1
|
Rafiei N, Ronceret A. The plant early recombinosome: a high security complex to break DNA during meiosis. PLANT REPRODUCTION 2024; 37:421-440. [PMID: 39331138 PMCID: PMC11511760 DOI: 10.1007/s00497-024-00509-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024]
Abstract
KEY MESSAGE The formacion of numerous unpredictable DNA Double Strand Breaks (DSBs) on chromosomes iniciates meiotic recombination. In this perspective, we propose a 'multi-key lock' model to secure the risky but necesary breaks as well as a 'one per pair of cromatids' model for the topoisomerase-like early recombinosome. During meiosis, homologous chromosomes recombine at few sites of crossing-overs (COs) to ensure correct segregation. The initiation of meiotic recombination involves the formation of DNA double strand breaks (DSBs) during prophase I. Too many DSBs are dangerous for genome integrity: if these DSBs are not properly repaired, it could potentially lead to chromosomal fragmentation. Too few DSBs are also problematic: if the obligate CO cannot form between bivalents, catastrophic unequal segregation of univalents lead to the formation of sterile aneuploid spores. Research on the regulation of the formation of these necessary but risky DSBs has recently advanced in yeast, mammals and plants. DNA DSBs are created by the enzymatic activity of the early recombinosome, a topoisomerase-like complex containing SPO11. This opinion paper reviews recent insights on the regulation of the SPO11 cofactors necessary for the introduction of temporally and spatially controlled DSBs. We propose that a 'multi-key-lock' model for each subunit of the early recombinosome complex is required to secure the formation of DSBs. We also discuss the hypothetical implications that the established topoisomerase-like nature of the SPO11 core-complex can have in creating DSB in only one of the two replicated chromatids of early prophase I meiotic chromosomes. This hypothetical 'one per pair of chromatids' DSB formation model could optimize the faithful repair of the self-inflicted DSBs. Each DSB could use three potential intact homologous DNA sequences as repair template: one from the sister chromatid and the two others from the homologous chromosomes.
Collapse
Affiliation(s)
- Nahid Rafiei
- Department of Plant Molecular Biology, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Arnaud Ronceret
- Department of Plant Molecular Biology, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México.
| |
Collapse
|
2
|
Nibau C, Evans A, King H, Phillips DW, Lloyd A. Homoeologous crossovers are distally biased and underlie genomic instability in first-generation neo-allopolyploid Arabidopsis suecica. THE NEW PHYTOLOGIST 2024; 244:1315-1327. [PMID: 39239904 DOI: 10.1111/nph.20095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/07/2024] [Indexed: 09/07/2024]
Abstract
First-generation polyploids often suffer from more meiotic errors and lower fertility than established wild polyploid populations. One such example is the allopolyploid model species Arabidopsis suecica which originated c. 16 000 generations ago. We present here a comparison of meiosis and its outcomes in naturally evolved and first-generation 'synthetic' A. suecica using a combination of cytological and genomic approaches. We show that while meiosis in natural lines is largely diploid-like, synthetic lines have high levels of meiotic errors including incomplete synapsis and nonhomologous crossover formation. Whole-genome re-sequencing of progeny revealed 20-fold higher levels of homoeologous exchange and eightfold higher aneuploidy originating from synthetic parents. Homoeologous exchanges showed a strong distal bias and occurred predominantly in genes, regularly generating novel protein variants. We also observed that homoeologous exchanges can generate megabase scale INDELs when occurring in regions of inverted synteny. Finally, we observed evidence of sex-specific differences in adaptation to polyploidy with higher success in reciprocal crosses to natural lines when synthetic plants were used as the female parent. Our results directly link cytological phenotypes in A. suecica with their genomic outcomes, demonstrating that homoeologous crossovers underlie genomic instability in neo-allopolyploids and are more distally biased than homologous crossovers.
Collapse
Affiliation(s)
- Candida Nibau
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, SY23 3EE, UK
| | - Aled Evans
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, SY23 3EE, UK
| | - Holly King
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, SY23 3EE, UK
| | - Dylan Wyn Phillips
- Department of Life Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion, SY23 3DA, UK
| | - Andrew Lloyd
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, SY23 3EE, UK
| |
Collapse
|
3
|
Jovanska L, Lin IC, Yao JS, Chen CL, Liu HC, Li WC, Chuang YC, Chuang CN, Yu ACH, Lin HN, Pong WL, Yu CI, Su CY, Chen YP, Chen RS, Hsueh YP, Yuan HS, Timofejeva L, Wang TF. DNA cytosine methyltransferases differentially regulate genome-wide hypermutation and interhomolog recombination in Trichoderma reesei meiosis. Nucleic Acids Res 2024; 52:9551-9573. [PMID: 39021337 PMCID: PMC11381340 DOI: 10.1093/nar/gkae611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/20/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024] Open
Abstract
Trichoderma reesei is an economically important enzyme producer with several unique meiotic features. spo11, the initiator of meiotic double-strand breaks (DSBs) in most sexual eukaryotes, is dispensable for T. reesei meiosis. T. reesei lacks the meiosis-specific recombinase Dmc1. Rad51 and Sae2, the activator of the Mre11 endonuclease complex, promote DSB repair and chromosome synapsis in wild-type and spo11Δ meiosis. DNA methyltransferases (DNMTs) perform multiple tasks in meiosis. Three DNMT genes (rid1, dim2 and dimX) differentially regulate genome-wide cytosine methylation and C:G-to-T:A hypermutations in different chromosomal regions. We have identified two types of DSBs: type I DSBs require spo11 or rid1 for initiation, whereas type II DSBs do not rely on spo11 and rid1 for initiation. rid1 (but not dim2) is essential for Rad51-mediated DSB repair and normal meiosis. rid1 and rad51 exhibit a locus heterogeneity (LH) relationship, in which LH-associated proteins often regulate interconnectivity in protein interaction networks. This LH relationship can be suppressed by deleting dim2 in a haploid rid1Δ (but not rad51Δ) parental strain, indicating that dim2 and rid1 share a redundant function that acts earlier than rad51 during early meiosis. In conclusion, our studies provide the first evidence of the involvement of DNMTs during meiotic initiation and recombination.
Collapse
Affiliation(s)
| | - I-Chen Lin
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
- Chi-Mei Medical Center, Tainan 71004, Taiwan
| | - Jhong-Syuan Yao
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Chia-Ling Chen
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Hou-Cheng Liu
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Wan-Chen Li
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yu-Chien Chuang
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Chi-Ning Chuang
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | | | - Hsin-Nan Lin
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Wen-Li Pong
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Chang-I Yu
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ching-Yuan Su
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Ping Chen
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ruey-Shyang Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Hanna S Yuan
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ljudmilla Timofejeva
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
- Centre of Estonian Rural Research and Knowledge, J. Aamisepa 1, Jõgeva 48309, Estonia
| | - Ting-Fang Wang
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| |
Collapse
|
4
|
Cromer L, Tiscareno-Andrade M, Lefranc S, Chambon A, Hurel A, Brogniez M, Guérin J, Le Masson I, Adam G, Charif D, Andrey P, Grelon M. Rapid meiotic prophase chromosome movements in Arabidopsis thaliana are linked to essential reorganization at the nuclear envelope. Nat Commun 2024; 15:5964. [PMID: 39013853 PMCID: PMC11252379 DOI: 10.1038/s41467-024-50169-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/02/2024] [Indexed: 07/18/2024] Open
Abstract
Meiotic rapid prophase chromosome movements (RPMs) require connections between the chromosomes and the cytoskeleton, involving SUN (Sad1/UNC-84)-domain-containing proteins at the inner nuclear envelope (NE). RPMs remain significantly understudied in plants, with respect to their importance in the regulation of meiosis. Here, we demonstrate that Arabidopsis thaliana meiotic centromeres undergo rapid (up to 500 nm/s) and uncoordinated movements during the zygotene and pachytene stages. These centromere movements are not affected by altered chromosome organization and recombination but are abolished in the double mutant sun1 sun2. We also document the changes in chromosome dynamics and nucleus organization during the transition from leptotene to zygotene, including telomere attachment to SUN-enriched NE domains, bouquet formation, and nucleolus displacement, all of which were defective in sun1 sun2. These results establish A. thaliana as a model species for studying the functional implications of meiotic RPMs and demonstrate the mechanistic conservation of telomere-led RPMs in plants.
Collapse
Affiliation(s)
- Laurence Cromer
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Mariana Tiscareno-Andrade
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Sandrine Lefranc
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Aurélie Chambon
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Aurélie Hurel
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Manon Brogniez
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Julie Guérin
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Ivan Le Masson
- Université Paris-Saclay, AgroParisTech, INRAE, UMR Agronomie, 91120, Palaiseau, France
| | - Gabriele Adam
- Université Paris-Saclay, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif sur Yvette, France
- Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif sur Yvette, France
| | - Delphine Charif
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Philippe Andrey
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Mathilde Grelon
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France.
| |
Collapse
|
5
|
Jia P, Nurziya Y, Luo Y, Jia W, Zhu Q, Tian M, Sun L, Zhang B, Qi Z, Zhao Z, Dai Y, Fu Y, Li Y. Evolution and Genetic Differentiation of Pleurotus tuoliensis in Xinjiang, China, Based on Population Genomics. J Fungi (Basel) 2024; 10:472. [PMID: 39057357 PMCID: PMC11278092 DOI: 10.3390/jof10070472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Pleurotus tuoliensis is a unique species discovered in Xinjiang, China, which is recognized for its significant edible, medicinal, and economic value. It has been successfully incorporated into industrial production. Controversy has emerged concerning the evolution and environmental adaptability of this species due to inadequate interspecific ecology and molecular data. This study examines the germplasm resources of P. tuoliensis in the Xinjiang region. A total of 225 wild and cultivated strains of P. tuoliensis were gathered from seven representative regions. Phylogenetic analysis revealed that seven populations were notably segregated into three distinct groups, primarily attributed to environmental factors as the underlying cause for this differentiation. Population historical size data indicate that P. tuoliensis underwent two expansion events, one between 2 and 0.9 Mya (Miocene) and the other between 15 and 4 Mya (Early Pleistocene). The ancient climate fluctuations in the Xinjiang region might have contributed to the comparatively modest population size during the Pliocene epoch. Moreover, through the integration of biogeography and ancestral state reconstruction, it was determined that group C of P. tuoliensis emerged initially and subsequently dispersed to groups D and B, in that order. Subsequently, group D underwent independent evolution, whereas group B continued to diversify into groups A and EFG. The primary factor influencing this mode of transmission route is related to the geographical conditions and prevailing wind direction of each group. Subsequent research endeavors focused on assessing the domestication adaptability of P. tuoliensis to different substrates. It was found that the metabolic processes adapted during the domestication process were mainly related to energy metabolism, DNA repair, and environmental adaptability. Processes adapted to the host adaptability include responses to the host (meiosis, cell cycle, etc.) and stress in the growth environment (cysteine and methionine metabolism, sulfur metabolism, etc.). This study analyzed the systematic evolution and genetic differentiation of P. tuoliensis in Xinjiang. The identified loci and genes provide a theoretical basis for the subsequent improvement of germplasm resources and conducting molecular breeding.
