondrial RNA editing at multiple sites and seed development. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6246-6261. [PMID: 32710615 DOI: 10.1093/jxb/eraa348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/21/2020] [Indexed: 05/21/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins were identified as site-specific recognition factors for RNA editing in plant mitochondria and plastids. In this study, we characterized maize (Zea mays) kernel mutant defective kernel 53 (dek53), which has an embryo lethal and collapsed endosperm phenotype. Dek53 encodes an E-subgroup PPR protein, which possesses a short PLS repeat region of only seven repeats. Subcellular localization analysis indicated that DEK53 is localized in the mitochondrion. Strand- and transcript-specific RNA-seq analysis showed that the dek53 mutation affected C-to-U RNA editing at more than 60 mitochondrial C targets. Biochemical analysis of mitochondrial protein complexes revealed a significant reduction in the assembly of mitochondrial complex III in dek53. Transmission electron microscopic examination showed severe morphological defects of mitochondria in dek53 endosperm cells. In addition, yeast two-hybrid and luciferase complementation imaging assays indicated that DEK53 can interact with the mitochondrion-targeted non-PPR RNA editing factor ZmMORF1, suggesting that DEK53 might be a functional component of the organellar RNA editosome.
Collapse
Affiliation(s)
- Dawei Dai
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Lifang Jin
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Zhenzhen Huo
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Shumei Yan
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Zeyang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Weiwei Qi
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Rentao Song
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
30
|
Tao H, Lambert JP, Yung TM, Zhu M, Hahn NA, Li D, Lau K, Sturgeon K, Puviindran V, Zhang X, Gong W, Chen XX, Anderson G, Garry DJ, Henkelman RM, Sun Y, Iulianella A, Kawakami Y, Gingras AC, Hui CC, Hopyan S. IRX3/5 regulate mitotic chromatid segregation and limb bud shape. Development 2020; 147:dev.180042. [PMID: 32907847 DOI: 10.1242/dev.180042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/25/2020] [Indexed: 01/19/2023]
Abstract
Pattern formation is influenced by transcriptional regulation as well as by morphogenetic mechanisms that shape organ primordia, although factors that link these processes remain under-appreciated. Here we show that, apart from their established transcriptional roles in pattern formation, IRX3/5 help to shape the limb bud primordium by promoting the separation and intercalation of dividing mesodermal cells. Surprisingly, IRX3/5 are required for appropriate cell cycle progression and chromatid segregation during mitosis, possibly in a nontranscriptional manner. IRX3/5 associate with, promote the abundance of, and share overlapping functions with co-regulators of cell division such as the cohesin subunits SMC1, SMC3, NIPBL and CUX1. The findings imply that IRX3/5 coordinate early limb bud morphogenesis with skeletal pattern formation.
Collapse
Affiliation(s)
- Hirotaka Tao
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Jean-Philippe Lambert
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Theodora M Yung
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Min Zhu
- Department of Mechanical and Industrial Engineering, University of Toronto, ON M5S 3G8, Canada
| | - Noah A Hahn
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Danyi Li
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Kimberly Lau
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Kendra Sturgeon
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Vijitha Puviindran
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Xiaoyun Zhang
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Wuming Gong
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Xiao Xiao Chen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Gregory Anderson
- Mouse Imaging Centre, Hospital for Sick Children, Toronto Centre for Phenogenomics, Department of Medical Biophysics, University of Toronto, Toronto, ON M5T 3H7, Canada
| | - Daniel J Garry
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - R Mark Henkelman
- Mouse Imaging Centre, Hospital for Sick Children, Toronto Centre for Phenogenomics, Department of Medical Biophysics, University of Toronto, Toronto, ON M5T 3H7, Canada
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, ON M5S 3G8, Canada
| | - Angelo Iulianella
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Yasuhiko Kawakami
- Department of Genetics, Cell Biology and Development, Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Chi-Chung Hui
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada .,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sevan Hopyan
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada .,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.,Division of Orthopaedic Surgery, Hospital for Sick Children and University of Toronto, Toronto M5G 1X8, Canada
| |
Collapse
|
31
|
