1
|
Liang JH, Wu ZQ, Zhang YX, Yang YB, Wang SY, Gai MY, Wang YW, Zhang XX, Xue J, Duan BH, Yang HL. Single-cell RNA sequencing of shoot apex reveals the mechanism of cyclin regulating cell division via auxin signaling pathway in Populus alba. FRONTIERS IN PLANT SCIENCE 2025; 16:1555388. [PMID: 40104035 PMCID: PMC11913855 DOI: 10.3389/fpls.2025.1555388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 02/17/2025] [Indexed: 03/20/2025]
Abstract
The shoot apex of Populus alba primarily comprises the shoot apical meristem, axillary meristem, leaf primordium, and young leaves, all of which exhibit high division potential. The single-cell RNA sequencing of the apical buds of P. alba can provide deeper insights into the processes of cell proliferation and differentiation, including the key genes and signaling pathways that regulate these processes. Scanning electron microscopy was used to examine the structure of the shoot apex, followed by single-cell sequencing analysis. A total of 29,011 cells were obtained from two biological replicates. Dimensionality reduction and clustering identified 17 distinct cell clusters. Pseudotime analysis revealed that shoot apex meristem cells and mesophyll cells emerged first, followed by the differentiation and maturation of vascular and intercalary meristem cells over time. Trichome differentiation occurred last, whereas epidermal cell differentiation persisted throughout development. At the single-cell level, auxin signaling pathway genes potentially involved in leaf tissue development were identified, along with an analysis of the expression specificity of CYC and CDK genes across mesophyll, epidermis, vascular, and shoot apex meristem tissues. These findings facilitate the elucidation of the molecular regulatory mechanisms by which CYC and CDK genes influence leaf development in P. alba.
Collapse
Affiliation(s)
- Jing-Hui Liang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Zhao-Qun Wu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yue-Xuan Zhang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Ye-Bo Yang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Shi-Yi Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Meng-Yu Gai
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yu-Wen Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xiu-Xing Zhang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jing Xue
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Bo-Hao Duan
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hai-Ling Yang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
2
|
Tian Q, Wang G, Dou J, Niu Y, Li R, An W, Tang Z, Yu J. Melatonin Modulates Tomato Root Morphology by Regulating Key Genes and Endogenous Hormones. PLANTS (BASEL, SWITZERLAND) 2024; 13:383. [PMID: 38337916 PMCID: PMC10857687 DOI: 10.3390/plants13030383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024]
Abstract
Melatonin plays a vital role in plant growth and development. In this study, we treated hydroponically grown tomato roots with various concentrations of exogenous melatonin (0, 10, 30, and 50 μmol·L-1). We utilized root scanning and microscopy to examine alterations in root morphology and cell differentiation and elucidated the mechanism by which melatonin regulates these changes through the interplay with endogenous hormones and relevant genes. The results showed that for melatonin at concentrations ranging between 10 and 30 μmol·L-1, the development of lateral roots were significantly stimulated, the root hair growth was enhanced, and biomass accumulation and root activity were increased. Furthermore, we elucidated that melatonin acts as a mediator for the expression of genes, such as SlCDKA1, SlCYCA3;1, SlARF2, SlF3H, and SlKT1, which are involved in the regulation of root morphology changes. Additionally, we observed that melatonin influences the levels of endogenous hormones, including ZT, GA3, IAA, ABA, and BR, which subsequently impact the root morphology development of tomato roots. In summary, this study shows that tomato root morphology can be promoted by the optimal concentration of exogenous melatonin (10-30 μmol·L-1).
Collapse
Affiliation(s)
- Qiang Tian
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (Q.T.); (G.W.); (J.D.); (Y.N.); (R.L.); (W.A.)
| | - Guangzheng Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (Q.T.); (G.W.); (J.D.); (Y.N.); (R.L.); (W.A.)
| | - Jianhua Dou
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (Q.T.); (G.W.); (J.D.); (Y.N.); (R.L.); (W.A.)
| | - Yu Niu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (Q.T.); (G.W.); (J.D.); (Y.N.); (R.L.); (W.A.)
| | - Ruirui Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (Q.T.); (G.W.); (J.D.); (Y.N.); (R.L.); (W.A.)
| | - Wangwang An
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (Q.T.); (G.W.); (J.D.); (Y.N.); (R.L.); (W.A.)
| | - Zhongqi Tang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (Q.T.); (G.W.); (J.D.); (Y.N.); (R.L.); (W.A.)