Collapse
Affiliation(s)
- Peisong Jia
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China (L.S.); (B.Z.); (Z.Q.); (Y.D.)
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Y.N.); (Y.L.); (W.J.); (Q.Z.); (Z.Z.)
| | - Yarmamat Nurziya
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Y.N.); (Y.L.); (W.J.); (Q.Z.); (Z.Z.)
| | - Ying Luo
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Y.N.); (Y.L.); (W.J.); (Q.Z.); (Z.Z.)
| | - Wenjie Jia
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Y.N.); (Y.L.); (W.J.); (Q.Z.); (Z.Z.)
| | - Qi Zhu
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Y.N.); (Y.L.); (W.J.); (Q.Z.); (Z.Z.)
| | - Meng Tian
- College of Life Sciences, Xinjiang Agricultural University, Urumqi 830091, China;
| | - Lei Sun
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China (L.S.); (B.Z.); (Z.Q.); (Y.D.)
| | - Bo Zhang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China (L.S.); (B.Z.); (Z.Q.); (Y.D.)
| | - Zhengxiang Qi
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China (L.S.); (B.Z.); (Z.Q.); (Y.D.)
| | - Zhenhao Zhao
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Y.N.); (Y.L.); (W.J.); (Q.Z.); (Z.Z.)
| | - Yueting Dai
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China (L.S.); (B.Z.); (Z.Q.); (Y.D.)
| | - Yongping Fu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China (L.S.); (B.Z.); (Z.Q.); (Y.D.)
| | - Yu Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China (L.S.); (B.Z.); (Z.Q.); (Y.D.)
| |
Collapse
|
6
|
Matyášek R, Kalfusová R, Kuderová A, Řehůřková K, Sochorová J, Kovařík A. Transcriptional Silencing of 35S rDNA in Tragopogon porrifolius Correlates with Cytosine Methylation in Sequence-Specific Manner. Int J Mol Sci 2024; 25:7540. [PMID: 39062783 PMCID: PMC11276851 DOI: 10.3390/ijms25147540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/21/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Despite the widely accepted involvement of DNA methylation in the regulation of rDNA transcription, the relative participation of different cytosine methylation pathways is currently described only for a few model plants. Using PacBio, Bisulfite, and RNA sequencing; PCR; Southern hybridizations; and FISH, the epigenetic consequences of rDNA copy number variation were estimated in two T. porrifolius lineages, por1 and por2, the latter with more than twice the rDNA copy numbers distributed approximately equally between NORs on chromosomes A and D. The lower rDNA content in por1 correlated with significantly reduced (>90%) sizes of both D-NORs. Moreover, two (L and S) prominent rDNA variants, differing in the repetitive organization of intergenic spacers, were detected in por2, while only the S-rDNA variant was detected in por1. Transcriptional activity of S-rDNA in por1 was associated with secondary constriction of both A-NORs. In contrast, silencing of S-rDNA in por2 was accompanied by condensation of A-NORs, secondary constriction on D-NORs, and L-rDNA transcriptional activity, suggesting (i) bidirectional nucleolar dominance and (ii) association of S-rDNAs with A-NORs and L-rDNAs with D-NORs in T. porrifolius. Each S- and L-rDNA array was formed of several sub-variants differentiating both genetically (specific SNPs) and epigenetically (transcriptional efficiency and cytosine methylation). The most significant correlations between rDNA silencing and methylation were detected for symmetric CWG motifs followed by CG motifs. No correlations were detected for external cytosine in CCGs or asymmetric CHHs, where methylation was rather position-dependent, particularly for AT-rich variants. We conclude that variations in rDNA copy numbers in plant diploids can be accompanied by prompt epigenetic responses to maintain an appropriate number of active rDNAs. The methylation dynamics of CWGs are likely to be the most responsible for regulating silent and active rDNA states.
Collapse
Affiliation(s)
- Roman Matyášek
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic; (R.K.); (A.K.); (K.Ř.); (J.S.); (A.K.)
| | | | | | | | | | | |
Collapse
|
7
|
Hernández Sánchez-Rebato M, Schubert V, White CI. Meiotic double-strand break repair DNA synthesis tracts in Arabidopsis thaliana. PLoS Genet 2024; 20:e1011197. [PMID: 39012914 PMCID: PMC11280534 DOI: 10.1371/journal.pgen.1011197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/26/2024] [Accepted: 06/27/2024] [Indexed: 07/18/2024] Open
Abstract
We report here the successful labelling of meiotic prophase I DNA synthesis in the flowering plant, Arabidopsis thaliana. Incorporation of the thymidine analogue, EdU, enables visualisation of the footprints of recombinational repair of programmed meiotic DNA double-strand breaks (DSB), with ~400 discrete, SPO11-dependent, EdU-labelled chromosomal foci clearly visible at pachytene and later stages of meiosis. This number equates well with previous estimations of 200-300 DNA double-strand breaks per meiosis in Arabidopsis, confirming the power of this approach to detect the repair of most or all SPO11-dependent meiotic DSB repair events. The chromosomal distribution of these DNA-synthesis foci accords with that of early recombination markers and MLH1, which marks Class I crossover sites. Approximately 10 inter-homologue cross-overs (CO) have been shown to occur in each Arabidopsis male meiosis and, athough very probably under-estimated, an equivalent number of inter-homologue gene conversions (GC) have been described. Thus, at least 90% of meiotic recombination events, and very probably more, have not previously been accessible for analysis. Visual examination of the patterns of the foci on the synapsed pachytene chromosomes corresponds well with expectations from the different mechanisms of meiotic recombination and notably, no evidence for long Break-Induced Replication DNA synthesis tracts was found. Labelling of meiotic prophase I, SPO11-dependent DNA synthesis holds great promise for further understanding of the molecular mechanisms of meiotic recombination, at the heart of reproduction and evolution of eukaryotes.
Collapse
Affiliation(s)
- Miguel Hernández Sánchez-Rebato
- Institut de Génétique, Reproduction et Développement, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Charles I. White
- Institut de Génétique, Reproduction et Développement, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
8
|
Prusén Mota I, Galova M, Schleiffer A, Nguyen TT, Kovacikova I, Farias Saad C, Litos G, Nishiyama T, Gregan J, Peters JM, Schlögelhofer P. Sororin is an evolutionary conserved antagonist of WAPL. Nat Commun 2024; 15:4729. [PMID: 38830897 PMCID: PMC11148194 DOI: 10.1038/s41467-024-49178-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 05/26/2024] [Indexed: 06/05/2024] Open
Abstract
Cohesin mediates sister chromatid cohesion to enable chromosome segregation and DNA damage repair. To perform these functions, cohesin needs to be protected from WAPL, which otherwise releases cohesin from DNA. It has been proposed that cohesin is protected from WAPL by SORORIN. However, in vivo evidence for this antagonism is missing and SORORIN is only known to exist in vertebrates and insects. It is therefore unknown how important and widespread SORORIN's functions are. Here we report the identification of SORORIN orthologs in Schizosaccharomyces pombe (Sor1) and Arabidopsis thaliana (AtSORORIN). sor1Δ mutants display cohesion defects, which are partially alleviated by wpl1Δ. Atsororin mutant plants display dwarfism, tissue specific cohesion defects and chromosome mis-segregation. Furthermore, Atsororin mutant plants are sterile and separate sister chromatids prematurely at anaphase I. The somatic, but not the meiotic deficiencies can be alleviated by loss of WAPL. These results provide in vivo evidence for SORORIN antagonizing WAPL, reveal that SORORIN is present in organisms beyond the animal kingdom and indicate that it has acquired tissue specific functions in plants.
Collapse
Affiliation(s)
- Ignacio Prusén Mota
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- University of Vienna, Center for Molecular Biology, Department of Chromosome Biology, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| | - Marta Galova
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Alexander Schleiffer
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Tan-Trung Nguyen
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- University of Vienna, Center for Molecular Biology, Department of Chromosome Biology, Vienna, Austria
| | - Ines Kovacikova
- University of Vienna, Center for Molecular Biology, Department of Chromosome Biology, Vienna, Austria
| | - Carolina Farias Saad
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- University of Vienna, Center for Molecular Biology, Department of Chromosome Biology, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| | - Gabriele Litos
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Tomoko Nishiyama
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Juraj Gregan
- University of Vienna, Center for Molecular Biology, Department of Chromosome Biology, Vienna, Austria.
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Tulln an der Donau, Austria.
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria.
| | - Peter Schlögelhofer
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria.
- University of Vienna, Center for Molecular Biology, Department of Chromosome Biology, Vienna, Austria.
| |
Collapse
|
9
|
Závodník M, Pavlištová V, Machelová A, Lyčka M, Mozgová I, Caklová K, Dvořáčková M, Fajkus J. KU70 and CAF-1 in Arabidopsis: Divergent roles in rDNA stability and telomere homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1922-1936. [PMID: 38493352 DOI: 10.1111/tpj.16718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/07/2024] [Accepted: 02/29/2024] [Indexed: 03/18/2024]
Abstract
Deficiency in chromatin assembly factor-1 (CAF-1) in plants through dysfunction of its components, FASCIATA1 and 2 (FAS1, FAS2), leads to the specific and progressive loss of rDNA and telomere repeats in plants. This loss is attributed to defective repair mechanisms for the increased DNA breaks encountered during replication, a consequence of impaired replication-dependent chromatin assembly. In this study, we explore the role of KU70 in these processes. Our findings reveal that, although the rDNA copy number is reduced in ku70 mutants when compared with wild-type plants, it is not markedly affected by diverse KU70 status in fas1 mutants. This is consistent with our previous characterisation of rDNA loss in fas mutants as a consequence part of the single-strand annealing pathway of homology-dependent repair. In stark contrast to rDNA, KU70 dysfunction fully suppresses the loss of telomeres in fas1 plants and converts telomeres to their elongated and heterogeneous state typical for ku70 plants. We conclude that the alternative telomere lengthening pathway, known to be activated in the absence of KU70, overrides progressive telomere loss due to CAF-1 dysfunction.