Zhao H, Qin Y, Xiao Z, Li Q, Yang N, Pan Z, Gong D, Sun Q, Yang F, Zhang Z, Wu Y, Xu C, Qiu F. Loss of Function of an RNA Polymerase III Subunit Leads to Impaired Maize Kernel Development. PLANT PHYSIOLOGY 2020; 184:359-373. [PMID: 32591429 PMCID: PMC7479876 DOI: 10.1104/pp.20.00502] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/15/2020] [Indexed: 05/03/2023]
Abstract
Kernel size is an important factor determining grain yield. Although a number of genes affecting kernel development in maize (Zea mays) have been identified by analyzing kernel mutants, most of the corresponding mutants cannot be used in maize breeding programs due to low germination or incomplete seed development. Here, we characterized small kernel7, a recessive small-kernel mutant with a mutation in the gene encoding the second-largest subunit of RNA polymerase III (RNAPΙΙΙ; NRPC2). A frame shift in ZmNRPC2 leads to a premature stop codon, resulting in significantly reduced levels of transfer RNAs and 5S ribosomal RNA, which are transcribed by RNAPΙΙΙ. Loss-of-function nrpc2 mutants created by CRISPR/CAS9 showed significantly reduced kernel size due to altered endosperm cell size and number. ZmNRPC2 affects RNAPIII activity and the expression of genes involved in cell proliferation and endoreduplication to control kernel development via physically interacting with RNAPIII subunits RPC53 and AC40, transcription factor class C1 and Floury3. Notably, unlike the semidominant negative mutant floury3, which has defects in starchy endosperm, small kernel7 only affects kernel size but not the composition of kernel storage proteins. Our findings provide novel insights into the molecular network underlying maize kernel size, which could facilitate the genetic improvement of maize in the future.
Collapse
Affiliation(s)
- Hailiang Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | | | - Ziyi Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi Li
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Science Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ning Yang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenyuan Pan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Dianming Gong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qin Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Fang Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Zuxin Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Science Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Cao Xu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Fazhan Qiu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
32
|
Wang H, Xu W, Sun Y, Lian Q, Wang C, Yu C, He C, Wang J, Ma H, Copenhaver GP, Wang Y. The cohesin loader SCC2 contains a PHD finger that is required for meiosis in land plants. PLoS Genet 2020; 16:e1008849. [PMID: 32516352 PMCID: PMC7304647 DOI: 10.1371/journal.pgen.1008849] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/19/2020] [Accepted: 05/11/2020] [Indexed: 12/13/2022] Open
Abstract
Cohesin, a multisubunit protein complex, is required for holding sister chromatids together during mitosis and meiosis. The recruitment of cohesin by the sister chromatid cohesion 2/4 (SCC2/4) complex has been extensively studied in Saccharomyces cerevisiae mitosis, but its role in mitosis and meiosis remains poorly understood in multicellular organisms, because complete loss-of-function of either gene causes embryonic lethality. Here, we identified a weak allele of Atscc2 (Atscc2-5) that has only minor defects in vegetative development but exhibits a significant reduction in fertility. Cytological analyses of Atscc2-5 reveal multiple meiotic phenotypes including defects in chromosomal axis formation, meiosis-specific cohesin loading, homolog pairing and synapsis, and AtSPO11-1-dependent double strand break repair. Surprisingly, even though AtSCC2 interacts with AtSCC4 in vitro and in vivo, meiosis-specific knockdown of AtSCC4 expression does not cause any meiotic defect, suggesting that the SCC2-SCC4 complex has divergent roles in mitosis and meiosis. SCC2 homologs from land plants have a unique plant homeodomain (PHD) motif not found in other species. We show that the AtSCC2 PHD domain can bind to the N terminus of histones and is required for meiosis but not mitosis. Taken together, our results provide evidence that unlike SCC2 in other organisms, SCC2 requires a functional PHD domain during meiosis in land plants.
Collapse
Affiliation(s)
- Hongkuan Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
- Center for Epigenetics, Van Andel Institute, Grand Rapids, Michigan, United States of America
| | - Wanyue Xu
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yujin Sun
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Qichao Lian
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Cong Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Chaoyi Yu
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Chengpeng He
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jun Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Hong Ma
- Department of Biology, the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Gregory P. Copenhaver
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Yingxiang Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|