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (Q.T.); (G.W.); (J.D.); (Y.N.); (R.L.); (W.A.)
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
3
|
Qin H, Wang J, Zhou J, Qiao J, Li Y, Quan R, Huang R. Abscisic acid promotes auxin biosynthesis to inhibit primary root elongation in rice. PLANT PHYSIOLOGY 2023; 191:1953-1967. [PMID: 36535001 PMCID: PMC10022642 DOI: 10.1093/plphys/kiac586] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/19/2022] [Indexed: 06/01/2023]
Abstract
Soil compaction is a global problem causing inadequate rooting and poor yield in crops. Accumulating evidence indicates that phytohormones coordinately regulate root growth via regulating specific growth processes in distinct tissues. However, how abscisic acid (ABA) signaling translates into auxin production to control root growth during adaptation to different soil environments is still unclear. In this study, we report that ABA has biphasic effects on primary root growth in rice (Oryza sativa) through an auxin biosynthesis-mediated process, causing suppression of root elongation and promotion of root swelling in response to soil compaction. We found that ABA treatment induced the expression of auxin biosynthesis genes and auxin accumulation in roots. Conversely, blocking auxin biosynthesis reduced ABA sensitivity in roots, showing longer and thinner primary roots with larger root meristem size and smaller root diameter. Further investigation revealed that the transcription factor basic region and leucine zipper 46 (OsbZIP46), involved in ABA signaling, can directly bind to the YUCCA8/rice ethylene-insensitive 7 (OsYUC8/REIN7) promoter to activate its expression, and genetic analysis revealed that OsYUC8/REIN7 is located downstream of OsbZIP46. Moreover, roots of mutants defective in ABA or auxin biosynthesis displayed the enhanced ability to penetrate compacted soil. Thus, our results disclose the mechanism in which ABA employs auxin as a downstream signal to modify root elongation and radial expansion, resulting in short and swollen roots impaired in their ability to penetrate compacted soil. These findings provide avenues for breeders to select crops resilient to soil compaction.
Collapse
Affiliation(s)
- Hua Qin
- Authors for correspondence: (H.Q.); (R.H.)
| | | | | | - Jinzhu Qiao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuxiang Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ruidang Quan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | | |
Collapse
|
4
|
Fedoreyeva LI. Molecular Mechanisms of Regulation of Root Development by Plant Peptides. PLANTS (BASEL, SWITZERLAND) 2023; 12:1320. [PMID: 36987008 PMCID: PMC10053774 DOI: 10.3390/plants12061320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/14/2023] [Accepted: 03/01/2023] [Indexed: 06/19/2023]
Abstract
Peptides perform many functions, participating in the regulation of cell differentiation, regulating plant growth and development, and also involved in the response to stress factors and in antimicrobial defense. Peptides are an important class biomolecules for intercellular communication and in the transmission of various signals. The intercellular communication system based on the ligand-receptor bond is one of the most important molecular bases for creating complex multicellular organisms. Peptide-mediated intercellular communication plays a critical role in the coordination and determination of cellular functions in plants. The intercellular communication system based on the receptor-ligand is one of the most important molecular foundations for creating complex multicellular organisms. Peptide-mediated intercellular communication plays a critical role in the coordination and determination of cellular functions in plants. The identification of peptide hormones, their interaction with receptors, and the molecular mechanisms of peptide functioning are important for understanding the mechanisms of both intercellular communications and for regulating plant development. In this review, we drew attention to some peptides involved in the regulation of root development, which implement this regulation by the mechanism of a negative feedback loop.