Collapse
Affiliation(s)
- Michal Závodník
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno, CZ-62500, Czech Republic
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Brno, CZ-61265, Czech Republic
| | - Veronika Pavlištová
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno, CZ-62500, Czech Republic
- Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, CZ-61137, Czech Republic
| | - Adéla Machelová
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno, CZ-62500, Czech Republic
- Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, CZ-61137, Czech Republic
| | - Martin Lyčka
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno, CZ-62500, Czech Republic
- Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, CZ-61137, Czech Republic
| | - Iva Mozgová
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
- University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic
| | - Karolína Caklová
- Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, CZ-61137, Czech Republic
| | - Martina Dvořáčková
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno, CZ-62500, Czech Republic
- Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, CZ-61137, Czech Republic
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno, CZ-62500, Czech Republic
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Brno, CZ-61265, Czech Republic
- Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, CZ-61137, Czech Republic
| |
Collapse
|
10
|
Castellani M, Zhang M, Thangavel G, Mata-Sucre Y, Lux T, Campoy JA, Marek M, Huettel B, Sun H, Mayer KFX, Schneeberger K, Marques A. Meiotic recombination dynamics in plants with repeat-based holocentromeres shed light on the primary drivers of crossover patterning. NATURE PLANTS 2024; 10:423-438. [PMID: 38337039 PMCID: PMC10954556 DOI: 10.1038/s41477-024-01625-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/15/2024] [Indexed: 02/12/2024]
Abstract
Centromeres strongly affect (epi)genomic architecture and meiotic recombination dynamics, influencing the overall distribution and frequency of crossovers. Here we show how recombination is regulated and distributed in the holocentric plant Rhynchospora breviuscula, a species with diffused centromeres. Combining immunocytochemistry, chromatin analysis and high-throughput single-pollen sequencing, we discovered that crossover frequency is distally biased, in sharp contrast to the diffused distribution of hundreds of centromeric units and (epi)genomic features. Remarkably, we found that crossovers were abolished inside centromeric units but not in their proximity, indicating the absence of a canonical centromere effect. We further propose that telomere-led synapsis of homologues is the feature that best explains the observed recombination landscape. Our results hint at the primary influence of mechanistic features of meiotic pairing and synapsis rather than (epi)genomic features and centromere organization in determining the distally biased crossover distribution in R. breviuscula, whereas centromeres and (epi)genetic properties only affect crossover positioning locally.
Collapse
Affiliation(s)
- Marco Castellani
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Meng Zhang
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Gokilavani Thangavel
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Yennifer Mata-Sucre
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Centre of Biosciences, Federal University of Pernambuco, Recife, Brazil
| | - Thomas Lux
- Plant Genome and Systems Biology, German Research Centre for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - José A Campoy
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Department of Pomology, Estación Experimental de Aula Dei (EEAD), Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
| | - Magdalena Marek
- Max Planck Genome-Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Bruno Huettel
- Max Planck Genome-Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Hequan Sun
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Klaus F X Mayer
- Plant Genome and Systems Biology, German Research Centre for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
- School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Korbinian Schneeberger
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine University, Düsseldorf, Germany
| | - André Marques
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine University, Düsseldorf, Germany.
| |
Collapse
|
11
|
Fernandes JB, Naish M, Lian Q, Burns R, Tock AJ, Rabanal FA, Wlodzimierz P, Habring A, Nicholas RE, Weigel D, Mercier R, Henderson IR. Structural variation and DNA methylation shape the centromere-proximal meiotic crossover landscape in Arabidopsis. Genome Biol 2024; 25:30. [PMID: 38254210 PMCID: PMC10804481 DOI: 10.1186/s13059-024-03163-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/01/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Centromeres load kinetochore complexes onto chromosomes, which mediate spindle attachment and allow segregation during cell division. Although centromeres perform a conserved cellular function, their underlying DNA sequences are highly divergent within and between species. Despite variability in DNA sequence, centromeres are also universally suppressed for meiotic crossover recombination, across eukaryotes. However, the genetic and epigenetic factors responsible for suppression of centromeric crossovers remain to be completely defined. RESULTS To explore the centromere-proximal meiotic recombination landscape, we map 14,397 crossovers against fully assembled Arabidopsis thaliana (A. thaliana) genomes. A. thaliana centromeres comprise megabase satellite repeat arrays that load nucleosomes containing the CENH3 histone variant. Each chromosome contains a structurally polymorphic region of ~3-4 megabases, which lack crossovers and include the satellite arrays. This polymorphic region is flanked by ~1-2 megabase low-recombination zones. These recombination-suppressed regions are enriched for Gypsy/Ty3 retrotransposons, and additionally contain expressed genes with high genetic diversity that initiate meiotic recombination, yet do not crossover. We map crossovers at high-resolution in proximity to CEN3, which resolves punctate centromere-proximal hotspots that overlap gene islands embedded in heterochromatin. Centromeres are densely DNA methylated and the recombination landscape is remodelled in DNA methylation mutants. We observe that the centromeric low-recombining zones decrease and increase crossovers in CG (met1) and non-CG (cmt3) mutants, respectively, whereas the core non-recombining zones remain suppressed. CONCLUSION Our work relates the genetic and epigenetic organization of A. thaliana centromeres and flanking pericentromeric heterochromatin to the zones of crossover suppression that surround the CENH3-occupied satellite repeat arrays.
Collapse
Affiliation(s)
- Joiselle B Fernandes
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, D-50829, Cologne, Germany
| | - Matthew Naish
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Qichao Lian
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, D-50829, Cologne, Germany
| | - Robin Burns
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Andrew J Tock
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Fernando A Rabanal
- Department of Molecular Biology, Max Planck Institute for Biology, Tübingen, D-72076, Tübingen, Germany
| | - Piotr Wlodzimierz
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Anette Habring
- Department of Molecular Biology, Max Planck Institute for Biology, Tübingen, D-72076, Tübingen, Germany
| | - Robert E Nicholas
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Biology, Tübingen, D-72076, Tübingen, Germany
- University of Tübingen, Institute for Bioinformatics and Medical Informatics, D-72076, Tübingen, Germany
| | - Raphael Mercier
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, D-50829, Cologne, Germany
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK.
| |
Collapse
|
12
|
Chowdary KVSKA, Saini R, Singh AK. Epigenetic regulation during meiosis and crossover. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1945-1958. [PMID: 38222277 PMCID: PMC10784443 DOI: 10.1007/s12298-023-01390-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/01/2023] [Accepted: 11/10/2023] [Indexed: 01/16/2024]
Abstract
Meiosis is a distinctive type of cell division that reorganizes genetic material between generations. The initial stages of meiosis consist of several crucial steps which include double strand break, homologous chromosome pairing, break repair and crossover. Crossover frequency varies depending on the position on the chromosome, higher at euchromatin region and rare at heterochromatin, centromeres, telomeres and ribosomal DNA. Crossover positioning is dependent on various factors, especially epigenetic modifications. DNA methylation, histone post-translational modifications, histone variants and non-coding RNAs are most probably playing an important role in positioning of crossovers on a chromosomal level as well as hotspot level. DNA methylation negatively regulates crossover frequency and its effect is visible in centromeres, pericentromeres and heterochromatin regions. Pericentromeric chromatin and heterochromatin mark studies have been a centre of attraction in meiosis. Crossover hotspots are associated with euchromatin regions having specific chromatin modifications such as H3K4me3, H2A.Z. and H3 acetylation. This review will provide the current understanding of the epigenetic role in plants during meiotic recombination, chromosome synapsis, double strand break and hotspots with special attention to euchromatin and heterochromatin marks. Further, the role of epigenetic modifications in regulating meiosis and crossover in other organisms is also discussed.
Collapse
Affiliation(s)
- K. V. S. K. Arjun Chowdary
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Ramswaroop Saini
- Department of Biotechnology, Joy University, Vadakangulam, Tirunelveli, Tamil Nadu 627116 India
| | - Amit Kumar Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| |
Collapse
|
13
|
Xiong Z, Luo J, Zou Y, Tang Q, Fu S, Tang Z. The different subtelomeric structure among 1RS arms in wheat-rye 1BL.1RS translocations affecting their meiotic recombination and inducing their structural variation. BMC Genomics 2023; 24:455. [PMID: 37568100 PMCID: PMC10416389 DOI: 10.1186/s12864-023-09525-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND The 1RS arm of wheat-rye 1BL.1RS translocations contains several subtelomeric tandem repeat families. To study the effect of the difference in the composition of these tandem repeats on the meiotic recombination of 1RS arms can help to enrich the genetic diversity of 1BL.1RS translocation chromosomes. RESULTS Five wheat-rye 1BL.1RS translocation cultivars/lines were used to build two cross combinations including group 1 (20T401 × Zhou 8425B, 20T401 × Lovrin 10 and 20T401 × Chuannong 17) and group 2 (20T360-2 × Zhou 8425B, 20T360-2 × Lovrin 10 and 20T360-2 × Chuannong 17). Oligonucleotide (oligo) probes Oligo-s120.3, Oligo-TR72, and Oligo-119.2-2 produced the same signal pattern on the 1RS arms in lines 20T401 and 20T360-2, and another signal pattern in the three cultivars Zhou 8425B, Lovrin 10 and Chuannong 17. The Oligo-pSc200 signal disappeared from the 1RS arms of the line 20T401, and the signal intensity of this probe on the 1RS arms of the line 20T360-2 was weaker than that of the three cultivars. The five cultivars/lines had the same signal pattern of the probe Oligo-pSc250. The recombination rate of 1RS arms in group 1 was significantly lower than that in group 2. In the progenies from group 1, unequal meiotic recombination in the subtelomeric pSc119.2 and pSc250 tandem repeat regions, and a 1BL.1RS with inversion of 1RS segment between the pSc200 and the nucleolar organizer region were found. CONCLUSIONS This study provides a visual tool to detect the meiotic recombination of 1RS arms. The meiotic recombination rate of 1RS arms was affected by the variation of pSc200 tandem repeat, indicating the similar composition of subtelomeric tandem repeats on these arms could increase their recombination rate. These results indicate that the 1RS subtelomeric structure will affect its recombination, and thus the localization of genes on 1RS by means of meiotic recombination might also be affected.
Collapse
Affiliation(s)
- Ziying Xiong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jie Luo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qilin Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shulan Fu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China.
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Zongxiang Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China.
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
14
|
Delorme-Hinoux V, Mbodj A, Brando S, De Bures A, Llauro C, Covato F, Garrigue J, Guisset C, Borrut J, Mirouze M, Reichheld JP, Sáez-Vásquez J. 45S rDNA Diversity In Natura as One Step towards Ribosomal Heterogeneity in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2023; 12:2722. [PMID: 37514338 PMCID: PMC10386311 DOI: 10.3390/plants12142722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
The keystone of ribosome biogenesis is the transcription of 45S rDNA. The Arabidopsis thaliana genome contains hundreds of 45S rDNA units; however, they are not all transcribed. Notably, 45S rDNA units contain insertions/deletions revealing the existence of heterogeneous rRNA genes and, likely, heterogeneous ribosomes for rRNAs. In order to obtain an overall picture of 45S rDNA diversity sustaining the synthesis of rRNAs and, subsequently, of ribosomes in natura, we took advantage of 320 new occurrences of Arabidopsis thaliana as a metapopulation named At66, sampled from 0 to 1900 m of altitude in the eastern Pyrenees in France. We found that the 45S rDNA copy number is very dynamic in natura and identified new genotypes for both 5' and 3' External Transcribed Spacers (ETS). Interestingly, the highest 5'ETS genotype diversity is found in altitude while the highest 3'ETS genotype diversity is found at sea level. Structural analysis of 45S rDNA also shows conservation in natura of specific 5'ETS and 3'ETS sequences/features required to control rDNA expression and the processing of rRNAs. In conclusion, At66 is a worthwhile natural laboratory, and unraveled 45S rDNA diversity represents an interesting starting material to select subsets for rDNA transcription and alter the rRNA composition of ribosomes both intra- and inter-site.
Collapse
Affiliation(s)
- Valérie Delorme-Hinoux
- Université de Perpignan Via Domitia (UPVD), Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France
- Centre National de la Recherche Scientifique, Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France
- EMR LGDP/MANGO, Mechanisms of Adaptation and Genomics, IRD-CNRS-UPVD, 66860 Perpignan, France
- Association Charles Flahault, 66350 Toulouges, France
| | - Assane Mbodj
- Université de Perpignan Via Domitia (UPVD), Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France
- Centre National de la Recherche Scientifique, Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France
- EMR LGDP/MANGO, Mechanisms of Adaptation and Genomics, IRD-CNRS-UPVD, 66860 Perpignan, France
- Institut de Recherche pour le Développement (IRD), ECOBIO, 34000 Montpellier, France
| | - Sophie Brando
- Université de Perpignan Via Domitia (UPVD), Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France
- Centre National de la Recherche Scientifique, Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France
| | - Anne De Bures
- Université de Perpignan Via Domitia (UPVD), Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France
- Centre National de la Recherche Scientifique, Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France
| | - Christel Llauro
- Université de Perpignan Via Domitia (UPVD), Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France
- Centre National de la Recherche Scientifique, Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France
- EMR LGDP/MANGO, Mechanisms of Adaptation and Genomics, IRD-CNRS-UPVD, 66860 Perpignan, France
| | - Fabrice Covato
- FRNC, Fédération des Réserves Naturelles Catalanes, 66500 Prades, France
| | - Joseph Garrigue
- FRNC, Fédération des Réserves Naturelles Catalanes, 66500 Prades, France
| | - Claude Guisset
- Association Charles Flahault, 66350 Toulouges, France
- FRNC, Fédération des Réserves Naturelles Catalanes, 66500 Prades, France
| | | | - Marie Mirouze
- Université de Perpignan Via Domitia (UPVD), Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France
- Centre National de la Recherche Scientifique, Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France
- EMR LGDP/MANGO, Mechanisms of Adaptation and Genomics, IRD-CNRS-UPVD, 66860 Perpignan, France
- Institut de Recherche pour le Développement (IRD), ECOBIO, 34000 Montpellier, France
| | - Jean-Philippe Reichheld
- Université de Perpignan Via Domitia (UPVD), Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France
- Centre National de la Recherche Scientifique, Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France
| | - Julio Sáez-Vásquez
- Université de Perpignan Via Domitia (UPVD), Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France
- Centre National de la Recherche Scientifique, Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France
| |
Collapse
|
15
|
Mengist MF, Bostan H, De Paola D, Teresi SJ, Platts AE, Cremona G, Qi X, Mackey T, Bassil NV, Ashrafi H, Giongo L, Jibran R, Chagné D, Bianco L, Lila MA, Rowland LJ, Iovene M, Edger PP, Iorizzo M. Autopolyploid inheritance and a heterozygous reciprocal translocation shape chromosome genetic behavior in tetraploid blueberry (Vaccinium corymbosum). THE NEW PHYTOLOGIST 2023; 237:1024-1039. [PMID: 35962608 PMCID: PMC10087351 DOI: 10.1111/nph.18428] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/01/2022] [Indexed: 06/02/2023]
Abstract
Understanding chromosome recombination behavior in polyploidy species is key to advancing genetic discoveries. In blueberry, a tetraploid species, the line of evidences about its genetic behavior still remain poorly understood, owing to the inter-specific, and inter-ploidy admixture of its genome and lack of in depth genome-wide inheritance and comparative structural studies. Here we describe a new high-quality, phased, chromosome-scale genome of a diploid blueberry, clone W85. The genome was integrated with cytogenetics and high-density, genetic maps representing six tetraploid blueberry cultivars, harboring different levels of wild genome admixture, to uncover recombination behavior and structural genome divergence across tetraploid and wild diploid species. Analysis of chromosome inheritance and pairing demonstrated that tetraploid blueberry behaves as an autotetraploid with tetrasomic inheritance. Comparative analysis demonstrated the presence of a reciprocal, heterozygous, translocation spanning one homolog of chr-6 and one of chr-10 in the cultivar Draper. The translocation affects pairing and recombination of chromosomes 6 and 10. Besides the translocation detected in Draper, no other structural genomic divergences were detected across tetraploid cultivars and highly inter-crossable wild diploid species. These findings and resources will facilitate new genetic and comparative genomic studies in Vaccinium and the development of genomic assisted selection strategy for this crop.
Collapse
Affiliation(s)
- Molla F. Mengist
- Plants for Human Health InstituteNorth Carolina State UniversityKannapolisNC28081USA
| | - Hamed Bostan
- Plants for Human Health InstituteNorth Carolina State UniversityKannapolisNC28081USA
| | - Domenico De Paola
- Institute of Biosciences and BioresourcesNational Research Council of ItalyBari70126Italy
| | - Scott J. Teresi
- Department of HorticultureMichigan State UniversityEast LansingMI48824USA
| | - Adrian E. Platts
- Department of HorticultureMichigan State UniversityEast LansingMI48824USA
| | - Gaetana Cremona
- Institute of Biosciences and BioresourcesNational Research Council of ItalyPorticiNA80055Italy
| | - Xinpeng Qi
- Genetic Improvement for Fruits and Vegetables LaboratoryBeltsville Agricultural Research Center‐West, US Department of Agriculture, Agricultural Research ServiceBeltsvilleMD20705USA
| | - Ted Mackey
- Horticultural Crops Research UnitUS Department of Agriculture, Agricultural Research ServiceCorvallisOR97330USA
| | - Nahla V. Bassil
- National Clonal Germplasm RepositoryUS Department of Agriculture, Agricultural Research ServiceCorvallisOR97333USA
| | - Hamid Ashrafi
- Department of Horticultural ScienceNorth Carolina State UniversityRaleighNC27695USA
| | - Lara Giongo
- Foundation of Edmund MachSan Michele all'AdigeTN38098Italy
| | - Rubina Jibran
- Plant & Food ResearchFitzherbertPalmerston North4474New Zealand
| | - David Chagné
- Plant & Food ResearchFitzherbertPalmerston North4474New Zealand
| | - Luca Bianco
- Foundation of Edmund MachSan Michele all'AdigeTN38098Italy
| | - Mary A. Lila
- Plants for Human Health InstituteNorth Carolina State UniversityKannapolisNC28081USA
| | - Lisa J. Rowland
- Genetic Improvement for Fruits and Vegetables LaboratoryBeltsville Agricultural Research Center‐West, US Department of Agriculture, Agricultural Research ServiceBeltsvilleMD20705USA
| | - Marina Iovene
- Institute of Biosciences and BioresourcesNational Research Council of ItalyPorticiNA80055Italy
| | - Patrick P. Edger
- Department of HorticultureMichigan State UniversityEast LansingMI48824USA
| | - Massimo Iorizzo
- Plants for Human Health InstituteNorth Carolina State UniversityKannapolisNC28081USA
- Department of Horticultural ScienceNorth Carolina State UniversityRaleighNC27695USA
| |
Collapse
|
16
|
Daradur J, Kesserwan M, Freese NH, Loraine AE, Riggs CD. Genomic targets of HOP2 are enriched for features found at recombination hotspots. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525520. [PMID: 36747711 PMCID: PMC9900786 DOI: 10.1101/2023.01.25.525520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
HOP2 is a conserved protein that plays a positive role in homologous chromosome pairing and a separable role in preventing illegitimate connections between nonhomologous chromosome regions during meiosis. We employed ChIP-seq to discover that Arabidopsis HOP2 binds along the length of all chromosomes, except for centromeric and nucleolar organizer regions, and no binding sites were detected in the organelle genomes. A large number of reads were assigned to the HOP2 locus itself, yet TAIL-PCR and SNP analysis of the aligned sequences indicate that many of these reads originate from the transforming T-DNA, supporting the role of HOP2 in preventing nonhomologous exchanges. The 292 ChIP-seq peaks are largely found in promoter regions and downstream from genes, paralleling the distribution of recombination hotspots, and motif analysis revealed that there are several conserved sequences that are also enriched at crossover sites. We conducted coimmunoprecipitation of HOP2 followed by LC-MS/MS and found enrichment for several proteins, including some histone variants and modifications that are also known to be associated with recombination hotspots. We propose that HOP2 may be directed to chromatin motifs near double strand breaks, where homology checks are proposed to occur.
Collapse
Affiliation(s)
- Jenya Daradur
- Department of Biological Sciences, University of Toronto, Toronto, Ontario M1C1A4, Canada
| | - Mohamad Kesserwan
- Department of Biological Sciences, University of Toronto, Toronto, Ontario M1C1A4, Canada
| | - Nowlan H. Freese
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte, Charlotte, N.C. USA
| | - Ann E. Loraine
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte, Charlotte, N.C. USA
| | - C. Daniel Riggs
- Department of Biological Sciences, University of Toronto, Toronto, Ontario M1C1A4, Canada
| |
Collapse
|
17
|
Abstract
Inheriting the wrong number of chromosomes is one of the leading causes of infertility and birth defects in humans. However, in many organisms, individual chromosomes vary dramatically in both organization, sequence, and size. Chromosome segregation systems must be capable of accounting for these differences to reliably segregate chromosomes. During gametogenesis, meiosis ensures that all chromosomes segregate properly into gametes (i.e., egg or sperm). Interestingly, not all chromosomes exhibit the same dynamics during meiosis, which can lead to chromosome-specific behaviors and defects. This review will summarize some of the chromosome-specific meiotic events that are currently known and discuss their impact on meiotic outcomes.
Collapse
|
18
|
Nibau C, Gonzalo A, Evans A, Sweet‐Jones W, Phillips D, Lloyd A. Meiosis in allopolyploid Arabidopsis suecica. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1110-1122. [PMID: 35759495 PMCID: PMC9545853 DOI: 10.1111/tpj.15879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 06/01/2023]
Abstract
Polyploidy is a major force shaping eukaryote evolution but poses challenges for meiotic chromosome segregation. As a result, first-generation polyploids often suffer from more meiotic errors and lower fertility than established wild polyploid populations. How established polyploids adapt their meiotic behaviour to ensure genome stability and accurate chromosome segregation remains an active research question. We present here a cytological description of meiosis in the model allopolyploid species Arabidopsis suecica (2n = 4x = 26). In large part meiosis in A. suecica is diploid-like, with normal synaptic progression and no evidence of synaptic partner exchanges. Some abnormalities were seen at low frequency, including univalents at metaphase I, anaphase bridges and aneuploidy at metaphase II; however, we saw no evidence of crossover formation occurring between non-homologous chromosomes. The crossover number in A. suecica is similar to the combined number reported from its diploid parents Arabidopsis thaliana (2n = 2x = 10) and Arabidopsis arenosa (2n = 2x = 16), with an average of approximately 1.75 crossovers per chromosome pair. This contrasts with naturally evolved autotetraploid A. arenosa, where accurate chromosome segregation is achieved by restricting crossovers to approximately 1 per chromosome pair. Although an autotetraploid donor is hypothesized to have contributed the A. arenosa subgenome to A. suecica, A. suecica harbours diploid A. arenosa variants of key meiotic genes. These multiple lines of evidence suggest that meiosis in the recently evolved allopolyploid A. suecica is essentially diploid like, with meiotic adaptation following a very different trajectory to that described for autotetraploid A. arenosa.