Collapse
Affiliation(s)
- Larisa I Fedoreyeva
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia
| |
Collapse
|
5
|
Li S, Zhang Q, Zhang H, Wang J, Sun J, Yang X, Huang S, Zhang Z. Deletion of a cyclin-dependent protein kinase inhibitor, CsSMR1, leads to dwarf and determinate growth in cucumber (Cucumis sativus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:915-927. [PMID: 34841478 PMCID: PMC8942921 DOI: 10.1007/s00122-021-04006-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/23/2021] [Indexed: 05/12/2023]
Abstract
A 7.9 kb deletion which contains a cyclin-dependent protein kinase inhibitor leads to determinate growth and dwarf phenotype in cucumber. Plant architecture is a composite character which are mainly defined by shoot branching, internode elongation and shoot determinacy. Ideal architecture tends to increase the yield of plants, just like the case of "Green Revolution" increased by the application of semi-dwarf cereal crop varieties in 1960s. Cucumber (Cucumis sativus L.) is an important vegetable cultivated worldwide, and suitable architecture varieties were selected for different production systems. In this study, we obtained a novel dwarf mutant with strikingly shortened plant height and determinate growth habit. By bulked segregant analysis and map-based cloning, we delimited the dw2 locus to a 56.4 kb region which contain five genes. Among all the variations between WT and dw2 within the 56.4 kb region, a 7.9 kb deletion which resulted in complete deletion of CsaV3_5G035790 in dw2 was co-segregated with the dwarf phenotype. Haplotype analysis and gene expression analysis suggest that CsaV3_5G035790 encoding a cyclin-dependent protein kinase inhibitor (CsSMR1) be the candidate gene responsible for the dwarf phenotype in dw2. RNA-seq analysis shows that several kinesin-like proteins, cyclins and reported organ size regulators are expressed differentially between WT and dw2, which may account for the reduced organ size in dwarf plants. Additionally, the down-regulation of CsSTM and CsWOX9 in dw2 resulted in premature termination of shoot apical meristem development, which eventually reduces the internode number and plant height. Identification and characterization of the CsSMR1 provide a new insight into cucumber architecture modification to be applied to mechanized production system.
Collapse
Affiliation(s)
- Shuai Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Qiqi Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huimin Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jie Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jinjing Sun
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xueyong Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Sanwen Huang
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Zhonghua Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
6
|
Wu R, Liu Z, Wang J, Guo C, Zhou Y, Bawa G, Rochaix JD, Sun X. COE2 Is Required for the Root Foraging Response to Nitrogen Limitation. Int J Mol Sci 2022; 23:ijms23020861. [PMID: 35055047 PMCID: PMC8778332 DOI: 10.3390/ijms23020861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/23/2021] [Accepted: 01/11/2022] [Indexed: 01/10/2023] Open
Abstract
There are numerous exchanges of signals and materials between leaves and roots, including nitrogen, which is one of the essential nutrients for plant growth and development. In this study we identified and characterized the Chlorophyll A/B-Binding Protein (CAB) (named coe2 for CAB overexpression 2) mutant, which is defective in the development of chloroplasts and roots under normal growth conditions. The phenotype of coe2 is caused by a mutation in the Nitric Oxide Associated (NOA1) gene that is implicated in a wide range of chloroplast functions including the regulation of metabolism and signaling of nitric oxide (NO). A transcriptome analysis reveals that expression of genes involved in metabolism and lateral root development are strongly altered in coe2 seedlings compared with WT. COE2 is expressed in hypocotyls, roots, root hairs, and root caps. Both the accumulation of NO and the growth of lateral roots are enhanced in WT but not in coe2 under nitrogen limitation. These new findings suggest that COE2-dependent signaling not only coordinates gene expression but also promotes chloroplast development and function by modulating root development and absorption of nitrogen compounds.
Collapse
Affiliation(s)
- Rui Wu
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (R.W.); (Z.L.); (J.W.); (C.G.); (Y.Z.); (G.B.)
| | - Zhixin Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (R.W.); (Z.L.); (J.W.); (C.G.); (Y.Z.); (G.B.)
| | - Jiajing Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (R.W.); (Z.L.); (J.W.); (C.G.); (Y.Z.); (G.B.)
| | - Chenxi Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (R.W.); (Z.L.); (J.W.); (C.G.); (Y.Z.); (G.B.)
| | - Yaping Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (R.W.); (Z.L.); (J.W.); (C.G.); (Y.Z.); (G.B.)
| | - George Bawa
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (R.W.); (Z.L.); (J.W.); (C.G.); (Y.Z.); (G.B.)
| | - Jean-David Rochaix
- Departments of Molecular Biology and Plant Biology, University of Geneva, 1211 Geneva, Switzerland;
| | - Xuwu Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (R.W.); (Z.L.); (J.W.); (C.G.); (Y.Z.); (G.B.)
- Correspondence:
| |
Collapse
|