Collapse
Affiliation(s)
- Candida Nibau
- Institute of Biological, Environmental & Rural Sciences (IBERS)Aberystwyth UniversityPenglaisAberystwythCeredigionSY23 3DAUK
| | - Adrián Gonzalo
- John Innes CentreColney LaneNorwichNR4 7UHUK
- Department of Biology, Institute of Molecular Plant BiologySwiss Federal Institute of Technology (ETH) ZürichZürich8092Switzerland
| | - Aled Evans
- Institute of Biological, Environmental & Rural Sciences (IBERS)Aberystwyth UniversityPenglaisAberystwythCeredigionSY23 3DAUK
| | - William Sweet‐Jones
- Institute of Biological, Environmental & Rural Sciences (IBERS)Aberystwyth UniversityPenglaisAberystwythCeredigionSY23 3DAUK
| | - Dylan Phillips
- Institute of Biological, Environmental & Rural Sciences (IBERS)Aberystwyth UniversityPenglaisAberystwythCeredigionSY23 3DAUK
| | - Andrew Lloyd
- Institute of Biological, Environmental & Rural Sciences (IBERS)Aberystwyth UniversityPenglaisAberystwythCeredigionSY23 3DAUK
| |
Collapse
|
19
|
Unravelling mechanisms that govern meiotic crossover formation in wheat. Biochem Soc Trans 2022; 50:1179-1186. [PMID: 35901450 PMCID: PMC9444065 DOI: 10.1042/bst20220405] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022]
Abstract
Wheat is a major cereal crop that possesses a large allopolyploid genome formed through hybridisation of tetraploid and diploid progenitors. During meiosis, crossovers (COs) are constrained in number to 1–3 per chromosome pair that are predominantly located towards the chromosome ends. This reduces the probability of advantageous traits recombining onto the same chromosome, thus limiting breeding. Therefore, understanding the underlying factors controlling meiotic recombination may provide strategies to unlock the genetic potential in wheat. In this mini-review, we will discuss the factors associated with restricted CO formation in wheat, such as timing of meiotic events, chromatin organisation, pre-meiotic DNA replication and dosage of CO genes, as a means to modulate recombination.
Collapse
|
20
|
Schindele A, Gehrke F, Schmidt C, Röhrig S, Dorn A, Puchta H. Using CRISPR-Kill for organ specific cell elimination by cleavage of tandem repeats. Nat Commun 2022; 13:1502. [PMID: 35314679 PMCID: PMC8938420 DOI: 10.1038/s41467-022-29130-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 02/28/2022] [Indexed: 11/12/2022] Open
Abstract
CRISPR/Cas has been mainly used for mutagenesis through the induction of double strand breaks (DSBs) within unique protein-coding genes. Using the SaCas9 nuclease to induce multiple DSBs in functional repetitive DNA of Arabidopsis thaliana, we can now show that cell death can be induced in a controlled way. This approach, named CRISPR-Kill, can be used as tool for tissue engineering. By simply exchanging the constitutive promoter of SaCas9 with cell type-specific promoters, it is possible to block organogenesis in Arabidopsis. By AP1-specific expression of CRISPR-Kill, we are able to restore the apetala1 phenotype and to specifically eliminate petals. In addition, by expressing CRISPR-Kill in root-specific pericycle cells, we are able to dramatically reduce the number and the length of lateral roots. In the future, the application of CRISPR-Kill may not only help to control development but could also be used to change the biochemical properties of plants. How double strand breaks (DSBs) are repaired within the plant 45S rDNA repeats is unclear. Here, the authors show that Cas9-mediated DSBs in 45S rDNA are mainly repaired by cNHEJ and describe CRISPR-Kill as a tool for organ-specific cell elimination by targeting functional repetitive DNA in Arabidopsis.
Collapse
|
21
|
Farahani-Tafreshi Y, Wei C, Gan P, Daradur J, Riggs CD, Hasenkampf CA. The Arabidopsis HOP2 gene has a role in preventing illegitimate connections between nonhomologous chromosome regions. Chromosome Res 2022; 30:59-75. [DOI: 10.1007/s10577-021-09681-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/04/2021] [Accepted: 12/08/2021] [Indexed: 11/03/2022]
|
22
|
Prusicki MA, Balboni M, Sofroni K, Hamamura Y, Schnittger A. Caught in the Act: Live-Cell Imaging of Plant Meiosis. FRONTIERS IN PLANT SCIENCE 2021; 12:718346. [PMID: 34992616 PMCID: PMC8724559 DOI: 10.3389/fpls.2021.718346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Live-cell imaging is a powerful method to obtain insights into cellular processes, particularly with respect to their dynamics. This is especially true for meiosis, where chromosomes and other cellular components such as the cytoskeleton follow an elaborate choreography over a relatively short period of time. Making these dynamics visible expands understanding of the regulation of meiosis and its underlying molecular forces. However, the analysis of meiosis by live-cell imaging is challenging; specifically in plants, a temporally resolved understanding of chromosome segregation and recombination events is lacking. Recent advances in live-cell imaging now allow the analysis of meiotic events in plants in real time. These new microscopy methods rely on the generation of reporter lines for meiotic regulators and on the establishment of ex vivo culture and imaging conditions, which stabilize the specimen and keep it alive for several hours or even days. In this review, we combine an overview of the technical aspects of live-cell imaging in plants with a summary of outstanding questions that can now be addressed to promote live-cell imaging in Arabidopsis and other plant species and stimulate ideas on the topics that can be addressed in the context of plant meiotic recombination.
Collapse
Affiliation(s)
| | | | | | | | - Arp Schnittger
- Department of Developmental Biology, Institute for Plant Science and Microbiology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
23
|
Vrielynck N, Schneider K, Rodriguez M, Sims J, Chambon A, Hurel A, De Muyt A, Ronceret A, Krsicka O, Mézard C, Schlögelhofer P, Grelon M. Conservation and divergence of meiotic DNA double strand break forming mechanisms in Arabidopsis thaliana. Nucleic Acids Res 2021; 49:9821-9835. [PMID: 34458909 PMCID: PMC8464057 DOI: 10.1093/nar/gkab715] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/16/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022] Open
Abstract
In the current meiotic recombination initiation model, the SPO11 catalytic subunits associate with MTOPVIB to form a Topoisomerase VI-like complex that generates DNA double strand breaks (DSBs). Four additional proteins, PRD1/AtMEI1, PRD2/AtMEI4, PRD3/AtMER2 and the plant specific DFO are required for meiotic DSB formation. Here we show that (i) MTOPVIB and PRD1 provide the link between the catalytic sub-complex and the other DSB proteins, (ii) PRD3/AtMER2, while localized to the axis, does not assemble a canonical pre-DSB complex but establishes a direct link between the DSB-forming and resection machineries, (iii) DFO controls MTOPVIB foci formation and is part of a divergent RMM-like complex including PHS1/AtREC114 and PRD2/AtMEI4 but not PRD3/AtMER2, (iv) PHS1/AtREC114 is absolutely unnecessary for DSB formation despite having a conserved position within the DSB protein network and (v) MTOPVIB and PRD2/AtMEI4 interact directly with chromosome axis proteins to anchor the meiotic DSB machinery to the axis.
Collapse
Affiliation(s)
- Nathalie Vrielynck
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Katja Schneider
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Marion Rodriguez
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Jason Sims
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Aurélie Chambon
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Aurélie Hurel
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Arnaud De Muyt
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Arnaud Ronceret
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Ondrej Krsicka
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Christine Mézard
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Peter Schlögelhofer
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Mathilde Grelon
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| |
Collapse
|
24
|
Gutiérrez Pinzón Y, González Kise JK, Rueda P, Ronceret A. The Formation of Bivalents and the Control of Plant Meiotic Recombination. FRONTIERS IN PLANT SCIENCE 2021; 12:717423. [PMID: 34557215 PMCID: PMC8453087 DOI: 10.3389/fpls.2021.717423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/13/2021] [Indexed: 06/06/2023]
Abstract
During the first meiotic division, the segregation of homologous chromosomes depends on the physical association of the recombined homologous DNA molecules. The physical tension due to the sites of crossing-overs (COs) is essential for the meiotic spindle to segregate the connected homologous chromosomes to the opposite poles of the cell. This equilibrated partition of homologous chromosomes allows the first meiotic reductional division. Thus, the segregation of homologous chromosomes is dependent on their recombination. In this review, we will detail the recent advances in the knowledge of the mechanisms of recombination and bivalent formation in plants. In plants, the absence of meiotic checkpoints allows observation of subsequent meiotic events in absence of meiotic recombination or defective meiotic chromosomal axis formation such as univalent formation instead of bivalents. Recent discoveries, mainly made in Arabidopsis, rice, and maize, have highlighted the link between the machinery of double-strand break (DSB) formation and elements of the chromosomal axis. We will also discuss the implications of what we know about the mechanisms regulating the number and spacing of COs (obligate CO, CO homeostasis, and interference) in model and crop plants.
Collapse
|
25
|
Huang Y, Huang W, Meng Z, Braz GT, Li Y, Wang K, Wang H, Lai J, Jiang J, Dong Z, Jin W. Megabase-scale presence-absence variation with Tripsacum origin was under selection during maize domestication and adaptation. Genome Biol 2021; 22:237. [PMID: 34416918 PMCID: PMC8377971 DOI: 10.1186/s13059-021-02448-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 08/02/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Structural variants (SVs) significantly drive genome diversity and environmental adaptation for diverse species. Unlike the prevalent small SVs (< kilobase-scale) in higher eukaryotes, large-size SVs rarely exist in the genome, but they function as one of the key evolutionary forces for speciation and adaptation. RESULTS In this study, we discover and characterize several megabase-scale presence-absence variations (PAVs) in the maize genome. Surprisingly, we identify a 3.2 Mb PAV fragment that shows high integrity and is present as complete presence or absence in the natural diversity panel. This PAV is embedded within the nucleolus organizer region (NOR), where the suppressed recombination is found to maintain the PAV against the evolutionary variation. Interestingly, by analyzing the sequence of this PAV, we not only reveal the domestication trace from teosinte to modern maize, but also the footprints of its origin from Tripsacum, shedding light on a previously unknown contribution from Tripsacum to the speciation of Zea species. The functional consequence of the Tripsacum segment migration is also investigated, and environmental fitness conferred by the PAV may explain the whole segment as a selection target during maize domestication and improvement. CONCLUSIONS These findings provide a novel perspective that Tripsacum contributes to Zea speciation, and also instantiate a strategy for evolutionary and functional analysis of the "fossil" structure variations during genome evolution and speciation.
Collapse
Affiliation(s)
- Yumin Huang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint International Research Laboratory of Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
| | - Wei Huang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint International Research Laboratory of Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
| | - Zhuang Meng
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps (MOE), Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Guilherme Tomaz Braz
- Department of Plant Biology, Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Yunfei Li
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint International Research Laboratory of Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
| | - Kai Wang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps (MOE), Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Hai Wang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint International Research Laboratory of Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
| | - Jinsheng Lai
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint International Research Laboratory of Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
| | - Jiming Jiang
- Department of Plant Biology, Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Zhaobin Dong
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint International Research Laboratory of Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China.
| | - Weiwei Jin
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint International Research Laboratory of Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
26
|
Kurzbauer MT, Janisiw MP, Paulin LF, Prusén Mota I, Tomanov K, Krsicka O, von Haeseler A, Schubert V, Schlögelhofer P. ATM controls meiotic DNA double-strand break formation and recombination and affects synaptonemal complex organization in plants. THE PLANT CELL 2021; 33:1633-1656. [PMID: 33659989 PMCID: PMC8254504 DOI: 10.1093/plcell/koab045] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/29/2021] [Indexed: 05/04/2023]
Abstract
Meiosis is a specialized cell division that gives rise to genetically distinct gametic cells. Meiosis relies on the tightly controlled formation of DNA double-strand breaks (DSBs) and their repair via homologous recombination for correct chromosome segregation. Like all forms of DNA damage, meiotic DSBs are potentially harmful and their formation activates an elaborate response to inhibit excessive DNA break formation and ensure successful repair. Previous studies established the protein kinase ATM as a DSB sensor and meiotic regulator in several organisms. Here we show that Arabidopsis ATM acts at multiple steps during DSB formation and processing, as well as crossover (CO) formation and synaptonemal complex (SC) organization, all vital for the successful completion of meiosis. We developed a single-molecule approach to quantify meiotic breaks and determined that ATM is essential to limit the number of meiotic DSBs. Local and genome-wide recombination screens showed that ATM restricts the number of interference-insensitive COs, while super-resolution STED nanoscopy of meiotic chromosomes revealed that the kinase affects chromatin loop size and SC length and width. Our study extends our understanding of how ATM functions during plant meiosis and establishes it as an integral factor of the meiotic program.
Collapse
Affiliation(s)
- Marie-Therese Kurzbauer
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Michael Peter Janisiw
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Luis F Paulin
- Center for Integrative Bioinformatics Vienna (CIBIV), Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Ignacio Prusén Mota
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Konstantin Tomanov
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Ondrej Krsicka
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Arndt von Haeseler
- Center for Integrative Bioinformatics Vienna (CIBIV), Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna BioCenter, Vienna, Austria
- Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| | - Peter Schlögelhofer
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| |
Collapse
|
27
|
Lopez FB, Fort A, Tadini L, Probst AV, McHale M, Friel J, Ryder P, Pontvianne F, Pesaresi P, Sulpice R, McKeown P, Brychkova G, Spillane C. Gene dosage compensation of rRNA transcript levels in Arabidopsis thaliana lines with reduced ribosomal gene copy number. THE PLANT CELL 2021; 33:1135-1150. [PMID: 33793816 PMCID: PMC8225240 DOI: 10.1093/plcell/koab020] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/24/2020] [Indexed: 05/08/2023]
Abstract
The 45S rRNA genes (rDNA) are among the largest repetitive elements in eukaryotic genomes. rDNA consists of tandem arrays of rRNA genes, many of which are transcriptionally silenced. Silent rDNA repeats may act as 'back-up' copies for ribosome biogenesis and have nuclear organization roles. Through Cas9-mediated genome editing in the Arabidopsis thaliana female gametophyte, we reduced 45S rDNA copy number (CN) to a plateau of ∼10%. Two independent lines had rDNA CNs reduced by up to 90% at the T7 generation, named low copy number (LCN) lines. Despite drastic reduction of rDNA copies, rRNA transcriptional rates, and steady-state levels remained the same as wild-type plants. Gene dosage compensation of rRNA transcript levels was associated with reduction of silencing histone marks at rDNA loci and altered Nucleolar Organiser Region 2 organization. Although overall genome integrity of LCN lines appears unaffected, a chromosome segmental duplication occurred in one of the lines. Transcriptome analysis of LCN seedlings identified several shared dysregulated genes and pathways in both independent lines. Cas9 genome editing of rRNA repeats to generate LCN lines provides a powerful technique to elucidate rDNA dosage compensation mechanisms and impacts of low rDNA CN on genome stability, development, and cellular processes.
Collapse
Affiliation(s)
- Francesca B Lopez
- Genetics and Biotechnology Laboratory, Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, Galway H91 REW4, Ireland
| | - Antoine Fort
- Genetics and Biotechnology Laboratory, Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, Galway H91 REW4, Ireland
- Systems Biology Laboratory, Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, Galway H91 REW4, Ireland
| | - Luca Tadini
- Dipartimento di Bioscienze, Universit� degli Studi di Milano, 20133 Milano, Italy
| | - Aline V Probst
- CNRS, GReD, Universit� Clermont Auvergne, INSERM, 63001 Clermont–Ferrand, France
| | - Marcus McHale
- Genetics and Biotechnology Laboratory, Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, Galway H91 REW4, Ireland
- Systems Biology Laboratory, Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, Galway H91 REW4, Ireland
| | - James Friel
- Genetics and Biotechnology Laboratory, Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, Galway H91 REW4, Ireland
| | - Peter Ryder
- Genetics and Biotechnology Laboratory, Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, Galway H91 REW4, Ireland
| | - Fr�d�ric Pontvianne
- CNRS, Laboratoire G�nome et D�veloppement des Plantes (LGDP), Universit� de Perpignan Via Domitia, Perpignan, France
| | - Paolo Pesaresi
- Dipartimento di Bioscienze, Universit� degli Studi di Milano, 20133 Milano, Italy
| | - Ronan Sulpice
- Systems Biology Laboratory, Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, Galway H91 REW4, Ireland
| | - Peter McKeown
- Genetics and Biotechnology Laboratory, Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, Galway H91 REW4, Ireland
| | - Galina Brychkova
- Genetics and Biotechnology Laboratory, Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, Galway H91 REW4, Ireland
| | - Charles Spillane
- Genetics and Biotechnology Laboratory, Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, Galway H91 REW4, Ireland
- Author for correspondence:
| |
Collapse
|
28
|
Sims J, Schlögelhofer P, Kurzbauer MT. From Microscopy to Nanoscopy: Defining an Arabidopsis thaliana Meiotic Atlas at the Nanometer Scale. FRONTIERS IN PLANT SCIENCE 2021; 12:672914. [PMID: 34084178 PMCID: PMC8167036 DOI: 10.3389/fpls.2021.672914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Visualization of meiotic chromosomes and the proteins involved in meiotic recombination have become essential to study meiosis in many systems including the model plant Arabidopsis thaliana. Recent advances in super-resolution technologies changed how microscopic images are acquired and analyzed. New technologies enable observation of cells and nuclei at a nanometer scale and hold great promise to the field since they allow observing complex meiotic molecular processes with unprecedented detail. Here, we provide an overview of classical and advanced sample preparation and microscopy techniques with an updated Arabidopsis meiotic atlas based on super-resolution microscopy. We review different techniques, focusing on stimulated emission depletion (STED) nanoscopy, to offer researchers guidance for selecting the optimal protocol and equipment to address their scientific question.
Collapse
|
29
|
Jenczewski E. Moving to and fro between Arabidopsis and its crop relatives confirms the role of chromosome remodelling on meiotic recombination. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2811-2813. [PMID: 33822174 DOI: 10.1093/jxb/erab032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This article comments on:
Cuacos M, Lambing C, Pachon-Penalba M, Osman K, Armstrong SJ, Henderson IR, Sanchez-Moran E, Franklin FCH, Heckmann S. 2021. Meiotic chromosome axis remodelling is critical for meiotic recombination in Brassica rapa. Journal of Experimental Botany 72, 3012–3027.
Collapse
Affiliation(s)
- Eric Jenczewski
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| |
Collapse
|
30
|
Cuacos M, Lambing C, Pachon-Penalba M, Osman K, Armstrong SJ, Henderson IR, Sanchez-Moran E, Franklin FCH, Heckmann S. Meiotic chromosome axis remodelling is critical for meiotic recombination in Brassica rapa. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3012-3027. [PMID: 33502451 PMCID: PMC8023211 DOI: 10.1093/jxb/erab035] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/21/2021] [Indexed: 05/23/2023]
Abstract
Meiosis generates genetic variation through homologous recombination (HR) that is harnessed during breeding. HR occurs in the context of meiotic chromosome axes and the synaptonemal complex. To study the role of axis remodelling in crossover (CO) formation in a crop species, we characterized mutants of the axis-associated protein ASY1 and the axis-remodelling protein PCH2 in Brassica rapa. asy1 plants form meiotic chromosome axes that fail to synapse. CO formation is almost abolished, and residual chiasmata are proportionally enriched in terminal chromosome regions, particularly in the nucleolar organizing region (NOR)-carrying chromosome arm. pch2 plants show impaired ASY1 loading and remodelling, consequently achieving only partial synapsis, which leads to reduced CO formation and loss of the obligatory CO. PCH2-independent chiasmata are proportionally enriched towards distal chromosome regions. Similarly, in Arabidopsis pch2, COs are increased towards telomeric regions at the expense of (peri-) centromeric COs compared with the wild type. Taken together, in B. rapa, axis formation and remodelling are critical for meiotic fidelity including synapsis and CO formation, and in asy1 and pch2 CO distributions are altered. While asy1 plants are sterile, pch2 plants are semi-sterile and thus PCH2 could be an interesting target for breeding programmes.
Collapse
Affiliation(s)
- Maria Cuacos
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, D-06466 Seeland, Germany
| | - Christophe Lambing
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | | | - Kim Osman
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Susan J Armstrong
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | | | | | - Stefan Heckmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, D-06466 Seeland, Germany
| |
Collapse
|
31
|
TSETA: A Third-Generation Sequencing-Based Computational Tool for Mapping and Visualization of SNPs, Meiotic Recombination Products, and RIP Mutations. Methods Mol Biol 2021; 2234:331-361. [PMID: 33165796 DOI: 10.1007/978-1-0716-1048-0_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
TSETA (Third-generation Sequencing to Enable Tetrad Analysis) is a fungus-centric software pipeline that utilizes chromosome-level sequence assembly for genome-wide and single-nucleotide-resolution mapping of single-nucleotide polymorphisms (SNPs), meiotic recombination products, illegitimate mutations (IMs) and repeat-induced point (RIP) mutations. It utilizes a newly invented algorithm (i.e., BLASTN-guided sectional MAFFT) to perform fast, accurate, and low-cost multiple genome sequence alignments. This new algorithm outcompetes next-generation sequencing (NGS)-based variant-calling approaches for accurate and comprehensive identification of single-nucleotide variants (SNVs) and insertion/deletion mutations (Indels) among the near-complete genome sequences of any two or more intraspecific strains, as well as sequences before and after meiosis, with single-nucleotide precision. TSETA also has a powerful tool for the visualization of the results from the scale of the chromosomal landscape to individual nucleotides. The data output files are user-friendly for researchers and students lacking computational expertise to analyze and reason about data and evidence.
Collapse
|
32
|
Cook D, Long S, Stanton J, Cusick P, Lawrimore C, Yeh E, Grant S, Bloom K. Behavior of dicentric chromosomes in budding yeast. PLoS Genet 2021; 17:e1009442. [PMID: 33735169 PMCID: PMC8009378 DOI: 10.1371/journal.pgen.1009442] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 03/30/2021] [Accepted: 02/24/2021] [Indexed: 12/15/2022] Open
Abstract
DNA double-strand breaks arise in vivo when a dicentric chromosome (two centromeres on one chromosome) goes through mitosis with the two centromeres attached to opposite spindle pole bodies. Repair of the DSBs generates phenotypic diversity due to the range of monocentric derivative chromosomes that arise. To explore whether DSBs may be differentially repaired as a function of their spatial position in the chromosome, we have examined the structure of monocentric derivative chromosomes from cells containing a suite of dicentric chromosomes in which the distance between the two centromeres ranges from 6.5 kb to 57.7 kb. Two major classes of repair products, homology-based (homologous recombination (HR) and single-strand annealing (SSA)) and end-joining (non-homologous (NHEJ) and micro-homology mediated (MMEJ)) were identified. The distribution of repair products varies as a function of distance between the two centromeres. Genetic dependencies on double strand break repair (Rad52), DNA ligase (Lif1), and S phase checkpoint (Mrc1) are indicative of distinct repair pathway choices for DNA breaks in the pericentromeric chromatin versus the arms. A challenge in chromosome biology is to integrate the linear code with spatial organization and chromosome dynamics within the nucleus. The major sub-division of function in the nucleus is the nucleolus, the site of ribosomal RNA synthesis. We report that the pericentromere DNA surrounding the centromere is another region of confined biochemistry. We have found that chromosome breaks between two centromeres that both lie within the pericentromeric region of the chromosomes are repaired via pathways that do not rely on sequence homology (MMEJ or NHEJ). Chromosome breaks in dicentric chromosomes whose centromeres are separated by > 20 kb are repaired via pathways that rely mainly on sequence homology (HR, SSA). The repair of breaks in the pericentromere versus breaks in the arms are differentially dependent on Rad52, Lif1, and Mrc1, further indicative of spatial control over DNA repair pathways.
Collapse
Affiliation(s)
- Diana Cook
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sarah Long
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - John Stanton
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Patrick Cusick
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Colleen Lawrimore
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Elaine Yeh
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sarah Grant
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kerry Bloom
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
33
|
Osman K, Algopishi U, Higgins JD, Henderson IR, Edwards KJ, Franklin FCH, Sanchez-Moran E. Distal Bias of Meiotic Crossovers in Hexaploid Bread Wheat Reflects Spatio-Temporal Asymmetry of the Meiotic Program. FRONTIERS IN PLANT SCIENCE 2021; 12:631323. [PMID: 33679846 DOI: 10.33892/ffpls.2021.631323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/18/2021] [Indexed: 05/25/2023]
Abstract
Meiotic recombination generates genetic variation and provides physical links between homologous chromosomes (crossovers) essential for accurate segregation. In cereals the distribution of crossovers, cytologically evident as chiasmata, is biased toward the distal regions of chromosomes. This creates a bottleneck for plant breeders in the development of varieties with improved agronomic traits, as genes situated in the interstitial and centromere proximal regions of chromosomes rarely recombine. Recent advances in wheat genomics and genome engineering combined with well-developed wheat cytogenetics offer new opportunities to manipulate recombination and unlock genetic variation. As a basis for these investigations we have carried out a detailed analysis of meiotic progression in hexaploid wheat (Triticum aestivum) using immunolocalization of chromosome axis, synaptonemal complex and recombination proteins. 5-Bromo-2'-deoxyuridine (BrdU) labeling was used to determine the chronology of key events in relation to DNA replication. Axis morphogenesis, synapsis and recombination initiation were found to be spatio-temporally coordinated, beginning in the gene-dense distal chromosomal regions and later occurring in the interstitial/proximal regions. Moreover, meiotic progression in the distal regions was coordinated with the conserved chromatin cycles that are a feature of meiosis. This mirroring of the chiasma bias was also evident in the distribution of the gene-associated histone marks, H3K4me3 and H3K27me3; the repeat-associated mark, H3K27me1; and H3K9me3. We believe that this study provides a cytogenetic framework for functional studies and ongoing initiatives to manipulate recombination in the wheat genome.
Collapse
Affiliation(s)
- Kim Osman
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Uthman Algopishi
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - James D Higgins
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Keith J Edwards
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - F Chris H Franklin
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | | |
Collapse
|
34
|
Sequencing of the Arabidopsis NOR2 reveals its distinct organization and tissue-specific rRNA ribosomal variants. Nat Commun 2021; 12:387. [PMID: 33452254 PMCID: PMC7810690 DOI: 10.1038/s41467-020-20728-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/15/2020] [Indexed: 11/20/2022] Open
Abstract
Despite vast differences between organisms, some characteristics of their genomes are conserved, such as the nucleolus organizing region (NOR). The NOR is constituted of multiple, highly repetitive rDNA genes, encoding the catalytic ribosomal core RNAs which are transcribed from 45S rDNA units. Their precise sequence information and organization remain uncharacterized. Here, using a combination of long- and short-read sequencing technologies we assemble contigs of the Arabidopsis NOR2 rDNA domain. We identify several expressed rRNA gene variants which are integrated into translating ribosomes in a tissue-specific manner. These findings support the concept of tissue specific ribosome subpopulations that differ in their rRNA composition and provide insights into the higher order organization of NOR2. The nucleolus organizing region (NOR) consists of multiple, highly repetitive rDNA genes. Here Sims et al. use both long- and short-read sequencing to determine the organization and sequence of Arabidopsis NOR2 rDNA and show that different rRNA gene variants are integrated into translating ribosomes in a tissue-specific manner.
Collapse
|
35
|
Sims J, Rabanal FA, Elgert C, von Haeseler A, Schlögelhofer P. It Is Just a Matter of Time: Balancing Homologous Recombination and Non-homologous End Joining at the rDNA Locus During Meiosis. FRONTIERS IN PLANT SCIENCE 2021; 12:773052. [PMID: 34777453 PMCID: PMC8580885 DOI: 10.3389/fpls.2021.773052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/04/2021] [Indexed: 05/17/2023]
Abstract
Ribosomal RNA genes (rDNAs) are located in large domains of hundreds of rDNA units organized in a head-to-tail manner. The proper and stable inheritance of rDNA clusters is of paramount importance for survival. Yet, these highly repetitive elements pose a potential risk to the genome since they can undergo non-allelic exchanges. Here, we review the current knowledge of the organization of the rDNA clusters in Arabidopsis thaliana and their stability during meiosis. Recent findings suggest that during meiosis, all rDNA loci are embedded within the nucleolus favoring non-homologous end joining (NHEJ) as a repair mechanism, while DNA repair via homologous recombination (HR) appears to be a rare event. We propose a model where (1) frequent meiotic NHEJ events generate abundant single nucleotide polymorphisms and insertions/deletions within the rDNA, resulting in a heterogeneous population of rDNA units and (2) rare HR events dynamically change rDNA unit numbers, only to be observed in large populations over many generations. Based on the latest efforts to delineate the entire rDNA sequence in A. thaliana, we discuss evidence supporting this model. The results compiled so far draw a surprising picture of rDNA sequence heterogeneity between individual units. Furthermore, rDNA cluster sizes have been recognized as relatively stable when observing less than 10 generations, yet emerged as major determinant of genome size variation between different A. thaliana ecotypes. The sequencing efforts also revealed that transcripts from the diverse rDNA units yield heterogenous ribosome populations with potential functional implications. These findings strongly motivate further research to understand the mechanisms that maintain the metastable state of rDNA loci.
Collapse
Affiliation(s)
- Jason Sims
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- *Correspondence: Jason Sims,
| | - Fernando A. Rabanal
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Christiane Elgert
- Center for Integrative Bioinformatics Vienna (CIBIV), Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Arndt von Haeseler
- Center for Integrative Bioinformatics Vienna (CIBIV), Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna BioCenter, Vienna, Austria
- Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - Peter Schlögelhofer
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- Peter Schlögelhofer,
| |
Collapse
|
36
|
Osman K, Algopishi U, Higgins JD, Henderson IR, Edwards KJ, Franklin FCH, Sanchez-Moran E. Distal Bias of Meiotic Crossovers in Hexaploid Bread Wheat Reflects Spatio-Temporal Asymmetry of the Meiotic Program. FRONTIERS IN PLANT SCIENCE 2021; 12:631323. [PMID: 33679846 PMCID: PMC7928317 DOI: 10.3389/fpls.2021.631323] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/18/2021] [Indexed: 05/09/2023]
Abstract
Meiotic recombination generates genetic variation and provides physical links between homologous chromosomes (crossovers) essential for accurate segregation. In cereals the distribution of crossovers, cytologically evident as chiasmata, is biased toward the distal regions of chromosomes. This creates a bottleneck for plant breeders in the development of varieties with improved agronomic traits, as genes situated in the interstitial and centromere proximal regions of chromosomes rarely recombine. Recent advances in wheat genomics and genome engineering combined with well-developed wheat cytogenetics offer new opportunities to manipulate recombination and unlock genetic variation. As a basis for these investigations we have carried out a detailed analysis of meiotic progression in hexaploid wheat (Triticum aestivum) using immunolocalization of chromosome axis, synaptonemal complex and recombination proteins. 5-Bromo-2'-deoxyuridine (BrdU) labeling was used to determine the chronology of key events in relation to DNA replication. Axis morphogenesis, synapsis and recombination initiation were found to be spatio-temporally coordinated, beginning in the gene-dense distal chromosomal regions and later occurring in the interstitial/proximal regions. Moreover, meiotic progression in the distal regions was coordinated with the conserved chromatin cycles that are a feature of meiosis. This mirroring of the chiasma bias was also evident in the distribution of the gene-associated histone marks, H3K4me3 and H3K27me3; the repeat-associated mark, H3K27me1; and H3K9me3. We believe that this study provides a cytogenetic framework for functional studies and ongoing initiatives to manipulate recombination in the wheat genome.
Collapse
Affiliation(s)
- Kim Osman
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- *Correspondence: Kim Osman
| | - Uthman Algopishi
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - James D. Higgins
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Ian R. Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Keith J. Edwards
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | | | - Eugenio Sanchez-Moran
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- Eugenio Sanchez-Moran
| |
Collapse
|
37
|
Fayos I, Meunier AC, Vernet A, Navarro-Sanz S, Portefaix M, Lartaud M, Bastianelli G, Périn C, Nicolas A, Guiderdoni E. Assessment of the roles of SPO11-2 and SPO11-4 in meiosis in rice using CRISPR/Cas9 mutagenesis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:7046-7058. [PMID: 32842152 DOI: 10.1093/jxb/eraa391] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/20/2020] [Indexed: 05/21/2023]
Abstract
In Arabidopsis, chromosomal double-strand breaks at meiosis are presumably catalyzed by two distinct SPO11 transesterases, AtSPO11-1 and AtSPO11-2, together with M-TOPVIB. To clarify the roles of the SPO11 paralogs in rice, we used CRISPR/Cas9 mutagenesis to produce null biallelic mutants in OsSPO11-1, OsSPO11-2, and OsSPO11-4. Similar to Osspo11-1, biallelic mutations in the first exon of OsSPO11-2 led to complete panicle sterility. Conversely, all Osspo11-4 biallelic mutants were fertile. To generate segregating Osspo11-2 mutant lines, we developed a strategy based on dual intron targeting. Similar to Osspo11-1, the pollen mother cells of Osspo11-2 progeny plants showed an absence of bivalent formation at metaphase I, aberrant segregation of homologous chromosomes, and formation of non-viable tetrads. In contrast, the chromosome behavior in Osspo11-4 male meiocytes was indistinguishable from that in the wild type. While similar numbers of OsDMC1 foci were revealed by immunostaining in wild-type and Osspo11-4 prophase pollen mother cells (114 and 101, respectively), a surprisingly high number (85) of foci was observed in the sterile Osspo11-2 mutant, indicative of a divergent function between OsSPO11-1 and OsSPO11-2. This study demonstrates that whereas OsSPO11-1 and OsSPO11-2 are the likely orthologs of AtSPO11-1 and AtSPO11-2, OsSPO11-4 has no major role in wild-type rice meiosis.
Collapse
Affiliation(s)
- Ian Fayos
- CIRAD, UMR AGAP, Montpellier Cedex, France
- Université de Montpellier, CIRAD-INRAe-Institut Agro, Montpellier, France
- Meiogenix, Paris, France
| | - Anne Cécile Meunier
- CIRAD, UMR AGAP, Montpellier Cedex, France
- Université de Montpellier, CIRAD-INRAe-Institut Agro, Montpellier, France
| | - Aurore Vernet
- CIRAD, UMR AGAP, Montpellier Cedex, France
- Université de Montpellier, CIRAD-INRAe-Institut Agro, Montpellier, France
| | - Sergi Navarro-Sanz
- CIRAD, UMR AGAP, Montpellier Cedex, France
- Université de Montpellier, CIRAD-INRAe-Institut Agro, Montpellier, France
| | - Murielle Portefaix
- CIRAD, UMR AGAP, Montpellier Cedex, France
- Université de Montpellier, CIRAD-INRAe-Institut Agro, Montpellier, France
| | - Marc Lartaud
- CIRAD, UMR AGAP, Montpellier Cedex, France
- Université de Montpellier, CIRAD-INRAe-Institut Agro, Montpellier, France
| | | | - Christophe Périn
- CIRAD, UMR AGAP, Montpellier Cedex, France
- Université de Montpellier, CIRAD-INRAe-Institut Agro, Montpellier, France
| | - Alain Nicolas
- Institut Curie, CNRS UMR 3244, PSL University, Paris Cedex, France
- Meiogenix, Paris, France
| | - Emmanuel Guiderdoni
- CIRAD, UMR AGAP, Montpellier Cedex, France
- Université de Montpellier, CIRAD-INRAe-Institut Agro, Montpellier, France
| |
Collapse
|
38
|
Dreissig S, Maurer A, Sharma R, Milne L, Flavell AJ, Schmutzer T, Pillen K. Natural variation in meiotic recombination rate shapes introgression patterns in intraspecific hybrids between wild and domesticated barley. THE NEW PHYTOLOGIST 2020; 228:1852-1863. [PMID: 32659029 DOI: 10.1111/nph.16810] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
Meiotic recombination rates vary considerably between species, populations and individuals. The genetic exchange between homologous chromosomes plays a major role in evolution by breaking linkage between advantageous and deleterious alleles in the case of introgressions. Identifying recombination rate modifiers is thus of both fundamental and practical interest to understand and utilize variation in meiotic recombination rates. We investigated recombination rate variation in a large intraspecific hybrid population (named HEB-25) derived from a cross between domesticated barley and 25 wild barley accessions. We observed quantitative variation in total crossover number with a maximum of a 1.4-fold difference between subpopulations and increased recombination rates across pericentromeric regions. The meiosis-specific α-kleisin cohesin subunit REC8 was identified as a candidate gene influencing crossover number and patterning. Furthermore, we quantified wild barley introgression patterns and revealed how local and genome-wide recombination rate variation shapes patterns of introgression. The identification of allelic variation in REC8 in combination with the observed changes in crossover patterning suggest a difference in how chromatin loops are tethered to the chromosome axis, resulting in reduced crossover suppression across pericentromeric regions. Local and genome-wide recombination rate variation is shaping patterns of introgressions and thereby directly influences the consequences of linkage drag.
Collapse
Affiliation(s)
- Steven Dreissig
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Straße 3, Halle (Saale), 06120, Germany
| | - Andreas Maurer
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Straße 3, Halle (Saale), 06120, Germany
| | - Rajiv Sharma
- Division of Plant Sciences, University of Dundee at JHI, Invergowrie Dundee, DD2 5DA, Scotland, UK
| | - Linda Milne
- The James Hutton Institute (JHI), Invergowrie Dundee, DD2 5DA, Scotland, UK
| | - Andrew John Flavell
- Division of Plant Sciences, University of Dundee at JHI, Invergowrie Dundee, DD2 5DA, Scotland, UK
| | - Thomas Schmutzer
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Straße 3, Halle (Saale), 06120, Germany
| | - Klaus Pillen
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Straße 3, Halle (Saale), 06120, Germany
| |
Collapse
|
39
|
Korsholm LM, Gál Z, Nieto B, Quevedo O, Boukoura S, Lund CC, Larsen DH. Recent advances in the nucleolar responses to DNA double-strand breaks. Nucleic Acids Res 2020; 48:9449-9461. [PMID: 32857853 PMCID: PMC7515731 DOI: 10.1093/nar/gkaa713] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/13/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022] Open
Abstract
DNA damage poses a serious threat to human health and cells therefore continuously monitor and repair DNA lesions across the genome. Ribosomal DNA is a genomic domain that represents a particular challenge due to repetitive sequences, high transcriptional activity and its localization in the nucleolus, where the accessibility of DNA repair factors is limited. Recent discoveries have significantly extended our understanding of how cells respond to DNA double-strand breaks (DSBs) in the nucleolus, and new kinases and multiple down-stream targets have been identified. Restructuring of the nucleolus can occur as a consequence of DSBs and new data point to an active regulation of this process, challenging previous views. Furthermore, new insights into coordination of cell cycle phases and ribosomal DNA repair argue against existing concepts. In addition, the importance of nucleolar-DNA damage response (n-DDR) mechanisms for maintenance of genome stability and the potential of such factors as anti-cancer targets is becoming apparent. This review will provide a detailed discussion of recent findings and their implications for our understanding of the n-DDR. The n-DDR shares features with the DNA damage response (DDR) elsewhere in the genome but is also emerging as an independent response unique to ribosomal DNA and the nucleolus.
Collapse
Affiliation(s)
| | | | - Blanca Nieto
- Danish Cancer Society Research Center, Nucleolar Stress and Disease Group, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Oliver Quevedo
- Danish Cancer Society Research Center, Nucleolar Stress and Disease Group, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Stavroula Boukoura
- Danish Cancer Society Research Center, Nucleolar Stress and Disease Group, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Casper Carstens Lund
- Danish Cancer Society Research Center, Nucleolar Stress and Disease Group, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | | |
Collapse
|
40
|
Li WC, Liu HC, Lin YJ, Tung SY, Wang TF. Third-generation sequencing-based mapping and visualization of single nucleotide polymorphism, meiotic recombination, illegitimate mutation and repeat-induced point mutation. NAR Genom Bioinform 2020; 2:lqaa056. [PMID: 33575607 PMCID: PMC7671321 DOI: 10.1093/nargab/lqaa056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/23/2020] [Accepted: 07/10/2020] [Indexed: 01/07/2023] Open
Abstract
Generation of new genetic diversity by crossover (CO) and non-crossover (NCO) is a fundamental process in eukaryotes. Fungi have played critical roles in studying this process because they permit tetrad analysis, which has been used by geneticists for several decades to determine meiotic recombination products. New genetic variations can also be generated in zygotes via illegitimate mutation (IM) and repeat-induced point mutation (RIP). RIP is a genome defense mechanism for preventing harmful expansion of transposable elements or duplicated sequences in filamentous fungi. Although the exact mechanism of RIP is unknown, the C:G to T:A mutations might result from DNA cytosine methylation. A comprehensive approach for understanding the molecular mechanisms underlying these important processes is to perform high-throughput mapping of CO, NCO, RIP and IM in zygotes bearing large numbers of heterozygous variant markers. To this aim, we developed ‘TSETA’, a versatile and user-friendly pipeline that utilizes high-quality and chromosome-level genome sequences involved in a single meiotic event of the industrial workhorse fungus Trichoderma reesei. TSETA not only can be applied to most sexual eukaryotes for genome-wide tetrad analysis, it also outcompetes most currently used methods for calling out single nucleotide polymorphisms between two or more intraspecies strains or isolates.
Collapse
Affiliation(s)
- Wan-Chen Li
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Hou-Cheng Liu
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Ying-Jyun Lin
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Shu-Yun Tung
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Ting-Fang Wang
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
41
|
Rommel Fuentes R, Hesselink T, Nieuwenhuis R, Bakker L, Schijlen E, van Dooijeweert W, Diaz Trivino S, de Haan JR, Sanchez Perez G, Zhang X, Fransz P, de Jong H, van Dijk ADJ, de Ridder D, Peters SA. Meiotic recombination profiling of interspecific hybrid F1 tomato pollen by linked read sequencing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:480-492. [PMID: 31820490 DOI: 10.1111/tpj.14640] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/25/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Genome wide screening of pooled pollen samples from a single interspecific F1 hybrid obtained from a cross between tomato, Solanum lycopersicum and its wild relative, Solanum pimpinellifolium using linked read sequencing of the haploid nuclei, allowed profiling of the crossover (CO) and gene conversion (GC) landscape. We observed a striking overlap between cold regions of CO in the male gametes and our previously established F6 recombinant inbred lines (RILs) population. COs were overrepresented in non-coding regions in the gene promoter and 5'UTR regions of genes. Poly-A/T and AT rich motifs were found enriched in 1 kb promoter regions flanking the CO sites. Non-crossover associated allelic and ectopic GCs were detected in most chromosomes, confirming that besides CO, GC represents also a source for genetic diversity and genome plasticity in tomato. Furthermore, we identified processed break junctions pointing at the involvement of both homology directed and non-homology directed repair pathways, suggesting a recombination machinery in tomato that is more complex than currently anticipated.
Collapse
Affiliation(s)
- Roven Rommel Fuentes
- Bioinformatics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Thamara Hesselink
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Ronald Nieuwenhuis
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Linda Bakker
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Elio Schijlen
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Willem van Dooijeweert
- Centre for Genetic Resources, Wageningen University and Research, Wageningen, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Sara Diaz Trivino
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Jorn R de Haan
- Genetwister Technologies B.V., Nieuwe Kanaal 7b, 6709 PA, Wageningen, The Netherlands
| | - Gabino Sanchez Perez
- Genetwister Technologies B.V., Nieuwe Kanaal 7b, 6709 PA, Wageningen, The Netherlands
| | - Xinyue Zhang
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Paul Fransz
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Hans de Jong
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Aalt D J van Dijk
- Bioinformatics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- Biometris, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Sander A Peters
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|